Development and Analysis of Sparse Matrix Concepts for Finite Element Approximation on general Cells

In engineering and computing, the finite element approximation is one of the most well-known computational solution techniques. It is a great tool to find solutions for mechanic, fluid mechanic and ecological problems. Whoever works with the finite element method will need to solve a large system of linear equations. There are different ways to find a solution. One way is to use a matrix decomposition technique such as LU or QR. The other possibility is to use an iterative solution algorithm like Conjugate Gradients, Gauß-Seidel, Multigrid Methods, etc. This paper will focus on iterative solvers and the needed storage techniques...


Citation style:
Could not load citation form.


Use and reproduction:
All rights reserved