Change Detection in Streaming Data

Tran, Dang-Hoan

Change detection is the process of identifying differences in the state of an object or phenomenon by observing it at different times or different locations in space. In the streaming context, it is the process of segmenting a data stream into different segments by identifying the points where the stream dynamics changes. Decentralized change detection can be used in many interesting, and important applications such environmental observing systems, medicare monitoring systems. Although there is great deal of work on distributed detection and data fusion, most of work focuses on the one-time change detection solutions. One-time change detection method requires to proceed data once in response to the change occurring. The trade-off of a continuous distributed detection of changes include detection accuracy, spaceefficiency, detection delay, and communication-efficiency. To achieve these goals, the wildfire warning system is used as a motivating scenario. From the challenges and requirements of the wildfire warning system, the change detection algorithms for streaming data are proposed a part of the solution to the wildfire warning system. By selecting various models of local change detection, different schemes for distributed change detections, and the data exchange protocols, different designs can be achieved. Based on this approach, the contributions of this dissertation are as follows. A general two-window framework for detecting changes in a single data stream is presented. A general synopsis-based change detection framework is proposed. Theoretical and empirical analysis shows that the detection performance of synopsisbased detector is similar to that of non-synopsis change detector if a distance function quantifying the changes is preserved under the process of constructing synopsis. A clustering-based change detection and clustering maintenance method over sliding window is presented. Clustering-based detector can automatically detect the changes in the multivariate streaming data. A framework for decentralized change detection in wireless sensor networks is proposed. A distributed framework for clustering streaming data is proposed by extending the two-phased stream clustering approach which is widely used to cluster a single data stream.

Unter Änderungserkennung wird der Prozess der Erkennung von Unterschieden im Zustand eines Objekts oder Phänomens verstanden, wenn dieses zu verschiedenen Zeitpunkten oder an verschiedenen Orten beobachtet wird. Im Kontext der Datenstromverarbeitung stellt dieser Prozess die Segmentierung eines Datenstroms anhand der identifizierten Punkte, an denen sich die Stromdynamiken ändern, dar. Die Fähigkeit, Änderungen in den Stromdaten zu erkennen, darauf zu reagieren und sich daran anzupassen, spielt in vielen Anwendungsbereichen, wie z.B. dem Aktivitätsüberwachung, dem Datenstrom-Mining und Maschinenlernen sowie dem Datenmanagement hinsichtlich Datenmenge und Datenqualität, eine wichtige Rolle. Dezentralisierte Änderungserkennung kann in vielen interessanten und wichtigen Anwendungsbereichen, wie z.B. in Umgebungsüberwachungssystemen oder medizinischen Überwachungssystemen, eingesetzt werden. Obgleich es eine Vielzahl von Arbeiten im Bereich der verteilten Änderungserkennung und Datenfusion gibt, liegt der Fokus dieser Arbeiten meist lediglich auf der Erkennung von einmaligen Änderungen. Die einmalige Änderungserkennungsmethode erfordert die einmalige Verarbeitung der Daten als Antwort auf die auftretende Änderung. Der Kompromiss einer kontinuierlichen, verteilten Erkennung von Änderungen umfasst die Erkennungsgenauigkeit, die Speichereffizienz sowie die Berechnungseffizienz. Um dieses Ziel zu erreichen, wird das Flächenbrandwarnsystem als motivierendes Szenario genutzt. Basierend auf den Herausforderungen und Anforderungen dieses Warnsystems wird ein Algorithmus zur Erkennung von Änderungen in Stromdaten als Teil einer Gesamtlösung für das Flächenbrandwarnsystem vorgestellt. Durch die Auswahl verschiedener Modelle zur lokalen und verteilten Änderungserkennung sowie verschiedener Datenaustauschprotokolle können verschiedene Systemdesigns entwickelt werden. Basierend auf diesem Ansatz leistet diese Dissertation nachfolgend aufgeführte Beiträge. Es wird ein allgemeines 2-Fenster Framework zur Erkennung von Änderungen in einem einzelnen Datenstrom vorgestellt. Weiterhin wird ein allgemeines synopsenbasiertes Framework zur Änderungserkennung beschrieben. Mittels theoretischer und empirischer Analysen wird gezeigt, dass die Erkennungs-Performance des synopsenbasierten Änderungsdetektors ähnlich der eines nicht-synopsenbasierten ist, solange eine Distanzfunktion, welche die Änderungen quantifiziert, während der Erstellung der Synopse eingehalten wird. Es wird Cluster-basierte Änderungserkennung und Cluster-Pflege über gleitenden Fenstern vorgestellt.Weiterhin wird ein Framework zur verteilten Änderungserkennung in drahtlosen Sensornetzwerken beschrieben. Basierend auf dem 2-Phasen Stromdaten-Cluster-Ansatz, welcher weitestgehend zur Clusterung eines einzelnen Datenstroms eingesetzt wird, wird ein verteiltes Framework zur Clusterung von Stromdaten vorgestellt.

Zitieren

Zitierform:

Tran, Dang-Hoan: Change Detection in Streaming Data. 2013.

Zugriffsstatistik

Gesamt:
Volltextzugriffe:
Metadatenansicht:
12 Monate:
Volltextzugriffe:
Metadatenansicht:

Grafik öffnen

Export