On the parametric eigenvalue behavior of matrix pencils under rank one perturbations

Gernandt, Hannes; Trunk, Carsten GND

We study the eigenvalues of rank one perturbations of regular matrix pencils depending linearly on a complex parameter. We prove properties of the corresponding eigenvalue sets including a convergence result as the parameter tends to infinity and an eigenvalue interlacing property for real valued pencils having real eigenvalues only.

Cite

Citation style:

Gernandt, Hannes / Trunk, Carsten: On the parametric eigenvalue behavior of matrix pencils under rank one perturbations. Ilmenau 2016.

Access Statistic

Total:
Downloads:
Abtractviews:
Last 12 Month:
Downloads:
Abtractviews:

open graphic

Rights

Use and reproduction:
All rights reserved

Export