Zero dynamics and stabilization for linear DAEs

Berger, Thomas GND

We study linear differential-algebraic multi-input multi-output systems which are not necessarily regular and investigate the asymptotic stability of the zero dynamics and stabilizability. To this end, the concepts of autonomous zero dynamics, transmission zeros, right-invertibility, stabilizability in the behavioral sense and detectability in the behavioral sense are introduced and algebraic characterizations are derived. It is then proved, for the class of right-invertible systems with autonomous zero dynamics, that asymptotic stability of the zero dynamics is equivalent to three conditions: stabilizability in the behavioral sense, detectability in the behavioral sense, and the condition that all transmission zeros of the system are in the open left complex half-plane. Furthermore, for the same class, it is shown that we can achieve, by a compatible control in the behavioral sense, that the Lyapunov exponent of the interconnected system equals the Lyapunov exponent of the zero dynamics.

Zitieren

Zitierform:

Berger, Thomas: Zero dynamics and stabilization for linear DAEs. 2013.

Zugriffsstatistik

Gesamt:
Volltextzugriffe:
Metadatenansicht:
12 Monate:
Volltextzugriffe:
Metadatenansicht:

Grafik öffnen

Rechte

Nutzung und Vervielfältigung:
Alle Rechte vorbehalten

Export