Die vorliegende Arbeit beschäftigt sich mit der Qualitätsbewertung und -vorhersage in virtuellen akustischen Umgebungen, insbesondere in Raumsimulationen basierend auf Kugelarraydaten, die mithilfe binauraler Synthese auralisiert werden. Dabei werden verschiedene Prädiktionsverfahren angewandt, um den Einfluss des Arrays auf die Wiedergabequalität automatisiert vorherzusagen, indem die Daten von Hörexperimenten mit denen eines auditorischen Modells in Bezug gesetzt werden. Im Fokus der Experimente stehen unterschiedliche, praxisrelevante Aspekte des Messsystems, die einen Einfluss auf die Wiedergabequalität haben. Konkret sind dies Messfehler, wie räumliches Aliasing, Rauschen oder Mikrofonpositionierungsfehler, oder die Konfiguration des Arrays. Diese definiert das räumliche Auflösungsvermögen und entspricht der gewählten Ordnung der Sphärischen Harmonischen Zerlegung. Die Experimente basieren auf Kugelarray-Simulationen unter Freifeldbedingungen und in einfachen simulierten Rechteckräumen mit unterschiedlichen Reflexionseigenschaften, wobei ein Raum trocken, der andere dagegen stark reflektierend ist. Dabei dienen zehn Testsignale als Audiomaterial, die in praktischen Anwendungen relevant erscheinen, wie z. B. Orchester- oder Popmusik, männlicher und weiblicher Gesang oder Kastagnetten. In Wahrnehmungsexperimenten wird der Einfluss von Messfehlern in einer quantitativen Analyse bewertet und die Qualität der Synthese deskriptiv mit den Attributen Apparent Source Width (ASW) und Listener Envelopment (LEV) bewertet. Die resultierenden Daten bilden die Basis für die Qualitätsvorhersage, wobei die Hörtestergebnisse als Observationen und die Ausgangsdaten des auditorischen Modells als Prädiktoren dienen. Mit den Daten werden unterschiedliche Prädiktionsmodelle trainiert und deren Vorhersagegenauigkeit anschließend bewertet. Die entwickelten Modelle ermöglichen es, sowohl Messfehler zu identifizieren und zu klassifizieren als auch deren Ausprägung zu schätzen. Darüber hinaus erlauben sie es, den Einfluss der Arraykonfiguration auf die Wahrnehmung von ASW und LEV vorherzusagen und die verwendete Ordnung der Schallfeldzerlegung zu identifizieren, ebenso wie die Reflexionseigenschaften des simulierten Raumes. Es kommen sowohl einfache Regressionsmodelle und Entscheidungsbäume zur Anwendung als auch komplexere Modelle, wie Support Vector Machines oder neuronale Netze. Die entwickelten Modelle zeigen in der Regel eine hohe Genauigkeit bei der Qualitätsvorhersage und erlauben so die Analyse von grundlegenden Array-Eigenschaften, ohne aufwendige Hörexperimente durchführen zu müssen. Obwohl die Anwendbarkeit der Modelle auf die hier untersuchten Fälle beschränkt ist, können sie sich als hilfreiche Werkzeuge bei der Entwicklung von Kugelarrays für Auralisationsanwendungen erweisen.
The thesis documents a scientific study on quality assessment and quality prediction in Virtual Acoustic Environments (VAEs) based on spherical microphone array data, using binaural synthesis for reproduction. In the experiments, predictive modeling is applied to estimate the influence of the array on the reproduction quality by relating the data derived in perceptual experiments to the output of an auditory model. The experiments adress various aspects of the array considered relevant in auralization applications: the influence of system errors as well as the influence of the array configuration employed. The system errors comprise spatial aliasing, measurement noise, and microphone positioning errors while the array configuration is represented by the sound field order in terms of spherical harmonics, defining the spatial resolution of the array. Based on array simulations, the experimental data comprise free-field sound fields and two shoe-box shaped rooms, one with weak and another with strong reverberation. Ten audio signals served as test material, e.g., orchestral/pop music, male/female singing voice or single instruments such as castanets. In the perceptual experiments, quantitative methods are used to evaluate the impact of system errors while a descriptive analysis assesses the array configuration using two quality factors for attribution: Apparent Source Width (ASW) and Listener Envelopment (LEV). Both are quality measures commonly used in concert hall acoustics to describe the spaciousness of a room. The results from the perceptual experiments are subsequently related to the technical data derived from the auditory model in order to build, train, and evaluate a variety of predictive models. Based on classification and regression approaches, these models are applied and investigated for automated quality assessment in order to identify and categorize system errors as well as to estimate their perceptual strength. Moreover, the models allow to predict the array’s influence on ASW and LEV perception and enable the classification of further sound field characteristics, like the reflection properties of the simulated room or the sound field order used. The applied prediction models comprise simple linear regression and decision trees, or more complex models such as support vector machines or artificial neural networks. The results show that the developed prediction models perform well in their classification and regression tasks. Although their functionality is limited to the conditions underlying the conducted experiments, they can still provide a useful tool to assess basic quality-related aspects which are important when developing spherical microphone arrays for auralization applications.