A New Efficient Concept for Elasto-plastic Simulations of Shell Responses

Montag, U.

For the analysis of arbitrary, by Finite Elements discretized shell structures, an efficient numerical simulation strategy with quadratic convergence including geometrically and physically nonlinear effects will be presented. In the beginning, a Finite-Rotation shell theory allowing constant shear deformations across the shell thickness is given in an isoparametric formulation. The assumed-strain concept enables the derivation of a locking-free finite element. The Layered Approach will be applied to ensure a sufficiently precise prediction of the propagation of plastic zones even throughout the shell thickness. The Riks-Wempner-Wessels global iteration scheme will be enhanced by a Line-Search procedure to ensure the tracing of nonlinear deformation paths with rather great load steps even in the post-peak range. The elastic-plastic material model includes isotropic hardening. A new Operator-Split return algorithm ensures considerably exact solution of the initial-value problem even for greater load steps. The combination with consistently linearized constitutive equations ensures quadratic convergence in a close neighbourhood to the exact solution. Finally, several examples will demonstrate accuracy and numerical efficiency of the developed algorithm.



Montag, U.: A New Efficient Concept for Elasto-plastic Simulations of Shell Responses. 2005.


12 Monate:

Grafik öffnen


Nutzung und Vervielfältigung:
Alle Rechte vorbehalten