Stabilisierte Finite Elemente in der Hydrodynamik

Milbradt, Peter

Hydro- und morphodynamischen Prozesse in Binnengewässern und im Küstennahbereich erzeugen hochkomplexe Phänomene. Zur Beurteilung der Entwicklung von Küstenzohnen, von Flussbetten sowie von Eingriffen des Menschen in Form von Schutzbauwerken sind geeignete numerische Modellwerkzeuge notwendig. Es wird ein holistischer Modellansatz zur Approximation gekoppelter Seegangs-, Strömungs- und Morphodynamischer Prozesse auf der Basis stabilisierter Finiter Elemente vorgestellt. Der Großteil der Modellgleichungen der Hydro- und Morphodynamik sind Transportgleichungen. Dem Transportcharakter dieser Gleichungen entsprechend wird ein stabilisiertes Finites Element Verfahren auf Dreiecken vorgestellt. Die vorgestellte Approximation entspricht einem streamline upwinding Petrov-Galerkin-Verfahrens für vektorwertige mehrdimensionale Probleme, bei dem der Fehler eines Standard-Galerkin-Verfahrens mit Hilfe eines Upwinding-Koeffizienten minimiert wird. Die Wahl des Upwinding-Koeffizienten ist übertragbar auf andere Problemklassen und basiert ausschließlich auf dem Charakter der zugrundeliegene Das Modell wurde für Seegangs- und Strömungs-Untersuchungen im Jade-Weser-Ästuar an der deutschen Nordseeküste eingesetzt.

Zitieren

Zitierform:

Milbradt, Peter: Stabilisierte Finite Elemente in der Hydrodynamik. 2005.

Zugriffsstatistik

Gesamt:
Volltextzugriffe:
Metadatenansicht:
12 Monate:
Volltextzugriffe:
Metadatenansicht:

Grafik öffnen

Rechte

Nutzung und Vervielfältigung:
Alle Rechte vorbehalten

Export