Music similarity analysis using the big data framework spark

Schoder, Johannes GND

A parameterizable recommender system based on the Big Data processing framework Spark is introduced, which takes multiple tonal properties of music into account and is capable of recommending music based on a user's personal preferences. The implemented system is fully scalable; more songs can be added to the dataset, the cluster size can be increased, and the possibility to add different kinds of audio features and more state-of-the-art similarity measurements is given. This thesis also deals with the extraction of the required audio features in parallel on a computer cluster. The extracted features are then processed by the Spark based recommender system, and song recommendations for a dataset consisting of approximately 114000 songs are retrieved in less than 12 seconds on a 16 node Spark cluster, combining eight different audio feature types and similarity measurements.

Ein parametrisierbares Empfehlungssystem, basierend auf dem Big Data Framework Spark, wird präsentiert. Dieses berücksichtigt verschiedene klangliche Eigenschaften der Musik und erstellt Musikempfehlungen basierend auf den persönlichen Vorlieben eines Nutzers. Das implementierte Empfehlungssystem ist voll skalierbar. Mehr Lieder können dem Datensatz hinzugefügt werden, mehr Rechner können in das Computercluster eingebunden werden und die Möglichkeit andere Audiofeatures und aktuellere Ähnlichkeitsmaße hizuzufügen und zu verwenden, ist ebenfalls gegeben. Des Weiteren behandelt die Arbeit die parallele Berechnung der benötigten Audiofeatures auf einem Computercluster. Die Features werden von dem auf Spark basierenden Empfehlungssystem verarbeitet und Empfehlungen für einen Datensatz bestehend aus ca. 114000 Liedern können unter Berücksichtigung von acht verschiedenen Arten von Audiofeatures und Abstandsmaßen innerhalb von zwölf Sekunden auf einem Computercluster mit 16 Knoten berechnet werden.

Cite

Citation style:
Could not load citation form.

Rights

Use and reproduction:

Export