An Abstraction Framework for Tangible Interactive Surfaces

Kaltenbrunner, Martin

This cumulative dissertation discusses - by the example of four subsequent publications - the various layers of a tangible interaction framework, which has been developed in conjunction with an electronic musical instrument with a tabletop tangible user interface. Based on the experiences that have been collected during the design and implementation of that particular musical application, this research mainly concentrates on the definition of a general-purpose abstraction model for the encapsulation of physical interface components that are commonly employed in the context of an interactive surface environment. Along with a detailed description of the underlying abstraction model, this dissertation also describes an actual implementation in the form of a detailed protocol syntax, which constitutes the common element of a distributed architecture for the construction of surface-based tangible user interfaces. The initial implementation of the presented abstraction model within an actual application toolkit is comprised of the TUIO protocol and the related computer-vision based object and multi-touch tracking software reacTIVision, along with its principal application within the Reactable synthesizer. The dissertation concludes with an evaluation and extension of the initial TUIO model, by presenting TUIO2 - a next generation abstraction model designed for a more comprehensive range of tangible interaction platforms and related application scenarios.


Citation style:

Kaltenbrunner, Martin: An Abstraction Framework for Tangible Interactive Surfaces. 2018.

Access Statistic

Last 12 Month:

open graphic


Use and reproduction: