Operation of meshed high voltage direct current (HVDC) overlay grids : from operational planning to real time operation

Marten, Anne-Katrin

Energy turnaround from conventional to renewable energy generation needs bulk power long distance transmission. This new transmission objective can be meet with an HVDC overlay grid spanning the existing AC transmission system. This thesis proposes an operation management strategy for future HVDC overlay grids subdivided in tertiary, secondary and primary control instances. The tertiary control ensures coordination among HVDC converters and with the AC system. It determines converter reference values on a regular basis. It is proposed for the case of having multiple as well as a single system operator responsible for the overlay HVDC grid. The secondary control instance locally adapts tertiary control’s converter references to the actual grid requirements (e.g. after disturbances). The primary control ensures DC energy balance. Therefore, a continuous p-v-characteristic is proposed as well as two appropriate parameterization methods. One emulates piecewise linear p-v-characteristics and the other performs an automatic parameterization according to available balancing power provision capabilities on related AC point of common coupling. All control methods are validated by numerical case studies.

Weltweit aber besonders in Europa steigt der Bedarf große Leistungen über weite Strecken zu transportieren. Dies ist hauptsächlich in der Energiewende und dem damit zusammenhängenden stark ansteigenden Anteil Erneuerbarer Energien und deren Erzeugungszentren begründet. Ein bedeutender Teil der Erneuerbaren Energien wird zukünftig weitab der Lastzentren produziert. Zur Lösung dieser daraus resultierenden neuen Transportaufgabe ist die Hochspannungsgleichstromübertragung (HGÜ) besonders geeignet. Eine redundante und damit auch wirtschaftliche Ausführung stellt das vermaschte HGÜ-Netz dar, das in der Energieversorgungsnetzhiearchie eine neue Netzebene dargestellt und somit als Overlay-HGÜ-Netz bezeichnet wird. Diese Arbeit widmet sich der Fragestellung der Betriebsführung eines Overlaynetzes. Dazu wird eine dreistufige Betriebsführung vorgeschlagen. In Anlehnung an die im europäischen AC-Verbundnetz bestehende Dreiteiligkeit wird eine Untergliederung in folgende Regelungsinstanzen vorgenommen: Tertiär-, Sekundär und Primärregelung. Die Tertiärregelung übernimmt die Koordinierungsaufgabe der Umrichter untereinander und mit dem unterlagerten AC-Netz im Rahmen einer Betriebsplanung. Es ist ein betriebstypisches Aktualisierungsintervall von 15 Minuten vorgesehen, indem die Umrichtersollwerte vorgegeben werden. Deren Bestimmung erfolgt durch ein auf dieses nichtlineare Problem zugeschnittenen AC/DC Optimal Power Flow. Dieses Verfahren fußt auf der Verfügbarkeit aller AC- und DC-Netzinformationen im Gebiet des Overlaynetzes. Im Falle einer föderalen Organisation eines HGÜ-Overlaynetzes in Europa müssen die Zielsetzungen mehrere Übertragungsnetzbetreiber (ÜNB) bei der Bestimmung eines Umrichtersollwertfahrplans berücksichtig werden. Für diesen Fall wird hier eine Methode vorgeschlagen, die mittels eines Aushandlungsprozesses die ÜNB spezifischen Kostenfunktionen für den Einsatz von HGÜ-Umrichtern in der entsprechenden Regelzone zu einer für das gesamte Overlaynetz gültigen Zielfunktion konsolidiert. Dabei werden Grenzwerte der einzelnen beteiligten ÜNB ebenso berücksichtigt wie lokale Zielfunktionen. Die Sekundärregelung passt die von der Tertiärregelung vorgegebenen Umrichtersollwerte innerhalb des 15-min-Betriebsintervalls vor allem im Fall von Störungen an. Dafür wird ein Verfahren vorgeschlagen, das sich der Informationen eines Weitbereichsüberwachungssystems bedient, um signifikante Abweichung der geplanten Leistungsflüsse zu erfassen. Die Umrichterwirkleistungssollwerte werden entsprechend angepasst. Eine Aufteilung von unplanmäßigen Leistungsflüssen zwischen AC und DC-Netz sorgt für eine Entlastung des AC-Netzes und beugt Betriebsmittelüberlastungen und dadurch verursachten Instabilitätsphänomenen vor. Die Primärregelung gewährleistet das Gleichgewicht zwischen ein- und ausgespeister Wirkleistung in das / aus dem HGÜ-Overlaynetz. Ist die diesbezügliche Leistungsbilanz ausgewogen, ist das Energiegleichgewicht, die sogenanntes Energiestabilität, gewahrt. Die DC-Zeitkonstanten sind klein. Nur eine dezentral (am Umrichterstandort) angeordnete Regelung kann zeitlich angemessen reagieren. Diese nutzt eine p-u-Regelcharakteristik, die die Umrichtersollleistung entsprechend der Abweichung von der DC-Sollspannung anpasst. Dafür werden eine kontinuierliche p-u-Charakteristik sowie Verfahren zu deren Parametrierung vorgeschlagen. Für die Bereitstellung von DC-Regelleistung besonders geeignete AC-Knoten können so angemessen für das HGÜ-Overlaynetz genutzt werden. Die Funktionalität des hier vorgeschlagenen dreiteiligen Bertriebsführungsverfahrens für vermaschte HGÜ-Netze wird anhand von numerischen Fallstudien auf Basis einer typischen Netztsituation in Zentraleuropa validiert.

