On minimum phase

Ilchmann, Achim GND; Wirth, Fabian R. GND

Wir diskutieren Minimalphasigkeit von schwach-stabilen Transferfunktionen; letzteres sind rationale Funktionen, bei denen das Nennerpolynom Nullstellen in der abgeschlossenen linken komplexen Halbebene hat. Minimalphasigkeit wird hier mittels der Ableitung der Argumentfunktion der Transferfunktion definiert. Es wird dann mit Hilfe der Hurwitz-Reflektion gezeigt, daß jede schwach-stabile Transferfunktion eindeutig in ein Produkt von Allpass und minimalphasiger Funktion zerlegt werden kann. Das wesentliche Resultat ist, daß eine schwach-stabile Transferfunktion minimalphasig ist genau dann, wenn das Zählerpolynom der Transferfunktion schwach-stabil ist. Ein weiteres Resultat ist, daß die Nulldynamik einer minimalen Realisation asymptotisch stabil ist genau dann, wenn das Zählerpolynom der Transferfunktion Hurwitz ist. Insbesondere folgt aus asymptotisch stabiler Nulldynamik die Minimalphasigkeit, aber keineswegs umgekehrt. Abschließend zeigen wir, daß ein minimalphasiges System als kanonischer Repr¨asentant innerhalb der Äquivalenzklasse aller Systeme mit identischem Betragsverhalten interpretiert werden kann.

Zitieren

Zitierform:

Ilchmann, Achim / Wirth, Fabian R.: On minimum phase. 2013.

Zugriffsstatistik

Gesamt:
Volltextzugriffe:
Metadatenansicht:
12 Monate:
Volltextzugriffe:
Metadatenansicht:

Grafik öffnen

Rechte

Nutzung und Vervielfältigung:
Alle Rechte vorbehalten

Export