Advanced array signal processing algorithms for multi-dimensional parameter estimation

Steinwandt, Jens

Multi-dimensional high-resolution parameter estimation is a fundamental problem in a variety of array signal processing applications, including radar, mobile communications, multiple-input multiple-output (MIMO) channel estimation, and biomedical imaging. The objective is to estimate the frequency parameters of noise-corrupted multi-dimensional harmonics that are sampled on a multi-dimensional grid. Among the proposed parameter estimation algorithms to solve this problem, multi-dimensional (R-D) ESPRIT-type algorithms have been widely used due to their computational efficiency and their simplicity. Their performance in various scenarios has been objectively evaluated by means of an analytical performance assessment framework. Recently, a relatively new class of parameter estimators based on sparse signal reconstruction has gained popularity due to their robustness under challenging conditions such as a small sample size or strong signal correlation. A common approach towards further improving the performance of parameter estimation algorithms is to exploit prior knowledge on the structure of the signals. In this thesis, we develop enhanced versions of R-D ESPRIT-type algorithms and the relatively new class of sparsity-based parameter estimation algorithms by exploiting the multi-dimensional structure of the signals and the statistical properties of strictly non-circular (NC) signals. First, we derive analytical expressions for the gain from forward-backward averaging and tensor-based processing in R-D ESPRIT-type and R-D Tensor-ESPRIT-type algorithms for the special case of two sources. This is accomplished by simplifying the generic analytical MSE expressions from the performance analysis of R-D ESPRIT-type algorithms. The derived expressions allow us to identify the parameter settings, e.g., the number of sensors, the signal correlation, and the source separation, for which both gains are most pronounced or no gain is achieved. Second, we propose the generalized least squares (GLS) algorithm to solve the overdetermined shift invariance equation in R-D ESPRIT-type algorithms. GLS directly incorporates the statistics of the subspace estimation error into the shift invariance solution through its covariance matrix, which is found via a first-order perturbation expansion. To objectively assess the estimation accuracy, we derive performance analysis expressions for the mean square error (MSE) of GLS-based ESPRIT-type algorithms, which are asymptotic in the effective SNR, i.e., the results become exact for a high SNR or a small sample size. Based on the performance analysis, we show that the simplified MSE expressions of GLS-based 1-D ESPRIT-type algorithms for a single source and two sources can be transformed into the corresponding Cramer-Rao bound (CRB) expressions, which provide a lower limit on the estimation error. Thereby, ESPRIT-type algorithms can become asymptotically efficient, i.e., they asymptotically achieve the CRB. Numerical simulations show that this can also be the case for more than two sources. In the third contribution, we derive matrix-based and tensor-based R-D NC ESPRIT-type algorithms for multi-dimensional strictly non-circular signals, where R-D NC Tensor-ESPRIT-type algorithms exploit both the multi-dimensional structure and the strictly non-circular structure of the signals. Exploiting the NC signal structure by means of a preprocessing step leads to a virtual doubling of the original sensor array, which provides an improved estimation accuracy and doubles the number of resolvable signals. We derive an analytical performance analysis and compute simplified MSE expressions for a single source and two sources. These expressions are used to analytically compute the NC gain for these cases, which has so far only been studied via Monte-Carlo simulations. We additionally consider spatial smoothing preprocessing for R-D ESPRIT-type algorithms, which has been widely used to improve the estimation performance for highly correlated signals or a small sample size. Once more, we derive performance analysis expressions for R-D ESPRIT-type algorithms and their corresponding NC versions with spatial smoothing and derive the optimal number of subarrays for spatial smoothing that minimizes the MSE for a single source. In the next part, we focus on the relatively new concept of parameter estimation via sparse signal reconstruction (SSR), in which the sparsity of the received signal power spectrum in the spatio-temporal domain is exploited. We develop three NC SSR-based parameter estimation algorithms for strictly noncircular sources and show that the benefits of exploiting the signals’ NC structure can also be achieved via sparse reconstruction. We develop two grid-based NC SSR algorithms with a low-complexity off-grid estimation procedure, and a gridless NC SSR algorithm based on atomic norm minimization. As the final contribution of this thesis, we derive the deterministic R-D NC CRB for strictly non-circular sources, which serves as a benchmark for the presented R-D NC ESPRIT-type algorithms and the NC SSR-based parameter estimation algorithms. We show for the special cases of, e.g., full coherence, a single snapshot, or a single strictly non-circular source, that the deterministic R-D NC CRB reduces to the existing deterministic R-D CRB for arbitrary signals. Therefore, no NC gain can be achieved in these cases. For the special case of two closely-spaced NC sources, we simplify the NC CRB expression and compute the NC gain for two closely-spaced NC signals. Finally, its behavior in terms of the physical parameters is studied to determine the parameter settings that provide the largest NC gain.