There is an increasing demand for long distance bulk power transmission worldwide and particularly in Europe. Energy turnaround from conventional to renewable energy generation is one of the main drivers. This implies that a significant percentage of electricity production is generated remotely from load centers, by huge wind farms, for example. This new transmission objective can be met with high voltage direct current (HVDC) transmission. An HVDC grid is favored for redundancy as well as economic reasons. As this HVDC grid will be a new network layer above the existing AC transmission layer, it is referred to as an “overlay” HVDC grid. This thesis proposes a three stage operation management strategy for future HVDC overlay grids. The architecture is comprised of tertiary, secondary and primary control instances which reflect the hierarchy of AC system operation. All control methods have been validated by numerical case studies on a reference grid which is a representative of a typical interconnected network situation in central Europe. The proposed tertiary control ensures coordination among all HVDC converters and with the underlaying AC system. It serves as an example of converter reference value determination in a 15 minutes time interval. Therefore a mixed AC/DC optimal power flow method is proposed which is capable of solving this nonlinear optimization problem based on a complete set of topological and other state information of the entire grid. In the event of having different transmission system operators (TSO) operating only a subset of converters of the HVDC overlay grid, the optimization problem becomes increasingly complex since each TSO might have its own optimization objectives. This problem is addressed by another multiple objective function approach. The proposed method superimposes particular cost functions of related TSO which yields system wide cost functions as a basis for AC/DC power flow optimization. The Secondary control instance adapts the tertiary control’s converter reference values within the 15 minute interval to the actual grid requirements, particularly in the event of grid disturbances. An algorithm is proposed that identifies significant deviations from the actual power flow schedule by a wide are monitoring system. Converter power references are adapted in order to optimally share the deviations between the AC system and the HVDC overlay grid. Since data availability is key for the robust operation of this method, backup mechanisms for data acquisition is also proposed. The Primary control ensures DC energy balance, which is referred to as the energy stability of HVDC grids. Converter reference values for active power need to be adjusted in the event of a mismatch between active power fed to and drawn from the HVDC grid. As the time constants within a DC grid are very small, this is a fast, local control based on p v characteristics; the converter’s power reference is adjusted in accordance with deviation of the DC node voltage from its reference. Furthermore, a continuous p v characteristic is proposed as well as two appropriate parameterization methods. One emulates already existing piecewise linear p v characteristics for DC node voltage control and the other performs an automatic parameterization according to available balancing power provision capabilities on related AC point of common couplings. The latter significantly reduces the additional loading of the AC transmission grid with DC balancing power flows as the AC nodes, which are the most technically feasible, are utilized to provide the most DC balancing power.

Zitieren

Zitierform:

Marten, Anne-Katrin: Operation of meshed high voltage direct current (HVDC) overlay grids. from operational planning to real time operation. Ilmenau 2015. Universitätsverlag Ilmenau.

Zugriffsstatistik

Gesamt:
Volltextzugriffe:
Metadatenansicht:
12 Monate:
Volltextzugriffe:
Metadatenansicht:

Grafik öffnen

Rechte

Nutzung und Vervielfältigung:
Alle Rechte vorbehalten

Export