Nonconvex and mixed integer multiobjective optimization with an application to decision uncertainty

Niebling, Julia GND

Multiobjective optimization problems commonly arise in different fields like economics or engineering. In general, when dealing with several conflicting objective functions, there is an infinite number of optimal solutions which cannot usually be determined analytically. This thesis presents new branch-and-bound-based approaches for computing the globally optimal solutions of multiobjective optimization problems of various types. New algorithms are proposed for smooth multiobjective nonconvex optimization problems with convex constraints as well as for multiobjective mixed integer convex optimization problems. Both algorithms guarantee a certain accuracy of the computed solutions, and belong to the first deterministic algorithms within their class of optimization problems. Additionally, a new approach to compute a covering of the optimal solution set of multiobjective optimization problems with decision uncertainty is presented. The three new algorithms are tested numerically. The results are evaluated in this thesis as well. The branch-and-bound based algorithms deal with box partitions and use selection rules, discarding tests and termination criteria. The discarding tests are the most important aspect, as they give criteria whether a box can be discarded as it does not contain any optimal solution. We present discarding tests which combine techniques from global single objective optimization with outer approximation techniques from multiobjective convex optimization and with the concept of local upper bounds from multiobjective combinatorial optimization. The new discarding tests aim to find appropriate lower bounds of subsets of the image set in order to compare them with known upper bounds numerically.

Multikriterielle Optimierungprobleme sind in diversen Anwendungsgebieten wie beispielsweise in den Wirtschafts- oder Ingenieurwissenschaften zu finden. Da hierbei mehrere konkurrierende Zielfunktionen auftreten, ist die Lösungsmenge eines derartigen Optimierungsproblems im Allgemeinen unendlich groß und kann meist nicht in analytischer Form berechnet werden. In dieser Dissertation werden neue Branch-and-Bound basierte Algorithmen zur Lösung verschiedener Klassen von multikriteriellen Optimierungsproblemen entwickelt und vorgestellt. Der Branch-and-Bound Ansatz ist eine typische Methode der globalen Optimierung. Einer der neuen Algorithmen löst glatte multikriterielle nichtkonvexe Optimierungsprobleme mit konvexen Nebenbedingungen, während ein zweiter zur Lösung multikriterieller gemischt-ganzzahliger konvexer Optimierungsprobleme dient. Beide Algorithmen garantieren eine gewisse Genauigkeit der berechneten Lösungen und gehören damit zu den ersten deterministischen Algorithmen ihrer Art. Zusätzlich wird ein Algorithmus zur Berechnung einer Überdeckung der Lösungsmenge multikriterieller Optimierungsprobleme mit Entscheidungsunsicherheit vorgestellt. Alle drei Algorithmen wurden numerisch getestet. Die Ergebnisse werden ebenfalls in dieser Arbeit ausgewertet. Die neuen Algorithmen arbeiten alle mit Boxunterteilungen und nutzen Auswahlregeln, sowie Verwerfungs- und Terminierungskriterien. Dabei spielen gute Verwerfungskriterien eine zentrale Rolle. Diese entscheiden, ob eine Box verworfen werden kann, da diese sicher keine Optimallösung enthält. Die neuen Verwerfungskriterien nutzen Methoden aus der globalen skalarwertigen Optimierung, Approximationstechniken aus der multikriteriellen konvexen Optimierung sowie ein Konzept aus der kombinatorischen Optimierung. Dabei werden stets untere Schranken der Bildmengen konstruiert, die mit bisher berechneten oberen Schranken numerisch verglichen werden können.

Cite

Citation style:

Niebling, Julia: Nonconvex and mixed integer multiobjective optimization with an application to decision uncertainty. Ilmenau 2020.

Access Statistic

Total:
Downloads:
Abtractviews:
Last 12 Month:
Downloads:
Abtractviews:

open graphic

Rights

Use and reproduction:
All rights reserved

Export