Efficient solution approach to nonlinear optimal control problems and application to autonomous driving

Lazutkin, Evgeny

Diese Arbeit beschäftigt sich mit der numerischen Lösung von dynamischen nichtlinearen Optimierungsaufgaben und der Entwicklung neuer Methoden für deren Analyse, um die Effizienz der Berechnungen zu erhöhen. Der Betrieb vieler natürlicher und technischer Prozesse kann als nichtlineares Optimierungsproblem mit Beschränkungen formuliert werden. Aufgrund der steigenden Komplexität wird die Lösung eines solchen Problems zu einer Herausforderung, insbesondere wenn das Problem in Echtzeit gelöst werden muss. Der Ansatz des kombinierten Mehrfachschießverfahren mit Kollokation ist effizient, um solche Probleme zu lösen, auch wenn sie eine schnelle Dynamik aufweisen. So ist das erste Ziel dieser Arbeit die weitere Verbesserung der Rechenleistung durch die Bereitstellung einer analytischen Hesse-Matrix und die Realisierung eines Parallelberechnungs-Schemas. Zunächst wurden die Formeln zur Berechnung der Sensitivitäten zweiter Ordnung für den kombinierten Ansatz abgeleitet. Mit Hilfe des Mehrfachschießverfahrens können die Lösungen von Modellgleichungen und Auswertungen von Sensitivitäten erster und zweiter Ordnung für jedes Zeitintervall unabhängig voneinander berechnet werden. Der zweite Beitrag widmet sich daher der Realisierung eines parallelen Rechenschemas. Dadurch wird ein hoher Beschleunigungsfaktor durch Parallelisierung erreicht, der zu einer Reduzierung des Rechenaufwands führt. Als dritter Beitrag wurde eine neuartige Korrelationsanalyse der Steuergrößen eingeführt, die auf die Notwendigkeit hinweist, die analytische Hesse-Matrix anstelle seiner Approximation einzusetzen, um ein Optimierungsproblem effizient zu lösen. Die numerische Leistung dieser drei Beiträge wurde mit Hilfe von herausfordernden dynamischen Optimierungsproblemen einschließlich der optimalen Steuerung eines großen Problems mit mehr als tausend dynamischen Variablen demonstriert. Die kombinierte Methode wandelt das Problem der kontinuierlichen dynamischen Optimierung in ein nichtlineares Programmierungsproblem mit einer vorgegebenen Anzahl der Zeitintervalle um. Es gibt jedoch keine umfassenden Regeln, um diese Anzahl der Zeitintervalle passend zu wählen. Daher widmet sich das vierte Ziel dieser Arbeit der Analyse der zugrunde liegenden Optimierungsprobleme mit dem besonderen Fokus auf der Anzahl der diskreten Zeitintervalle. Aus Anwendungssicht sollte die Anzahl der Zeitintervalle so gewählt werden, dass gleichzeitig die Bilanz zwischen der numerischen Genauigkeit und der Rechenlast zur Lösung des diskreten Optimierungsproblems erreicht wird. Darüber hinaus ist es unerlässlich, die Mindestanzahl an Zeitintervallen zu finden, um diese Genauigkeit zu gewährleisten. So wurde im Rahmen der Kollokation auf finiten Elementen ein neuartiger Bilevel-Ansatz vorgeschlagen, bei dem die äußere Schleife für die Ermittlung der minimalen Anzahl von Zeitintervallen zuständig ist und die innere Schleife eine obere Grenze des Approximationsfehlers auswertet, indem sie ein Fehlermaximierungsproblem durch Manipulation der Steuergrößen löst. Auf diese Weise kann eine Mindestanzahl von Zeitintervallen festgelegt werden, die eine benutzerdefinierte Fehlertoleranz gewährleistet. Außerdem wird der Einfluss der Anfangsbedingungen auf den maximalen Approximationsfehler berücksichtigt, so dass die ermittelte Anzahl von Intervallen für unterschiedliche Anfangsbedingungen gilt und somit für die nichtlineare modellprädiktive Regelung (engl.: nonlinear model predictive control (NMPC)) angewendet werden kann. Mehrere Fallstudien wurden verwendet, um die Wirksamkeit des vorgeschlagenen Ansatzes zu demonstrieren. Sowohl die theoretisch entwickelten Methoden als auch der kombinierte Ansatz wurden mit Hilfe von Open-Source-Software als allgemeines Framework für Testzwecke implementiert. Schließlich wurden die entwickelten Methoden auf das autonome Fahren im NMPC-Framework angewendet. Autonomes Fahren ist der aktuelle Trend in der Automobilindustrie mit dem Ziel, vollautomatisierte oder selbstfahrende Fahrzeuge zu entwickeln und zu produzieren. Reglerentwurf und -betrieb von autonomen Fahrzeugen stellen mehrere Herausforderungen dar, weshalb umfangreiche und intensive Forschungsarbeiten notwendig sind, um den wachsenden industriellen Bedarf abzudecken. Die Fahrzeugbewegung wurde als ein dynamisches Optimierungsproblem dargestellt, das online effizient gelöst wird. Der erfolgreiche Test der NMPC mit zwei Modellfahrzeugen (im Maßstab 1:5 und 1:8 im Vergleich zum realen Fahrzeug) zeigte die Effizienz des entwickelten Ansatzes.

