GaN-based high electron mobility transistors (HEMT) are promising devices for radio frequency (RF) and high-power electronics and are already in use for RF power amplifiers and for power switches. Commonly, these devices are normally-on transistors, i.e., they are in the on-state at zero applied gate voltage, what limits their suitability for various applications, such as fail-safe power switches and RF amplifiers with single-polarity power supply. Unfortunately, in contrast to GaAs- and InP HEMTs, achieving normally-off operation, i.e., a positive thresh-old voltage, for GaN heterostructures is difficult due to the high density of the polarization-induced two-dimensional electron gas (2DEG) at the barrier/buffer interface. For fast RF HEMTs, short gates are required. However, HEMTs with aggres-sively scaled gate length frequently suffer from short-channel effects caused by a degraded control of the gate over the channel. This leads to a deterioration of the transistors off-state performance (increased subthreshold swing and drain-induced barrier lowering) and on-state behavior (increased drain conductance). The tri-gate design has recently been applied to MOSFETs and HEMTs to improve the gate control and suppress short channel effects. Experimental tri-gate transistors show excellent down-scaling characteristics, improved performance, and, in particular for GaN tri-gate HEMTs, a significant shift of the threshold voltage toward positive values. On the other hand, tri-gate GaN normally-off HEMTs are still suffering from increased parasitics causing degraded RF performance (particularly in terms of cutoff frequency) compared to their planar counterparts. Improving the RF performance of GaN tri-gate HEMTs by reducing the parasitics is essential, but this requires a deep understanding of device physics and a thorough analysis of the root causes. In the present work, in-depth theoretical investigations of GaN tri-gate HEMT operation are performed and extensive simulation studies for these devices are conducted. As a result of these efforts, improved insights in the physics of GaN tri-gate HEMTs are achieved, the potential of this transistor type is assessed, design guidelines are elaborated, and advantageous designs are developed. It is shown that the 2DEG sheet density decreases by shrinking the body width, that the threshold voltage of GaN tri-gate HEMTs strongly depends on the width of AlGaN/GaN bodies, and that solely by decreasing the body width a transition from normally-on to normally-off operation can be achieved. The separation between adjacent bodies is shown to have less impact on threshold voltage. The results also show that for wide bodies (> 200 nm) the channel is controlled by both the top-gate and the sidewall gates, while for decreasing body width the control by top-gate gradually diminishes and the channel will be only controlled by side-gates. Furthermore, the impact of AlGaN barrier design (Al content, thickness) is studied, and the results show a limited dependency of the threshold voltage on the barrier design for very narrow bodies. The tri-gate concept enables normally-off operation, provides improved on-state performance (higher transconductance), and effectively suppresses short-channel effects in the off-state. Moreover, the simulation results show that GaN tri-gate HEMTs can exhibit higher breakdown voltages and operate closer to the theoretical limit for GaN devices than their planar counterparts. Moreover, the simulations indicate that the RF performance of GaN tri-gate HEMTs with optimized body designs can be superior to that of conventional planar devices. A means to improve the RF performance is the reduction of the body etch height, leading to a decreased parasitic coupling between the sidewalls and the source/drain electrodes. Thus, reducing the body height leads to a decreased overall gate capacitance and an improved RF performance. Another way to reduce the overall gate capacitance is to cover the body sidewalls with a dielectric (e.g. SiN). This reduces the fringing capacitance components since the gap between neighboring bodies that is filled with gate metal is narrower compared to the case without dielectrics. Finally, the polarization charge at the barrier/channel interface and thus the electron density in the 2DEG) can be increased either by increasing the aluminium content of the AlGaN barrier or by using a different barrier material (e.g., lattice matched In0.17 Al0.83 N). In the frame of a joint DFG project, GaN tri-gate HEMTs designed based on the improved insights in the physics of these devices have been fabricated and characterized at Fraunhofer IAF. These devices having a gate length of 100 nm are by far the fastest GaN tri-gate HEMTs worldwide and show record performance in terms of cutoff frequency (120 GHz) and maximum frequency of oscillation (300 GHz).
