Fast and accurate: high-speed metrological large range AFM for surface and nanometrology

Low measurement speed remains as a major shortcoming of the scanning probe microscopic techniques. It leads not only to a low measurement throughput, but also to a significant measurement drift over the long measurement time needed (up to hours or even days). In this paper, development of a high speed metrological large range atomic force microscope (HS Met. LR-AFM) with a capable measurement speed up to 1 mm/s is presented. In its design, a high accurate nanopositioning and nanomeasuring machine (NMM) is combined with a high dynamic flexure hinge piezo stage to move sample. The AFM output signal is combined with the position readouts of the piezo stage and the NMM to derive the surface topography. This design has a remarkable advantage that it well combines different bandwidth and amplitude of different stages/sensors, which is required for high speed measurements. While the HS Met. LR-AFM significantly reduces the measurement time while maintains (or even improves) the metrological performance than the previous Met. LR-AFM, its application capabilities are extended significantly. Two application examples, the realisation of reference areal surface metrology and the calibration of a kind 3D nano standards, have been demonstrated in the paper in detail.


Citation style:
Could not load citation form.


License Holder: ©2017 - TU Ilmenau

Use and reproduction:
All rights reserved