Approaches to the application of magnetic fluids in electromechanical drive systems

This paper shows the approach of applications of magnetic liquids in electromechanical drive systems. Magnetic fluids consist of colloidal ferromagnetic nanoparticles, a particle surfactant and carrier liquid. These fluids are divided into two groups called ferrofluids and magneto-rheological fluids (MRF). Both liquids are examined in two different kinds of electric motor prototypes. Following the ideas of Nethe [4], a ferrofluid is located in the air gap of an electrical drive. The influence on torque and especially heat transfer is shown by experiments. The system is also studied analytically as a classical Taylor-Couette-System. A second motor prototype is a novel and innovative magnetorheological assisted electrical machine. The construction and the functional principle are presented in this paper. In addition, some of first measurements are shown.


Citation style:
Could not load citation form.


License Holder: ©2017 - TU Ilmenau

Use and reproduction:
All rights reserved