Modeling Non-Standard Text Classification Tasks

Text classification deals with discovering knowledge in texts and is used for extracting, filtering, or retrieving information in streams and collections. The discovery of knowledge is operationalized by modeling text classification tasks, which is mainly a human-driven engineering process. The outcome of this process, a text classification model, is used to inductively learn a text classification solution from a priori classified examples. The building blocks of modeling text classification tasks cover four aspects: (1) the way examples are represented, (2) the way examples are selected, (3) the way classifiers learn from examples, and (4) the way models are selected. This thesis proposes methods that improve the prediction quality of text classification solutions for unseen examples, especially for non-standard tasks where standard models do not fit. The original contributions are related to the aforementioned building blocks: (1) Several topic-orthogonal text representations are studied in the context of non-standard tasks and a new representation, namely co-stems, is introduced. (2) A new active learning strategy that goes beyond standard sampling is examined. (3) A new one-class ensemble for improving the effectiveness of one-class classification is proposed. (4) A new model selection framework to cope with subclass distribution shifts that occur in dynamic environments is introduced.


Citation style:
Could not load citation form.


Use and reproduction: