Bultheel, Adhemar; Jansen, M.; Maes, J.; Van Aerschot, W.; Vanraes, E.

This contribution will be freewheeling in the domain of signal, image and surface processing and touch briefly upon some topics that have been close to the heart of people in our research group. A lot of the research of the last 20 years in this domain that has been carried out world wide is dealing with multiresolution. Multiresolution allows to represent a function (in the broadest sense) at different levels of detail. This was not only applied in signals and images but also when solving all kinds of complex numerical problems. Since wavelets came into play in the 1980's, this idea was applied and generalized by many researchers. Therefore we use this as the central idea throughout this text. Wavelets, subdivision and hierarchical bases are the appropriate tools to obtain these multiresolution effects. We shall introduce some of the concepts in a rather informal way and show that the same concepts will work in one, two and three dimensions. The applications in the three cases are however quite different, and thus one wants to achieve very different goals when dealing with signals, images or surfaces. Because completeness in our treatment is impossible, we have chosen to describe two case studies after introducing some concepts in signal processing. These case studies are still the subject of current research. The first one attempts to solve a problem in image processing: how to approximate an edge in an image efficiently by subdivision. The method is based on normal offsets. The second case is the use of Powell-Sabin splines to give a smooth multiresolution representation of a surface. In this context we also illustrate the general method of construction of a spline wavelet basis using a lifting scheme.


Citation style:

Bultheel, Adhemar / Jansen, M. / Maes, J. / et al: SUBDIVIDE AND CONQUER RESOLUTION. 2006.

Access Statistic

Last 12 Month:

open graphic


Use and reproduction: