A multi-modal person perception framework for socially interactive mobile service robots

GND
111585884X
Affiliation
Neuroinformatics and Cognitive Robotics Lab of Technische Universität Ilmenau, 98684 Ilmenau, Germany, steffen.mueller@tu-ilmenau.de
Müller, Steffen;
Affiliation
Neuroinformatics and Cognitive Robotics Lab of Technische Universität Ilmenau, 98684 Ilmenau, Germany, tim.wengefeld@tu-ilmenau.de
Wengefeld, Tim;
Affiliation
Neuroinformatics and Cognitive Robotics Lab of Technische Universität Ilmenau, 98684 Ilmenau, Germany, quang-thanh.trinh@tu-ilmenau.de
Trinh, Thanh Quang;
Affiliation
Neuroinformatics and Cognitive Robotics Lab of Technische Universität Ilmenau, 98684 Ilmenau, Germany, dustin.aganian@tu-ilmenau.de
Aganian, Dustin;
Affiliation
Neuroinformatics and Cognitive Robotics Lab of Technische Universität Ilmenau, 98684 Ilmenau, Germany, markus.eisenbach@tu-ilmenau.de
Eisenbach, Markus;
GND
129669806
Affiliation
Neuroinformatics and Cognitive Robotics Lab of Technische Universität Ilmenau, 98684 Ilmenau, Germany, horst-michael.gross@tu-ilmenau.de
Gross, Horst-Michael

In order to meet the increasing demands of mobile service robot applications, a dedicated perception module is an essential requirement for the interaction with users in real-world scenarios. In particular, multi sensor fusion and human re-identification are recognized as active research fronts. Through this paper we contribute to the topic and present a modular detection and tracking system that models position and additional properties of persons in the surroundings of a mobile robot. The proposed system introduces a probability-based data association method that besides the position can incorporate face and color-based appearance features in order to realize a re-identification of persons when tracking gets interrupted. The system combines the results of various state-of-the-art image-based detection systems for person recognition, person identification and attribute estimation. This allows a stable estimate of a mobile robot’s user, even in complex, cluttered environments with long-lasting occlusions. In our benchmark, we introduce a new measure for tracking consistency and show the improvements when face and appearance-based re-identification are combined. The tracking system was applied in a real world application with a mobile rehabilitation assistant robot in a public hospital. The estimated states of persons are used for the user-centered navigation behaviors, e.g., guiding or approaching a person, but also for realizing a socially acceptable navigation in public environments.

Cite

Citation style:
Could not load citation form.

Rights

License Holder: © 2020 by the authors. Licensee MDPI, Basel, Switzerland.

Use and reproduction:

Export