HEMTs (high electron mobility transistors) auf GaN-Basis besitzen großes Potenzial für die HF- (Hochfrequenz) und Leistungselektronik und werden bereits in HF-Leistungsverstärkern und als Leistungsschalter verwendet. Üblicherweise sind GaN HEMTs Normally-On Transistoren (d.h. Transistoren, die sich bei einer Gatespannung von 0 V im Ein-Zustand befinden), was für Anwendungen wie Fail-Safe-Leistungsschalter und HF-Verstärker mit nur einer Versorgungsspannung nachteilig ist. Es schwierig, GaN HEMTs mit Normally-Off-Charakteristik (HEMTs mit positiver Schwellspannung) zu realisieren, da in diesen Transistoren die Dichte des sich an der Grenzfläche Barriere/Puffer ausbildenden 2DEG (zweidimensionales Elektronengas) auf Grund starker Polarisationseffekte erheblich größer als in GaAs und InP HEMTs ist. Die Realisierung schneller HF-HEMTs erfordert kurze Gates. Allerdings leiden Transistoren mit sehr kurzen Gates häufig unter Kurzkanaleffekten und einer reduzierten Steuerwirkung des Gates, was zu einer Verschlechterung des Verhaltens im Aus-Zustand (erhöhte Werte für den Subthreshold Swing und das Drain-Induced Barrier Low-ering) und im Ein-Zustand (erhöhter Drainleitwert) führt. In jüngster Zeit wird bei MOSFETs und HEMTs das Tri-Gate-Design angewendet, um die Gatesteuerwirkung zu verbessern und Kurzkanaleffekte zu unterdrücken. So wurden bereits Tri-Gate-Transistoren mit ausgezeichnetem Skalierungsverhalten, verbesserten Eigenschaften und, speziell im Fall von GaN Tri-Gate-HEMTs, positiver Schwellspannung, demonstriert. Auf der anderen Seite leiden GaN Tri-Gate-HEMTs mit Normally-Off-Charakteristik jedoch unter großen Parasitäten, die das HF-Verhalten (insbesondere die Transitfrequenz) beeinträchtigen. Die Verbesserung des HF-Verhaltens und eine Reduzierung der Parasitäten von GaN Tri-Gate-HEMTs ist daher dringend nötig. Das erfordert jedoch ein tiefes Eindringen in die Physik dieser Bauelemente. In der vorliegenden Arbeit werden umfassende theoretische Untersuchungen und Bauelementesimulationen zu GaN Tri-Gate-HEMT beschrieben, die zu einem deutlichen verbesserten Verständnis der Wirkungsweise von GaN Tri-Gate-HEMTs führten. So konnten das Potential dieses Transistortyps bewertet, Designregeln erarbeitet und vorteilhafte Transistordesigns entwickelt werden. In der Arbeit wird gezeigt, dass eine Verringerung der Bodyweite bei gegebener Gatespannung zu einer Verringerung der Ladungsträgerdichte im 2DEG führt, dass die Schwellspannung maßgeblich von der Bodyweite bestimmt wird und dass bei hinreichend geringer Bodyweite der Übergang vom Normall-On- zum Normally-Off-Betrieb erfolgt. Es wird auch gezeigt, dass der Abstand zwischen benachbarten Bodies nur einen geringen Einfluss auf die Schwellspannung hat. Darüber hinaus wird demonstriert, dass im Fall weiter Bodies (> 200 nm) der Kanal sowohl durch das Top-Gate als auch durch die Seiten-Gates gesteuert wird, während bei schmaleren Bodies die Steuerwirkung durch das Top-Gate geringer wird und die Verhältnisse im Kanal im Wesentlichen durch das Seiten-Gates bestimmt werden. In der Arbeit wird weiterhin Rolle des Designs der AlGaN-Barriere (Al-Gehalt, Dicke) untersucht und demonstriert, dass die Gestaltung der Barriere bei schmalen Bodies nur einen begrenzten Einfluss auf die Schwellspannung hat. Die Untersuchungen zeigen deutlich, dass das mit dem Tri-Gate-Konzept Normally-Off-Transistoren realisierbar sind, dass das Transistorverhalten im Ein-Zustand verbessert (höhere Steilheit) wird, und dass Kurzkanaleffekte im Aus-Zustand wirkungsvoll unterdrückt. Es wird auch demonstriert, dass GaN Tri-Gate HEMTs höhere Durchbruchspannungen zeigen und näher an der theoretischen Grenze für GaN-Bauelemente arbeiten als planare GaN HEMTs. Ein weiteres Ergebnis der vorliegenden Arbeit ist der Nachweis, dass GaN Tri-Gate-HEMTs mit sorgfältig optimiertem Design den planaren HEMTs auch hinsichtlich des HF-Verhaltens überlegen sind. Ein Mittel zur Verbesserung des HF-Verhaltens ist die Reduzierung der Body-Ätzhöhe, die zur Verringerung der parasitären Kopplung zwischen den Body-Seitenwänden und den Source/Drain-Elektroden und somit zu einer geringeren Gatekapazität führt. Eine weitere Maßnahme zur Reduzierung der Gatekapazität ist die Beschichtung der Body-Seitenwände mit einem Dielektrikum (z.B. SiN). Das verringert die Streukapazität, da jetzt die mit dem Gatemetall gefüllte Lücken zwischen benachbarten Bodies schmaler sind. Schließlich wird gezeigt, dass die Polarisationsladung an der Grenzfläche Barrier/Kanal und somit die Elektronendichte im 2DEG durch Erhöhung des Al-Gehalts der AlGaN-Barriere oder durch Nutzung eines anderen Materials für die Barriere (z.B. gitterangepasstes In0.17 Al0.83 N) gesteigert werden kann.