Material characterization using artificial neural network

Swaddiwudhipong, Somsak; Tho, Kee Kiat; Liu, Zishun

Indentation experiments have been carried out over the past century to determine hardness of materials. Modern indentation machines have the capability to continuously monitor load and displacement to high precision and accuracy. In recent years, research interests have focussed on methods to extract material properties from indentation load-displacement curves. Analytical methods to interpret the indentation load-displacement curves are difficult to formulate due to material and geometric nonlinearities as well as complex contact interactions. In the present study, an artificial neural network model was constructed for interpretation of indentation load-displacement curves. Large strain-large deformation finite element analyses were first carried out to simulate indentation experiments. The data from finite element analyses were then used to train the artificial neural network model. The artificial neural network model was able to accurately determine the material properties when presented with load-displacement curves which were not used in the training process. The proposed artificial neural network model is robust and directly relates the characteristics of the indentation loaddisplacement curve to the elasto-plastic material properties.


Citation style:

Swaddiwudhipong, Somsak / Tho, Kee Kiat / Liu, Zishun: Material characterization using artificial neural network. 2004.

Access Statistic

Last 12 Month:

open graphic


Use and reproduction:
All rights reserved