Structural modelling and robustness analysis of complex metabolic networks and signal transduction cascades

Behre, Jörn Arnold GND

The dissertation covers the topic of structural robustness of metabolic networks on the basis of the concept of elementary flux modes (EFMs). It is shown that the number of EFMs does not reflect the topology of a network sufficiently. Thus, new methods are developed to determine the structural robustness of metabolic networks. These methods are based on systematic in-silico knockouts and the subsequent calculation of dropped out EFMs. Thereby, together with single knockouts also double and multiple knockouts can be used. After evaluation of these methods they are applied to metabolic networks of human erythrocyte and hepatocyte as well as to a metabolic network of Escherichia coli (E. coli). It is found that the erythrocyte has the lowest structural robustness, followed by the hepatocyte and E. coli. These results coincide very well with the circumstance that human erythrocyte and hepatocyte and E. coli are able to adapt to conditions with increasing diversity. In a further part of the dissertation the concept of EFMs is expanded to signal transduction pathways consisting of kinase cascades. The concept of EFMs is based on the steady-state condition for metabolic pathways. It is shown that under certain circumstances this steady-state condition also holds for signalling cascades. Furthermore, it is shown that it is possible to deduce minimal conditions for signal transduction without knowledge about the kinetics involved. On the basis of these assumptions it is possible to calculate EFMs for signalling cascades. But due to the fact that these EFMs do no longer just have mass flux but also information flux, they are now called elementary signalling modes (ESMs).

Die Dissertation behandelt die strukturelle Robustheit von metabolischen Netzwerken auf der Basis des Konzepts der elementaren Flussmoden (EFMen). Es wird gezeigt, dass die Anzahl der EFMen die Topologie eines metabolischen Netzes nicht ausreichend widerspiegelt. Darauf aufbauend werden neue Methoden entwickelt, um die strukturelle Robustheit metabolischer Netze zu bestimmen. Diese Methoden beruhen auf systematischen in-silico-Knockouts und der anschließenden Bestimmung des Anteils an weggefallenen EFMen. Dabei können neben Einfach-Knockouts auch Doppel- oder Mehrfach-Knockouts verwendet werden. Nach der Evaluierung werden diese Methoden auf metabolische Netzwerke des menschlichen Erythrozyten und Hepatozyten, sowie des Bakteriums Escherichia coli (E. coli) angewendet. Es zeigt sich, dass der Erythrozyt die im Vergleich geringste strukturelle Robustheit besitzt, gefolgt vom Hepatozyten und E. coli. Diese Ergebnisse stimmen sehr gut mit der Beobachtung überein, dass sich die menschlichen Erythrozyten und Hepatozyten, sowie E. coli an zunehmend verschiedene Bedingungen anpassen können. In einem weiteren Teil der Dissertation wird das Konzept der EFMen auf Signaltransduktionswege bestehend aus Kinase-Kaskaden erweitert. Das Konzept der EFMen beruht auf der Annahme eines quasi-stationären Zustands für metabolische Netzwerke. Es wird gezeigt, dass dieser quasi-stationäre Zustand unter bestimmten Bedingungen auch in Signal-Kaskaden angenommen werden kann. Weiterhin wird gezeigt, dass man ohne Kenntnis der beteiligten Kinetiken Minimalbedingungen für die Signalweiterleitung ableiten kann. Auf Basis dieser Annahmen lassen sich für Signal-Kaskaden EFMen berechnen. Aber aufgrund der Tatsache, dass sie nicht mehr nur Masse-, sondern auch Informationsfluss beschreiben, werden sie nun als elementare Signalmoden (ESMen) bezeichnet.

Zitieren

Zitierform:

Behre, Jörn Arnold: Structural modelling and robustness analysis of complex metabolic networks and signal transduction cascades. 2012.

Zugriffsstatistik

Gesamt:
Volltextzugriffe:
Metadatenansicht:
12 Monate:
Volltextzugriffe:
Metadatenansicht:

Grafik öffnen

Export