Automatic transcription of the melody from polyphonic music

Dressler, Karin

This dissertation addresses the problem of melody detection in polyphonic musical audio. The proposed algorithm uses a bottom-up design, in which each module leads to a more abstract representation of the audio data, which allows a very efficient computation of the melody. Nonetheless, the dataflow is not strictly unidirectional: on several occasions, feedback from higher processing modules controls the processing of low-level modules. The spectral analysis is based on a technique for the efficient computation of short-time Fourier spectra in different time-frequency resolutions. The pitch determination algorithm (PDA) is based on the pair-wise analysis of spectral peaks. Although melody detection implies a strong focus on the predominant voice, the proposed tone processing module aims at extracting multiple fundamental frequencies (F0). In order to identify the melody, the best succession of tones has to be chosen. This thesis describes an efficient computational method for auditory stream segregation that processes a variable number of simultaneous voices. The presented melody extraction algorithm has been evaluated during the MIREX audio melody extraction task. The MIREX results show that the proposed algorithm belongs to the state-of-the-art-algorithms, reaching the best overall accuracy in MIREX 2014.

Diese Dissertation befasst sich mit dem Problem der Melodiextraktion aus polyphonem musikalischen Audio. Der vorgestellte Algorithmus umfasst ein „bottom-up“-Design, in dem jedes dieser Module eine abstraktere Darstellung der Audiodaten liefert, was eine effiziente Extraktion der Melodie erlaubt. Allerdings ist der Datenstrom nicht unidirektional -- bei verschiedenen Gelegenheiten steuert Feedback von höheren Verarbeitungsmodulen die Verarbeitung von vorangestellten Modulen. Die Spektralanalyse basiert auf einer Technik zur effizienten Berechnung von Kurzzeit-Fourier-Spektren in verschiedenen Zeit-Frequenz-Auflösungen. Der Pitchbestimmungsalgorithmus basiert auf der paarweisen Analyse von spektralen Maxima. Obwohl die Melodieextraktion einen starken Fokus auf die vorherrschende Stimme voraussetzt, zielt das Tonverabeitungsmodul auf eine Extraktion von allen auftretenden Grundfrequenzen (F0) ab. Um die Melodiestimme zu identifizieren, muss die beste Abfolge von Tönen ausgewählt werden. Diese Dissertation beschreibt eine effiziente Methode für die automatische Segregation von sogenannten auditiven Klangströmen. Dabei wird eine variable Anzahl von gleichzeitigen Stimmen verarbeitet. Der vorgestellte Melodieextraktionsalgorithmus wurde im MIREX „audio melody extraction task“ evaluiert. Die Resultate zeigen, dass der Algorithmus zum Stand der Technik gehört – es wurde die beste Gesamtgenauigkeit der im Jahr 2014 ausgewerteten Algorithmen erreicht.

Zitieren

Zitierform:

Dressler, Karin: Automatic transcription of the melody from polyphonic music. Ilmenau 2017.

Zugriffsstatistik

Gesamt:
Volltextzugriffe:
Metadatenansicht:
12 Monate:
Volltextzugriffe:
Metadatenansicht:

Grafik öffnen

Rechte

Nutzung und Vervielfältigung:
Alle Rechte vorbehalten

Export