Self-Organized Coverage and Capacity Optimization for Cellular Mobile Networks

Naseer-ul-Islam, Muhammad GND

Die zur Erfüllung der zu erwartenden Steigerungen übertragener Datenmengen notwendige größere Heterogenität und steigende Anzahl von Zellen werden in der Zukunft zu einer deutlich höheren Komplexität bei Planung und Optimierung von Funknetzen führen. Zusätzlich erfordern räumliche und zeitliche Änderungen der Lastverteilung eine dynamische Anpassung von Funkabdeckung und -kapazität (Coverage-Capacity-Optimization, CCO). Aktuelle Planungs- und Optimierungsverfahren sind hochgradig von menschlichem Einfluss abhängig, was sie zeitaufwändig und teuer macht. Aus diesen Grnden treffen Ansätze zur besseren Automatisierung des Netzwerkmanagements sowohl in der Industrie, als auch der Forschung auf groes Interesse.Selbstorganisationstechniken (SO) haben das Potential, viele der aktuell durch Menschen gesteuerten Abläufe zu automatisieren. Ihnen wird daher eine zentrale Rolle bei der Realisierung eines einfachen und effizienten Netzwerkmanagements zugeschrieben. Die vorliegende Arbeit befasst sich mit selbstorganisierter Optimierung von Abdeckung und Übertragungskapazität in Funkzellennetzwerken. Der Parameter der Wahl hierfür ist die Antennenneigung. Die zahlreichen vorhandenen Ansätze hierfür befassen sich mit dem Einsatz heuristischer Algorithmen in der Netzwerkplanung. Im Gegensatz dazu betrachtet diese Arbeit den verteilten Einsatz entsprechender Optimierungsverfahren in den betreffenden Netzwerkknoten. Durch diesen Ansatz können zentrale Fehlerquellen (Single Point of Failure) und Skalierbarkeitsprobleme in den kommenden heterogenen Netzwerken mit hoher Knotendichte vermieden werden.Diese Arbeit stellt einen "Fuzzy Q-Learning (FQL)"-basierten Ansatz vor, ein einfaches Maschinenlernverfahren mit einer effektiven Abstraktion kontinuierlicher Eingabeparameter. Das CCO-Problem wird als Multi-Agenten-Lernproblem modelliert, in dem jede Zelle versucht, ihre optimale Handlungsstrategie (d.h. die optimale Anpassung der Antennenneigung) zu lernen. Die entstehende Dynamik der Interaktion mehrerer Agenten macht die Fragestellung interessant. Die Arbeit betrachtet verschiedene Aspekte des Problems, wie beispielsweise den Unterschied zwischen egoistischen und kooperativen Lernverfahren, verteiltem und zentralisiertem Lernen, sowie die Auswirkungen einer gleichzeitigen Modifikation der Antennenneigung auf verschiedenen Knoten und deren Effekt auf die Lerneffizienz.Die Leistungsfähigkeit der betrachteten Verfahren wird mittels eine LTE-Systemsimulators evaluiert. Dabei werden sowohl gleichmäßig verteilte Zellen, als auch Zellen ungleicher Größe betrachtet. Die entwickelten Ansätze werden mit bekannten Lösungen aus der Literatur verglichen. Die Ergebnisse zeigen, dass die vorgeschlagenen Lösungen effektiv auf Änderungen im Netzwerk und der Umgebung reagieren können. Zellen stellen sich selbsttätig schnell auf Ausfälle und Inbetriebnahmen benachbarter Systeme ein und passen ihre Antennenneigung geeignet an um die Gesamtleistung des Netzes zu verbessern. Die vorgestellten Lernverfahren erreichen eine bis zu 30 Prozent verbesserte Leistung als bereits bekannte Ansätze. Die Verbesserungen steigen mit der Netzwerkgröße.

The challenging task of cellular network planning and optimization will become more and more complex because of the expected heterogeneity and enormous number of cells required to meet the traffic demands of coming years. Moreover, the spatio-temporal variations in the traffic patterns of cellular networks require their coverage and capacity to be adapted dynamically. The current network planning and optimization procedures are highly manual, which makes them very time consuming and resource inefficient. For these reasons, there is a strong interest in industry and academics alike to enhance the degree of automation in network management. Especially, the idea of Self-Organization (SO) is seen as the key to simplified and efficient cellular network management by automating most of the current manual procedures. In this thesis, we study the self-organized coverage and capacity optimization of cellular mobile networks using antenna tilt adaptations. Although, this problem is widely studied in literature but most of the present work focuses on heuristic algorithms for network planning tool automation. In our study we want to minimize this reliance on these centralized tools and empower the network elements for their own optimization. This way we can avoid the single point of failure and scalability issues in the emerging heterogeneous and densely deployed networks.In this thesis, we focus on Fuzzy Q-Learning (FQL), a machine learning technique that provides a simple learning mechanism and an effective abstraction level for continuous domain variables. We model the coverage-capacity optimization as a multi-agent learning problem where each cell is trying to learn its optimal action policy i.e. the antenna tilt adjustments. The network dynamics and the behavior of multiple learning agents makes it a highly interesting problem. We look into different aspects of this problem like the effect of selfish learning vs. cooperative learning, distributed vs. centralized learning as well as the effect of simultaneous parallel antenna tilt adaptations by multiple agents and its effect on the learning efficiency.We evaluate the performance of the proposed learning schemes using a system level LTE simulator. We test our schemes in regular hexagonal cell deployment as well as in irregular cell deployment. We also compare our results to a relevant learning scheme from literature. The results show that the proposed learning schemes can effectively respond to the network and environmental dynamics in an autonomous way. The cells can quickly respond to the cell outages and deployments and can re-adjust their antenna tilts to improve the overall network performance. Additionally the proposed learning schemes can achieve up to 30 percent better performance than the available scheme from literature and these gains increases with the increasing network size.

Zitieren

Zitierform:

Naseer-ul-Islam, Muhammad: Self-Organized Coverage and Capacity Optimization for Cellular Mobile Networks. 2013.

Zugriffsstatistik

Gesamt:
Volltextzugriffe:
Metadatenansicht:
12 Monate:
Volltextzugriffe:
Metadatenansicht:

Grafik öffnen

Export