This thesis deals with the numerical solution of dynamic nonlinear optimization problems and the development of new methods for their analysis in order to increase the efficiency of calculations. The operation of many natural and technical processes can be formulated as a nonlinear optimal control problem with constraints. Because of the increasing complexity, the solution of such a problem becomes challenging, in particular if it has to be obtained in real-time. The approach of combined multiple-shooting with collocation is efficient for solving such problems even if they contain fast dynamics. Thus, the first target of this work is to further improve its computational performance by providing an analytical Hessian and realizing a parallel-computing scheme. First, the formulas for computing the second-order sensitivities for the combined approach were derived. Using multiple-shooting, the solutions of model equations and evaluations of both first-order and second-order sensitivities can be provided independently for each time interval. Therefore, the second contribution is dedicated to the realization of a parallel computing scheme. As a result, a high speedup factor is attained through parallelization leading to reduction of computational expenses. As a third contribution, a novel control-variable correlation analysis was introduced, which indicates the necessity of employing the analytical Hessian instead of its approximation to efficiently solve an optimization problem. The numerical performance of these three contributions was demonstrated through challenging dynamic optimization problems including optimal control of a large-scale problem containing more than one thousand dynamic variables. The combined method converts the continuous dynamic optimization problem into a nonlinear programming problem using a given number of time intervals. However, there have been no comprehensive rules to properly choose this number. Therefore, the fourth target of this work is devoted to the analysis of the underlying optimization problem with the special focus on the number of discrete time intervals. From the application point of view, the number of time intervals should be selected to simultaneously achieve the balance between the numerical accuracy and the computation load for solving the discretized optimization problem. Moreover, it is imperative to find the minimum number of time intervals to guarantee this balance. Thus, in the context of collocation on finite elements, a novel bilevel approach was proposed, where the outer loop is responsible for finding the minimum number of time intervals and the inner loop evaluates an upper limit of the approximation error by solving an error maximization problem by manipulating the control variables. In this way, a minimum number of time intervals can be determined guaranteeing a user defined error tolerance. Moreover, the impact of the initial conditions on the maximum approximation error is taken into account so that the determined number of intervals is valid for varying initial conditions and thus can be applied to nonlinear model predictive control (NMPC). Several case studies were conducted to demonstrate the efficacy of the proposed approach. Both theoretically developed methods as well as the combined approach were implemented using open-source software as a generalized framework for testing purposes. Finally, the developed methods were applied to autonomous driving in the NMPC framework. Autonomous driving is the current trend in the automotive industry with the aim of designing and producing fully automated or self-driving vehicles. Control design and field operation of autonomous vehicles impose several challenges and thus extensive as well as intensive research studies need to be made to cover the growing industrial demand. In this work, the vehicle motion was modeled as a dynamic optimization problem which is efficiently solved on-line. The successful test of the NMPC with two model vehicles (with scale of 1:5 and 1:8 to real vehicles) demonstrated the effectiveness of the developed approach.

Zitieren

Zitierform:

Lazutkin, Evgeny: Efficient solution approach to nonlinear optimal control problems and application to autonomous driving. Ilmenau 2018.

Zugriffsstatistik

Gesamt:
Volltextzugriffe:
Metadatenansicht:
12 Monate:
Volltextzugriffe:
Metadatenansicht:

Grafik öffnen

Rechte

Nutzung und Vervielfältigung:
Alle Rechte vorbehalten

Export