This paper examined the joining zone between semi-crystalline polyamide 6 and aluminum EN AW 6082 in laser-based joining and evaluated the mechanical properties of the joint. The joint tests were carried out in overlap configuration and a characterized in terms of energy per unit length. The mechanical properties were examined to the point of cohesive failure. An increasing energy per unit length resulted in a reduced crosshead displacement in short-term testing and a decreased fatigue strength. Further material testing was carried out locally at various positions within the joining zone. The mechanical properties were correlated with results of a hardness test, thermoplastic morphology, differential scanning calorimetry (DSC), and X-ray diffraction (XRD). By combining the findings with heat-treated samples at elevated temperatures, secondary crystallization was identified and evidenced as a primary effect among the changes in mechanical properties due to the heat treatment of the thermoplastic material.