Efficient algorithms and data structures for compressive sensing

Wegen der kontinuierlich anwachsenden Anzahl von Sensoren, und den stetig wachsenden Datenmengen, die jene produzieren, stößt die konventielle Art Signale zu verarbeiten, beruhend auf dem Nyquist-Kriterium, auf immer mehr Hindernisse und Probleme.

Die kürzlich entwickelte Theorie des Compressive Sensing (CS) formuliert das Versprechen einige dieser Hindernisse zu beseitigen, indem hier allgemeinere Signalaufnahme und -rekonstruktionsverfahren zum Einsatz kommen können. Dies erlaubt, dass hierbei einzelne Abtastwerte komplexer strukturierte Informationen über das Signal enthalten können als dies bei konventiellem Nyquistsampling der Fall ist. Gleichzeitig verändert sich die Signalrekonstruktion notwendigerweise zu einem nicht-linearen Vorgang und ebenso müssen viele Hardwarekonzepte für praktische Anwendungen neu überdacht werden. Das heißt, dass man zwischen der Menge an Information, die man über Signale gewinnen kann, und dem Aufwand für das Design und Betreiben eines Signalverarbeitungssystems abwägen kann und muss.

Die hier vorgestellte Arbeit trägt dazu bei, dass bei diesem Abwägen CS mehr begünstigt werden kann, indem neue Resultate vorgestellt werden, die es erlauben, dass CS einfacher in der Praxis Anwendung finden kann, wobei die zu erwartende Leistungsfähigkeit des Systems theoretisch fundiert ist. Beispielsweise spielt das Konzept der Sparsity eine zentrale Rolle, weshalb diese Arbeit eine Methode präsentiert, womit der Grad der Sparsity eines Vektors mittels einer einzelnen Beobachtung geschätzt werden kann. Wir zeigen auf, dass dieser Ansatz für Sparsity Order Estimation zu einem niedrigeren Rekonstruktionsfehler führt, wenn man diesen mit einer Rekonstruktion vergleicht, welcher die Sparsity des Vektors unbekannt ist.

Um die Modellierung von Signalen und deren Rekonstruktion effizienter zu gestalten, stellen wir das Konzept von der matrixfreien Darstellung linearer Operatoren vor. Für die einfachere Anwendung dieser Darstellung präsentieren wir eine freie Softwarearchitektur und demonstrieren deren Vorzüge, wenn sie für die Rekonstruktion in einem CS-System genutzt wird. Konkret wird der Nutzen dieser Bibliothek, einerseits für das Ermitteln von Defektpositionen in Prüfkörpern mittels Ultraschall, und andererseits für das Schätzen von Streuern in einem Funkkanal aus Ultrabreitbanddaten, demonstriert.

Darüber hinaus stellen wir für die Verarbeitung der Ultraschalldaten eine Rekonstruktionspipeline vor, welche Daten verarbeitet, die im Frequenzbereich Unterabtastung erfahren haben. Wir beschreiben effiziente Algorithmen, die bei der Modellierung und der Rekonstruktion zum Einsatz kommen und wir leiten asymptotische Resultate für die benötigte Anzahl von Messwerten, sowie die zu erwartenden Lokalisierungsgenauigkeiten der Defekte her. Wir zeigen auf, dass das vorgestellte System starke Kompression zulässt, ohne die Bildgebung und Defektlokalisierung maßgeblich zu beeinträchtigen. Für die Lokalisierung von Streuern mittels Ultrabreitbandradaren stellen wir ein CS-System vor, welches auf einem Random Demodulators basiert. Im Vergleich zu existierenden Messverfahren ist die hieraus resultierende Schätzung der Kanalimpulsantwort robuster gegen die Effekte von zeitvarianten Funkkanälen.

Um den inhärenten Modellfehler, den gitterbasiertes CS begehen muss, zu beseitigen, zeigen wir auf wie Atomic Norm Minimierung es erlaubt ohne die Einschränkung auf ein endliches und diskretes Gitter R-dimensionale spektrale Komponenten aus komprimierten Beobachtungen zu schätzen. Hierzu leiten wir eine R-dimensionale Variante des ADMM her, welcher dazu in der Lage ist die Signalkovarianz in diesem allgemeinen Szenario zu schätzen. Weiterhin zeigen wir, wie dieser Ansatz zur Richtungsschätzung mit realistischen Antennenarraygeometrien genutzt werden kann. In diesem Zusammenhang präsentieren wir auch eine Methode, welche mittels Stochastic gradient descent Messmatrizen ermitteln kann, die sich gut für Parameterschätzung eignen. Die hieraus resultierenden Kompressionsverfahren haben die Eigenschaft, dass die Schätzgenauigkeit über den gesamten Parameterraum ein möglichst uniformes Verhalten zeigt. Zuletzt zeigen wir auf, dass die Kombination des ADMM und des Stochastic Gradient descent das Design eines CS-Systems ermöglicht, welches in diesem gitterfreien Szenario wünschenswerte Eigenschaften hat.

Along with the ever increasing number of sensors, which are also generating rapidly growing amounts of data, the traditional paradigm of sampling adhering the Nyquist criterion is facing an equally increasing number of obstacles.

The rather recent theory of Compressive Sensing (CS) promises to alleviate some of these drawbacks by proposing to generalize the sampling and reconstruction schemes such that the acquired samples can contain more complex information about the signal than Nyquist samples. The proposed measurement process is more complex and the reconstruction algorithms necessarily need to be nonlinear. Additionally, the hardware design process needs to be revisited as well in order to account for this new acquisition scheme. Hence, one can identify a trade-off between information that is contained in individual samples of a signal and effort during development and operation of the sensing system.

This thesis addresses the necessary steps to shift the mentioned trade-off more to the favor of CS. We do so by providing new results that make CS easier to deploy in practice while also maintaining the performance indicated by theoretical results. The sparsity order of a signal plays a central role in any CS system. Hence, we present a method to estimate this crucial quantity prior to recovery from a single snapshot. As we show, this proposed Sparsity Order Estimation method allows to improve the reconstruction error compared to an unguided reconstruction.

During the development of the theory we notice that the matrix-free view on the involved linear mappings offers a lot of possibilities to render the reconstruction and modeling stage much more efficient. Hence, we present an open source software architecture to construct these matrix-free representations and showcase its ease of use and performance when used for sparse recovery to detect defects from ultrasound data as well as estimating scatterers in a radio channel using ultra-wideband impulse responses.

For the former of these two applications, we present a complete reconstruction pipeline when the ultrasound data is compressed by means of sub-sampling in the frequency domain. Here, we present the algorithms for the forward model, the reconstruction stage and we give asymptotic bounds for the number of measurements and the expected reconstruction error. We show that our proposed system allows significant compression levels without substantially deteriorating the imaging quality. For the second application, we develop a sampling scheme to acquire the channel Impulse Response (IR) based on a Random Demodulator that allows to capture enough information in the recorded samples to reliably estimate the IR when exploiting sparsity. Compared to the state of the art, this in turn allows to improve the robustness to the effects of time-variant radar channels while also outperforming state of the art methods based on Nyquist sampling in terms of reconstruction error.

In order to circumvent the inherent model mismatch of early grid-based compressive sensing theory, we make use of the Atomic Norm Minimization framework and show how it can be used for the estimation of the signal covariance with R-dimensional parameters from multiple compressive snapshots. To this end, we derive a variant of the ADMM that can estimate this covariance in a very general setting and we show how to use this for direction finding with realistic antenna geometries. In this context we also present a method based on a Stochastic gradient descent iteration scheme to find compression schemes that are well suited for parameter estimation, since the resulting sub-sampling has a uniform effect on the whole parameter space. Finally, we show numerically that the combination of these two approaches yields a well performing grid-free CS pipeline.

Cite

Citation style:
Could not load citation form.

Rights

Use and reproduction: