Distributional differential algebraic equations

Trenn, Stephan GND

Trenn, Stephan:Distributional differential algebraic equations(Zusammenfassung, Diss., Technische Universität Ilmenau, 2009) Lineare implizite Differentialgleichungen der Form Ex'=Ax+f werden untersucht. Da die Matrix E nicht als invertierbar angenommen wird, enthält das Gleichungssystem neben den Differentialgleichungen auch algebraische Gleichungen. Deshalb werden diese Gleichungen differential-algebraische Gleichungen (differential algebraic equations, DAEs) genannt. Ein wesentliches Ziel der Dissertation ist es, Distributionen (oder verallgemeinerte Funktionen) als Lösungen zuzulassen und gleichzeitig soll es möglich sein, zeitvariante DAEs zu untersuchen, deren Koeffizientenmatrizen Sprünge haben können. Dazu wird zunächst ein geeigneter Lösungsraum hergeleitet. Insbesondere ist es mit diesem Lösungsraum möglich, die wichtige Klasse der geschalteten DAEs (switched DAEs) zu untersuchen. Als Lösungsraum wird der Raum der stückweise glatten Distributionen (piecewise-smooth distributions) eingeführt. Für diesen Raum ist es möglich, eine Multiplikation zu definieren, so dass auch DAEs betrachtet werden können, deren Koeffizienten ebenfalls distributionelle Einträge haben. Eine distributionelle DAE ist eine Gleichung der Form Ex'=Ax+f, bei der die Matrizen E und A stückweise glatte Distributionen als Einträge enthalten und die Lösungen x sowie die Inhomogenitäten f ebenfalls stückweise glatte Distributionen sind. Für distributionelle DAEs wird die Existenz und Eindeutigkeit von Lösungen untersucht, dazu wird das Konzept der Regularität für distributionelle DAEs eingeführt. Es werden notwendige und hinreichende Bedingungen für die Existenz und Eindeutigkeit von Lösungen hergeleitet. Als Spezialfälle werden die beiden Gleichungen x'=Ax+f (so genannte distributionelle ODEs) und Nx'=x+f (so genannte reine distributionelle DAEs) untersucht, für die explizite Lösungsformeln angegeben werden können. Geschaltete DAEs sind distributionelle DAEs mit stückweise konstanten Koeffizientenmatrizen. Es werden hinreichende Bedingung hergeleitet, die sicherstellen, dass die Lösungen von geschalteten DAEs keine Impulse enthalten. Weiterhin wird untersucht, unter welchen Bedingungen das beliebige Schalten zwischen stabilen Teilsystemen zu einem stabilen Gesamtsystem führt. Schließlich werden Steuerbarkeit und Beobachtbarkeit für distributionelle DAEs untersucht. Hierbei wird berücksichtigt, dass das Eingangssignal Impulse enthalten kann und damit theoretisch eine "instantane" Steuerung möglich ist. Für eine DAE der Form N'=x+bu, y=cx, mit konstanten, nilpotenten N sowie konstanten Vektoren b und c wird eine Normalform angegeben, die eine einfache Charakterisierung der Steuerbarkeit und Beobachtbarkeit ermöglicht.

Abstract:
Linear implicit differential equations of the form Ex'=Ax+f are studied. If the matrix E is not invertible, these equations contain differential as well as algebraic equations. Hence Ex'=Ax+f is called differential algebraic equation (DAE).
A main goal of this dissertation is the consideration of certain distributions (or generalized functions) as solutions and studying time-varying DAEs, whose coefficient matrices have jumps. Therefore, a suitable solution space is derived. This solution space allows to study the important class of switched DAEs.
The space of piecewise-smooth distributions is introduced as the solution space. For this space of distributions, it is possible to define a multiplication, hence DAEs can be studied whose coefficient matrices have also distributional entries. A distributional DAE is an equation of the form Ex'=Ax+f where the matrices E and A contain piecewise-smooth distributions as entries and the solutions x as well as the inhomogeneities f are also piecewise-smooth distributions.
For distributional DAEs, existence and uniqueness of solutions are studied, therefore, the concept of regularity for distributional DAEs is introduced. Necessary and sufficient conditions for existence and uniqueness of solutions are derived. As special cases, the equations x'=Ax+f (distributional ODEs) and Nx'=x+f (pure distributional DAE) are studied and explicit solution formulae are given.
Switched DAEs are distributional DAEs with piecewise constant coefficient matrices. Sufficient conditions are given which ensure that all solutions of a switched DAE are impulse free. Furthermore, it is studied which conditions ensure that arbitrary switching between stable subsystems yield a stable overall system.
Finally, controllability and observability for distributional DAEs are studied. For this, it is accounted for the fact that input signals can contain impulses, hence an "instantaneous" control is theoretically possible. For a DAE of the form Nx'=x+bu, y=cx, with constant, nilpotent N and constant vectors b and c, a normal form is given which allows for a simple characterization of controllability and observability.

Zitieren

Zitierform:

Trenn, Stephan: Distributional differential algebraic equations. 2009.

Zugriffsstatistik

Gesamt:
Volltextzugriffe:
Metadatenansicht:
12 Monate:
Volltextzugriffe:
Metadatenansicht:

Grafik öffnen

Export