Spectrum of J-frame operators

Giribet, Juan; Langer, Matthias GND; Leben, Leslie; Maestripieri, Alejandra; Martinez Peria, Francisco; Trunk, Carsten GND

A J-frame is a frame F for a Krein space which is compatible with the indefinite inner product in the sense that it induces an indefinite reconstruction formula that resembles those produced by orthonormal bases in H . With every J-frame the so-called J-frame operator is associated, which is a self-adjoint operator in the Krein space H . The J-frame operator plays an essential role in the indefinite reconstruction formula. In this paper we characterize the class of J-frame operators in a Krein space by a 2X2 block operator representation. The J-frame bounds of F are then recovered as the suprema and infima of the numerical ranges of some uniformly positive operators which are build from the entries of the 2X2 block representation. Moreover, this 2X2 block representation is utilized to obtain enclosures for the spectrum of J-frame operators, which finally leads to the construction of a square root. This square root allows a complete description of all J-frames associated with a given J-frame operator.

Zitieren

Zitierform:

Giribet, Juan / Langer, Matthias / Leben, Leslie / et al: Spectrum of J-frame operators. Ilmenau 2017.

Zugriffsstatistik

Gesamt:
Volltextzugriffe:
Metadatenansicht:
12 Monate:
Volltextzugriffe:
Metadatenansicht:

Grafik öffnen

Rechte

Nutzung und Vervielfältigung:
Alle Rechte vorbehalten

Export