Development of efficient algorithms for model predictive control of fast systems

Tamimi, Jasem

Die nichtlineare modellprädiktive Regelung (NMPC) ist ein vielversprechender Regelungsalgorithmus, der auf der Echtzeitlüsung eines nichtlinearen dynamischen Optimie- rungsproblems basiert. Nichtlineare Modellgleichungen wie auch die Steuerungs- und Zustandsbeschränkungen werden als Gleichungs- bzw. Ungleichungsbeschränkungen des Optimalsteuerungsproblems behandelt. Jedoch wurde die NMPC wegen des recht hohen Rechenaufwandes bisher meist auf relativ langsame Prozesse angewendet. Daher bildet die Rechenzeit bei Anwendung der NMPC auf schnelle Prozesse einen gewissen Engpass wie z. B. bei mechanischen und/oder elektrischen Prozessen. In dieser Arbeit wird eine neue Lüsungsstrategie für dynamische Optimierungsprobleme vorgeschlagen, wie sie in NMPC auftreten, die auch auf sog. schnelle Systeme anwendbar ist. Diese Strategie kombiniert Mehrschieß -Verfahrens mit der Methode der Kollokation auf finiten Elementen. Mittels Mehrschieß -Verfahren wird das nichtlineare dynamische Optimierungsproblem in ein hochdimensionales statisches Optimierungsproblem (nonlinear program problem, NLP) überführt, wobei Diskretisierungs- und Parametrisierungstechniken zum Einsatz kommen. Um das NLP-Problem zu lüsen, müssen die Zustandswerte und ihre Gradienten am Ende jedes Diskretisierung-Intervalles berechnet werden. In dieser Arbeit wird die Methode der Kollokation auf finiten Elementen benutzt, um diese Aufgabe zu lüsen. Dadurch lassen sich die Zustandsgrüß en und ihre Gradienten am Ende jedes Diskretisierungs-Intervalls auch mit groß er Genauigkeit berechnen. Im Ergebnis künnen die Vorteile beider Methoden (Mehrschieß -Verfahren und Kollokations-Methoden) ausgenutzt werden und die Rechenzeit lässt sich deutlich reduzieren. Wegen des komplexen Optimierungsproblems ist es im Allgemeinen schwierig, eine Stabilitätsanalyse für das zugehürige NMPC durchzuführen. In dieser Arbeit wird eine neue Formulierung des Optimalsteuerungsproblems vorgeschlagen, durch die die Stabilität des NMPC gesichert werden kann. Diese Strategie besteht aus den folgenden drei Eigenschaften. Zunächst wird ein Hilfszustand über eine lineare Zustandsgleichung in das Optimierungsproblem eingeführt. Die Zustandsgleichungen werden durch Hilfszustände ergänzt, die man in Form von Ungleichungsnebenbedingungen einführt. Wenn die Hilfszustände stabil sind, lässt sich damit die Stabilität des Gesamtsystems sichern. Die Eigenwerte der Hilfszustände werden so gewählt, dass das Optimalsteuerungsproblem lüsbar ist. Dazu benutzt man die Eigenwerte als Optimierungsvariable. Damit lassen sich die Stabilitätseigenschaften in einem stationären Punkt des Systemmodells untersuchen. Leistungsfähigkeit und Effektivität des vorgeschlagenen Algorithmus werden an Hand von Fallstudien belegt. Die Bibliothek Numerische Algorithmus Group (NAG), Mark 8, wird eingesetzt, um die linearen und nichtlinearen Gleichungen, die aus der Kollokation resultieren, zu lüsen. Weiterhin wird zur Lüsung des NLP-Problems der Lüser IPOPT für C/C++- Umgebung eingesetzt. Insbesondere wird der vorgeschlagene Algorithmus zur Steuerung einer Verladebrücke im Labor des Institutes für Automatisierungs- und Systemtechnik angewendet.

Nonlinear model predictive control (NMPC) has been considered as a promising control algorithm which is based on a real-time solution of a nonlinear dynamic optimization problem. Nonlinear model equations and controls as well as state restrictions are treated as equality and inequality constraints of the optimal control problem. However, NMPC has been applied mostly in relatively slow processes until now, due to its high computational expense. Therefore, computation time needed for the solution of NMPC leads to a bottleneck in its application to fast systems such as mechanical and/or electrical processes. In this dissertation, a new solution strategy to efficiently solve NMPC problems is proposed so that it can be applied to fast systems. This strategy combines the multiple shooting method with the collocation on finite elements method. The multiple shooting method is used for transforming the nonlinear optimal control problem into nonlinear program (NLP) problem using discretization and parametrization techniques. To solve this NLP problem the values of state variables and their gradients at the end of each shooting need to be computed. We use collocation on finite elements to carry out this task, thus, a high precision approximation of the state variables and their sensitivities in each shoot are achieved. As a result, the advantages of both the multiple shooting and the collocation method can be employed and therefore the computation efficiency can be considerably enhanced. Due to the nonlinear and complex optimal control problem formulation, in general, it is difficult to analyze the stability properties of NMPC systems. In this dissertation we propose a new formulation of the optimal control problem to ensure the stability of the NMPC problems. It consists the following three features. First, we introduce auxiliary states and linear state equations into the finite horizon dynamic optimization problem. Second, we enforce system states to be contracted with respect to the auxiliary state variables by adding inequality constraints. Thus, the stability features of the system states will conform to the stability properties of the auxiliary states, i.e. the system states will be stable, if the auxiliary states are stable. Third, the eigenvalues of the linear state equations introduced will be determined to stabilize the auxiliary states and at the same time make the optimal control problem feasible. This is achieved by considering the eigenvalues as optimization variables in the optimal control problem. Moreover, features of this formulation are analyzed at the stationary point of the system model. To show the effectiveness and performance of the proposed algorithm and the new optimal control problem formulation we present a set of NMPC case studies. We use the numerical algorithm group (NAG) library Mark 8 to solve numerically linear and nonlinear systems that resulted from the collocation on finite elements to compute the states and sensitivities, in addition, the interior point optimizer (IPOPT) and in C/C++ environment. Furthermore, to show more applicability, the proposed algorithm is applied to control a laboratory loading bridge.

Zitieren

Zitierform:

Tamimi, Jasem: Development of efficient algorithms for model predictive control of fast systems. 2011.

Zugriffsstatistik

Gesamt:
Volltextzugriffe:
Metadatenansicht:
12 Monate:
Volltextzugriffe:
Metadatenansicht:

Grafik öffnen

Export