We study the reachability problem for queue automata and lossy queue automata. Concretely, we consider the set of queue contents which are forwards resp. backwards reachable from a given set of queue contents. Here, we prove the preservation of regularity if the queue automaton loops through some special sets of transformation sequences. This is a generalization of the results by Boigelot et al. and Abdulla et al. regarding queue automata looping through a single sequence of transformations. We also prove that our construction is possible in polynomial time.