Optical remote sensing for biomass estimation in the tropics : the case study of Uganda

Avitabile, Valerio GND

This study investigates the capabilities and limitations of freely available optical satellite data at medium resolution to estimate aboveground biomass density of vegetation at national scales in the tropics, and compares this approach with existing methodologies to understand and quantify the sources of variability in the estimations. Uganda was chosen as a case-study because it presents a reliable national biomass reference dataset. As a result of this thesis, aboveground woody biomass for the year circa-2000 was mapped at national scale in Uganda at 30-m spatial resolution on the basis of Landsat ETM+ images, a national land cover dataset and field data using an object-oriented approach. A regression tree-based model (Random Forest) produced good results (cross-validated R² 0.81, RMSE 13 Mg/ha) when trained with a sufficient number of field plots representative of the vegetation variability. This study demonstrated that in certain contexts Landsat data can effectively spatialize field biomass measurements and produce accurate and detailed estimates of biomass distribution at national scale. This approach tended to provide conservative biomass estimates and its limitations were mainly related to the saturation of the optical signal at high biomass density and to the cloud cover. When compared with the Uganda national biomass dataset, the map produced in this study presented higher agreement than other five regional/global biomass maps. The comparative analysis showed strong disagreement between the products, with estimates of total biomass of Uganda ranging from 343 to 2201 Tg and different spatial distribution patterns. Maps based on biome-average biomass values, such as the Intergovernmental Panel on Climate Change default values, and global land cover datasets strongly overestimated biomass stocks, while maps based on satellite data provided conservative estimates. The comparison of the maps predictions with field data confirmed the above findings.


Citation style:

Avitabile, Valerio: Optical remote sensing for biomass estimation in the tropics. the case study of Uganda. 2013.

Access Statistic

Last 12 Month:

open graphic