SOLUTION STRATEGIES FOR STOCHASTIC FINITE ELEMENT DISCRETIZATIONS

Eiermann, Michael; Ernst, O.; Ullmann, Elisabeth GND

We consider efficient numerical methods for the solution of partial differential equations with stochastic coefficients or right hand side. The discretization is performed by the stochastic finite element method (SFEM). Separation of spatial and stochastic variables in the random input data is achieved via a Karhunen-Loève expansion or Wiener's polynomial chaos expansion. We discuss solution strategies for the Galerkin system that take advantage of the special structure of the system matrix. For stochastic coefficients linear in a set of independent random variables we employ Krylov subspace recycling techniques after having decoupled the large SFEM stiffness matrix.

Quote

Citation style:

Eiermann, Michael / Ernst, O. / Ullmann, Elisabeth: SOLUTION STRATEGIES FOR STOCHASTIC FINITE ELEMENT DISCRETIZATIONS. 2006.

Access Statistic

Total:
Downloads:
Abtractviews:
Last 12 Month:
Downloads:
Abtractviews:

open graphic

Rights

Use and reproduction:

Export