Automatisierte Erkennung und Evaluation von therapeutischen Übungen für Patienten mit Mimikdysfunktionen

Dittmar, Cornelia GND

In dieser Arbeit wird ein flexibles, kamerabasiertes Trainingssystem zur Rehabilitation von Gesichtslähmungen (Fazialisparesen) und anderen Mimikdysfunktionen vorgestellt. Das System unterstützt das selbstständige Training des Patienten, indem es die Durchführung von insgesamt zwölf Fazialisübungen automatisch bewertet und mehrstufiges Feedback an den Anwender vermittelt. Es eignet sich somit für einen begleitenden Einsatz zu den regulären Übungseinheiten, welche von einem Logopäden oder Sprechwissenschaftler angeleitet werden. Während Ansätze zur automatisierten Diagnose und Gradierung von Fazialisparesen in der Literatur vergleichsweise verbreitet sind, finden sich gegenwärtig nur vereinzelt Konzepte für therapiebegleitende Trainingsanwendungen. Die diesen Anwendungen zu Grunde liegenden Algorithmen sind zudem auf einzelne Fazialisübungen spezialisiert und daher, anders als das in dieser Arbeit vorgestellte System, nicht ohne Mehraufwand auf weitere Übungen übertragbar. Die Beiträge der vorliegenden Arbeit umfassen die wesentlichen Komponenten der technischen Gesamtarchitektur des Trainingssystems. Der methodische und experimentelle Fokus der Ausarbeitung liegt dabei vor allem auf der Merkmalsextraktion, sowie der Ableitung des Feedbacks aus den extrahierten Merkmalsdeskriptoren. Eine wesentliche Neuheit gegenüber dem Stand der Technik besteht in der Möglichkeit, das Trainingssystem flexibel um zusätzliche Fazialisübungen zu ergänzen und sowohl globales als auch regionenbezogenes Feedback bereitzustellen. Die dafür ausgewählten Verfahren basieren vorwiegend auf der Verarbeitung von 3D-Kameradaten und umfassen die Extraktion von Punktsignaturen, Histogrammen orientierter Normalenvektoren, sowie von Krümmungs-, Distanz- und Winkelmerkmalsdeskriptoren. Die Feedbackermittlung stützt sich auf den Einsatz von Random-Forests und den aus diesen ableitbaren paarweisen Ähnlichkeiten. Letztere stellen Schätzwerte für die merkmalsbezogene Übereinstimmung zwischen der vom Patienten ausgeführten Übung und den Modelldurchführungen in den Trainingsdaten dar.

This thesis presents an automated, camera-based training system employable for the therapy of facial paralysis and related muscle dysfunctions. The proposed system aims to support patients in conducting twelve different facial exercises by providing automatically generated feedback. Thus, it is suited to supplement individual exercise sessions that are not supervised by a therapist. Automated grading and diagnosis systems for facial paralysis are a prominent topic in the literature on clinical image processing. In contrast, only few papers deal with the development of automated training systems for facial muscle re-education. Furthermore, the underlying algorithms are typically specialized for particular facial exercises and difficult to adapt to additional requirements. The contributions of this thesis comprise the main components of the system architecture with a methodical and technical emphasis on feature extraction algorithms and feedback estimation methods. Regarding the state-of-the-art, the major novelty is embodied in the possibility to easily extend the system to additional exercises and in the derivation of global and local feedback. The selected approaches rely on processing of 3D-camera data and include the extraction of point signatures, histograms of oriented normal vectors, curvatures, distance, and angle features. The feedback generation is based on random forest classifiers and proximities derived from trained forests. These proximities provide an estimate of similarity between the patient sample and training data samples.

Zitieren

Zitierform:

Dittmar, Cornelia: Automatisierte Erkennung und Evaluation von therapeutischen Übungen für Patienten mit Mimikdysfunktionen. gw 2017.

Zugriffsstatistik

Gesamt:
Volltextzugriffe:
Metadatenansicht:
12 Monate:
Volltextzugriffe:
Metadatenansicht:

Grafik öffnen

Rechte

Nutzung und Vervielfältigung:
Alle Rechte vorbehalten

Export