Die hochauflösende Parameterschätzung für mehrdimensionale Signale findet Anwendung in vielen Bereichen der Signalverarbeitung in Mehrantennensystemen. Zu den Anwendungsgebieten zählen beispielsweise Radar, die Mobilkommunikation, die Kanalschätzung in multiple-input multiple-output (MIMO)-Systemen und bildgebende Verfahren in der Biosignalverarbeitung. In letzter Zeit sind eine Vielzahl von Algorithmen zur Parameterschätzung entwickelt worden, deren Schätzgenauigkeit durch eine analytische Beschreibung der Leistungsfähigkeit objektiv bewertet werden kann. Eine verbreitete Methode zur Verbesserung der Schätzgenauigkeit von Parameterschätzverfahren ist die Ausnutzung von Vorwissen bezüglich der Signalstruktur. In dieser Arbeit werden mehrdimensionale ESPRIT-Verfahren als Beispiel für Unterraum-basierte Verfahren entwickelt und analysiert, die explizit die mehrdimensionale Signalstruktur mittels Tensor-Signalverarbeitung ausnutzt und die statistischen Eigenschaften von nicht-zirkulären Signalen einbezieht. Weiterhin werden neuartige auf Signalrekonstruktion basierende Algorithmen vorgestellt, die die nicht-zirkuläre Signalstruktur bei der Rekonstruktion ausnutzen. Die vorgestellten Verfahren ermöglichen eine deutlich verbesserte Schätzgüte und verdoppeln die Anzahl der auflösbaren Signale. Die Vielzahl der Forschungsbeiträge in dieser Arbeit setzt sich aus verschiedenen Teilen zusammen. Im ersten Teil wird die analytische Beschreibung der Leistungsfähigkeit von Matrix-basierten und Tensor-basierten ESPRIT-Algorithmen betrachtet. Die Tensor-basierten Verfahren nutzen explizit die mehrdimensionale Struktur der Daten aus. Es werden für beide Algorithmenarten vereinfachte analytische Ausdrücke für den mittleren quadratischen Schätzfehler für zwei Signalquellen hergeleitet, die lediglich von den physikalischen Parametern, wie zum Beispiel die Anzahl der Antennenelemente, das Signal-zu-Rausch-Verhältnis, oder die Anzahl der Messungen, abhängen. Ein Vergleich dieser Ausdrücke ermöglicht die Berechnung einfacher Ausdrücke für den Schätzgenauigkeitsgewinn durch den forward-backward averaging (FBA)-Vorverarbeitungsschritt und die Tensor-Signalverarbeitung, die die analytische Abhängigkeit von den physikalischen Parametern enthalten. Im zweiten Teil entwickeln wir einen neuartigen general least squares (GLS)-Ansatz zur Lösung der Verschiebungs-Invarianz-Gleichung, die die Grundlage der ESPRIT-Algorithmen darstellt. Der neue Lösungsansatz berücksichtigt die statistische Beschreibung des Fehlers bei der Unterraumschätzung durch dessen Kovarianzmatrix und ermöglicht unter bestimmten Annahmen eine optimale Lösung der Invarianz-Gleichung. Mittels einer Performanzanalyse der GLS-basierten ESPRIT-Verfahren und der Vereinfachung der analytischen Ausdrücke für den Schätzfehler für eine Signalquelle und zwei zeitlich unkorrelierte Signalquellen wird gezeigt, dass die Cramer-Rao-Schranke, eine untere Schranke für die Varianz eines Schätzers, erreicht werden kann. Im nächsten Teil werden Matrix-basierte und Tensor-basierte ESPRIT-Algorithmen für nicht-zirkuläre