Finite Element Approximation auf der Basis geometrischer Zellen

Milbradt, Peter; Schwöppe, Axel

Die Methode der Finiten Elemente ist ein numerisches Verfahren zur Interpolation vorgegebener Werte und zur numerischen Approximation von Lösungen stationärer oder instationärer partieller Differentialgleichungen bzw. Systemen partieller Differentialgleichungen. Grundlage dieser Verfahren ist die Formulierung geeigneter Finiter Elemente und Finiter Element Zerlegungen. Finite Elemente besitzen in der Regel eine geometrische Basis bestehend aus Strecken im eindimensionalen, Drei- oder Vierecken im zweidimensionalen und Tetra- oder Hexaedern im dreidimensionalen euklidischen Raum, eine Menge von Freiheitsgraden und eine Basis von Funktionen. Die geometrische Basis eines Finiten Elements wird verallgemeinert als geometrische Zelle formuliert. Diese geschlossene geometrische Formulierung führt zu einer geometrieunabhängigen Definition der Basisfunktionen eines Finiten Elements in den Zellkoordinaten der geometrischen Zelle. Finite Elemente auf der Basis geometrischer Zellen werden als Bestandteile Finiter Element Zerlegungen in Finiten Element Interpolationen und Finiten Element Approximationen verwendet. Die Finiten Element Approximationen werden am Beispiel der 2-dimensionalen Diffusionsgleichung über das Standard-Galerkin-Verfahren ermittelt.

Zitieren

Zitierform:

Milbradt, Peter / Schwöppe, Axel: Finite Element Approximation auf der Basis geometrischer Zellen. 2005.

Zugriffsstatistik

Gesamt:
Volltextzugriffe:
Metadatenansicht:
12 Monate:
Volltextzugriffe:
Metadatenansicht:

Grafik öffnen

Rechte

Nutzung und Vervielfältigung:
Alle Rechte vorbehalten

Export