ARTIFICIAL NEURONAL NETWORKS IN ENVIRONMENTAL ENGINEERING: THEORY AND APPLICATIONS

Berthold, Tim; Milbradt, Peter

Models in the context of engineering can be classified in process based and data based models. Whereas the process based model describes the problem by an explicit formulation, the data based model is often used, where no such mapping can be found due to the high complexity of the problem. Artificial Neuronal Networks (ANN) is a data based model, which is able to “learn“ a mapping from a set of training patterns. This paper deals with the application of ANN in time dependent bathymetric models. A bathymetric model is a geometric representation of the sea bed. Typically, a bathymetry is been measured and afterwards described by a finite set of measured data. Measuring at different time steps leads to a time dependent bathymetric model. To obtain a continuous surface, the measured data has to be interpolated by some interpolation method. Unlike the explicitly given interpolation methods, the presented time dependent bathymetric model using an ANN trains the approximated surface in space and time in an implicit way. The ANN is trained by topographic measured data, which consists of the location (x,y) and time t. In other words the ANN is trained to reproduce the mapping h = f(x,y,t) and afterwards it is able to approximate the topographic height for a given location and date. In a further step, this model is extended to take meteorological parameters into account. This leads to a model of more predictive character.

Zitieren

Zitierform:

Berthold, Tim / Milbradt, Peter: ARTIFICIAL NEURONAL NETWORKS IN ENVIRONMENTAL ENGINEERING: THEORY AND APPLICATIONS. 2010.

Zugriffsstatistik

Gesamt:
Volltextzugriffe:
Metadatenansicht:
12 Monate:
Volltextzugriffe:
Metadatenansicht:

Grafik öffnen

Rechte

Nutzung und Vervielfältigung:

Export