Signalquellen vorgestellt. Unter Ausnutzung der Signalstruktur gelingt es, die Schätzgenauigkeit zu erhöhen und die doppelte Anzahl an Quellen aufzulösen. Dabei ermöglichen die vorgeschlagenen Tensor-ESPRIT-Verfahren sogar die gleichzeitige Ausnutzung der mehrdimensionalen Signalstruktur und der nicht-zirkuläre Signalstruktur. Die Leistungsfähigkeit dieser Verfahren wird erneut durch eine analytische Beschreibung objektiv bewertet und Spezialfälle für eine und zwei Quellen betrachtet. Es zeigt sich, dass für eine Quelle keinerlei Gewinn durch die nicht-zirkuläre Struktur erzielen lässt. Für zwei nicht-zirkuläre Quellen werden vereinfachte Ausdrücke für den Gewinn sowohl im Matrixfall also auch im Tensorfall hergeleitet und die Abhängigkeit der physikalischen Parameter analysiert. Sind die Signale stark korreliert oder ist die Anzahl der Messdaten sehr gering, kann der spatial smoothing-Vorverarbeitungsschritt mit den verbesserten ESPRIT-Verfahren kombiniert werden. Anhand der Performanzanalyse wird die Anzahl der Mittellungen für das spatial smoothing-Verfahren analytisch für eine Quelle bestimmt, die den Schätzfehler minimiert. Der nächste Teil befasst sich mit einer vergleichsweise neuen Klasse von Parameterschätzverfahren, die auf der Rekonstruktion überlagerter dünnbesetzter Signale basiert. Als Vorteil gegenüber den Algorithmen, die eine Signalunterraumschätzung voraussetzen, sind die Rekonstruktionsverfahren verhältnismäßig robust im Falle einer geringen Anzahl zeitlicher Messungen oder einer starken Korrelation der Signale. In diesem Teil der vorliegenden Arbeit werden drei solcher Verfahren entwickelt, die bei der Rekonstruktion zusätzlich die nicht-zirkuläre Signalstruktur ausnutzen. Dadurch kann auch für diese Art von Verfahren eine höhere Schätzgenauigkeit erreicht werden und eine höhere Anzahl an Signalen rekonstruiert werden. Im letzten Kapitel der Arbeit wird schließlich die Cramer-Rao-Schranke für mehrdimensionale nicht-zirkuläre Signale hergeleitet. Sie stellt eine untere Schranke für den Schätzfehler aller Algorithmen dar, die speziell für die Ausnutzung dieser Signalstruktur entwickelt wurden. Im Vergleich zur bekannten Cramer-Rao-Schranke für beliebige Signale, zeigt sich, dass im Fall von zeitlich kohärenten Signalen, für einen Messvektor oder für eine Quelle, beide Schranken äquivalent sind. In diesen Fällen kann daher keine Verbesserung der Schätzgüte erzielt werden. Zusätzlich wird die Cramer-Rao-Schranke für zwei benachbarte nicht-zirkuläre Signalquellen vereinfacht und der maximal mögliche Gewinn in Abhängigkeit der physikalischen Parameter analytisch ermittelt. Dieser Ausdruck gilt als Maßstab für den erzielbaren Gewinn aller Parameterschätzverfahren für zwei nicht-zirkuläre Signalquellen.

Zitieren

Zitierform:

Steinwandt, Jens: Advanced array signal processing algorithms for multi-dimensional parameter estimation. Ilmenau 2019.

Zugriffsstatistik

Gesamt:
Volltextzugriffe:
Metadatenansicht:
12 Monate:
Volltextzugriffe:
Metadatenansicht:

Grafik öffnen

Rechte

Nutzung und Vervielfältigung:
Alle Rechte vorbehalten

Export