Vorverarbeitungsverfahren zur morphometrischen Hirnanalyse und Qualitätssicherung von strukturellen Magnetresonanzbildern

Dahnke, Robert GND

Gegenstand der Dissertation ist die Neuentwicklung und Validierung von Verfahren zur Aufbereitung von anatomischen Daten, die mittels Magnetresonanztomographie gewonnen wurden. Ziel ist dabei die Erfassung von morphometrischen Kennwerten zur Beschreibung der Struktur und Form des Gehirns, wie beispielsweise Volumen, Fläche, Dicke oder Faltung der Großhirnrinde. Die Kennwerte erlauben sowohl die Erforschung individueller gesunder und pathologischer Entwicklung als auch der evolutionären Anpassung des Gehirns. Die zur Datenanalyse notwendige Vorverarbeitung beinhaltet dabei die Angleichung von Bildeigenschaften und individueller Anatomie. Die fortlaufende Weiterentwicklung der Scanner- und Rechentechnik ermöglicht eine zunehmend genauere Bildgebung, erfordert aber die kontinuierliche Anpassung existierender Verfahren. Die Schwerpunkte dieser Dissertation lagen in der Entwicklung neuer Verfahren zur (i) Klassifikation der Hirngewebe (Segmentierung), (ii) räumlichen Abbildung des individuellen Gehirns auf ein Durchschnittsgehirn (Registrierung), (iii) Bestimmung der Dicke der Großhirnrinde und Rekonstruktion einer repräsentativen Oberfläche und (iv) Qualitätssicherung der Eingangsdaten. Die Segmentierung gleicht die Bildeigenschaften unterschiedlicher Protokolle an, während die Registrierung anatomische Merkmale normalisiert und so den Vergleich verschiedener Gehirne ermöglicht. Die Rekonstruktion von Oberflächen erlaubt wiederum die Gewinnung einer Vielzahl weiterer morphometrischer Maße zur spezifischen Charakterisierung des Gehirns und seiner Entwicklung. Anhand von simulierten und realen Daten wird die Validität der neuen Methoden belegt und mit anderen Ansätzen verglichen. Die Verfahren sind Bestandteil der Computational Anatomy Toolbox (CAT; http://dbm.neuro.uni-jena.de/cat), deren Schwerpunkt die Vorverarbeitung von strukturellen Daten ist und die Teil des Statistical Parametric Mapping (SPM) Softwarepaketes in MATLAB ist.

This Ph.D. thesis focuses on the development, optimization and validation of preprocessing methods of structural magnetic resonance images of the brain. The preprocessing describes the creation of morphometric data that support a statistical analysis of brain anatomy. Image interferences have to be removed to allow a tissue classification (segmentation). In order to compare different subjects a spatial normalization to an average-shaped brain (template) is required, where atlas maps allow identification of specific brain structures and regions of interest. Beside the analysis in a voxel-grid, the cortex can be represented by surfaces that allow further measures such as the cortical thickness or folding. The derived brain features (such as volume, area, and thickness) permit the individual study of normal and pathological development during the lifespan but also of the evolutionary adaption of the brain. The ongoing progress of imaging and computing technology demands continous enhancement of preprocessing tools but also facilitates the exploration of novel approaches and models. The basis of this thesis is the development of a method that uses a tissue segmentation to estimate the cortical thickness and the central surface in one integrated step. Further essential improvements of surface reconstruction algorithms were achieved by specific refinement of processing steps such as (i) the classification of brain tissue (segmentation), (ii) the spatial mapping of the individual brain to an average brain (registration), (iii) determining the thickness of the cerebral cortex and reconstructing a representative surface and (iv) the quality assurance of input data. The validity of the new methods is proven and compared with other approaches by simulated and real data. The procedures are part of the Computational Anatomy Toolbox (CAT; http://dbm.neuro.uni-jena.de/cat), which focuses on the preprocessing of structural data and is part of the Statistical Parametric Mapping (SPM) software package in MATLAB.

Quote

Citation style:

Dahnke, Robert: Vorverarbeitungsverfahren zur morphometrischen Hirnanalyse und Qualitätssicherung von strukturellen Magnetresonanzbildern. Ilmenau 2019.

Access Statistic

Total:
Downloads:
Abtractviews:
Last 12 Month:
Downloads:
Abtractviews:

open graphic

Rights

Use and reproduction:
All rights reserved

Export