Object shape recognition and reconstruction using pivoted tactile sensors

Merker, Lukas; Will, Christoph GND; Steigenberger, Joachim GND; Behn, Carsten GND

Many mammals use some special tactile hairs, the so-called mystacial macrovibrissae, to acquire information about their environment. In doing so, rats and mice, e.g., are able to detect object distances, shapes, and surface textures. Inspired by the biological paradigm, we present a mechanical model for object contour scanning and shape reconstruction, considering a single vibrissa as a cylindrically shaped Euler-Bernoulli-bending rod, which is pivoted by a bearing. In doing so, we adapt our model for a rotational scanning movement, which is in contrast to many previous modeling approaches. Describing a single rotational quasi-static sweep of the vibrissa along a strict convex contour function using nonlinear Euler-Bernoulli theory, we end up in a boundary-value problem with some unknown parameters. In a first step, we use shooting methods in an algorithm to repeatedly solve this boundary-value problem (changing the vibrissa base angle) and generate the support reactions during a sweep along an object contour. Afterwards, we use these support reactions to reconstruct the object contour solving an initial-value problem. Finally, we extend the scanning process adding a second sweep of the vibrissa in opposite direction in order to enlarge the reconstructable area of the profile.

Cite

Citation style:

Merker, Lukas / Will, Christoph / Steigenberger, Joachim / et al: Object shape recognition and reconstruction using pivoted tactile sensors. 2018.

Access Statistic

Total:
Downloads:
Abtractviews:
Last 12 Month:
Downloads:
Abtractviews:

open graphic

Rights

Use and reproduction:

Export