Atomistic Descriptors for Machine Learning Models of Solubility Parameters for Small Molecules and Polymers

GND
1252281129
ORCID
0000-0003-0258-4655
Affiliation
Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, 07743 Jena, Germany; mingzhe.chi@uni-jena.de (M.C.); tim.schrader@uni-jena.de (T.S.)
Chi, Mingzhe;
Affiliation
Georesources Materials Environment and Global Changes Laboratory (GEOGLOB), Faculty of Sciences of Sfax, Sfax University, Sfax 3018, Tunisia; rihab.gargouri.etud@fss.usf.tn (R.G.); kamel.damak@fss.usf.tn (K.D.); ramzi.maalej@fss.usf.tn (R.M.)
Gargouri, Rihab;
GND
1017521522
ORCID
0000-0002-5323-5589
Affiliation
Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, 07743 Jena, Germany; mingzhe.chi@uni-jena.de (M.C.); tim.schrader@uni-jena.de (T.S.)
Schrader, Tim;
Affiliation
Georesources Materials Environment and Global Changes Laboratory (GEOGLOB), Faculty of Sciences of Sfax, Sfax University, Sfax 3018, Tunisia; rihab.gargouri.etud@fss.usf.tn (R.G.); kamel.damak@fss.usf.tn (K.D.); ramzi.maalej@fss.usf.tn (R.M.)
Damak, Kamel;
ORCID
0000-0002-6722-1882
Affiliation
Georesources Materials Environment and Global Changes Laboratory (GEOGLOB), Faculty of Sciences of Sfax, Sfax University, Sfax 3018, Tunisia; rihab.gargouri.etud@fss.usf.tn (R.G.); kamel.damak@fss.usf.tn (K.D.); ramzi.maalej@fss.usf.tn (R.M.)
Maâlej, Ramzi;
GND
122725751
ORCID
0000-0001-8153-3682
Affiliation
Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, 07743 Jena, Germany; mingzhe.chi@uni-jena.de (M.C.); tim.schrader@uni-jena.de (T.S.)
Sierka, Marek

Descriptors derived from atomic structure and quantum chemical calculations for small molecules representing polymer repeat elements were evaluated for machine learning models to predict the Hildebrand solubility parameters of the corresponding polymers. Since reliable cohesive energy density data and solubility parameters for polymers are difficult to obtain, the experimental heat of vaporization Δ H vap of a set of small molecules was used as a proxy property to evaluate the descriptors. Using the atomistic descriptors, the multilinear regression model showed good accuracy in predicting Δ H vap of the small-molecule set, with a mean absolute error of 2.63 kJ/mol for training and 3.61 kJ/mol for cross-validation. Kernel ridge regression showed similar performance for the small-molecule training set but slightly worse accuracy for the prediction of Δ H vap of molecules representing repeating polymer elements. The Hildebrand solubility parameters of the polymers derived from the atomistic descriptors of the repeating polymer elements showed good correlation with values from the CROW polymer database.

Cite

Citation style:
Could not load citation form.

Rights

License Holder: © 2021 by the authors.

Use and reproduction: