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Introduction

In this theoie linear finite dimensional timevarying control eystems in state space form

i(t) = A(t)"(t)+r(r)r(r)
v(t) = c(t)c(t)

reep. in diferential operator description

rQ)Q) = Q(l))(u)

(0.1)

(0.2)
s = v(D)(z)+w(D\(u)

ae, studied. Roughly speaking, three differert mathenatical techniquc (algebraic, geometric
and analytic) are used to analyse variour control thmretic probleme of tirne-va.rying slstems,

Algebraic approach

Rosenbrock (1970) introduced the well-known setting of timeiava^riant syetems in diferentia.l
operator description (0.2). He etudied the queetion under which onditions two consta.nt control
systems represented by (0.2) have the sa.me dyna.mics and the sa,me input-output behaviour,
Thn_is the problem of (strict) system equivalene. Fuhrmann (1926) and (1927) analyzed thie
problem via model theoretic tools. Thia enabled him to rssociate a caonical state apace mod-
ule with any frtorization v(z)P(z)-1QQ) t w(z) oI a proper ratioaal transfer matiix. so far
the analysis of the problem of systen equiralence for tineinva^riant system! wa^s done ia the
Ireqtercv domain. Pemebo (1927) wu the first who etudied syetem equivalence in the tdme
domain,his basic idea wae to coneider solution eeta ofthe system equatioas, Thio approach was
systematically exploited by /linncAsen and Prdtzel-Woltcrs (1980) to obtain a eeli-contained
thmry of system equiwalence in the time domain. They derived an algebmic crircrion of systen
equivalence, defined and chumterized contrcllability and, obsenability, and precented z canoni-
cal state space model eimilar to Fuhrmann,o model.
concerning timeaarying systems, for a long time there has been a wideepread ecepticism whether
an algebraic treatment in the style of xalman would at all be poosible. In partitular it war not
clear how to extend transform techniques. There were some attempts to rtudy time-varyin8 eque.
tions of the form (0.2), cf. Ylinen (1975) and (19s0), Kamen (1926). Ilchmann, NirrLqer-and



Schmale (1984) were guided by the time-invariant approach of Hinrichsen arul Prdtzel-Wolters

(1980) when they generalized the concept of system equivalence for time-mying eystems. They

considered 6y8tem matrices defined over a certain skew polynomial nng and introduced the no-

lion, oI 'full'difcrential operators. This set them in a position to generalize, for a fairly rich

clus of timewying systeme of the form (0.2), the tineinvarimt resulte of Hin"ichsen and

Prdtzel-Wolters(f984), Theee results ae preented in the first halfofChapter 2 ofthis thesis.

A module thmretic approach to diferent definition ol stflctuml indicee of time-invariant state

spee systems wae given by Minmer arul Prdtzel-Wolters (1979). Via polynomial nodules ild

their minimal bases they proved the equality oI contmllability indices, minimal irulices, geomet-

ic indies nd. dynanical irulices. Prdtzel-Wollers (1981) continued this work to chuacterize

Brunovskj-equivalence for time-invariatrt systems of the form (0.2).

Guided by this approach md using the skew polynomial ring introduced in llchmann, Ninberger

and Schmale (1984) I generalized the resulte of Mdn zner and Prdtnl-Wolters (1979) nd Prdtrel'

I,t/ollers (1981) for timeva,rying eystems (se Ilchmann (1985a)). The characterization of mdni

mal bases ol right ebew polynomial modulee stends a result of lomey (1975). It is possible to

define a tronsler matritit the time domain and to u6e thi8 to churcterize eystem equivalence.

Different invarianle with respect to system equivalence reep. similarity were defined and their

equality wu shown. Thie is presented in the second half of Chapter 2 of this thesis.

Geometric apprmch

In the late sixties Basile and Mano (f 969) md Wonham and Morse (1970) developed the concept

of /,4,8)-invaiant subspacee to solve decoupling md pole assignment problens for multinriable

6ystems. Latet Wonham (1974) established the eo called gometric approach. This approach

was generalized for nonlinear systeme by flirschhorn (1981), Isidord, Krcner, Gori-Giori anrl

Monaco (1981) and for infinite dimensional eyatens by Czrlcin (1985), (1986), to name a few.

In Chapter I of this thesis time-uorying eubepnces zte studied. This turns out to be the appro-

priate framework to extend the linear timeinvaimt geometric approach lo piecewise analytic

state spee systems. If only analytic systems are considered this approach is a specialization of

the nonlineu setting. However the concept propoeed here is more nnatural" for time-varying

systems (diferential geometry is not ueed) and the class of piecewise analytic systeme is richer

than the class of malytic 6ystems. In Chapter I of thi6 thesis I present the results which were

essentially given in /lcfimcnn (1985b) and (1986). The concepte of (A,B)- and (C,A)-inuaiance

are introduced, characterized and their dual relationships are shown. By using these results the

solnbility of the dieturto,ne decoupling prcblem nd, the nonintemcling prcblemis characterized.

Analytic rpproech

Concerning exponential stability of rystems of the form

n$) = A(t)z(t), , > 0 (0.3)



thre mpects ue etudied in this thesie: for short, sufrcient conditions for exponential stabilitg;
sufacient and necessuy conditions fior the stabilizability of systens (0.1) by state fedback;
mbuslnece of stability.

It is well-known that if, for all , > 0, the spectrum of A(t) is lying in the oper left half plane
and the parameter variation of A(t) is "slow enough", then (0.3) is exponentially stable. see e.g.
Rosendmlc (1963), coppel (1978). However, these results are qualitative. h llchmann, owens
and Prdtzel-wolters (1987b) we derived quantitatire rcsulte, Thie means, upper bounds for the
eigenvalues md for the rate of change of.4(r) which engure expotrential stability of (0.3) ae
determined. This is presented in Section 4.1 of the present thesis.

Ikeda, Maeclc and Kodama (1972) md (1975) rtudied the problem to etabilize a timevarying
system (0.1) by state feedback. F\rthermore they gave a sufrcieat condition which guaantees
that (0.1) is stabilizable by deterministic state estimation fedback. lt Ilchmann anil Kern
(1987) these problems were analysed in case that the eystem (0.3) possessee ai exponential
dichotomy. when this is msumed the concept of controllability into eubspaces, introdued in
Section 1.2, is the appropriate tool to give necessary and sufrcient conditions for stabilizability.
These results are presented in Section 4.2.

In the remainder of the "malytic chapter" some robuslnesa iseuee concerning the stability of
(0.3) are studied. For time-invarimt systems there exist two funda.mental approachea concerning
stability: the successful r/€-approrch (see Zome{1981) and Francis and zames (rg$)) baaed
on transform techniques and the state space approuh (ee Einrichsen and pritchard (1gg6a,b))
based on the concept of "stability radius". It is not clea.r how to extend transform techniquee to
tim*vmying systems, whereu there are natural stensione in the state Bpace 6etup. Einichsen
and Pitchard(7986a) defined the (complex) stability mdiusof A € ex" as the digta^nce of A
from the set of unstable matrices in the Euclidean topologr, In Einrichsen and Pritclrord (lg86b)
they also treated structured perturbations of the form BDC (B,c a^re known ecaling matrices)
and showed that the associated stmctutl stability radiusr a(A;B,c) can be determined by the
norm of a certain convolution operator ("p.r'turhtion operctor"). ueing optimization techniques
they proved thar r2c(AiB,c) is the maximal paameter p € IR for which the algebrric Ricuti
equat;on 

A'P + PA- oc.c - pBB.p = o

has an Hermitian solution.
rn Hinichsen, Ilchmann and Pitchard (1g82) these results were patially extended to time-
varying systems. A new class of time-larying coordinate transformations (BohI tmwfomatiow')
was introduced md a lower bound for the stability radiue r s(u{; B, c) in termr of tbe norm of
perturbation operator wu given. Exigtence of muimal bounded llermitia,n rclutionr of the
tlifrerential Riccati equationparametrized by p € IR

P(,)+A(r)'.P(r)+p(r),{(4 - pc(t).c(t)-,P(4^B(r)r(rrp(4 =0, r> 0

was chuacterized via the norn of the perturbation operator. Thie ie preentcd in Sectiou .l.B
to 4.8 of this thesis.

Each chapter hu an own detailed introduction. A suDject ao d eymbol index can bc fould rt thr
end.



Chapter 1

Controllability and Observability for State Space
Systems

1.0 Introduction

Controllability and obserwability are bsic concept8 in systems atd control thmry. A first math-
ematical deecription wu 6iven by Kalmon (1960). Irrom then o!. theae concepts were studied

extensively not only for time-inva,riant state rpa,ce rystems, but for tine-va,rying syetems u well'
However, in thie chepter rome defnitions aad cha,racterizationa conceraing controllability are
preeented which have been not considered before.
The conccpt of. contrcllability into utbcpcr-e ie inttoduced, thir will becone ueeful when the
problem of rtabilizabitty of ryeteme which pooseee a,n exPotrential dichotomy ie studied in Sec-
tion 4.2. Extending Roaenbrocl'r deleting procedure I define controllability indices md use this
to dedve a canooicd form for analytic state space rystems. For the rtudy of different structural
indicec in Section 2.6 this canonicd form will become useful. Controllability md observability
induce certain time-varying eubapaee. Time-va,rying aubspacee in general are studied in depth
in Section 5. This ir a buic tool for the geometric apptoach of timeva,rying eyrtem preeented
in Chapter 3.
So far Chapter 1 is a prelimina,ry chapter. I have put together eome buic definitione and con-
ept which I will refer to in the followin6 chapterr. On the other hand the contente of Chapter
t hr,ve come iaterest of their own, they rwe for a dceper underetending of controllability of
time-varying syotemr.

In Sectioa 1 ronc lotationr end certrin ehew polynomial riagr are introduced.
The concept of controllability into a rubrpare ir studied in Sction 2.
The dual aad rdjoint relrtioarhips betwccn controllability, rcconrtructibility, reachability ud
obocrvability with r6p€ct to rubrprccr e^tc explrined in Section 3.
In Section 4 Roecnbnch'z deleting procedurc ir generelized and controllability indices for ana-
lytic rtete rprnr lyrtcmr rrc defrcd. Thcy e,re urcd to derive a canonical forn.
Fe,miliee of timevlryiag rubrprrcr r,ro rtudied in Section 5 and the reeults rre applied to piece-
wi|G radytic .tatc .prcc ty.t.ms.

Sectioa 2 ud 3 r,re mrinly brrcd ol llclrrncnn ond Kenr (1987); Scction'{ end Section 5 are
berod oa llchnrrrnn (19t6r), (f085b) rap.



1.1 Basic notations and deflnitions

In thir chapter state epace eyatena of the follming forn will be considcred

i:(t) = A(t)"(t)+a1tp1l;

v(t) = c(t)x(t) , ten
( 1 .1 )

where A(.),.B(.),C(.) are a x n, n x m, p x " matrices, recp., with entries in aring R'.
R will be for instance

Cp the eet of piecewise continuoug functionr / : IR + R
Ck the set of /c-times continuously ditrerentiJble functions /: n + lR
,,1p,,4 the set of (piecewise) real analytic functione /: [, + [,

A function ,f : IR * IR ia called pieevbc rcol analytirc if there existr a disjoiat pa,rtition
ttu;Vla,,a,+r) = IR ,{c,},e2 a diecrete oet so thet each rertrictioa /(.) 11,,,.,*ry i. ."A
aaalyt icandharareala.aalyt icextels ionon8ome("L,  o i+) ,aL<a"," ,*r i " i * r . 'Ct" . . ly
every function in ,4o ie pieewise diferentiable.
la thie chapter we consider the whole real axir ac the time domain of(1.1). Mort ofthe analyrir
goe.e through for any subinterval f C IR es well,

Throughout the thesis a lundomcntal matrid of

t(r) = A(0'(4
is denoted by X(.) and the trcruilion matrizbv

o(r,ro) = x(r)x0o)-l.
Suppoee

" = (tir) e c L"(R) = {? 6 ptrxn I i|?-1 € A"x" V, € tr, : "(r)?(r)-r = l^}
and ? = (j;;) e ?-x", then the ccrirdiwtc tmnalormation

converto the system (f.f) into

z(t):= T(t)-ts(2)

t(t) = A'Q)r(r) +.d(O{r)
s(t) = c'(t)z(t) ,ren

(1.2)

wnere
A, = T-1AT-T-r i  €?nxn
B' = T-rB € ?nxD (l.g)
C '  =  T C  e g x n

and the transition matrix O,(f, 16) of (1.2) ratirffcc

o,(l,h) = "(r)-r.(r,ro)r(b).
In this case (l.l) and (1.2) ue called eimilor.
For sahe of brevity the tupler

(A,B) e Rnx(n+m),  (A,B,C\ € ?*xo x ?.rx^ xE xn

are associated with the rystem (1.1),



Remark 1.1 Ae opposed to tineinvarimt ayatema, due to the much richer dass of coordinate

trmsformations, a rystem (A, B) is always eimilu to a eystem with constmt free motion. More

precisely, iIP- \e C\,CL,A, ot A and (A,B) € Atrx(n+m) then the coordinate transforma

iion r1.; = X(.), whereX ii a fundanental eolution of;(l) = a(t)c(t)' convett8 (A'B) into

(0,X-lr) € Rrx(n+m).

clearly, aimila^rity transformatioos will not, il general, pres€rve stability propertiu of the sys-

tems. Additional assumptione have to be imposed. If one requires that T('),?(')-1,f1'; are

uniformly bounded in t one obtaine the go called Lyapunor: tmnsformatione, introduced by .Lyc-

punou (1893) in hie fa.noua nemoir, the stability behaviour ie not affected. In thie case (1.1)

and (1.2) ue called kinematically similar.

In the remainder of thig section certain ekew polynomial ringe are introduced. They will play

a.n impotts,nt role for the algebraic deacription of timevarying systems. The {ollowing baeic

p.op"iti". of rkew polynomial ringa ca,n be found, for instance, in dolrn (1971) Section 0.8.

iet .R be any non-zero ring (not necesaa,rily commutative) with no zero-divisore and c be an

indeterminate over -8. Then the ring R[c;o,6] generated by l? and c ie called z right skeu

polynomial nngif for sme monomorphiem c : R + R md a-derivation 6 : R * P, i'e'

a(r ' s) = a(r) ' c(s) for all r, r € R, the following cr,mmtlation rule is valid

r ' u  =  a  ' a ( f ) +  6 ( r )  f o r  d l  r , s  €  I

Thus every element of X[c; 4,6] is uniquely expresaible in the form

r o + . . , + t D r n  , r i € R

A left skew polynomial ring is defined analogously with commutation rule c 'r = a(r) ' o * 6(r)'

If o is m automorphism then every left skew polynomial riag is a right one a,nd vice versa.

To introduce certain gkew polyaomial rings which m importut for an algebraic description of

timeruying systems some notation is neded. Let Mbe the field of fractions of ,4, i.e.:

M z= l7 : ts, - E | / ie real meromorPhic).

Byidentifyingeach / €.rV withthemultiplicationoperator l rg* fg, rVl is asubringof

ends(M), the ring of R-eadomorphieme oI M. lf

D : M  -  M

I  H  D ( I ) = i

denote the derirration on.rtl induced by the usual derivative, thetr D € enda{M) u well' The

composition of D and / in end11(iV) ie

(ol)k) = D(ls) = ti + ic = UD + i)@) rot il\ J,g e M

and one has the multipliution ruIc

D l = l D + i  f o r a l l / € r V

eince D ir al6ebraicdly iadepeldent over rV

MlDl z= {/o +'. .  + f"D" I  t ;  e JA,i  elNo} c erdn(iV)

(r.4)



witb' commrtation rule (t.4) ie a (left and ri6ht) ekew polynomial ring. Analogously the skew
polyoomial ring /[D] ie defined. Theee ringe a,re exteaeively etudied in llchminn, Nli,r'l.&,rg*
and Schmde (L984).
A degree function on' AlDl rcap. MlDl is defined as uual. sine thece ringe do aot contain
zero divisore they allow a right and left diviaion algorithm. So they are right aod left Euclidean
donaine. F\rthermore ,{[D] and M{Dl arc aimple, i.e. the only two aided ideal of ,4[Dt resp.
MlDl are {0} and the ring itself, cf. Cozzens and Faith (f9?b) p. a .

Using this operational setup and the multiplication rule (1.4) one obtaina

Lemma L.2 lf (A, B) 6 1rx(n+n) ud ? € Gtr"(,4) then for i € IN aad (A,, B,) € r'dnx(n+n)
satisfying (1.3) we have

where

(Dr"- A).(B):= (Dr" _ AX(Dr" _ r{)i-1(.8))

Proofa (1.5) is an immediate cons€quenoe of (1.s) and (1.a). we prove (1.6) by induction
on i. For i - 0 it holde true by (1.3). If (1.6) ia true for i, we conclude

T-r(DIn - A)i+l(a) = T-r (DIo - A)T(T-I(DI^ - ,{)r(s)) = (DI^ - A,)(DI^ _ A,)i(B).

(1.7) is also easily shown by induction. o

L.2 Controllability into subspaceg

Throughout thie section state space systems (/,8) € Clx("+-) are considered.

The following generalization of the usual controllability coacept will in particula^r be us€ful wheD
syetems of exponential dichotomy are analysed (compare Section 4,2).

Suppose that for eone fundanental matrix X(.) of i(t) = A(t)c(t) the function space of free
motions is deconposed into the direct surn

r-rlDl" - AIT = DI^- A'
T-|(DI^- A).(D) = (D\- /) i(8,)

(D\- A)'(B) = x(x-ra).

x(.)R" = %(.)@Yz(.)

4 ( t )=X( t ) f iX(4- r  fo r i= l ,2 reap. ,  r€E,

(1.5)

(1.6)

(1.7)

wnele

%(r) = x(tAIRn for i = 1,2 ,t € tR

and P1,P2 € IR"x'ae mutually complementary projectionc, i.e. p12 = p1, p2 = In- pr.
Daleckii ond, Krein (1974) p. 160 have proved that the projectioa associrted with the liaa
subspace V;(i) is similar to P; and satiefie.e

(2.1)

(2.2)



ln particulu it follows that ifco € V;(ro) at some time to, then the free trajectory O('',0)o, =

X(')X(ro)-r30 going through to at to belonSs to V;(') '  i  = 1,2.

Definition 2.1 Suppose (A, B) € Cax(^+ml . The free trajectory o(', is)c6 is called contrcllsble

a t t imets in toVr i f thereex is teeomer l> tg ,  t , ( ' )€ (C" ) -andc1( ' )eVr ( ' ) (a l ldepend ingon

t6,cs) so that

is a solution of i(t) = A(t)x(t) + B(t)(l).

If this is true for every ,o € lR" we say that (A' B) is complelely controllable into !1 at time

to. If (A, B) is completely controllable into Vr at any time fe then (/' B) is cil)ed completely

controllable into Vr.

This definition does not say that every state in V2(t6) cm be controlled to zero, but every free

motion can be forced in finite time into a fre motion of yl. If yl = {0} the above concept

coincides with the well-known concept of controllability. In this case we omit "into yr" and

speak only of controllability,

For later purposes it is often necessary to choose the input space ("4")- instead of (Co)n. That

this is not a restriction is a consequence of the following propostion.

Proposition 2.2 Consider (4, B) e Cix("+^\ . If the state o6 € lR" at time ts can be controlled

to cr € IR" at time 11 > ts by u(.) e (Cr)-, this cm also be achieved by some 'i(') € (,4 h)-,
ryhs1g 1= ( t6 ,h ) .

Proof: By Remark 1.1 and Lemma 1.2 it cu be easily sen that it is suficient to assume

A(.) : 0. Then it remains to prcve that irnG C imlf , where

I i[(l,ts)as for I I te
r ( r )=  {  e ( r , ,0 ) ro+ f iO( , ,s )B(s )u(s )ds  fo r16  (  t  (  t1

I rt(t) for rr S t

G: (C, l7)* * IR'

",., * 
;|. 

a(s)z(s)ds

and

.E : (,4 l7)- - IR'
r t !

n(.) * /  a(s),r(s)ds
J to

Let 91,. ..,g1 denote a basis of irnG C lR' and choose u;(.) e (Co E)^ such that G(z;(.)) = 9;
for i € k. C7 lies dense in C, 17 with respect to the ,l-norm and, by the Weierstra0-Theorem,
the set of real polynomials restricted to / lies dense in C7. Thus for every 6 > 0 there exists
t(.) € (,4 l7)- such that



l l z;(.) - n;(.) ll4< 6 for i € &

ClearlS for e > 0 small enough and i; C im G "ll 
A, - gi ll< e for i € g implies that

4r,.,,,0* is also a basie of imG. Now, by continuity of I/, chooee d > 0 suficiently small such
that ll ll (n;) - 9i ll< e for i € k. Then .O(n1),..., fl (n1) is a basis of im G and this completes
the proof. D

Instead of the contrcIlabilitg Grcmian

w(ro, t )= / "  o1ro,r ; r1s) .a"1s;o?1rs,  oyds

oI (A,B) € C;x(n+-) t"he inrluced contrcllability Gmmian

w 2(to, t r) = Pl(to)w (to, t r) P{ (to)

will become il importmt tool to characterizecontrollabili-ty_into subspaces. we call w2(tq,h1
positire definite on P{N if for all non-trivial vectors g € pl(ro)IR" *ih.ue qTw27ts, rrlq , O.

The following invariance properties are emily verified.

Remark 2.3 Suppose (A,B),(At,Bt) € Cix("+n) are eimilar viaT e GL^(C). If the projec-
tion Pj(.) usociated with ;(l) = A,(t)z(t\ is defined via the fundmental matiix ?-rX then

Pr(t) = rA)-tPzO)rO)
wi\o,tl) = T(to)-rw2(to,11)T(rs)-1r

and

(i) (4, B) is completely controllable into \ ifr (At, B,) is completely controllable into
r- '( ')vr(').

(ii) H/r(ro, rr) is positive definite on p2"(ro)IR" ifr Wi(to,t) is positive definite on ptr(ro)[t".

The main result of this section ar€ the following various characterizations of controllabilitv into
subspaces.

Theorem 2,4 For the system (.4,.8) € C;x("+-, the following ae equivalent:

(i) (4, B) is completely controllable into V1 at time ls.

(i i) There exists some rr > to such that

Wz(to,tr) is positive definite on p;(ro)R"



resp.

resp.

imW2(ts, t 1) = P2(to)lR"

tie map

V ^ 2 C t r  * P 2 ( r o ) I R "
"i.) * "li'j x(ls)p2x-r(s)a(s)u(a)ds

is surjective.

(i.ii) Every non trivial solution

y ( . ) = o 7 ( r o , . ) p f ( r o ) q , { € R "

of the adjoint equation of i(r) = A(t)o(l)

i(t) = -Ar(t)v(t)

has the property
yr(.)B(.) l rr ,-)* o.

II rkPl = k ar.d A,B have entries in Cn'b-1,Cn-h reep. then (i) is a consequence of (iv).

(iv) There exists some tr > ro such that

r*[pr(r)r(r), . . . ,( ,  -  A(,))"-t(pr(r)B(r))]  = n - e

fo rsomet€( ro , t r ) .

\f (A,B) € /Anx(tr+a) then (i) is equivalent to (iv) and to

(v) There ex.ist U(D) e MlDlnxt, V(D) e MlDl^xn such that for all , e lR

p20)  =  lD  r "  -  A( t ) \ .  a  @)  +  p2( t )B( t ) .  v  (D) .

Proof: Note that (1.6) also holds true for d € n -,t i f (A,B) e (Cn-h-t)nxn x (C'-l.)nxn

Thus, using Remark 1.1, it is easily sen that it is sufficient to prove the theorem for the case
1 ( . ) = o a n d x ( . ) = / " .
The equivalence of the thre statements in (ii) is proved malogously to the usual situation rvhere
Pz = 1", cf. Knobloch and Kappel(7974) p. 103. We omit the proof.
To simplify the proof a further condition is introduced:

(iii') For every ,o € lR there exists l1 ) te so that

y(.)= 0(16, ')"Pf(ro)ct 0 + yrplnpl l0 for some, € [ro,rr]

and we proceed as follows

(i) <+ (ii) - (iii) + (iii ') =+ (ii)

l 0



(i) + (ii) : For ls € IR and co € IR" there exists 11 ) ls and an input vector t(.) such that

,r = co + [" n1r7u1"'1a"€ PrR'.

Then

P2(q-xs)= -Ptxo= [" rrnp1up1a".
J lo

which proves the second statenent in (ii).

(ii) + (i): It sufrces to determine for abitrary ls € IR,o6 € lR" some 11 > 16 and a control
function r(') such that

c(t1) = plca * pzro* 
t" 

a1qup1a"€ RR'.

By assumption there qists h ) ts 6uch that W2(ro,h) is positive definite on pfllRn. Defining

.,,,, _ | -87' (t)w;1(to,tr)pzco for ts < r < rr- , " r _ l  
0  f o r r ) r 1

grves

. ltt tat
Pz(Pzxot /. B(s)u(s)ds) = Pzro- | 

- 
r2np1ar61P{d,s wlt(s,tr)p2zs=9.

J lo  J l6

This proves r(h) € Pl!R".

(ii) =+ (iii): by contradiction. Assume that for some P{C * O

yr1t1B1t1 = qr rrn6\= 0 for alt r > ro.

Then

qrw21ts,t)q = [" q, prnllB, (qp[ c ds = 0 for ail lr ) io
J t O

which contradicts (i i).

(iii) + (iii') is proved analogously uin Knobloch and Kwakemaak (1985) p.33.

(iii') .+ (ii): It suffices to prove that for arbitrary t6 ( t1 the implication

v() = PI c * O + !r(t)B(t) I 0 for some r € [ro,rr]

implie that w2(to,tr) is positive definite on Pf,IRn. The proof is immediate by contradiction.

In order to prove (iv) + (ii) the following notation is used.
L e t  

f .  ^ 1
,S- r 'Pr .9=  1" "  X  I  fo rsomeS€Gr" ( tR)

I U  U J



- , [ ' * , , =[ l  -  o l r - 'u r , r€ ]R*x- ,
L U  r " - r J

| .ft+r(t) I
F ( t ) : =  |  i  l 6 P ( n - t ) x m '

L .f"(r) I

At first it is shown that for abitrary !s ( t1 the following ae equivalent:

(a) Wz(to,t) ie positive definite on PtaIR".

@\ , t '  I i i ,F (s )F ' (s )ds  =  n  -  k

(7 )  Therowvector func t ions f ia l ( l ) , . . . , . f " ( t ) . re l inea ly independenton [ to . t r ] .

(") <+ (0) : We have 
ill

.S-rW2(to, tr).S = 
;1" 

f(s)F' (r)dc.

Since
[ 0*'* 0r'("-rl I

F ( t ) r ' r ( r )= l  -  |
| 01.-ry'r F1tlF'(t) I

the equivalence is obvious.

(0) <+ (f) is a consequence of Gram's criterium, cf. Gantmacher (1959) p. 247.

Since

rklP2(t)B(t), . . . ,(Pr(,)B(t)f- t l  = ?fr[s(,)r(,) , . . . ,s(r)F("-r](t) l  = rklr(,) , . . . ,r("-r)(,) l

= r*[-r(r), . . . ,F--](r)]

it follows that (iv) is equivalent to

r r1F1l ; , . . . ,F{"-*) ( t ) l  = n -  t  for  eome, € ( to,  r r )

Now by Lemma l in.giluemon and Meadows (1967) thia condition gives ('7) and thus (iv) +
(ii) is proved.
ll (A,B') is an analytic system then due to the Identity lheorem (iv) is equivalent to

rk[(r), . ..,d"-*)(41 = " - fr for a set of points denae in (ls, t1 ) (2 3)

By Lemma 3 in ,Siloemcn and Meadows (1967) this condition coincides with (f )' Hence (ii) <+
(iv) is proved.
It remains to prove (iv) <+ (v) in the malytic situation. Since (iv) {+ (2.3) it is sufficient to

t2



ahow that (2.3) ie equivalent to the existence of some I € I,l[D](n-r)x("-E),.i/ e i4[Dl^x(^-h)
euch that

(2.4)
Thie equation is varid ifi 

I*r = DI^-r ' 0 +T 't '

' [3 , ._l ] ' - '= ' [ f ln , ,"_l ] ' - ' . ' [  ,  ]* ' . ' [$ ]  o,- '
Since

"=r [3  , " : ]  s -1 ,  Drn=r [ f ln  , r "_ : ]  s - , ,  pzB( t )=" Iu? ,1

(2.4) is equivalent to (v) with A(.) = O.
For the following proof of (2.3) <+ (2.4) compa,re llchmann, NimL,ryer and schrnote (19g4) pp.
357/8. Suppose (2.3), then there exist V e Mnx(n-rl, a = 0,. .., n - & such that

l Y o  I
r F  ; ( " - ^ ) r l  l _ ,
t r ' . . . ' . , | l : | : r . - t .

I v"-* I

Using the multiplication rule (1.4) it is easily proved by induction that

i - r l _ . \
FD i=  J - l  I  l 1 -1 ; r p ; - rF l l ) + ( - l ) dF l i )  =  o .M ; (D )+ ( - t )F ( i  ( 2 . 5 )

f f i \ ^ /
where

M;(D) :=i ( I ) (-r)rDi-)-rF{r)
l = o \ " , /

Thus

Tlyo- ovr+ ... +(-lf-*r"-ry,_rl
= Fyo - lDMl(q -nrl + ... + (-r)-klDM^_r(D) + (_l)"-rF("-*)ly"_*

= Fyo+ Fy, + ... + F{^-.}y"-* + f1-r;roivrlo)r^
,\=l

rF,..,F"--,1 | l" I *rf1-,;,r^rrr"^
I f"-* I )=r

r- l
= r._*+rD(- l))M.\(r)yr

i= t

and (2.4) is proved.
Finallay suppose (2.3) holds true and

t  = lnt t , ,  i1  E lqnx(n-r l  6,  i  = 0, . . . ,c
i=0

13



By (2.5) one obtains

ra - *  =  o0+F. t

= Dtt  +i t r-r l , (  i  )  r , -rpt l r4' l , \ ,
i=O l=0 \  /

= D0 +i t ir-t , ' (  i  )  r '- ' r t^r + (-r)rFlvi
d=0 l=0 \  /

= Do+"r i i t - t l ' (
i=O I=o \

and comparing the cefficienta yields

i )r*^-'r,^,1',1 
+ iF{i(-l)'*

c

f,F'1-ryrvd = r"-*
i=0

Since r&y[F,...,F{t}] considered as a function of i can only be strictly monotonic within the

set {0, . . . , n - e}, (2.3) followe and the proof is complete. tr

Suppose the system (A,B) ie controllable at time to, i.e. P1 = 0. Then condition (ii) of

Theorem 2.4 is proved ir Kalman, Eo and Narcnda (1963); (iii) ie a recent result of Knobloch
and Kuackemaaf (1985); (iv) wu shown by Silwman and Meadows (1967);(v) is proved by
Ilchmann, Nimberger and Schmale (1984).

If Po = 0 md additionally (A,B) e ]R,nx(tr+n), then (iv) ie known u the rmk condition of the
controllability natrix derived by f{clman (1960), (v) represents the left coprimeness of s.I, - A
and B, see Rosenbrak(1970).

Remark 2.5
(i) Suppose (A,B) e Cnx(i+ml is completely controllable into yr at time t6. Then a control
which forces a fre trajectory O(',fs)cq from time lo into Vr at time t1 is given by u(t) =
-Br(t)W2(t",tt)-rPz(to) (compae the prmf of '( i i) + (i)" in Theorem 2.4). Since there exists
a minimal time !r ) to Buch that W2(to,t) is poaitive definite on P;(to)n", every ro € IR" can
be forced into V1(11) is finite time d = tr - to, l1 does not depend on c6,

(ii) Since img^ = W2(to,tr), where g1, is the map given in the third condition of Theorem 2.4
(ii), we have

imW2(ts,t1) c inw2(to,t\) for t ' , ) t l  > ts.

Thus the functio\ t * rkW2(ts,t) is monotonically increuing on (ro, o) . If (4, B) e ,{"x("+-1
then the entries of W2(ts, .) are analytic as well md by the ldentity-Thmrem ofanalytic functions
rkW2(ts,.) is constmt on (te,oo), Therefore, if (A,B) is malytic and completely controllable
into V1, then every state to € IRn at time 16 cu be forced into V1(t1) it arbitrary short time

t 1 - t 6 ) 0 ,

The next proposition will show that for (piecewise) analytic systems dmW2(te,t1) can be com
puted in terms of .4 and I . The knowledge of the transition matrix is not necessary.



Proposition 2.6 Suppose (A,B) e /nx(tr+n) and lo ( t1 . Then

imw2(ts,t1) = o(ro, ,) t im (DIn - A(t))i(pr(t)B(t)) for all r e [re, 11] (2.6)
i>0

Suppose (,4,.B) E Aix("+n1 and IR = U,.Vla,,a,a) is a patitior such that ,4(.) md ,B(.) are
analytic on every (c,,a,11) . Then for to g [oo,ar) and t1 6 [or,oiv+r) one obtaine

N
inw(ts,t1) = l ;4nL-A(ro)).(a(ro))+ f,  f ,  ;m1ar" - A(a")) i(B(a,)) (2.7)

i>0 v=l i )O

Proof: using Rernark 1.1 and (1.6) it is euily sen that without loss of generality one may
assume A = 0,X = I" . So it remains to prove

imw2(to,t) = f ;m1rrr1r;;to for ar r € [ro, rr]
.20

which is equivalent to

kerw2(to,rt) = [f,;m1frA1r;;{i)1r for all , € [ro,rr]
r20

Due to the properties of analytic functions it ie euily seen that

e e W2(ta,t1)
e

lP2B(t \ l rq=g foral l  I  e [ ro, t r ]
e

lP2B(t)l i"q= 0 for some I € [re,t1], forall i  > 0

<+

q e akerlp2B(qlfl ' '  = [Dtm(prB(,))(r)]a for some r € [ro,11]j>o i>0

This proves (2.6). (2.7) follows from (2.6) and the fact that

inW2(ts, t1\ = imW2(ta, o1) * . . . i  imWz@N,tt)

D

Remark 2,7
(i) Set P2 = -I* and I = ts in (2.6). Then for time-invarimt systems an application of the
cayley-Hamilton-Theorem reduces (2.6) to the well-known fact that t\e controllable space is
given by

imB *  imAB +  . . .  +  i rnA" - r  B

(ii) In general it is not possible to restrict the sum in (2.6) independently of te to only finitely
many summands. See an example in Komen (1g7g) p. g7l.

( i i i )  I f ,4 ( ' )andB( . )a redef inedover lR[ r ] i t cmbeshownthat thesumin(2 .6)cmberes t r i c ted
to finitely many summands. cf. the subclms of constant rank systems considered in .gilueman
(1971) and Kamen (1979'1.

I C



It is well-known that for many control probleme uniformity constraints are recessary. Uniform
controllability as introduced by Kalman (1960) ie extended in the present set-up u follows:

Definition 2.8 Tire eystem (A,8) € Cix(r+-1 is calleil uzilomly completely contrcllable into
V1 if there exist o,o,D > 0 such that

aI" < W(t,t+ o\ 3bI^ or nf$)W for all l € ft (2.8)

Remark 2.9
( i )  Suppose .4 ( . ) i sbounded , i . e .  t he reex i s t 8c>0such tha t  l lA (4  l l <c fo ra l l t € IR .  S ince

;(t) = A(t)z(t), c(ts) = cs

is equivalent to

c(r) = c6 4 [' 4"14"1a"
Jao

one obtains

o(r,ro) = r" + / ',1(r)o(r,ro)a,
J ta

md thus

l l  o(,,ro) l l< r + / '" l l  o(s, 16) l l  ds
J lo

Now an application of Gronwall'e Lemna yields

ll O(t,to) ll( ec(t-to) for all t ) ls

Using this fact it is euily shown that u upper bound in (2.8) alwaye exists if A(.) and B(.) are
bounded.

(ii) A straightforward calculation shows that uniform complete controllability into V1 is pre-
served if a kinematical similarity traneformation ia applied to the system (,4,.B).

For later use we state the following lemma.

Lemma2.10 Suppose (A,.8) € Cnx(n+m) is bounded and the matrices F(.) € C;x-,r(.) €
Cf,x^ arc bounded u well. Then (A,B) is uniformly completely controllable into V1 iff the
system

i(r) = [/(,) + r(t)r(t)]r(t) + a(t)E(r)(t)
is uniformly completely controllable into V1 .

Proof: The ruult is proved for uniform complete controllability by Sdluemcnn and Anderson
(1968). It curies over without my difficulties for uniform complete controllability into V1 . tr
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1.3 Dual and adjoint relationships between controllability, re-
constructibilitS reachability and observability

Throughout this section we consider systems (A,8) € Cix(a+n).

The well-known concepts ofreconstructibility, reachability and observability (cf. Kalman (1g60),
Knobloch and, Kwakernaak (1985)) are generalized with respect to time-varying subspaces. How-
ever, I only concentrate on those definitions md propositions which are of interest in the follow-
ing. Analogous results a for controllability in Section 2 can be derived without mv difficultis.

Following Kwakernaak and Siuan (1922) we define

Definition 3'1 The duol system of (.4,8) € cnx(n+n) with respect to some arbitrary fixed
time t* is given by

iU) = Are. -r)r(r)+ cr(t  - t)u(t) (3.1)
s(t) = Br(t '  -r)c(t).

The adjoint syslem of (,{, B) is defined by

i ( t)  = -{111x(t)-cr(t)u(t) (3.2)
v0\ = -Br(t)t(t).

Remark 3.2 It can euily be derived that a fundamental matrix xd(.) resp. X"(.) of the dua.l
resp. adjoint system satisfies

xd(,) = [x"(r'- r)]-r
x"(,) = [x"1r;1-t

the associated transition matrices satisfv

oolr ,r i  = or(r ' -  s,r .  -  r)
A' ( t ,s )  =  o r (s , r )

and the time-varying subspaces are defined by

vdd(t) = xd(r)Pfn" i--t,2
Yi( , )  = x"(DP?w i=1,2

To state the dual and adjoint relationship of controllability into a subspace the following defini-
t ions me introduced.

Definition 3.3 (/, B) e cnx(n+n\ is said to be completely reunstructible wrt v; if for every
lo € IR there exists a r_r ( t6 such that for every co € X(ro)pfIR" the condition

d( . )O( . , tq )c6  l [ t_ , , r . ]=  0  (A .3)

imp l ie  c6  =  0 ,  fo r  d  =  1 ,2  resp .
The induced reconstructibility Grcmian is g.iven by

l l ;(t-1,te) = x-t '(tdnxrrro. 
I, '),or(r,ro)c"(s)c(s)o(s,rs)ds. x(ro)r,irx-1(ro)

f o r i = 1 , 2 r e s p .
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Deflnition 3.4 (A,B) € Cf;x(n+-) is said to be completelg obsenablewfi V; if for every !e € IR

there exists a lr ) lo such that for every co g X(to)Pf,IR" the condition

d( ' )o( ' , lo)co l t ro,r , l= o (3 '4)

implic ae = 0, for i = 1'2 reeP.
The indvred obsenability Gmmian is given by

Gd(ro,rr) = x-l'(ro)qx" (to). [" or(r,to)c"(s)c(.r)o(s,ls)ds ' x(to)Pfx*r(to)' 
Jan

f o r i = 1 , 2 r e s p .

proposition 3.6 Let t. = 0, then the Gramims asmciated with the system (.4,8), the dual

system md the adjoint system, resp. , satiefy

wz(to,tt) = Hler,-to) = Gt1o,tr) (3'5)

Furthernore the following are equivalent:

(i) (.a, A) is completely controllable into V1.

(ii) The dual system (3.1) wrt t' = 0 is completely reconstructible wrt V{ '

(iii) For every t0 € IR there exists a l-1 ( 16 such that Hi1-r,to\ ie positive definite on

xd(ro)PtrR".

(iv) The adjoint system (3.2) is completely observable wrt Vi .

(u) For every to € IR there exists a 11 ) ls such that Gi(ts, t1) is positive definite on

x"(ro)PrlR".

Proof: The fornulu in Remark 3.2 give

w2(to,tt) = x (to)Pz. 
;[' 

x-l1s)a(s)r"1r;x-r'1r;ds . P{ xr (to)

= xd-tr (-to)p2. [" xn1-"16dtr(-r)cd(-s)xd(-s;as' rflxd-'i-ts;' -  
J h

= xd-" (-to)pz. [-'o Xar g1car61?d1r1Xdg1ar. r{ Xd-' (-to1
J _ t 1

= Hl(-h,-to)

md

w2(to,t) - 71n-"1ts)Pz [" x"rG11-g"r(s))(-c'(s))x"( s)h PIx"-'(to)
J to

= Gi1o,tt).

Hence (3.5) is proved. Now (i) <+ (iii) and (i) <+ (v) followe from Theorem 2'4. In order to

prove (ii) e (iii) put

,p:  xd(tdP[n" *  (ce[r- r , ro])n

,o *  cd( ' )od( ' , ro)ro

for some t1 ( ts. Then (3.3) is equivalent to to € kerg and this is equivalent to t €
ker.Erd(l-1,t6) (se Knobloch and Kappel (197a) p.112). The proof of (iv) <+ (v) is analogous'

it is omitted. tr



Deflnition 3.0 The systen (d, B) e c;x("+^'t is called complet ely reachable !rcm 1,,2 if every
fre.trajectory O(.,ts)a6, for lo € IR,co € IRa, can be remhed from a suitable fre t-rajectory
oz(.) e Vz(.), i.e. there exist t-1 < to,z(.) € Cf; (both ilepending on ,o,co ) so that

I ,rQ) for r ( r-1
3 ( r )  =  

{  o ( , , r _ r ) r 2 ( r_ r )+ ,1 i , ,  O1 r , r ;A1 r ; " ( s )ds  f o r r_ r  < ,  < ro
I O(t, ts)cs for ts ( r

The inrluced reachability Gramiania given by

yr(r-r, ro) = 4(ro) . /* o1ro,ryr1")^ar1s)or1re,s;as rfl1rs).

Analogously to Proposition 3.5 one can prove the following, the proof ie omitted.

Proposition 3'7 The Gramians usociated with the system (A, B) , the dual system and adjoint
system, resp., satisfy

4(t - r , ro)  = G{(- to,  - r r )  = f l i ( r - r , ro) .  (3.6)
Furthermore the following are equivalent:
(i) (,a,,B) is completely reachable from V2 .
(ii) For every to € IR there exists a l-1 ( 16 such that y1(t_1,te) is positive definite on

.Pfl(ro)rR".
(iii) The dual system (3.1) is complete observable wrt Vd .
(iv) The adjoint system (3.2) is completely reconstructitle wrt V,o .

As opposed to time-invariant systems, complete controllability (observability) is not equivalent
to complete reachability (reconstructability). For this see the following simple exarnple.

Example 3.8 Put n = 1, ,4( . )= 0 and

B f t \ = [  o  ,  t < o

I  r  '  , > 0
Then (0' l) is not reachable from 122 := {0} however the system is completely controllable into
V z .

As an immediate consequenc€ of Remuk 2.b (ii) and the positive definite condition. on the
Gramims we have the following corolluy.

corollary 3.0 If (,4' .B) € ,4nx(n+n) then (,4, a) is completely controllable into vr (observable
wrt V2 ) iff it is completely reachable from [ (reconstructible wrt V2 ).

L.4 Controllability indices and a canonical form

Rosenbrock (7970) hro introducedthe controllability (Kronecker) indices for timeinvariut sys-
tems His definit ion wil l be extended to time-varying malytic syetems (A,B) e/nx(a+m).
Set

K i (A ,  B)  =  [s ,  ( - t ) ( r / "  -  4 )1(B) , . . . ,  ( -1 ) i ( r . r "  -  ,4 )d (B) ] ,  i  €  rNo
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wnere
(DI^ -  Dk1. f - )  3 (DIa -  A)((DI"-  A) i - ' (B))  for  i  6 t

The matrix
K(A, B) := K"-r(A'  B)

is called lhe contrcllabitity matrin of the system (A,B). If ('a'B) is a coNtant system then

K(A, B\ = lB, . . . , A^-1 Bl is the well-known controllability matrix' For time'varying systems

Xi 1.. Bl was introduced by Siluerman anil Meattowc (1967) in a slightly diferent form, namely

wiihout the factors (-t)l in it (cf. Theorem 2.a (iv)), here it is modifred for computational

re60ns.

Clearly, if (.A,-B) and (A',8') arc eimilar via some ?(') then by (1'6)

T-1 . K(A, B) = K (At , Bt) (4.r)

and (1.7) yields

K(A, B) = [ ,B,  ( -1)O(O-rB)(1) , . . . ,  ( -1)n-1o(o-1.B)(n-1) ] .

Analyticity of the syetem makes it ie possible to define the controllability indice of (A'B) bv

g"o"iuliriog Eosen6rock,s deleting procedure (se Rosenbroclc (1970) p. 90) as follows:

Eliminate in the controllability matrix of (A' B)

K(A, B) = [s,  ( -1)o(o-rs)(r ) , . . . ,  ( -1)"- ro(o-18)( t r - r ) l

{rom left to the right all column vectors which are linearly dependent over 'M upon

their predecessors.

If the columns of B are denoted by 6r,. ..,6- one obtains after reordering

/1 = [Dr,  .  .  .  ,  ( - l )h-1O(O-1Dr)(r t - r )  ,  '  .  . ,  b- ,  .  .  . ,  ( - r ; r ' - t t , t -16n)(an{) ]

= iu ' , .  . . ,  i - t i - ' - r1pr"  -  l ; * ' -1(0 ' ) , . . . ,  b- , .  . . ,  ( -1) l - - r (DI"  -  A)r ' -1(6-) l  e  1"x" '
(4.2)

wi thn ' l nandsome , t1 , . . . ,& -e r ' I ' I f k ;=0 then theco r respond ingco lumns in l l a reabsen t '
Note, if O(o-rbi)(j) is lineuly dependent over M on its predecessors, then i[(o-1[;)(j+t) it o'

well. The numbers tr, . . . , k- are called lhe controllability indicee of (A, a). As an immediate

consequence of (4.1) they are invuiant with respect to analytic similarity transformations.

Example 4.1 Let

I  f e '  - e ' 0 . ] \
( A , B ) = l  0 . , r ,  l r - t  t  ' l l

\  L 0  t  t J l

It is ealisly conputed that

1 " ,  - e t  0  - e t  c t  0  c t  - " , 0 . |

K ( A , 4 = l t - r  l . �  - l  0  - l  0  0  0 l

L o  .  t  o  - l  - 1  o  o  o l

| "' -et -"t 1n(,)=[h(4,i,(,),h(r)]= 
lr-t ? I l

Therefore (hr, *2' ft3) = (2' 1' 0).



As a complete generalization of the timeinvriant ca6e we prove the following characterizations
of controllability.

Proposition 4.2 Suppose (.4,.8) € r'/tnx(a+n) hm controllability indice *1,...,fr_ md l:=
rkyB = Di,r,>o l. Then the following are equivalent.

(i) (.a, B) is completely controllable

( i i )  rkgl r (A(. ) ,  B( ' ) )  = z

( i i i )  rksK"-r(A(. ) ,  B( . ) )  = r

(iv) l-ti-1 k; = n

Proof: (i) <+ (ii) follows from Thmrem 2.a (iv). (ii) <+ (iv) md (iii) + (ii) are immediate.
It remains to prove (ii) + (iii) : Without restriction ofgenerality assume &1 ) 1,...,&r >
1 , k 2 1 1 = . . . = f r - = 0 . T h e a s s u m p t i o n t h a t t h e r e q i s t g i € g 3 s u c h t h a t r t ; ) n - l + l l e a d s
to the contradiction n = Xl=r &; >, - 1 + n - t + I = n. Therefore *; ( n - I * 1 for i € m and
(iii) is proved. tr

Bmnousklj (1970) has introduced a family of indices for time-varying systems
(A, B) e (Co)nx(n+n) m follows

r;( t ) := r&p1{ ' ( .4(r) ,8(r) )  -  reRr ' - ' (A(r) , ,8(r) ) ,  i  = 0, . . . ,n_ I

where 1i-r(,4,'B) := 0. Let a;(l) denote the number of r;(t),s which ae bigger or equal to i,
i .e.

a ; ( t ) : =  f  r  f o r i e a .
j;rr(.)2i

If .4 and B are tnalytic matrices then r;(') md a;(.) ile constants on IR \ .lv for some dis*ere
set 1{ and

0  <  r " - 1 ( l )  < . . . <  " o ( r )  = r [ nB ( t )  <  m
0 < a - ( l )  < . . . <  c 1 ( ! ) < n  f o r a t l r e  I R \ N .

The fmctions a1(.),...,o-(.) are called the geometric irulicesof the system (.4,8). Again
(4.1) yields that the geometric indices are invariant with respect to an analytic similarity action.
If 11'." '[- denotes the controllabil i ty indices of (.4,8) € J4nx(a+n) then for every interval
1 c  I R \ . r y

m 4-1

f a ; ( r ) =  I  D  t =
i= l  j=0 i : i<,r(r)

n - l

f , r ; ( r )= r f ts r { (A( r ) , ,B( r ) )=  D* ,  fo ra l l le /  (4 .3 )
j=o i=l

It is not obvious how the controllability and geometric indices me related. By using the theory
oI MlDl right rnodules it will be shown in Section 2.6 that these families coincide.

Since the geometric indices are time-varying functions they contain more information about the
system than the controllability indices do. More information thm in the gmmetric indices is
contained in the r;(.)rs. This illustrated in the following example.
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Example 4.3 Consider the system given in Example 4.1. Then

r s ( r ) = r f t a B ( r ) = { l  *  l ; l

h( r )  =  r rp t r ( r ) ,8 ( r ) - rkpB( l )=3-16( l l  
(  2  to t  t=o

r2( r )  =  r f t sn(A( t ) ,8 ( r ) ) - r f rR lB( , ) , l i ( ,n= ; t  
1  fo r  t l0

and (a1( t ) ,a2( l ) ,ca( l ) )  =  (2 ,  1 ,0 ) .

In order to derive a canonical form for the analytic similuity iltion on r'4nx(n+m) a second
familyofindiceswillbedefined. Suppore(A,B)€/nx(n+n)iecontrollablewithcontrollabil i ty
indices k1, . . ., *-. Then

I r  =  [ h , . . . ,  ( - 1 ; r r - 1 ( D / n  -  A ) t l - t ( t r ) , . . . , 6 - , . . . ,  ( - l ) r - - 1 ( r l a  -  1 ) t - - 1 ( b ^ ) l  e  G L " ( M )

and, a e M"x^ is uniquely defined by

[ ( r I "  -  A)t ! (h) , . . . , (DI"  -  A)*^(b) l  = na (4.4)

It follows from the construction of H, see (4.2), that U - [u1, . . ., ta] hu a very special structure
with many zero entries in it, namely

t i  =  ( l i , . . : : .u i . ' ,0 , : . : ,9 )1  Iou ,=o  (4 .b )si = 0 i f  [r  = 0,) < i  J

u ;  =  (z ! ,0 , . . . , r i , r ,_ r , . . . ,u i " ,o , . . . , t l * , r -_ r ) t  I
u j ; = n J  i f  l - f i  a n d  i > ;  l i f  

f t d > o  ( 4 6 )- " t i f  
) > f t r  )

By Lemma 1.2 U is invuiant with respect to coordinate transformations T e GL"(A).

Lemma 4.4 Suppose (A, B\ e /4nx(n+n) is controllable with controllability indices frr, . . . , h-
md 11 is given by (4.2). Then

E-,lDr*- A,-BIIf ,o I = 1rr" - A",8")- L u  t ^ )



and A",8. are in column form, i.e.

0
1

A " = e ./vlax^

where the diagonal blocks are &; X &; matrices, for &; ) 0, and the corresponding *-columns
coincide with u; u described in (4.6), resp.,

B c = [ 6 i , . . . , ] ; l

^ ,  -  I  " " , , " ; =  f t ; * . . . *  * i - r  *  1 ,
' - t u r  m i n ( 4 . 5 )

i f  f t ; > 0
i f  f , i = 0

where e; denotes the 1-th unit vector of IR", *_1 := Q.

Proof: Since .Il € GL"("M)

B = { \ , . . . , ( - 1 ) t ' - r ( r / * - 1 ) t ! - 1 ( 6 r ) , . . . , 0 _ , . . . , ( - r ) r - - ' ( 1 1 " _ 4 ) * - - ' ( r _ ) }

is a buis of MlDl" , viewed u a right /t4[D] module. Now

lD I " -  A l :M lD )  -  M lD l ,  {D ) * lD I ^ -  A l . u (D )

is a,M[D]-right linear map and by the mulitplibtion rule (1.4) one obtains for
u;  := ( - r ) i (Dr"  -  .4) t ( r , )

lD I" - Al. u; = v;D * i; - Aa; = o;D * (D I" - A)@;\ = a;D - u;+t (4.7)

The linear map [D1, - A] relative to the buis B is usociated with the matirix

f l - t lDIn-  AlH = DIn- A.

and by (4.7) it is immediate that A" has the form described in (i). It followE from the construction
of 11 that H-18 = B. . tr

Note that in general A",8. arc not aseociated with a state space system since .F may have
meromorphic entries.
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Proposition 4.6 Consider the clase

t:= {(A,.8) € /4ux(n+n) III defined in (4.2) belongs to GL"(.A)|

Then every (,4,.B) e f, is analytically similar to (,{",.B") € ! with the form u in Lemma4.4.
II (A, B),(At, B') € ! a.re corresponding to (A., B"),(AL, BL) € f, resp. then

(,4,,B) malytically simila.r to (A', B') c) (A-8") = (AL,B).

Proof: Since rY usociated with (4,.8) belonge to GL"(r4)it follows from Lemma 4.4 that
(A . , 8 " )e ,4nx (a *n ) .  l l (A ,B ) i s s im i l a r t o (A ' , 8 ' ) t henby (1 .6 )andLemma4 .4 (Ac ,B . )=
(AL,B) .The opposite direction is trivial. This completes the proof. tr

The previous proposition says that (/", B") ia a canoniu,l form for the analytic similarity action
o n D .

Remark 4.6
( i )  Fort imeinvuiantcontro l lablesystems(A,B)elR, ix( t r+n) Popot(1972)der ivedtheanal-
ogous result to Proposition 4.5 in a complicated way,

(ii) Supppose (A,r) € J4nx(n+n) is controllable md the ssociated rY defined in (4.2) is
invertible over / . Then it can be ahown that (d,B) is analytically similar to aome (A",.B,)
in row form, cl. Ilchmann (1985a) or for an af,ternative but incomplete (see llclrmcnn (1982))
proof lfguyen (1986). However (.4,,4,) is not a cuonical form. As opposed to the constant
cue (cf. Kailctlr (1980) Section 6.4) the proofofthe row form is by far more tricky. For systems
(,4,8)€(C-fx("+^\  Bf tnovshi(1970)der ivedtherowforminacompletelydi f ferentway.

1.5 Time-varying subspaces, the controllable and the unrecon-
structible family

In this section time-varying eubsprcea re studied. This framework will be useful to tackle
disturbance decoupling problems of time-varying systems in Chapter 3.

y = (y(r))r€R is called a t;me-xarying subspceif V(t) is a subspace of IR" for every t € IR.
So I is a family of subspaces parameterized by I € IR.
'W, 

denotee the set of all time-varying aubspaces y = (y(t))r€R where V(l) is a subspace of IR"
for every ! 6 IR .
If V(i) is given by

Y(t) = Y(r)nF ,t € IR where V e AixE

then V is called the time-vaying subspace genemtedby V.

A problem mises: If V € VV" has a generator V E Arxh then Vr := (V(l)r)16n € fn does,

in general, not have some piecewise analytic generatot W e Anxt' . Consider for instance

y( r )= ' . rR ,  then v ( r )a={g  i l  : t l
which belongs to 

.Wr 
but does not have a piecewise analytic generator. To cope with this

equivalence classee ae introduced:
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Two families Vt,Vz e W " are called eqtal almost eterywhere (a.e.) on an interval I C IR

Yr(r) g Y2(r) on I

if y1(r) = V2(t) for all , € I \ X, where lV denotes some discrete set.
In this sense one obtains for the preceding exanple y(r)l = {0}.
Analogously, one defines Y1 is inchded 6.e. in Vz oa I .
I is omitted if 1 = IR.
The notation

yr(,) E yr(r) on.r
is used if V1(t) c y2(r) for atl I e .I and yr(r) g yr(r) on 1 .
"a.e. equivalent" is an equivalence relation on TV, and the equivalence clus of ), € W" is
denoted by

t = {}ry € w" ly(r) = w(,)}

In order to show bmic properties of time-varying subspaces some results concerning divisors and
multiples of analytic matrices ue proved.
Suppose P e Anxt',Q € ,4"xt. Then G e Anxt is called a greatest common Iefi ditisor of p

and Q, G = gcld(P,Q) for short, if for every common left divisor G, of P ud Q there exists an
ana.iytic matrix r? of appropriate size such that Gt R = G .
I( e Anx' is called a least common right multiple of P and Q, K = lcrm(P,Q) for short, if for
every common right rnultriple 1(' of P and Q there uists an analytic matrix ,9 of appropriate
size such that I( '  = I{.9.

A greatest common left divisor md lemt common right multiple of natrices over certain rings
have been examined by several authors (see for example, Mac Dufree (19b6)). Unfortunately
their results are only valid for Euclidean domains or principal ideal domains; the set of real
analytic functione is not a principal ideal domain, however it is a Bezott nng, i.e. if t,S e A
have no common zeros then there exists c,6 € ,4 so that o/ * 69 = I , see .lVcrcsim/rcn (19g5)
Section 6.4. Nevertheless, the proof of the following lemma is partially bued on Mac Duffm,s
idex.

Lemma 5 .1  Suppose P €  Axk ,Q € ,4"x ,  w i th  rkp lP  -  k ,  rkyQ =  l ,  rky lP ,e l=  r .  Then
f o r s : = A + l - r

(i) there exists G = gcld(P,Q) with rk,sG = r which is unique up to multiplication by an
invertible matrix from the right. Furthermore there exist analytic matricee u1, u3 ofappropriate
sizes such that

G = P U t * Q U t

and

G . A ' = p . A k + e . l q t

(ii) there exists If = lcrm(P,Q) with rtgK = s which is unique up to multiplication by m
invertible matrix from the right and

K  . " 4  =  P  . .Ah  nQ  .A l
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Proof: (i) By .9llueman awl Bucy (1970) 1 there exists

t , ,  , , 1
u=1 i , ,  i ! l ec r , * * ^ .a )

L U 3  U { I

such that

lP ,Q l .U= [G ,0 "x , ] ,  r k yG=r  ( 5 .1 )

t  , ,  , ,  I
Let V = | :: :? | be the inverse of [/ prtitioned in such a form that

L v z  v t )

I u ,  a , l f v '  v , l - [ r '  o l
l u s  u e l L v 3  % l - [ o  I " J

Then P = GVr,Q = GVz an.d G is a common left divisor of P and Q.
AII matrices used in the following are defi.ned over,4 ud are of appropriate formats.
Now it is proved that G is a greatest common left devisor. Assune P = GW, Q = GW' and,
G = C n. Since rftsG 1 rkyG it is usuned without restriction of generality that G is a n x r
matrix. By (5.1)

G = GS, where 5 := WIh lW'IIa

Thus rkqG(l) = rfr11G(i) for all t € lR. Let f c IRbe an open intervalsuch that Gis left
i n ve r t i b l eove r "4  l r . ThenG( r )=G( t )X ( r )S ( t ) f o ra l l t € f imp l i es l "=n ( r )S ( t ) f o ra l l t € I .
Since .R and S are analytic 1, = R(r)S(t) holds on IR . Therefore G = gcld(P,Q) and rhe
uniqueness statement is proved as well.

(ii) If := PU2 = -QUa is a common right multiple of P and Q . At first it is proved that
rkyK = s. Assume rkyK < s. Then there eists a Z e G L"(A) such that I( Z = li( ,Oj =
PU2Z = -QUaZ. Since P and Q are left invertible on an open interval f c B. , UzZ and, -UaZ

are of the form [+,0] on 1. Therefore

, , . f t r  o l _ [ u '  t - , 0 1 . |"  
L o  z  l -  l u 2  l + , o l  l

which contradicts the invertibility of U on .I .
Secondly it is proved that .l( = ltm(P,Q).Let

K' = PY - QYr and Q = scld(K,Kt), GE = X, GE' = K'.

Clearly rknad ) s. By (i) there exist /V and .lV'such that

G = K N *  / ( ' f f '  md thus d ' r '4" '  C P.  Ak n Q. At .

Since by (i) mu16s dimrrlP(t) . IR* n 8(r) 'lR'] = s we have r&11d j s. Therefore rkyG = s
and without restrictioa of generality let G be a n x s matrix. Fron the equations above rve
compute

PIU2N +Y Nl= ril + K' N' = G = Q\-WN + v'ly'].

Let  E:= UzN iYN'and.F:= -UtN *  Y'JV'  ,  then

-QUt=  P I l 2=  K  =Gn  =  PE f l  - -QFH.

I Weddeftlm (1915\ prov6 that r hrtdr ovet thc dng of holomorphic functions catr be transformed into a

diagonal matrix by unimodulu natrix operrtioar, cf. iVororimfion (1985). This reault ia aleo valid lor matrices
ov€r the ring ofrerl analytic functioar. Borcver, in thc following wc will quote SilJ*man ond Bucy (19?0). This
w€ak.r r€ult io ruftcicnt fot our purym.
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Since Q and P are left invertibleon some open interval / C IR, -Ul = F-F and Uz-- EH on I.
Therefore

I" = VtUz *VtUt = VoEH - V4FII = (V3E - VAF)H on 1

and since all involved matrices ae analytic .F is invertible over y4. Thus K, = G Ht = K H-r Ht.
Using similar arguments one can prove that also f, is invertible over,4, whence
I( = CH = KtHt-rH. This completes the proof. o

Remark 5.2 It is also possible to define and to show the existence of a gclda.(p,e) and a
lcrm4(P,Q) for matrices P and. Q defined over,rto instead of /.
This is demonstrated for a gcltla, oI p,8 E Ap. Suppose IR = 0,.V1a,,a,+t) is a disjoint
partit ion such that p,,q, e A l1o,,o,*ry haue analytic extensions on both sides of (a,,a,11), see
Section 1.1. For short, prrt

J, := f 1t"",""+,1 Ior J = g or f = h.

Let

(t" := gcrd(p,, q,) e ,4 l{.",.,+,) anrl gu = p,c, + q,d, for a,, d,, C A 16,,"*;, v e Z.

Now it is straightforward to prove that g defined by g |b,,""+r):= g, is a gctdao(p,q) e Ar.

using Remark 5,2 it is immediate that the statements of Lemma 5.1 can be extended to piecewise
analytic matrices as follows

Lemma 5.3 Supposc P e A;,n and lR = U,rVla,,a"at) is a disjoint partit ion 60 that
P lb",."rr), Q 1b",",*rl have real analytic extensions on some (or","i+), atu < a,, a,a1 <
a i * r .  Then

(i) there exists G = gclda,(P,Q) € "4|x" so that

G \b , , " , r , )  i s  o f  the  fo rm [ * ,0 , r ,0 ]

where

rk ,vP 11" " , . " * , ,=  k , ,  rkp lQ 1 t . , , . ,+ , )=  1" ,  rkp iP ,Ql l tu " , " " * ,1=  r "

and s, := k, + l, - r,.
Furthermore there exist Ur e "45"^,IIz € , tx' so that

G = p u t + e u s .

(i i) there exists Ii -- lcrm4(P,Q) €,4|x" with rkyK lp,,n,n,1= s" and,

K . A i = P . A ; + A . A r e

Lenrma 5 .4  Le t  C e  Apx" ,  V  €  ,4 "x1 ,  y ( r )  =  y ( t ) lR t  .
Then there  ex is t  rea l  ana ly t i c  mat r ices  i r ,0 ,e ,W o f fo rmats  nx  k ,  nx(n-  I ) ,  n  x  s ,  z  x  s r ,
resp. rvhich have constant ranks and satisfy

c
( i)  Y(r) " i  t  (r) lR.r ,(  = rkyv
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(ii) y(r)! * i(r)m"-,

( i i i )  k e r C ( r ) & C ( r ) * ' , a = n - r k y C  = r h y l

(iv) )y(r)n kerC(t)! fi1t;n/ ,s' - rksa arkMV - tk^,tle ,Vl

Proof: (i) By Silueman arul Bucy (1970) there exists 5 € GI"(/) so that

vT.S=[y r ,01 ,  y r  €Akx , ,  rkuVt - |

Therefore
- r ^ l

( y ( r ) rR t )a *s1 r ) l , u  l n " - ,
I rn-. I

and r , 1
71ry:= s"-'1ry | 

'; ' 
I

L " l

hd cotrstant rmk md satisfiee (i).

_  I o l
( i i )  is  val id for  U(t) :=,S(, )  |  ,  |  .

I  rn-r  I
(iii) Let .e € Gtr"(/) so that

C(r)n(t) = tCl(r),01, Cl € r'4ex(n-'), rk1qC1 = n - s

Cleuly,
r ^  l

i 1 r y , = n l r y l i  I
t  - ,  I

satisfies (i i i).

( iv) Use-Lemna 5.1 (i i) to determine W := lom(e ,V) with rkyW = s'. Now by (i) one can
choose 17 € r4"x' so that (iv) holds true. c

In order to chracterize when the rank of V(.) € ,Aaxt is constant in t the following definition
is neded.

Deffnition 6.6 For a family V € W" let

P( l ) :  IRn +  V( t )

be the orthogonal projector on V(l) along y(r)4. y is called an tnalytic lamily if P e An\n
resp. a pieceuise analgtic (p.a.)familyif. P e Alx".

Note that analyticity of V 6 ,4nxr does not ensure that the family V generated by V is an
malytic family, coneider for instance V(t\ = t.

Propoaition 6.6 If y € Wo is generated by V E Axk then V is an analytic family if and only
rl

r*nV(l) = const. for a.ll , € IR.



Proof: If the orthogonal projector P(t) on v(l) is real analytic in I € IR then by corollary
4.5 it Gohberg, Lancaster and,.Podman (1983) the function I e rljv(t) ie constmt (continuity
of P(.) is alrea.dy suftcient). ConverselS if f + rlpV(l) is constart on IR then by proposition
4,.17 it Gohberg, Lanu,ster and Rodman (1983) y is an analytic family. tr

Proposition 5.6 will be extended to the piecewiee malytic situation. For thie a definition is
nece6suy.

Definition 5.7 v e "4ixr is said tohave piecewise constant (p.c.) mnkif t\ere exists a d.isjoint
pmtition lR = U,rVla,,a,+r) so that emh restriction

V l@,,",+r\ is real analytic
md hu a real analytic extension
V, on some ("!,,oi+), oa, 1or, oyql 1af,a1
md
rksV,(t) = conEt. for ail t e (o7,"2,+r).

Proposition 5.8 If y € \Ma i6 generated by V € ,4fxr then V is a p.a. family if and only if V
has p.c. rank.

Proof: If V is a p.a. family then there uists a patition ts" = U,rVlou,a,+r) eo that erch
restriction 

Y l4r"*,t,P 11.,,",r,y i. real malytic md has a real analylic exteneioa Vu,pu rcap.
on some ("t,,"i+) where af 1 avt av*t ( o!*r. Now it follows from proposition b,6 that for
each v € 2., rksV,(t) = const. for all t e (a.,,ai*). This proves that V hu p.c. ra.nk.
The opposite direction follows by reversing the foregoing a.rgumeats, B

Proposition S.9 Let C e "Af,x^,V € /4lxl. Then there exist V E Anxk nd U,O,W e A7r"
with p.c. ranks so that

(i) y(r)Rt = ?(,)tR"

)
(ii) (y(r)rRi)r = 0(r)n"

(iii) &erC(t) I C(z)n"

( iv)  v(r ) IRr nkerC(t)  g f ( r )R/

Proof: To prove (i) choose an interval [a,, c,..1) so that V h c,, o,+r) is real analytic and has
a real analytic extension V" on (af,,ai*). Then by Lemma 5.4 (i) there exists V, e Ali|i,"*rl
with constant rank so that

%(t)nt E i,,p1n" on (of,,o,,*,)
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Since this can be done for every interval of the patition corresponding to y € ,Alx& (i) i6
proved. For the proof of (ii) - (iv) use the similar ilgumente. o

Proposition 6.10
(i) Suppose y € \il" isgenerated byV erqn\k and e&sV(t)isconstantin t € IR. lf.a eA
satisfies

o ( t ) eV ( t )  f o ra l l t € IR \1V ,  whe re lY i sad iec re tese t  ( 5 .2 )

then there eists r € r4* so that

"(t) = Y(r)r(4 for all t € IR (5.3)

and thus
u(r) € Y(r) for all, € IR.

(ii) Suppose y € \M" is generated by V e.4ixt and V hu p.c. rmk. If u € /| satisfies (5.2)
then (5.3) is valid for some r € /f .

Proof: (i) Let I € IN so that rlcaV(t) =
(1970) there eiste 5 € G.ts(, ) such that

V S-1 = lw,Ol for sone W e A"xl

r = 5 - r

for aII t € IR. Then by Siluennan and, Bucy

with r/cpll/(t) =l for all t e IR.

" ' I
0r-r I

Put

where r' :=WT(WWT)-Iu then r satisfies (5.3).

(ii) Use the notation of Definition 5.7. It is sufrcient to p.ove the usertion on some ("r,,or,+r)
where r*pV,(i) is constant. Then (ii) follows from (i). o

Time-varying subspaces arise when controllability subspaces of time-varying systems are con-
sidered, This will be described in the remainder of this section.

For systems (A, B) E Cn\(n+n\ the following ie well-known ( se e.g. ffalmcn (1g60)): There
exists a control u € Cfl which forces the state cs € lRn at time le to zero in time 11 - tq > 0, i.e.

-  o( t l , to)ro + / "  o(r , , r )a(r)z(s)ds = g,

if md only iI ao € imW(to,t1), In terms of Definition 2.1 this mems that the free trajectory
O(.,ts)o6 is controllable at time ts into V1 - {0} . Thus

n(ro):= U inw(to,t)
,r>lo

is the vector space of all states which can be controlled at time 16 to zero in finite time. we call

n = (f(r))6p

t\e contrcllable fanily of the system (A, B) e CIx("+^| .
Clearly,
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R(ro) c O(ro,r_1)*(r_1) for l_r ( lo.

If (,4, B) € ,4nx(a+m) is a real analytic system then

rkaW(ts't) = conet. for all I € IR \ {to}

Thus
n(r) = O(r,ro)S(rs) for au r,ro € IR. (b.4)

Now Proposition 5.6 and formulm (5.a) md (2.6) yield

Remark 5.11 The controllable family f = (S(l))1.p of an analytic eystem (A, E) € /4ax(r+m)
is an malytic fmily given by

R(4 = Dim(rr" _ "4(0)r(-B(r)) ,r € lR. (5.5)
iz0

It is a,lso well-known that the state co € IR^ at tine ts is unreconstructible iff cs € ker.E(r_l, to)
for all l-1 ( lo. Thus

B(ro) = l-l ker.F(r-l,r0)
I -1< lo

denotes the vector space of the unreconstructible states at time ls. We have the following dual
relationsships.

Proposition 6.12 Let ftd(ts) resp. Bd(t6) denote the controllable reep. unreconstructible
subspace of the dual system of (A, B) € C;x("+-) with respect to t. = 2to. Then

(i) n(ro)r = Bd(ro)

(ii) B(to)r = Rd(ro)

Proof: Only (i) is proved , the proof of (ii) is entirely eimilar. Since

odl t , to;  = o"(r ' -  ro,r .  -  r )

is the transition matrix of the dual system, for arbitrary tr > to md o € |cn we have

rt_ft(ls)
<+

r"ff 0(16,s)B(s)u(s)ds = 0 for all z(.) e Cf;
€

a"(-8)o"(ro, -3)' = 0 for all s € [-h, -ro]
e

Br( t*  -  s)6d(s, t*  - ro)c -  0 for  at l  s  € [ t '_rr , ro l
<+

x e E o ( 2 t o _ \ , t o \
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Remark 5.13 (i) If (A,B) e /'x(n+n) then by Proposition 5.12 and (5.5) one obtains the

simple presentation

B(ro) = Sd(to)r
= [Dim(Dl" - Ar(2to- ro))i(cr(2ro - to)) ]r

i>0

= nlim(Dr" 
- A"(,o))i(c7(ro))r

i>0

= fl te41zr" - dr(lo))i(cr(ro))r (5.6)

(ii) For time-invariant systems (5,6) reduces to the well-known result that the unreconstructible
resp. unobservable subspace is given by

fl kerCAi-l.
i>o



Chapter 2

Differential Polynomial Matrix Systems - An
Algebraic Approach

2.O Introduction

Equations of a physical system are usually not in 8tate space form and it may not be obvious how
they can be brought to this forrn. For this remon Rosenbmk (1920) proposed the well-known
setting of systems in differentia,l operator description

r@)Q) = Q@)@)
v =  v (D) (z \+w(D) (u \

where the entries of the matrices are polynomials in D (the usual diferential operator) with real
coefficients. Since there is some free choice in selecting the internal variables z of such a system
the question arises under which conditions two systems of the form (0.1) have the same dynamics
and the same input-output behaviour. This is the problem of(strict) svstem eqtitaleneabea.dy
studied by Rosenbrock (1970\. Wolouich (1974) further developed the polynomial appromh. Via
module thmretic tools Fulrrntcnn (1976) and (1977) was able to associate a cmonical state space
model with any factorization v (z)P(z)-r QQ) 4 w(z) oI a proper rational trilsfer matrix. so
far the analysis of the problem of systen equivalence for time-invariant sy6tems wu done in
lhe lreqrcncy domain. Pernebo (1977) was the first who studied system equivalence in the lime
domcin, his bmic idea was to consider solution sets of the system equations, This appromh wu
systemat.ically exploited by Hinrichsen and Prdtzel-wollers (1g80) to obtain a self-contained
theory of system equivalence in the time domain. They derived an algebraic crilerion of system
equivalence, defined and characterized contrcllabd/ily md observability, and, preeented a ccnoniol
slate space model similar to Fuhrmann's model.

For a long time there has been a widespread scepticism whether an algebraic treatment in the
st'yle ol Kalman, i.e. a module theoretic framework, would at all be possible for time-varying
systems' In the second half of the seventies there were 6ome attempt8 to introduce lime-uorying
systems of the form (0.1), where the entries of the diferential polynomial matricee are usually
elements of some skew polynomial ring M[D) and the coefrcients belong to some diferentially
closed ring of functions ,M or generalizations of such a ring. The choice of ,&i represente a main
decision with regard to the chances for a successful treatment of systems deecribed by (0,1) and
to the applicabil ity of the results.
Ylinen(1975) collected basic algebraic results necessary for an analysis ofequation (0.1) in case
where ,M is a ring of endomorphisms. He a.lso discussed basic system theoretic problems, How-
ever, conctete results sulTer from restrictive assumptions which in situations of interest turn out

(0.r)
(0.2)
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to be unrealistic in the time-varying cme.
Kamen (1976) rosumed for his main result, that lV is Noetherian. Under this hypotheais he
constructed a state space representation for (0.1) with monic P(D) . The Noether condition
seems to be rather restrictive (se examples given by ,Iiamen (1976)). The ring of analytic func-
tions is not Noetherian.
In another report of Ylinen (1980) he concentrated mainly on the situation where ,,14 is a subring
of C@. He also treated controllability, a coprimeness criterion similm to the one known from the
time-invariant case was approached md partially established. The main restriction required for
his substantial results re: ,f,1 must not contain zeredivisors of C- md the composite matrix

lP(D),-Q@\l and all its right factors of the same format must be row equivalent to a matrix
in upper trimgulu form with coefficients also in "iV and monic diagonal elements.
lrt lbhmann, Nimbrger anil Scimcle (1984) we were guided by the time-invariant approach of
Hinrichsen and Prdtrel-Wolters (1980). We chose yVl to be the field of fraction of real mero-
morphic functions and considered "/ull'operators P(D), i.e. every local analytic solution / of
P(D)(l) = 0 can be continued to a global solution of P(D)(f\ = 0 . Analytic systems consid-
ered by Ylinen (1980) and constant systems in differential operator descriptions introduced by
Rosenbrock (7970) fulfill these usumptions. Furthermore the msumptions set us in a position to
present a far reaching algebraic analysis of systems of the form (0.f). The results of Hinrichsen
and Prdtzel-Wollera (1980) were generalized. This is presented in the first half of the present
chapter.

A different algebraic approach to various definitions of structuml indices of time-invariant state
space syst€ms wu introduced by Minzner and Prdtzel-Wolters (1979). Using polynomial mod-
ules and their minimal bmes they proved the equality oI contmllability indices, minimal indices,
geometric indices and dgnamical indices. Prdtzel-Wolters (1981) continued this approach to
charrcterize Brunovskj-equivalence for time-invariant systems of the form (0.1), (0.2). Guided
by this approach and using the skew polynomial ring introduced in llchmann, Nirnberger and
Schmale (7984) I generalized the results oI Minzner and Prdtzel-Wollcrs (1979) and Prdtzel-
Wolters (798L) for time-varying systems (see llchmann (1985a)). The characterization of mdnd-
mal bases of ight skeu polynomial mod,ules extended a result of Fomey (1975). It is possible to
define a lrcnaler matrir in the time domain and to use this to characterize system equivalence.
Different invaiants with respect to system equivalence resp. similarity were defined and their
equality wu shown. This is presented in the second half of this chapter.

In Section I matrices over the skew polynomial ring MlDl are analysed and the lattice of full
polynomial matrices is established. The bmic idea of considering matrices defined over ,{4[D],
where rt4 is the field of real meromorphic functions, and msuming that P(D) is full, makes an
algebraic 6tudy of systems of the form (0.1), (0.2)possible.

In Section 2 solution vector spaces associated with (0.f) are studied. Using this, system equiva-
lence is defined and algebraically characterized, It is shown that every system of the form (0.1),

(0.2) is system equivalent to an analytic 6tate space Eystem.
The results of Section 1 to 3 are complete generalizations of the time-invariant case, see llin-
ichsen and Prdtzel- W olters (1980).

Although for time-varying systeme there is no transform technique, in Section 4 a formal transfer
matrix is defined as a matrix over the left-skew field of fractions of MlDl. This matrix is m
powerful u the input-output map in the time-domain.
Inetead of the differential equation (O.l), Mfrnzner and Prdtzel-Wollers (1979) considered in
the time-invarimt case the algebraic equation P(D)z(D) = q@)u(D). In Section 5 this is ex-
tended to the preeent setting. ,M[D]-right modules oI MlDl' and their minimal bmes (sm

fomey (1975) for commutative ringe r'[D], F a field) are analysed. In particular the input mod-
ule of a syrtem (0.1) is studied. This module is invariant with respect to system equivalence.
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In section 6 the question (posed in section 1.4), how the controllability - and gsmetric in-
dices are related, is answered. Dynamical indices are defined via the formal transfer matrix (se
Foney(1975) for the constant cme) and by use ofthe input module it will be proved that all
indices (roughly speaking) coincide.
In Section 7 system equivalence is characterized via the input module and the formal transfer
matrix.

2.1 Differential polynomial matrices

For an algebraic study of time-invariant polynomial matrix systems the solution module ker p(D),
P(r) € IR[D]'x", turned out to be very useful, se Hinichsen and prdtzeLlAohers (lgg0). In
order to extend this approach to time-varying systems I introduce

kers, P(D) = {J e ri I P(D)(/) = 0}, p(D) e t"tlDl,\,

where 1 c IR is some open interval and f{f = ,4 or lv) denotes the algebra of real-analytic
or meromorphic functions on 1. We omit 1 if 1 = IR.
Firstly the scalcr case is discussed. There are considerable differences to timeinvariant polyno-
mia,ls. If p(l) e IRpl], i.e. p(D)hmconslanlcoeflicients,it iswell-knownthatdim ketT,y'.D)=
deg p(D). This is, in general, not true for polynomials p(D) e .UlDl. Consider for instance
U(D) = tD * 1, then kers p1(D) =< l/t >n and ker; m@\ = {0}. Mormver there are
polynomials for which even the dimension of the kernel over ,M does not coincide with the de-
gree of the polynomial: iI p2(D) = 12, + I and 0 / f then ketp1, p2(D\ =4 sll, >R wheres
kerpl p2(D) = {0}. Since for every p(D) = n + ... + p*D" E JvllDl there edsts an interval
1 c IR such that the numerators and denumerators of the pi's do not have zelos on r one ob-
tains dim ker1, p(D) = deg p(D). By enlarging the interval f one might lmse a meromorphic
solution, as illustrated by the preceeding example. So in general

dim kerz,  p(D) ldegp(D)

This leads to the following definition.

Definition l.l p(D) e M[D] iscalled full wrt f (f or .A or M\if p I 0 and
dim kery p(D) = deg p(D).

( 1 .1 )

It is immediate from the definition that the concept of full polynomials can be characterized as
follows,

Proposition 1.2 p e MlDl,p I 0 is full wrt f i f the map

11:kery  p (D)  -  ker7 ,  p (D\

f  -  l l t
is an isomorphism for every open interval 1 g IR.

Thus a polynornial p(D) is full wrt f if any local solution f oI p(D)(f) = 0 on .I can be
analytically re6p. meromorphically continued to a global solution. Every dD) C IR[D] or
monic p € -4[D] is a full polynomial url,u|. There are non-monic polynomials p € /[D] which
areful l ,consider forexample p(D)= tD- I  wi th ker l  p(D)=( t  )n.
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Proposition 1.3 Suppose p,q,g e MlDl satisfy p = gg and p is full wrt .F. The g is full wrt
.F and q is full wrt ,rV.

Proof: Choose 1C IR sufrciently emall so that p,q,g arc full urllr md lr C img. Put
ke4, p(D) = kerr, g(D) 0 V, where V is some complementing vector space. Now g(D)(V) =
ker1, q(D) and g is injective on V. Since pis fruJ.l urtf all solutions of ker1, g(D) extend to
solutions of kerT 9(D) and all solutione in g(r)(y) extend to solutions in kers q(D). This
completes the proof. o

The set of full polynomials does not form a nultiplicatiw semigroup. Consider for example
p(D)=tD+ f and q(D)= D which uefull urt,rV sinceits solutionsare l/l resp, 1, However
ke r4 r  pq  =  ke r , u r  @ ' �+a7p ' t  =< l , l n l  t l >n ' f o reve ry i n te r va l /w i t h0 / . L

Since there exist a left and a right division algorithm for polynomiale in M[D], it cm be shown
(see Ore (1933) pp.a$) that for any p,q e .MIDI there edst a greatest common right divisor
g = scrd(p,q) e MlDl and a least common left mdtiple I = tctm(p,q) € lt,{[r] ( gud and tclm
over r14[D] are defined analogously m over,4"x], se Section 1.5). 9 and d are unique if they
ue required to be monic. Ore (1933) has also proved the existence of o,b e MlDl euch that

and

(1 .2 )

This is an extension of the results known for IR[D] since for evety p,q e IR[D] we can show that
lhe greatest common diuisor and the least common multiple oI p md q denoted by gcd;1lpy(p, q)
resp. /crnp1p1(p,g) coincide with gcrd(p,g) and. tctm(p,q\, resp. Put p -- y'C, q = g'9 such
that g - Ccd(/,q'\ € IR[D] and 1,q' *e coprime over lR[Dl. Then y',q'eatisly the Bezort
equation, i.e.

| = ad * 6y' for some o,6 e lR[D],

hence t'qt me right coprime over MlDl zs well and g = god(y',q'). The same holds true for
tcmslel@,q). Thie yields lcn4p1(p,q) - sy'q'. Since

d,eg lcln(p, q) = deg p I deg q - deg g = aeS @p' q') = deg lcmryol(t, t)

it follows that gf qt = lcln(p,q).

Before further properties oI the gcrd and, lclm are stated a basic lemma is shown. This wm
already known to .9cllesingcr (1895) p. 8f.

Lemma l.a Let flD\ e MlDl .and 0 * I e kerup(D). Then there exist a r(D) e MlDl
such that  p(D\ = "(D\ ' (JD -  f ) .

Proof: (i) The right Euclidean algorithm leads to

i lD) = 4D).  (JD -  j )*s for  mme s e M,r(D) e MlDl .

Now dD)(/) = 0 implie s = 0.

Proporition 1.5 For p, q € .rV[Dl and g = gtd(p,q), l = tclm(p,q) we have

(i) herT g =ker7 p1ketT q

r l = a P + b q

d e g p + d e g q = d e g l + d e g g
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( i i )

( i i i )

kerT (. =ket7 plkerT q if p and g are full wrt.F

If p is full wrt f and kerT p(D) =< Jt, . . ., J" )p then

p(D) = u '  tc ln l \ f ,D -  j ; ) ,  i  e4.)  for  some u E M' .

lf p,q arc frll urtT then g and I are full urtf as well.

Proof:
(i) is obvious from Lemma 1.4 and the definit ion of g.

(ii) Since the inchrsion " I 
" is immediate it suffices to prove that dim kera I < dim (kers p*

kery q). Now by (i), (1.2) and (1.1) one obtains

d im(kerz  p*ker r  q )  =  d im ker r  p I  d im kery  g -  d im(kery  pnkerT  q \
>  d e g p * d e g g - d e g 9
=  d e g /
) dim kery I

( i i i )  S u p p o s e  h , . . . , J n a r e l i n e a r l y i n d e p e n d e n t .  T h e n b y L e m r n a l . 4 t : = k I n { ( J ; D - j )  , i E
n l i s a r i g h t f a c t o r o f p ( D ) w i t h z > d e g l . B y ( 1 . 1 ) d e g l > d i m k e t r l ) n . T h u s d e g  p = d e g t
and the proof is complete.

(iv) By Proposition 1.3 9 is full urtf.Using (i i), ( i) and (1.2) yields that

dim kerT ' 

: l$ifiiiii;+ 
s - dim (kery p(lkera q\

Thus by Definition 1.1 I is full wrt f.

Proposition 1.6 Let p,q € ,{4[D] and suppose p is full urt F' Then

kerp p(D) c kery s(D) itr q(D) = r(D) . e@) for some r(D\ e MlDl.

Proof: Sufficiency is obvious. If the inclusion of the kernels is valid Proposition 1.5 (iii) gives
a representation lor p(D). Thus by Lemma 1.4 dD) must right divide q(D). o

We are now in a position to show an important result: The latlice (urt gcrd and lclrn) of left
ideals lvllDlp(D) generated by full (urt f) polynomials e@) e MlDl is antiisomorphic to
the lattice of finite dimensional IR-subspaces of f. Since this result is included in the matrix
cde, see Proposition 1.2.1, it is not proved here.

In the following a canonical form for matrices over MlDl with respect to multiplication by
matr icesof  Gtr , ( . ,V[D]) f ronthelef tandther ight ispresented.  Forth isadef in i t ionieneded.

Defnition 1.7 p,q e MlDl are called simdlcr if they can be put in a coprime rehtion,i.e. if
pa=bq [or  somea,D€&[D] andtheonlycommonlef t ( r ight)d iv isorsof  p,d(c,g)ueuni ts.
p.q a.re called associatedil pu = tq lor some units u,t € M.

( i v  )
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ClearlS msociated elements are similar. The more general notion of similarity is needed for
normal forms over non commutative principal ideal domains. In a moment it will be shown that
if p,g belong to the commutative ring IR[D] and are similar urt IR[D] then p,q are necessarily
msociated^

first, let us note that similarity is an equiualence relation. This is due to the frct (see Cohn
(1971) Section 3.2) that p,q e MlDl are similar if and only if

MlDll pUlol, MlDll 
cMlolare 

isomorphic u MlDl right modules

and this holds true if and only if

MlDll 
Up1p, 

UlDll 
Upl,tare isomorphic u MlDl left modules.

Thus similar polynomials have necessarily the same degree.
Assume p,g € IR[D] are similar. Then

plR[D] = Ann(wlDllpntol) = Ann(mlDl1 qrR[t]) = elRlal,

where .4nn( R[D]/ 
pmtll) := {o e lR[D] I io = 0 V i € R[r]/ 

rn[A] ], and thus p and s are

associated.

Proposition 1.8 Suppose p,q e MlDl are similar. Then they can be put in a coprime relation
pat = b'q with deg a'= deg 6'< deg p = deg g for some o',6' e MlDl.

Proof: lI pa = bq is a coprime relation for sone a,6 e MlD\ then by the right Euclidean
algorithm there exist r, a' e MlDl such that a = rq 'f at , deg a' < deg g. The coprime relation
pa = bqis equivalent \o pat = b'q where a' = a - r% bt = b - pr. It is easily sen that pat = btq
is coprime m well. Since deg 6'= deg a' < deg g = dgg p the proof is complete. o

As a consequence of Proposition 1.8 similar polynomials of degree 1 are msociated. This holds
in general not true for polynomials of degree greater than 1. Consider for instance p(D) = D2
md q(D) = D2 + l.It is cmily ssn that they are not associated. However pa = 6q with

o(D) := (t sin t * 2cos t)D J 2 sin | - t cos t and 6(D) ;= (l sin t + 2 cos t)D + t cos t

is a coprime relation. To sre this assume that a and g have a common right divisor. By Lemma
l . 4 t h i s d i v i s o r c a n b e m s u m e d t o b e o f  t h e l o r m J D - / . S i n c e  f  e k e r y q  t h e r e e x i s t c , y € l R
s u c h t h a t  I = z s i n t + - y c o s l .  F r o m a ( D ) ( / ) = 0 i t f o l l o w s t h a t c = g = 0 . B y u s i n g t h e s a m e
arguments the left coprimeness of p and b is shown.
If two full polynomials p,q e "UIDI are in a coprime relation pa = 6q then a,D are not
necessarily full. To se this let q(D) = D2 and a(D) = tzD * l. c is not full urt M. However
pa = bq - lclm(a,q) is a coprime relation and p is fuJl wrt M.

In order to characterize the equivalence clmses offull polynomials a lemma is needed.

Lemma 1 .9  Le t  f i , . .  . , f "  e  U be  l inear ly  independent  over  IR  and b , . . . ,h^  €  f i .  Then
t h e r e e x i s t s  a e M l D l w i t h d e g  a l n - l  s o t h a t  o f i  = . h ; l o r i e n .

Put l:= (.c(.m;q"{J;D -.f;)}. Then the Wronskian of l(r)(/) = 0 is given by

h

f ( n -  r j
) l

f

:
r (n - r  )

Proof:
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r
i

I
I

and 1,7 is invertible over ,M since !1, . . . , I, ue linearly independent, see Coddington and Leuinson
(1955) p. 83. Thus we can determine the coefficients of a(D) := an_tDn-r + ... + do as a
solution of

f 
,(rx,') 

I
I a(r)(,") ]

and the proof is complete

T h e o r e m l . l 0  S u p p o s e p c -  M I D ) i s f u l l u r l f  a n d d e g p = n . T h e n t h e s i m i l a r i t y c l a s e o f p
consists of all full polynomials wrt M of degre n ,

Proof: Assume pa = bq is a coprime relation and g is full . Since c md q are right coprime
a acts 6 a monomorphism on ker14 g, use Lemma 1.4. Therefore dim kergp ) din kerg g.
Since p and g are full and of the same degree we obtain deg p = disl kers q = n.
so it remains to show that any full polynomial q of degree a can be put into a coprime relation
w i t h p , L e t  h , . . . , f " a n d h 1 , . . . , / r , b e a b a s i s o f  k e r s g  a n d  k e r T p , r e s p .  S i n c e b y L e m m a
l . 9 t h e r e e x i s t s a (  D ) e M l D l w i t h d e g  a l n - t s o t h a t a ( D ) ( f i ) = / r i o n e o b t a i n s  k e t T q ( D ) C
keryp(D)o(D). By Proposition 1.6 there exists 6 € iV[D] such that pc - Dg. By construction
a a n d q a r e r i g h t c o p r i m e .  S u p p o s e  p = u f  , b =  1 b ,  f o r e o m e u , t ' , b , e , , V [ D ]  s u c h f h a t y ' , U
are left coprime. Since a acts a a monomorphism on keryq, y'a = b,q yields as in the first
part of the proof deg 1 = n. Thus u € .44 and the proof is complete. tr

Now we are in a position to generalize the concept of full polynomials to the matrix case.
Firstly a normal form for matrices over MlDl is given. P,Q e MlDl^x" are called eqaitalent
if P = UQV for some a e UlOl^x^,y e MlDl"x" invertible over MIDI.

Proposition 1.11 Suppose P(D) e MlDl^x". Then P(D) is equivalent to some

p.(o) = p(D) e lvllO1^x"

where p(D) is uniquely determined up to sinilarity.
Let ldenotethenumberofnon-zeroentr ies in P"(D). f f1> l thenp(D)cmbechoaenarbi t rar i ly
within its similarity clms.

Proof: Cohn (1971) p. 288 proves the normal form for a more general ring. Since the ring
MlDlis simple,i.e. the only two-sided ideale of r1,l[D] are the trivial ones {0} and ,iV[D], the
result simplifies considerably. To prove the lut statement of the proposition it is sufficient to
consider the cue ??l = z = 2. Suppose p,q are full and are in a coprime relation pc = bg. Then
by Cohn (1971) p.89 there exist r,s,1r,r, € :V[D] such that the inverse over rt4[D] of

l l ; : l

u  = 1 ,  b l
[  "  , J
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i s g i v e n b y  

u _ , = [ ;  
; ]

N o w  - r o * s q = l y i e l d s

I l  l ] [ r  : ] [ ;  ? ] [ t  i ] [ : ,  B ] l ?  ; l = l t  t l
and the proof is complete .

1 ' l^ l

o |  6 ntDl" ' ,  where n = ord P.t l
0 D " l

Definit ion 1.12 Let P(D) e MlDl,x" be equivalent to some P"(D) as in proposition 1.11.
Then P(D) is called non-singular iI no zeros occur in the diagonal of p"(D). The degree of
p(D) is called the ord,er oI P(D), for short ord P.

A non-singular P(D) e M[D|,x' is called full wrt f i f the map

1 1 : k e r 7  P ( D )  -  k e r 7 ,  P ( D )

I  *  J l r

is an isomorphism for every open interval 1 q IR .

Lemma 1.13 If P e MtDl,x" is non-singular then

p c = 0  f o r e y e r y r €  M l D l ,  +  z = 0

Proof: use the normal form and the fact that r4[Dl <loes not contain zero divisors. o

Proposition 1.14 Suppose P(D) e MlDl,\, is non-singular and equivalent fo p,(D) =
d . i as (L , . . . ,  1 .  p (D ) ) .  r hen

P(-l?) is full wrt f iff dim kera P(r) = deg p(D) = ord P.

Proof: Clearly for every open interval -I C lR

deg p > dim kerp1, p= dim ker,qr P" = dim ker1q, P > dim ker5, P.

Since for sufficiently small 1 equality holds in the above inequalitv the proposition follows. o

Theorem 1.9 and Proposition 1.1.4 immediately give

Corollary 1,16 Dvery full P e ",V[D]'x" is equivalent to

P.(D) =



Example 1.16
(i) In the time-invariant polynomial framework polynomial matricee over IR[D] are extenaively
studied,cf .  Rosenbrah(1970),Wolot ich (19?4).  I f  P€lR[r ] 'x" is t ransformedintoaSmith
form P, = diag(p;...,p,) by unimodular (over lR[D]) matrices then

dim kerl P = dim kerl P, = DU", 0,.
i= l

Thus every non-singular P e lR[D]'x'is full wrt A and ord P = deg det P,

(ii) Every monic P € ("4'x")[D] is full wrt /4. To see this reduce P(D)(l) = 0 to (D/,r -
B)(g) = O where B e A'^xr. and P = Di=on Di,P" I 0. (This is done in the same way as a
nth-order differential equation is reduced to a first order matrix equation, ee e.g. Coddinglon
and Leuircon (1955) p. 21.) Since the solution spmes of P(D)(f) - 0 and (D1," - t)(s) = 0
are isomorphic the claim follows.

(iii) Every non-singular P e .qnyx' which is in normed upper trimgulu form (u considered
in Yl inen(1980)) is fu l lwrt ,4.Piscal ledinnormeduppertr iangularJomif  ( l ) i t ie  anupper
tr iangular  matr ix  and (2)  i f (0, . . . ,0,p i r ; ,+, . . . , * )  denotes thei- th row ofP so that  p; , io f  0 is
monic and pi+r , jo=-. .=p, , jo =0,  then d.g pr , jo (  deg p; , ;o foral l  )  € d-  1.
Let  U €CL,(AlDl)  sothat  theentr iesof  Pt= PR sat is fyf i  = 0 i f  d > j , t ' ; ;=p; i ,del / ; i<
min(deg y ' , i ,dug 7 1i f  r  I  j .  Put

Q = diag(D'o-q, . . . , r* - ' " )where ss , .= mar ieL deg pl ; ,  s ;  = deg 1; ;  for  i  € c.

Then Q P U is a monic element of ,4"x'[D] which is full by (ii). This impliea fullness of P .

As a generalization of the sca.lar cme one obtains

Proposition 1.17 Suppose P,Q,G e Mln1,", and P = Q G. Then
(i) G is luJl wrt f and Q is luJl wrtM if P is full url f

( i i )  o r d P = o r d , Q + o r d G .

Proof: (i) is a straigtforwad generalization of the proof of Proposition 1.3. To prove the
order formula note that for every interval 1 C lR

dim ker7, P ) dim kers, Q { dim kera, G ( 1.3)

Now for 1 sufficiently small kers, Q C im(G l1). Thus equality holds in (f.3). Chmsing 1
eventually smaller one can achieve that dim keq, P = ord, P and the analogous statement for

Q and, G . This proves the order formula. o

The following proposition extends Proposition 1.6 to the matrix case.

Proposition 1.18 If P e .L4lDl'x' is full wrt f and Q € rV[D]rx' 15un

kery P(D) ckerT Q(D) itr Q = RP fo, *," E e M1D1,,,,.

Proof: Only necessity has to be shown. By Corollary l�l5 there exist U,V e GL"(MlDl)
so that P = UP.V where P" = dias(|,...,1,D"). Since P ie full, V-,(f\ e kery P for every
I ekerr P". By assumption kera P" C kerr QV-I. Since

ketT D" C kera (QV-r);, for d 6 1,

4 l
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byPropos i t i on l . 6 t he reex i s t 11 , . . . , t " r  € ;V [D ]such tha t (QV- r \ -= t ;D " .Le t (QV- t ) i ' j e r '
denote the colums of QV-r. Then

I (8v - ' ) ' , . . . , (Qv - ' ) ' - 1 ' ( r ' , . . . , t ' , ) r l  r t i a s ( r , ' . . , r ,  D " )  =  Qv - l

=,f

and thus (fU-r)UP.V = 8. Thi6 conpletes the proof. n

In the time-varying setup we have the nice result that for every finite dimensional lR-linear

subspace v of .F one cm find a full polynomial matrix P e MlDl,x' which annules exmtly this

subspme y. This is proved in the following proposition and extends the scalar case considered

in Proposition 1.5 (iii).

Proposition 1.19 Suppose 9 =< h,...,J" )11 is an n-dimensional subspace of f' ' Then

there exists a P e A{lDl'x' full urt f such that kery P(D) = l).

Proof :  Denote |  = ( fn, . . . ,J*)r  for  d € n and

I  h  ' . .  I n 1
a , =  |  :  ,  I

l n .  i l )
Without restriction assume that the fir8t row of.A is non zero otherwise multiply A from the

left by an invertible matrix. Choose a lR-basis of the first row entries and multiplication from

the right by some {! € GI"(IR) yields

I a '  ' . .  g i r r  o  " '  o  
I

I  o l r  9 " ,  IA h =  l : .  :  I
t ' l
l 9 t ,  S w  J

with 911,...,gir,r l inearly independent. The columns of AU1 arc sti l l  a brois of V . By Lemma

1.9 there exists p2 € M[D] such lhat pzg*r - gy2 for k E 11.
Therefore with

l 1
l - nPr=  
I

L ,
one obtains 

I stt
P , A q =  

l o
Def in ing ps, . . . ,p,  e .M[D] and Pa,.

e l"llDl'x'

. . .  s i t  o  . . .  o  I

I n"*''' ' ' o* 
l

.  ,  P,  E MlDl 'x '  in  a s imi lu w

g r t  . . .  g i r  0  . "  0
g i t + r , z  " '  g ^2

t , : l

9 i * 1 , r  " '  q n r

ay grves

I
I
I
l

P,. .  .  PzAUt =



Applying this procedure successively on the remaining submatrices we finally obtain
F e Ct,1U1o11and D e Gtr"(IR) such that

9 r r  . .  '  9 ; r 1  0  , . .  0

PAU =

_(2) t2l  n9 i z '  . . .  9 i , z  u

0  
' . .

,(r)
9 i * .  . . .

0  . . .

0  . . .
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.d

,,fl
0

;
for b € I and the elements 9j,,1 in "uu.y row are linearly independent. Now define

4i = rctrn;"r,,1c:jtD _ i:jt) for j € &

Fo r  Q  :=  d i . as (qy , . . . ,C r , r , . . . , 1 )  e  M lD l , , ,  we  have  eF  AA  =  O .  S ince  e  i s  f u i l  u r r f  t he
product P = QP is also Itll urt f and kery p = V. o

Algebraic properties of common divisors and multiple hold true analogously to the commutative
cue (cf. for instance Mac Dufree (f 956)). Por P e tvllDl,x, ,e e MlDl,xn a greatest common
ighl diuisor G = g*d(P,Q) and a least common lelt multiple L = tclm(p,e) are defined
analogously u for analytic matrices in Section 1.5.

Lemma 1.20 For P e ,M[Dl'x,,Q € ,M[D]"rx' *u hru"
( i )  Thereexists Q = sud(P,Q\ and.4 €/r l [D] 'x ' ,8 e.n lO1,x, ,such that

G = A P + B Q .

If P is non-singular then G is unique up to left multiplication by an invertible matrix.
If P is full wfi f,, G is full url .F m well.

(ii) If 11 = r and both P and Q are non-singular, then there exists tr = rcrrn(p,e) which is
unique up to multiplication from the left by m invertible matrix.
If P md Q ue full wrt f , L is full wrt f as well.

(iii) P md Q ae called right copime if every square common right divisor of p and e is
invertible over MlDl. This is true iff there exists S e MlDl,x,,T e JvllDl,x\ such that

r, = sP +TQ.

Proof: The main idea of the proof is as follows: There exist matrices

I  I t -  r ,  I

u = | i - t  Y , ' l , u - = | i :  i :  I e  , v [ n 1 { ' + n t " t " + " ' 1  ( 1 . 4 )-  
l u "  u , J ' '  L v "  v n ) ' " '

where u1 is a r x r matrix and all other matrices have appropriate formats such that

I  p  I  I  r : 1' I a J = [ ; ] ' " e M I D I " '

This is proved analogously as in Neuman (1g22) p. 15, he considers matdces over commutative
principle ideal domains.



That G is a gcrd oI P and Q and satisfies the uniqueness statement is proved analogously as in

Mcc Dufiee (1956) p. 35. If P is full it follows from Proposition 1.17 that G is full. using the

same computatione as in Mcc Dufee (1956) p.36 yields that

L := l ls  P = -UtQ = lc tm(P'Q).

Toprovethat  Z isnon-singularassumectr  = 0 forsomea e MlDlrx ' '  Then cU3P =O= cUtQ'

and hence xI \= 211n = 0.  Since UzVz*UtVt = . [ ,  by (1.a)  i t fo l lowsthat  r  = 0 '  Toprove

that  t r  is fu l lur l f ismoredi f rcul t .  Put  V = kerr  P*ker7 Q, thenby Proposi t ion l .16

there exists Lt e MlDl'\' fullurtj' such that kerT Lt = V' Thus by Proposition 1'16 tr'is a

common le f tmu l t i p l eo f  PandQand the reex i s t s  EeM lD l ' * '  such tha t  EL=L ' '  S i nceL '

is full (ii) follows from Proposition 1.17.
(iii) is a consequence of the presentation of the gcrd given in (i). D

Now we are in a in a position to stat€ the main result of this section. It shows in particulu that

full matrices have a one-to-one correspondence to finite dimensional linear subspaces of f"'

Thorem 1.21 Let F = A or,rV. The set

t.1 := lMlDl'x' ' P I P e Mlol'x' full urt f)

ofleft MID) modules generated by full matrices is a lattice with respect to the operations

M lD l ' " ' ' P  v  M ID ) 'X ' 'Q  =  M ID \ ' " ' ' sod ' (P 'Q )

M lD l " ' ' P  ^  M lD l x ' 'Q  =  / " l lD l " ' ' t c tm (P 'Q )

The set
L1 := {V C f" lV is a finite dimensional linear subspace of f'}

is a lattice with respect to intersection and sum'
The map

h : L 1 - L t
M lO l ' " ' ' P  e  ke r l  P

is an anti-isomorphism, where 'anti' means

h(MlDl,x" .  P v MIDYX' .Q\ = h(MlDl '  ' "  .  P) + h(MIDI're 'Q)

h(MlDl 'x '  .  P ^ /r ' . lDl 'x ' 'Q) = h(MlDl '" ' .P)n h(MlDl 'P' Q)

Proof: By Lemma r.20 (i) and (ii) the gcrd and the \clm of full matrices are full u well,

whence .c1 is a lattice. The map /z is well-defined by Proposition 1.18. Injectivity and surjectivity

of lr follows from Proposition 1.18 and 1.19. so it remains to prove (r.5) and (1.6) which are

equivalent to
ke ryL=ke r rP*ke ryQ  ' 1o r  L - - l c lm (P ,Q)  ( l ' 7 )

k e r r G = k e r T P f l k e r y Q , f o r  G = g c r d ' ( P , Q ) .  ( l ' 8 )

n f " in (1,7) is evident. To prove the converse inclusion note that by Proposition 1.19 there

exists /,' e MlOl'x' such that

(1 .5 )

(1.6)

kerr  P*kerr  Q=kery Lt .



Now Proposition 1.18 yields Lt = EL for some E e ^4lDl,r, and thus kerT L C kere .L, which
proves (1.7). (1.8) is easily proved by using Proposition 1.18, here the msumption that p and
Q are full is not necessary. 0

For the sake of completeness it is shown that the degree formula (1.2) carries over for matrices
m follows.

Remark 1.22 Suppose P,Q e MlDl,x, and G = std(p,Q), L = tcln(p,e). Then by using
(1.7) and (1.8) and choosing I C IR suficiently small one obtains

d im kers ,  P+kerqr  Q =  d in (kers ,  P*keru ,  Q)*d im(kerya ,  pnkerg ,  e )
= dim kera,rr .L * dim ker,q, G.

For I eventually smaller this gives

o r d P l o r d Q = o r d L * o r d . G ( l .e )

2.2 Polynomial matrix systems, solution vector spaces and sys-
tem equivalence

In this section we will analyse time-varying finite dimensiona.l linear systems in differential
operator representation.

P(D)(z) = Q@)@)
y =  v (D) (z )+w(D) (u)

where P,Q,V,W are r x r,r x m,p x r,p x m matrices, resp. defined over,M[D]

(2 .1 )

u €U^ :={ze (C-)-  |  supp z bounded to thelef t  }

Additionally it is assumed thar
(Al)  P(D) is  fu l l  wrt  ,4.
(A2) im Q C in P, i.e. for every ue l,lm there exists z e (C-)' such that

the first equation in (2.1) is satisfied
(A3) If u eU^ then it follows that y € (C-)e.

The first assumption yields that every fre motion of the first equation in (2.1) is defined on
the whole time axis IR and does not have poles. Furthermore the requirement "full" allows, u
we will eee, m algebraic treatment of systems of the form (2.1), (A 2) is natural from a system
theoretic point of view, for every input u(') the existence of an ninternal state' and an output
is expected.However, if only (A 2) holds it may happen that for some r el,ln the output is of
the form

f ? , .  , Y  w h e r e  y ;  €  C * , i l ; e A - ,  i e p .
Ur lp

The poles occur from the poles in the coefrcients of v and IV. Assumption (A 3) ensures that
the output does not have poles. If v and IV are defined over,4[D] this is clearly satiefied.

ln the following the matrix

. - [ P- - [ v
-a l
w l e twllDlG+e\xG+n\
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is called a system matrix if it corresponds to (2.1) and (Al) - (A3) are eatitfied.

This clus of eystems covers in particulr

o time-invariant systems in diferential operator representation as introduced by Roccnbruk

(  1e70 ) .

. systems where P € ,4[r]"x' is non'singular and in normed upper trimgulr form ar dealt

with in Ylinen (1980), cf. Example 1.16 (iii).

. state space system of the form

i , (1) = A(t)x(t)+B(r)u(r)
y(t) = c(t)x(t)+ r(r)(/( l))

o where A,B,C are analytic n x n'tr x m,px n matrices, resp. md E(D)e AlDlpxn'

The following proposition shows that the solution (vector) spcce

^4(P,q:= l(z,u) e (c-) '  x u^ |  P(D)(z) = Q(pX"))

can be decomposed into the direct sum of the lR-linear subspace ol torcetl motions stafling frcm

zerc

M+(P,Q) :=  { (2" ,u )  e  M(P,Q)^(u '  xu^) } ,

(where throughout this chapter z, denotes the uniquely defined forced motion stuting from

zero) md into the lR-lineu subtpce ol free motions

ker l  P x {0}  := { (z ' ,0)  e M(P,Q\} .

As opposed to time-invuimt systems where,t4(P,Q) is an IR[D] 'module, for time-va,rying

systms of the form (2.1) M(P,q is, in general, only an lR-vector spme not m lR[D] - or

.MID]-module.

Proposition 2,1 Suppose P e ^llDl'x'is full urt,4 and I € ltZ[r]"x-' then

M(P 'Q)  =  M+(P 'Q )  o  ( ke r1  Px {o } )

Proof: That the sum is direct follows from the definition of the vector spaces md the fact that

P i s f u l l .  I t r e m a i n s t o p r o v e " c " . L e t ( z , u ) e M ( P , Q ) . T h e n u l r = 0 f o t s o m e f = ( - o o " o )
a n d ( z , u ) l r = ( z l r , , 0 ) . s i n c e P i s f u l l t h e r e e x i 6 t z ' € k e r 1  P s u c h t h a t z ' l r = z l r . T h u s
(z ,u )= ( z ' , 0 ) * ( z -  z ' , u )  whe re  ( z  -  z ' , u )€M+(P ,Q) .  c l

The next lemma is frequently used in the {ollowing.

Lemma 2,2 Suppose A(D) e ,{.{[D]"x-. Then

A ( D ) ( t ) = 0  f o r a l l u e U ^  +  A ( D ) = o

(2.2)
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Proof: Suppose /(D) = Di=o/iDi . For le ( t1 chmse u € C6 such that

l o  t  <  t ^u r r r = l l  , r  l ,
If ej denotes the j-th canonical basis vector in lRn one obtains

A(D)(ep(t))= Aoei = 0 for t > tr and j € 4.
Since 46 is analytic .40 = 0. Inserting successively teiu(.),. . .,t e;t(.) yieltta

A ( D ) ( t h e 1 u ( t ) ) =  A r e j = 0  f o r !  2 h , j  € n , k e L .
Therefore At  = 0 for  f t  = 0, . . . ,2.

Proposition 2.3 Suppose P; e MlDl\x,. , Q; e M{Dl,;x^ for i = 1,2.

(i) lf Pl is full ur!.rVl and im e1C dm 4 then

M(Pt,Qt)  c M(pz,e2) i f r  T lh,et l  = lh,ezl  for  some T e !a1D1,"xn.
(ii) Assume \ = rzt Pr and P2 are full wrt,rV and im el C im ps. Then

M(Pt,Qr) = .bl(Pz,Qz) itr T[pr,ei = lpz,ezl for some T e GL,JtvtlDl).

Proof: (i) Sufficiency is trivial. To prove necessity note that kerr pr C ker,a p2 yielde the
existence of some T € M[D],,xr such p2 = Tp1, see proposition 1.1g. Now im er- C im pt
implic Q2(t) = Pz(z) = rPlQ) = ?Q1(r) for aLl u ett^ and thus by Lenna 2.2 (i) is proved.

(ii) Applying (i) twice yields the existence of some ?,?' € MlDlnxn such that "[pr,erl =
[P2 ,Q2 ]and  P r=T 'Pz .HenceP l  =T ,TP tandbyLemma l . lS  T t  -T - r .  o

For time-invariant systems in diferential operator description Hinichsen and prdtrcl-Woltera
(1980) have studied system equivalence via certain hornomorphisms between the eolution mod-
ules. The following definition extends this approach to the tine-varying setting.

Definition 2.4 Suppose

" ,=  |  #  3 ;  l ,  Ur l , " *P)x ( r ,+n) , ( i=  r ,2 )
L v i  w ;  J

are system matrices.

(i) A lR-linear map | : M(P1,Q) * j"l(pz,ez) is called a aolution honomorphiam if

r (z,u)= f  arnr r tor  
I  ( ,  )  (2.r)

[ u  1 _ l \ " )  , -

for eome Tr e MlDlt2xtt, Y e !v17D1,.x^.

(ii) A solution homomorphism f : M(h,e) - J"l(pz,ez) ie called a agaten homomorphism
if

\ (D)(z)  + %(DXu) = lvr(D),wr(D\ l ( f  ( r , " ) )  for  a l l  (2,  z)  E tv i ( \ ,e i .  e.4)

(iii) IPr, lP2 are called system equivalent, denoted by lp1 l€ Ip2, if there exiete a ayalem
isomorphism J : M(P1,Q1) - M(Pz,Qz), i.e. / is a system homomorphism which
is invertible m a system honomorphism.
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4
------------

Using the notation of the previous definition a Bystem homomorphism / makes the following
diagram conmute

( r ,  r )

M ( \ ' Q t )

u

u

V(z)+w{u)

(c-)"
v2Q) + w2(u)

M(Pz ,Qz )

(2 ,  " )

ln other words: / does not transform the controls u , the output of the first system correspond-
ing to the solution pair (z,r) is the same u the output of the second system corresponding to

the rosociated solution pair (f(z,u),u), the internal variables are transformed.

Since a eolution space M(P,Q) can directly decomposed as in Proposition 2.1 a solution homo-

morphism (2.3) induces the following lR -homomorphisms

/6: ker,a P1 ' kerA P2 (2'6)

z * ry@)Q)

h : M + ( h , Q t )  -  M + ( P z ' Q z )  Q . 7 )

(2 " ,u )  *  ( r r@\G")  + r (D) (z ) , r )

In puticulu, .f preserves the direct decomposition, i.e.

f (M+( \ ,Qt ) )  c  "M+(P2,Q2)

/(keq Pr x {0}) c kerl P2 x {0}

Example 2.6 (i) Two state space systems of the forn (2.2) associated with

o'", =l 2!"- 
o, 

";31 I .  ,4[D]("+e)x("+-), , i  = r,2
L ui  t ' ; lu l  )

are ca.lled similar viaT e GL"("A\ if

I r - ' o l p , : , o r f r - '  o l
I
L o  / p l " d - " ' r I o  r - J

This extends the concept of similarity introduced in Section 1.1, cf. also Lemma 1.1.2.
If lP], is similar to IP:r it is euily verified that the map

f  :M (D I * -  A r ,B t ) -  M (D I ^ -  A2 ,82 ) ,  ( z , u )  [ r - t  o  I  /  '  \* L o  t - l \ " i
is a system isomorphism.
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(ii) Consider the n-tA order scalar differential equation

p{D)(z)  = q1u

where ps(D) = ao * . . . * a,-r Dn-r + D^ e AlDl, qr e A.It is well-known that this equation
is equivalent to the first order matrix differential equation.

Pr(D)(z)  = Q2u

Pr(D) = DI^ _ '  Q z =

0 1 t;
-40

The solution isomorphism is given by

|  :  M(p1,q1 \  -

l z ' u )  *

0

0

I

M(Pz'Qz\

I I  ;
| ; ,
L -  o

( ; )

Proposition 2.6 Suppose

.  [  ^ '  ,  .  I
[,i, -- 

| l:" 
- ^' 

"lil I e ,4[r](L+P)x('i+n)
I Li Li\ul ]

are associated with two state spee systems of the form (2.2), i = 1,2 resp. Then

IPl, is similar to IPS' iff P:, * P,',.

Proof: Sufficiency is proved in Example 2.5(i). Assume P:, 3 F3,. Then kerl DI,t- Ar =
kerl DIr" - Az and thus 11 = 12 =: r. Since every state Epace system is similar to a state spme
system with constant free motion (se Remark 1.1.1) and simila.r Eystems ile systen equivalent
we dsume without restriction of generality that ,41 = Az = 0. Let

|  :M(DI , ,B) -M(DI , ,Bz) ,  1 r , r1*  [  I  Y  I  f  "  )
r 0  1 " 1 \ " /

denote the system isomorphism, ?r e MlDl'x',Y e MlOl'x^. Choose Q e MlDl,x,,H e
rll'x' such that fi = Q DI, + II. Then

f ( z , u )  =  ( r r ( z )  +  y ( r ) , u )  =  (@ \  +Y \ (u )  +  E  z ,u ) .

Hence /s : kerl DI, * kerr DI" is m isomorphism described by z * Hz and therefore
If € GI"(IR). Furthermore

Dr,(Q B1 + Y)(u) + II z) - B2u for all (2, u) € I4(D1,, Br)
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and defining Y1:= Q \ * Y yields

D I , ( z ) =  H - r ( B r -  D f  l ! ) ( r )  f o r a l l  ( z , u )  e , M ( D I , , B t \ .

Thus by Lemma 2.2 E-1(82 - DI,\) = Br. Comparing the coefficients gives II-t Y1 = g
and li- l Bz = Bt-
It remains to prove C2 H = Cr and -e1(D) = E2Q). By (2.a)

C1z+ E1(D) (u)  =  (Cr ,  E2@DQtQ)+Y(u) ,u ) r  =  C2I I  zq  E2(D) (u)  fo r  a l l  (2 ,  u )  e  M(D r , ,  81)

Since kerl DI, = y1" one concludes for u = 0 that Cl = C2lI. Furthermore by Lernma 2.2,
Et(D) = E2(D) . This proves the proposition. o

For the aJgebraic characterization of the injectivity and surjectivity of a solution homomorphism
(2.3) a lemma is needed.

Lemma 2.7 l{ f is a solution homomorphism as in (2.3), then there exists a ? e MlDl,tx,t
such that |  ̂  . . . l

TlPr .Qr l  = lp " .Qr l l ' " '  , '  I
' n  

)

Proof: Note that

t (M(h ,Qt ) )  c  M(p2,Q2)  +)  M(h ,Qt )  c  M(pzrL-p2y  +  Q2) .

Thns the results follows from Proposition 2.3(i). o

Proposition 2.8 Supposc /, /s are given as in (2.3), (2.6). Then we have

(i) / is injective <+ /s is injective € Py,T1 are right coprime

(ii) If dm Qt C irn P1 and I € MlDl'zx't is given as in Lemma 2.7 then

/ is surjective f| /6is surjective + T, Pzarc left coprime

(ii i) If / is bijective then /-r is also of the form

I  r ,  v , 1| " 
I with T' e M1D1'"",)" e M1D1""*.

I o  J ^  r

Proof: It is trivial that / is injective (surjective) iff /6 is injective (surjective). The remainder
of the proof is completely analogous to the time-invariant situation, see Einrichsen and Prdtzel-
Wolters (L980) Lemma 5.1, and therefore omitted. tr

The following algebraic characterization of system equivalence generalizes the time-invariant
result of flinrichsen and Prdtzel-Wollers (1980).

Proposition 2.9 Suppose

l p  - n 1
IPi  = |  j , '  3 . '  I  eMlDl( ' ,+Plx( ' '+n)

I u i  w ' J

JU



are system matrices, i = 1,2. Then lpr 5 lp, if and only if
there exist T,T, E ,f41p1,zxrt ,X e MlDlex\,r, e M[D]rzxn such that

I ' r  n l  l r .  y l( i )  l ;  i l P ' = P ' l l '  
' I

[ ^ ' P J  L U  f ^ ]

(it) T,P2 are left coprime and p1,T1 are right coprime.

froof: Suppose the system equivalence of lp1 and Ip2 is described by / as in (2.3). Then
.tvl(\,Qr\ C M(P2T1,-P2Y * 0:) and by Proposition 2.3 there exists f e ,AZ1llzir ,u.L
that

r lPr ,Q, l  =  t r " ,q r l [  ! , "  
. |

L u  ' - J
Thus it remains to prove the existence of some X € ;V[D]rxn ,o ,5ot

X Pr + \ - V2Tr atrd. X Qr t Wt = Vzl, * Wz.

This follows from Proposition 2.3 since by (2.,1)

M(pr,er)  c M(V -  V2T\,W2 _ V\  + V2y).

The coprimeness conditions hold true by proposition 2.g.
To prove sufficiency define a map / ro in (2.r). Then by (ii) and proposition 2,8 f is a system-
isomorphism. (2.4) follows from (i). This completes the proof. tr

By using the algebraic characterization of system equivalence it will be shown how fairly rich
the equivalence class of a system matrix is.

Corollary 2.10 Suppose

"= f i 
-1f;,f eu1n1r'+ot.t'+^t

is a system natrix and p is equ;)atentto p,', i.". Ilp = ptllrfor some U,Ur €. GL,(M[DD,
Then

Pt -ua l
v L t r t  w  )

= [i;.' i; ']U' :l

I P *
rl.'.

Proot Since

l u  o l l r  - o
L 0  r , J l . v  w

the claim follows from Proposition 2.g.

An important result is that in every equivalence clms of system matrices lies an analytic state
space system. More precisely

Proposition 2.11 Every system matrix

. = 
[ ;| 

-f,f, r1o1n*r"nt^,

o l



is system equivalent to some

o " , = l  2 ' "  " , , {  |  . / [ r ] { " + p ) x ( " + - ) .  n = o r d P
" r "  t  l

with B,C analytic matrices. IP,1 is uniquely determincd up to a constant similarity transfor-
matlon,

P r o o f :  B y C o r o l l a r y l . l 5  P i s e q u i v a l e n t t o d f o g ( 1 , . . . , 1 , D ' ) a n d t o D l , . T h u s b y C o r o l l a r y
2.10 one may assume that IP is of the form

P =l ?1" 
-.9.1 

, *1o1r*Prx{tr+n).* - [ v  w ) '

LeI B e Mnxn ,C e Mp'"  ,Y e MlDl"x"  ,X e MlDle\n such that

-Q  =  D I "Y  - . 8  and  V  =  X  D In+C .

r f  T h e n f o r  E ( D ) : = W + X Q - C I '  o n e o b t a i n s

l r  o l  l r  1 ' I  r ^ '  ' l
l - " -  , ' l e = e , ,  1 1 "  , ' I ,  w h e r e r p " l = l Z ' "  - - " , r
[ - , { r r )  

- ' L U  t ^ )  "  
L U  L \ D ) )

and by Proposition 2.9 lP 5 IPor.
It renains to show that IP,t is defined over,4[D]. Since im B C im DI^ it follows that B cannot
have poles and thus B e Anxn. Since ker,4 ,/" = lR" it is allowed to insert successively u = 0
and z = e: € R"(f e n) into g = Cz + E(D)(u). By msumption (A3) g does not havepoles
and thus C e Ap**. Using again assumption (A3) and the same trick m in the proofofLemma
2.2 yields E(D) e AIDIPX^. This completes the proof. tr

Now we are in a position to give an a.lternative definit ion of a solution homomorphism (see
Def in i t ion  2 .4 ( i ) ) .

Proposition 2.12 Suppose

I r ' .  n. l
P ,  =  |  ; , :  #  |  e  u1P| " *P)x ( "+n l .  i=  1 ,2

L  "  " '  l

are system matrices. Then a lR-linear map / : M(P1,Q1) - M(Pz,Qz) is a solution homo-
morphism if and only if / satisfies
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for every (z,u) e M(P1,Q1) and every compact interval J there exists an
IR - l inear map .f l; such that the diagram commutes

M(P; ,Q)  L lez ,ez)

restriction on J
restriction on J

I  I t

, - , \ r  l ! v l ,  t J M(Pz'Qz) I . t

or equivalently for every (z,u) e M(Pr,e1) and everv compact interval J we
have

( z ' u ) l v = o  +  f ( z , u ) 1 1 = o

For the proof the following theorem of peetre (1960) will be applied.

Theorem 2,13 Suppose Y : Cf - Cf is a linear map, where

C! := { f  € C- |  supp /  is  compact} .

Then Y is locd,i.e. supp Y (a) C supp u for all z € Ci, if a'd only if 
b

) ' ( t )  =  ! o ' r ( ' )
i>o

where {a;},.[r1" is a unique family of distributions which is locally fnite, i.e. for every compact
interval J C IR c; l7= 0 for i sufficiently large, and lrcdly containedin Ci, i.e. for ev"ry t L IR
there eists a neighbourhood "[ of I such that a; l.r,€ CI.

Proof of Proposition 2.12 If / is defined by (2.3) then it satisfies (2.g). To prove sufficiency
assume ;f satisfies(2.7). We proc*d in several steps.

(i) By Proposition 2.11 IP; is system equivalent to some

- i  - I D I ,  n  I
Pi ,  = 

l ; :  " , ( ; i  j  .  "4[D](n '+p)x(n '+n] ,  d = r ,2 resp.  .

The syetem isomorphisms. describing these equivalences satisfy (2.s). Thus it is sufficient to
consider the case IP; = IP:r , i = 1,2.

(ii) / induces a lR-linear nap

/s : keU DIn, n lxsyl DIn", z * Jo(z).
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Since kerl DI^t(i -- 1,2) have constant bmes, /6 can be represented by some ? € IR"2x"''

T h e r e f o r e / i s g i v e n b Y  
r r  ' r / r \/ ( z , r ) = L o  , _ l \ , /

where Y : l/- - U"z is an IR-linear map.

(iii) It is shown that V is local, i.e.

u l;= 0 =+ Y(u) l.v= 0 for every uell^ and every compact interval 'I'

If u l.y= g then (2, u) lr= (2o,0) l.r where zo € ker D1*, is some constant free motion' Since

( z - z o , u ) e M ( D I - . , B r )  a n d  ( z -  z o , u ) 1 1 = 0 ,  ( 2 . 7 )  y i e l d s  J Q - z o , u \  1 . 7 = 0 .  N o w

f(z -  zo,u)  l r  = (Tt(z-  zo) + X(u), t )  l1 = (71(z-  zo) l . r  +Y(t)  l . r '0)

impl ie Y(z)  l ;= 0.

(iv) If Y is restricted to (Ci)- then by (iii) Y((C"-)-) c 1Cy;t. Since )'is local an application

of Theorem 2.13 yields that / can be presented by

r ( z ,u )= t l  , } '  I  (  :  )  r o ru€ (c i ) -'  
L U  1 - l \ u /

where Y =Di>oY;DiI^ and the unique fanil ies ((I ' lr))r. lNo melocally f inite and locally con-

tained in C"- for [ € L2, ( e m, Y; = ((Yir)\.

(u) It remains to 6how that

h

y = I 
y, Di I^ e A"2X^ID] for sone k € INs.

i=0

Choose z €11^ andl = (ls,o) so that t(.) lr= "i, j  € !!. Then for some 2 e (C*)nt i = Bu

and thus z lte Al?' . Since /s is locally contained in (C;)"rxa for I € I there exists an open

neighbourhood J c I oIt such that yo 
l.re (C- lr)""*. F.om

f  (2 ,  u )  =  (T  z  +  Y  (u ) '  u \  e  M(D 1"2 ,  Bz)

one obtains
(v(r)) l .1 = (Yse;) '  l1 = -Dl""(Tz)l t  *Bzej lr  e A13'

and thus Yolte A li'�x- . Since I € IR wm arbitrary one obtains Yo E A'x^,

Now insertingsuccessively u(t) = 1i2ton 1 gives m above Y E An2xn for i ) 0' Since

{X};en is a locally finite family, the identity property of analytic functions yields the existence

of some /c ) 0 such that

v =DY; Di I^ e A"""^lDl.

This completes the proof. D
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2.3 Controllability and observability

In Chapter l, Definition 2.1 and 3.4 controllability and observability were introduced for 6tate
space systems. Now this will be generalized for systems in differential operator representation
of  the form (2.1) .

Deflnition 3.1 Suppose

u  
I n  - n 1'= 
| v ff, leulolt '+et't '+^t

is a system matrix.
T h e n l P i s c a l l e d c o n t r o l l a b / e o n [ t s , t 1 ] , t o ( l r ,  i f f o r e v e r y z o € k e U p ( D ) t h e r e e i s t s a
control z € l,/* with supp z C [t6, t1] such that

1 z o + 2 " ) { t )  - [  t o u \  f o r l ( t e.  ' " u r r " r - 1 0  
f o r t > r r

where z. denotes the unique forced motion, see proposition 2.1.
lP is called obsenable if y acts m a monomorphism on kerl p(D) or, in other words,
ker,a Pfi kerl V = {0} .

Note that by Proposition 1.2.2 these are extensions of the definitions concerning 6tate spme
systems' observability is not defined on an interval since if z is a monomorphism on ker,a, p(D)
then, because P is full wrt A ,v is injective on kerl p(D) as well. In proposition 3.i i t wil l
be seen that the analogous fact holds true for controllability.

controllability and observability me invuiant under system equivalence. More precisely we have

Proposition 3.2 Suppose

I rr. -n 1p ,=  |  i , l  
-X)  

le7v l lD l t '+e \x ( "+^ t ,  ;= r ,z
I u '  w ; )

are system equivalent and / = [to,tt], ls ( t1. Then
lPl is controllable on 1 (observable) itr IP2 is controllable on 1 (obeervable).

Proof: Let the systern isomorphism be given by f : M(p1,e) - M(pz,ez\ defined rn
(2.3).
I f l P l i s c o n t r o l l a b l e o n l t h e n f o r z l € k e r 1  P l t h e r e e x i s t s u e l l m w i l h s u p p u C [ t s , t 1 ] s u c h
that

( 2 r  + z ! \ ( t t -  [  
t t a l  f o r l  ( l e

' - u , r " , - 1 0  f o r r > r r

where (zf,z) e M+(Pr,Qt). Since / preserves the direcr decomposition of Ma(p1,e) ,

(4,u) = (r,("1) + r(z), z) e M+(pz,ez\.

Furthermore r l(r,,-)= 0 yielde Y(u) l(r,,-)= 0 and thus

( 22  +  z? \ ( t l -  [  
r 'Q \  f o r t  ( ! 6

'  ' " '  
I U  l o r l ) t 1



-7

Since for every z2 € ker,4 P2 there exists zr e kerl P' such that Tler\ = z2 it has bren
shown that IP2 is controllable on .I . Using the fact that .f is a svstem isomorphism the converse
direction is proved similary.
It rernains to prove the statement for observability. Assume lps is observable and r € keq pu O
ker1, V2. Then, by using the algebraic criterion in Proposition 2.9 (i). r = Tr(x,) for a unique
t ' € k e r , {  P l  a n d V 2 T l ( x t ) = X P t ( x ' \ * V r ( x ' ) = 0 .  T h u s  r , € k e r , a P r n k e r r V 2  a n d s i n c e l p 2
is observable cf = 0. Therefore r = 0 and thus IP2 is observable.
This completes the proof. o

In order to charmterize controllability by left coprimeness of p and e , m it has been done for
state space systems in Theorem 1.2.4(v), a lemma is needed.

Lemma 3.3 If
l p  - o  l

F '= |  i r '  
-# i  

le  I ' { [D]( ' '+r )x( ' '+- t ,  i=r ,2,
t "  ' ,  " ' J

are system equivalent, then P1, Q1 are left coprime if and only \I p2,Q2 are left coprime.

Proof: It is suficient to show one direction. Using the notation of Proposition 2.9 one obtains
T P r = P z T t ,  Q z = P z Y ! ' I Q 1  a n d c o n d i t i o n ( i i ) y i e l d s t h e e x i s t e n c e o f s o m e , 4 , B , E , . F o f
appropriate formats so that /,, = TA+ P2B, 1,, = PrE * etF.
Therefore

T ' � = T \ E + T Q y  F  =  p z T t E + ( Q 2 _ p 2 t ' ) F  =  p z ( T t E _ y F ) + Q z F

and the following equations are equivalent

T A  =  P 2 ( T I E A * Y F A ) + Q Z F A
1 ,2  -  P2  B  -_  Pz (T r  E  A+  B  _Y  F  A ) *Qz  F  A

This proves the lemma.

Proposition 3,4 For a system matrix

" = [ i 1,1 r r1o1u*P)x(**n)
t '  "  J

the following statements are equivalent

(i) lP is controllable on [ts,r1], ro < tr.

(ii) IP is controllable on every interval.

(i i i) P and Q are left coprime, i.e. there exist X € MlO1,', ,Y e MlDl^x, such that

P X + Q r ' = \

Proot Because of Proposition 3.2 and Lemma 3.3 it is sufficient to consider the case Ip =
1P,1, where lP,1 is associated with an analytic state space system of the form (2.2). Now the
equivalence (i) € (ii) follows {rom the analyticity of the systern, se R.emark 1.2.5(i). (i) <+ (iii)
is proved in Thmrem 1,2.4. Thus the proof is complete. O
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Proposition 3.5 A system matrix

, u -  [- - t
is observablc if and only if p and
MID) 'x r  sucht  tha t

P  - n 1
: ,  . : .  I  eM[Dl t t+P)xtr+n)u  w )

I/ are right coprime, i.e. there exist X e M[n|,x,,t, ,

x P + Y V = L .

P r o o f :  L e t G d e n o t e  a g c r d , o f p a n d V .  T h e n b y ( 1 . 6 )  k e r , 1 G = k e r l  p f l k e r y  V .
If P and v are right coprime G is necessarily invertible and thus t<er,a c =-io) when-ce lp
is observable. conversery, if p and y are not right coprime then G is not invertibre and tnus
kerl G I {0}. Hence IP is not observable. This proves the proposition. o

2.4 Input-output map and formal transfer matrix

The decomposition of the solution vector space M(p,e) (see section 2) enables us to define
an input-output map of systems in diferentiar operator description. In general, there does not
exist a frequency domain analysis for time-varying systems. However, one can define a formar
transfer matrix and show its close relationship to the input-output map.

Definit ion 4.1 Suppose

P= [ l  
- ,Q l  

s  p11n1t+ntx1 '+^1
L v  W  l ' ' - . e - t

is a system matrix' The input-output map of the systen associated with Ip is defined bv

G : U ^ - U p

u  *  v ( D ) ( 2 " ) + w @ ) ( u )

where z, denotes the forced motion starting from zero, (zu,u) E Jvl+(p,e).

Remark 4.2 The input-output maps of two system equivale't systems coincide. This is imme-
diate from (2.3) and the fact rhat f (M+(h,e)) C /v4+(p2,e2).

In order to define the formal transfer matrix we have to introduce the left-skew field of fractions
ot MlDl

M ( D ) =  { p - r q l p e  M l D l ' , q €  / v t [ D ] ]
This field is constructed m follows ( cI. Cohn (1921), p. 20):
For pairs (p,q) e MlDl'x,,v[D] define an equivalence relation between them by the condition:
( p1, ft) - (p2, 92) iff there exist uy, u2 € MlDl- such that

u2p1 = u1p2 a\d. uzqr = urq2

The equivalence class containing a pair (p, g) is denoted by p-lq. The multiplication

plt qr . pir qz 7= (u2py)-1 (u1q2) with u1 , u2 e .MlDl. such that utp2 = u2qr

depends only on the equivalence clmses of the factors and is associative.
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Deflnition 4.3 Suppose

is a system matrix. Then

I  p  -n  l
F = | ; i!, I e !"t1o1t +rt,t'+^1

t '  "  )

e  =vP- tQ +w e  I4 (D)ex^
is called the fomal transJer matix o! lhe system msociated with lp.

Proposition 4.4 If two system matrices are system equivalent then their formal transfer ma-
trices coincide.

Proof: Suppose IP;, i = 1,2, satisfy condition (i) in Proposition 2.9. Then it follows that

v'�Pt,Q'�' + w'� = V:[;r$; ild,i {;,,==Vrj\:']!i,)o' * *'
and the proposition is proved. tr

In the following proposition the relationship betwen the input output map

G :U^ '  UP ,  u  *  v ' (D ) (2 " )  +  W(D \ (u )

and the formal transfer matrix m a multiplication operator

G :  tvr(D)^ -  M(D)p,  u(D\ *  t r (D)p(D)- tQ@)u(D)+W(D)u(D)

will be clarified.

Proposition 4.5 Suppose the system matrices

" ,= [  t1  
-9] ,  

MIDtG,+etx( ' ,+n)

have input-output maps G; and formal transfer matrices G;,1 = t,Z. Then we have

Gt = G" <+ Gq(u) = f r (a)  for  i l l  u  €t t^

Proof: By Remark 4.2 and Proposition
that . r

l P ; = I P l  = l D I " '  - n
rC i  E {D )

The multiplication rule (1.4) in Chapter I and multiplication in ,M(D) yields

c D-r = (D - 9i-rc for all c € ,a \ {0}-  
c '

Denote C1 = ((cl;)) for A = 1,2. Then

c7D- t I n ^87  =  ( ( [ r -  ] l - t " ; . r l ) l a r ,  )  =  1 ,2 .

58

4 it is msumed without restriction of generality

€ /4[r ] (4 '+P)x(nr+a),  i  = 1,2.

( 4 .1 )

(4.2)



where the entries of

((t, - +1-'"|))' i j

are defined to be zero if c| = 6. pa1

k ( D )  =  t c t m l D  _  
;  t " ! t  + a , i  e p , j  e  n , ^ =  t , 2 j

" l ror ra -  $ l
f o r  some  s ! r (D )  e  M lO l ,  i  e  p ,  j  ea ,  )  =  1 ,2  r esp .
Now by (4.2) the entries of

k(D)c^ D-Irn^ = ((" | ( r ) "1))  e MlDlex^ (4.3)

are polynomials and therefore it is allowed to write

(a(D)cr( , ) ) (za(, ) )  = (e(r)c)( t )D-t) (D(z)( t ) ) )  (4.4)
= (k(D)c  ̂ ( t \  D-r  ) (B)( , )u( , ) )

where (zj, z) e M+(DI,\, B^\ for ) = 1,2. This enables us to prove the proposition.

C tD - t I \B t+  E I (D )  =  G r  =  Gz  =  CzD- |1^ ,Bz *  Ez (D )

is valid if and only if

k(D)clD-t  \  + k(D)E{D) = k(D)C2D-t  Bz + k(D)82@) (4.5)

since the entries of the natrices in (4.b) are polynomials Lemmaz.2 yields that (4.5) is
equivalent to

(k(D)ctD-t) (Btu)  + ( , r (D),01(D))(u)  = (k(D)c2D- 'x82u) + (k(D)Er(D))(u)  for  a|  u €u^

which by (4.4) can be rewritten as

k(D)(C1z!)  + k(D)(E1(D)(u))  = k(D)(Crzl )  + k(D)(82@)u(,) )  for  aI  u e t r^  (4.6)

By Proposition 1.s(iv) e(r) is full wrt ,4 since it is the tc(m of full polynomials. por all z € l,/-
and . \=1 ,2  C^z i+E^ (D ) (u )  hasasuppo r tbounded to the le f t and thus (4 .6 )ho lds t r ue i f
and only if

G1 (z )  =  C t z l+E t (D ) (u )  =  Czz? , *E2Q) )@)  =  Gz (u )  { o ra \ r eu^

This completes the proof. tr

Corollary 4.0 Suppose two analytic state space systems msociated with

wi ,  = l  ot" '  -  o '  -B; f  '  "  n ' tn '+P)x( t i+n)
L C; Ei( D) I 

e ^tut'

( ; = 1 , 2 )  s a t i s f y G l  = C z o r G { u \ = G r ( u ) f o r  a l l u r -  L t ^ .  T h e n E l ( D )  = E z @ ) .



Proof: By Rernark 1.1.1 lP:, can be transformed to a system with constant fre motion
and E;(D) ie not changed, i = 1,2 resp. Thus by Proposition 4.4 and Remark 4.2 it is msumed
without restrictionofgenerality that A; = 0 for i = 1,2. Using the notationofthe proofof
Proposition 4.5 gives

h(D)lcp-t Bt - c2D-1 B2l = [(r)[rr(r) -  rr(D)] \ 4 . 7  )

Let I := dgg *(D). Then the degre of the left hand side polynomial matrix in (4.?) is smaller
than I and by comparing coeficients in (4.2) one obtains D,[,82(D) - fr(A)] = 0 . This proves
the corollary. o

2.5 ,A4[D]-right modules and the input module

In Section 2 we analysed the solution vector space /"1(P,Q) of a system matrix

" =l i, 
-,?,1 , r1o1u*,,,r,^,

L '  "  J

and considered the r/ferentdcl equation

P(D)(z)  = e@)@) for  (2,  z)  e (c*) ,  x  u^.

Now we will study the algebrai.c eqtation

P(D)z(D) = Q@)u(D) for  (z(D),u(D))  e M[Dl  x.  MID]^

It is important to distinguish between two operators induced by

p(D) = t4 oi e M,,"lDl
f=O

One is P x a d,ifferential operator acting on (C-)"

r ( D ) : ( c - ) " + ( c € ) r
z - P(D)(z) = 'f=o 4z(;)

the other is P as the Iormal multiplication opemtor acting on ,,V[D]"

P ( D ) : M l D l " - M l D l ,
, (D \  *  P (D )z (D l  = f f =o  P ;D i z (D )

First, submodules of the free .M[D]-right module MIDI, will be studied. If M is a right-(left-)
.M[D]-module its rcnf is the cardinality of any maximal right-(left-) linearily independent (over
,{l[Dj) subset of elements of M , see Coin (1921) p.28. Since MlDlis a right md left Euclidean
domain it follows for the free rt4[D]-right module MlDl' rhat each of its submodules is also
free and ofrank at most r, se CoAn (1971) p.a6.
For a matrix P e M1n1,rx the column (rou) rank is defined as the rank of the right (left)
.M[D]-submodule of ,t1lDl,(MlDlrx*) spanned by the columns (rows) of p . Both ranks
coincide, see Cohn (1971) p. 195.
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Deffn i t ion 5.1 For u(D) = ("r ( r ) ,  .  .  . ,u, (DDr e MIDJ, set

deg  u (D )=  ma  d "g  u i (D )

Let  V(D) = [ur(r ) , .  . . , , * ( r ) ]  e rV[D]"xr  ,  then

,\; := deg u;(D) is called the i _ th index of lz,

w  =  v (D ) .  M lD l k

denotes the right .M[D] submodule generated by V.
I/iscalled (mlted) minimalbasisolW if itscolumnsarelinearlyindependentover,,v[D] and
the sum. of its,indices, ff=, ); , is minimal among all bases of W (and )1 > .. . > fr)j
l f  a; (D)=l i :o Dio; i  for  i  € [ ,  then

l v ( D ) l r , =  [ o r , r , , . . . , r * . r ^ ]  e M , * k ,  r ; , r r  = 0 i f  u ; ( D ) = g

denotes the leading (column) coeficient matrix oI Iz. The definition of this matrix does not
depend on the side of which the coeficients of u;(D) are written.

Using these notations a minimal bmis of W can be charactzerized as follows.

Theorem 5.2 Suppose W = y(D) ..M[D]t and rkylelv(D) = ,1. Then the following are
equivalent:

(i) lz(D) is a minimal basis of W.

(ii) rkylv(D)11 = k

( i i i )  Fo r  any  r (D )  =  ( r r (D ) , .  . . , r k (D ) ) r  € , { 4 [ r ] r \  { 0 }

d e s  V (  D ) . r ( D )  =  
T f f { r i + d e g  

r i 1 D 1 l , i ( D )  l 0 )

(iu) For d 6 IN6 the ,M-vector space

w; := {o(17) € W I deg a(D) ! d}

has dimension
d i m s  W 6 =  f  1 a + r - ) ; )

i : ) ,  <d

Proof :  ( i )  + ( i i )  :  Assume (nr , . . . ,m*)r  €.Mt \  {0}  such that  Df=r u; , r ,  mi  = 0
and ), is the naximal index with )o I 0. Then

,' ,= f u;D()r-)i)4-

r t  l ; - l

= It  I f ,  Dt u; i  !  D^'u;,s, lp0c-\, t*.
i=1 j=o

f  ^ i - 1  l
= If  D D)u, D(^p-^' lrn +trrr(D(.\"-. \ t)r , i ,r ,  + r i)*;

i=r i=o t=l

6 l



with u; such that deg u; < )o -  ) ;

ft
=p lD r r f  r , ; , 1 ;m ;

r = l

with u such that deg u < )o

Since 
r

ur=(u ' -  !  u;D(^ ' -^ ; la,1a-r
i=r,;fp

t hema t r i x l u1 , . . . , o r - 1 ,a t , ap+ t , . . . , t - l  i sabm isw i t h l owe ro rde r t hanV .  Th i scon t rad i c t s
( i  ) .

( i i )  +  ( i i i ) :  Le t  x  =  ( r r , . . . , t k ) r  e ^4 [ r ] r  \  { 0 } .  Then

degl /c = augf  , , r ,  (  mu{degr;  *  ) ;  lc ;  l0}  =:  a

Let  ( . i := deg c;  for  i  € k,  and f f := { i  e & l l ;  + } i  = o} .  Then

l l t l t

yr  =  DD Diu ; i fDux ;u
t= l  J=0 A=O

k l i l ,

= tI ni f(Duu;i * yr,,)x;u, with yp;; such that deg yp;j ( #
t= l  J=0 p=O

= D" L ai\ioiri + y, with y such that deg y < a
ieN

By (i i) l ;.yo;,^irir, f 0 whence (i i i) follows.

(i i i) =r (iv): For arbitrary o € IN and t = (xr, .. ., rt)" € ,{4[D]r one has

d e g t ' r c o  < +  d e g r i ( a - ) ;  f o r a l l  i €  h , x i 7 O

Since

dims w4 = f u,.- {V e;ri I x; e MlDl,d,eg v e;r. < dl,

where e; denotes the i-th unit vector in IRt, it follows that

d i m s W 4 =  f  ( d + r - ) ; )
i : )1 ld

( i v ) + ( i ) : I f t h e n u m b e r s o f i n d i c e s o f V e q u a l t o d a r e d e n o t e d b y  h ( d ) = ! ; , 1 1 = a l ,  d € l N o ,
then (iv) yields

h ( d )  =  D  ( a +  r - ) ; ) + ( d -  l - ) i ) - 2 ( d - r i ) -  f  1 a -  r - , r ; )
i : t ; (d i : , \ ,=d

=  D  ( a +  r  - ) i ) +  D  U - z + r - . \ i ) -  D  ( d -  r - . \ ; ) -  z  D  @ -  r +  l  -  ) i )
i : r i<d i : r i<d i : , \ i=d i ; , \ ; ld

=  I  ( a + 1 - ) i ) +  D  t a - 2 * 1 - A ; )  - 2  D  t a - 1 + t - . \ j )
t : . \ ;Sd i : . \ ; ld-z i : . \ ; jd-r

= diml.r Wa { dirns Wa-z - 2 dimy W7_1



The equation follows for d € {0, 1} by direct calculation and defining dimg Wa = 0 for d = 0, l.
This proves that, if( iv) is valid, then h(d) is only determined by the module, not by the specific
basis. If u = lrr,.. ., u1] is another basis of W, then !f=1 deg u; = f,;y, d h(d). Since
(i)..+ (iv) has already been shown, every minimal bmis W = lrr,..,,.r] neceissarily satisfies
If=r d"g ui = Dd:r dh(d). Now if (iv) is valid then for I/ as in the proposition

k k

f d " g , ; = D = I d h ( d )

and thus V is minimal. n

The foregoing theorem is a generalization of Forney's Main Theorem (1925), see also Minzner
and Priitzel-lVollers (1979) p. 293.

Remark 5.3
(i) The lmt part of the proof of Theorern 5.2 shows that the families of indices of diferent
minimal bases of W coincide, they do only depend on the dimension of W7.

( i i )  Thed i rec t ion( i )=+( i i )o f theproofo fTheorem5.2 leads toana lgor i thmwhich t rans forms
an arbitrary basis Iz(D) of W in finitely many steps into a minimal basis V,(D) of W.

The set of basis transformation matrices which transform a minimal basis can be characterized
as follows.

Proposition 5.4 Suppose v(D) e MlDl'xk is an ordered minimal bmis of submodule w with
ind ices  )1 , . . . ,  )1 .  Then 7( r0  =  V @) f@)  is  an  ordered min ima l  bas is  o f  W i t r
?(D) is invertible over ,{4[D] and satisfies

deg t;;(D) < )i - ,\i for ); < )j
t ; j (D )  =  0  f o r ) ; > , \ i

i.e. :I(D) is of the form

,,. _ e GLkUt4tDl)

where the square diagonal blocks have meromorphic cntries and the formats are corresponding
to the multiple of the indices.

Proof: Put
V  = \ q , . . . , u * ) , 7  =  [ a , , . . . , o * ]  a n d  ? =  ( , ; i ) .

If 7 is also a minimal basis of W then ? € G Lk(MlDl) and minimality of 7 yields

t
degu; = degf 1,j "i = n-rax{deg ri i * l; I t i j  I O\ = ^j

i = l  
r < !

deg l;; < ,\; - ); for ,\; ( l1 and lij = 0 for ); > lj.

Therefore
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To prove the converse direction note that

I

degu; = degf t;, u; S IISI degu; t;; < {r_qx )i + (); - );) = );
r e E  r e !

This proves minimality of 7 and the proof is complete. o

The foregoing results will now be applied to systems msociated with

e= [  J  . .91 e urot t ' *p)x(r+n) .
I v  w  J

Consider the right rt4[D] module

ker [P,  -Q] := lx  e MlDl ,x^ |  [p,  -8]o = 0]

and the so called input module

/ - \p (P,Q) :={ueM[D)^ l1ze  MlD l ' ,  I  l .  Ie  ker [p , -e ] ]
\ " , /

I  z 1
Suppose I  i r  leU1O1t , *^ ) ' t  i sa  I i [D ]  bmiso f  ker [p , -e ] .  then UeM1O1^"*  i sabmis

t " j
o f  p ( P , Q ) .  T h i e i s s e e n m f o l l o w s .  l f  I l a =  0  f o r s o m e  a e M [ D l k t h e n  p Z a = e t l a = 0

and since P is invertible over M(D), Z a = 0.

As an immediate result we have:

Proposition 5.6 If two system matrices

l p  - n  l
e ,  =  |  i r l  J )  |  e  u Io l t " ' *P)x ( ' '+n)  i=  1 ,2

L "  
r r ' )

are system equialent then p(P1,Q1) = p(Pz,Qz).

Proof: Using the notation of Proposition 2.9(i) yields that

ke r [ p1 , -e1 ] - ke r [ p , , - e , ] ,  (  :  )  *  (  a t , l + r1 , ;  )
\ o /  \  u  )

is a lR-homomorphism. Thus p(Pt,Qr) C p(Pz,Qz) and since system equivalence is a sym-
metric relation the proo{ is complete. tr

For state space systems of the form (2.2) the input module can be characterized in terms of
Qf" - A)'(B). For this we need the right rt4 -homomorphism

K a , s :  / v l l D l ^  -  M "
D!=oD;u;  *  Kk(A,B)(u6, . . . ,uk)r  = t f=o(- t ) r ( r / "  - .A) i (a)ui

Proposition 5.6 Let (,4,8) € r' ax(n+n) . Then

p(DI" - A, B\ = kq K ̂ ,t

and
dimp;qlq p( D I" - A, Bl = m

64



Proof: The following multiplication rules, which are emily proved by induction, wil l be used

N  D '  =  t r - r , t /  i  \
1 - = o  \ ^ / D r - r N { r r  

f o r i € l N '  N 6 1 4 " x ^

,*r ',,, = tat,-,),- '  (  ̂ ln ) r,^-,,,,
f o r A e l N ,  N  € M " x ^ ,  u t , . . . , u * € J w l ^ .  ( b . 2 )

Using Remark 1.1.1 and equation 1(1.6) it is easily seen that it is sufficient to consider the case
A = 0 .

Srppose u(D) = Lf=oDi u; e p(DI.,B). Then there exists c(D) = tf=J Dr x; e MlDl" so
that

D x ( D ) =  B u ( D )
which by (5.2) is equivalent to

r _ l  A  &  /  r  \o l D , t ;  = f n ' f 1  _ r 1 , - , ( , ^ ,  ) B ' - , , ,

compar ing the coef l ic ie : l in , r . r ,  r , l r1 ,  r .5=, ,  . . , )  

^  - ' '

( 5 .1  )

(5.3)

(5.4)o  =  ! t - r t ^ B ( r ) 2 1 , 2 ; - 1  =  i t * , 1 , - , ( , ^ .  )  s ( r - r ) , ^
\ = o  i : ;  \ o - t l

Thus z(D) € ker1i6,6. Conversely, it u(D) e kerJi6,s then define r(D) by (5.a) and (S.3) is
vatid. This shows r(D) e p@f",8) and the first starement of the proof i,,to*n. To p.ou"
the second equality use /1 defined in 1(4.2). Then it is obvious that for every l 6 41 there exist

u f  =  ( 0 , . . . , 0 , * , 0 , . .  . , 0 \ e  U ^ ,  i  =  0 , . . . , k t

l-th element

so that
h l

u1(D) := 
I 

,' ,f € ker-tis,s.

Since the vectors u1(D),. ..,u^(D) are l inearly independent the second equality is clear. o

2.6 fnvariants of system equivalence resp. similarity

InSectionl.4twofamiliesofinvariantsofstatespacesystemswereintroduced: thecontrollability
and the gmmetric indices. They are both invariant with respect to similarity. In this section I
shall present two other families of invariants and - using the unifying power oi the input module
- prove that (roughly speaking) they all four coincide.

Fomey (1975) Chapter 7 conciders proper rational input-output maps G(s) : IR(s)n - IR.1s)r
andtheminimal indicesof therat ionalvecrorspace {(u(s) , i (s ,1u(s i )"1r1r ;e l i1r l -1 * t i . t
he calls the dynamical indices of G(s). Miinzner and prdtzert-wolt"* 

1rsz6y sho*'thut ther"
indicee coincide with those olthe module {u(s) e IR[s]- | c(s)z(s) e n[s1r; . By using section
4 and 5 we are now in a position to carry over Forney's approach to time_varying pjynomial
6ystems.
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__---

D e f i n i t i o n 6 . l L e t  
r -  ^ . 1

P = |  i  
-3,  

I  e u1n1'*P)x(n+n)
L '  "  J

be a system matrix with formal transfer matrix G -,VP-rQ +W e M(D)ex^.
The indices of the minimal bmis of p(P, Q) are called the mindmcl indices of p .
The indices of a minimal brois of the .M[D]-right module

M; := {z e MlDl^ |  Gu e MID)p\

are called lhe dynamical indicesof G.

By Remark 5.3(i) the minimal and dynamical indices are well defined.
Proposition 5.5 resp. Proposition 4.4 imply that the minirna-l resp. dynamical indices are
invariant with respect to system equivalence.

Proposition 6,2 If IP as in Definition 6.1 is observable then

I | 16=  PQ 'Q)

and thus the families of minimal and dynamical indices of an observable system coincide.

P r o o f :  I l z e M [ D ] "  s u c h t h a t  P z = Q u  t h e n G u = V z l I , I / 2 .  T h u s  z € M 6 ,  T o
prove the converse note that since IP is observable there exist X e U1O1"x" , y e ,/{y'.lDl"xe
s u c h t h a t  I , = X P  + Y ) ' .  T h u s , i f  u ( M 6 ,

z : = P - l Q u  =  ( X P + Y V ) P - t e u  =  X e u t t , G u e M l D l .

tr

Theorem 6,3 For (,4,'D) € ,4nx(n+m) the families of controllability, gmmetric and minimal
indices coincide.

Proof: The controllability-, geometric- md minimal indices are denoted by
k t , . . . , k * ; " r ( . ) , . . . , " - ( . )  a n d  ) 1 , . . . , ) - ,  r e s p .

( i )  I t isshownthat thefami ly(a;( . ) ) ;6-coincideewiththefami ly( , \ ; ) ;6- .Theproof iss imi lar
to the time-invariant cme, see Miinzner and Prdtzel-wollers (1g79) p. 298, and is generalized
as follows. Put V4 := {u e MlDl^ | dego < d}, d e INs . Then

R t , B ( v a )  =  { r d ( A , a ) ( u o , . . . , u d ' r  I u o , . . . , u a e  M  }

where the map .I(,1,; is defined in Section 5. Since the map

1 : k a , B 1 v 4 1  - v a l v r n k e r r ( r , s

I {d(us, . . . ,  ua)r  H f lo + . . .  + Dd u4 }  (V7 f l  ker i ia, r )

is a,M-right homomorphism one obtains for M4 := V; O kerfi,1.6

dim# / i 'A,B(Vd) = m(d.  t  l )  -  d ims Md (6.1)
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From now on the system is considered on a non-void open interval where the r;(l)fs, defined in
Section 1.4, are constants. Then it renains to prove that

f r = , h ( d ) = k ( d ) : = ! r  ( 6 . 2 )
! \ ,=d  jn j=d .

IJsing the prove oI (iv) =+ (i) in Theorem 5.2 one has

h(d)  =  d im,^ /  Ma*d imaz Ma_z-2  d im Ma_r  (6 .3 )

S ince

I r t a l =  ! r =  D  r = r , _ r
d:d l t  r :d , : l  i i l s i s r ._ r

it follows that

* ( d )  =  r 4 - 1  - r d  =  2 r k q l ; d - r ( i t , B ) - r k M K d - 2 ( A , B ) - r k p 1  l i d 6 , B )  ( 6 . 4 )

I f  d ims . l i ' a ,a (V- r )  :=  0  rhe  equat ions  rk r  Kd(A,B)  =  d im^ l  kep \ya_r , ) ,  (6 .1 ) ,  (6 .3 )
and (6.4) yield for d € IN

h(d)  =  2  d imr  KA,B(Vd- r  )  -  d ims Ke,B(Ya- � " )  -  d imq ka ,a( ]Va)
= dim,Lr Ma* dim,v Ma-z- 2 dim,q Ma_r
=  h(d) .

This proves (i).

(i i) It remains to prove that the family (););E- coincides with the family (fr;);6_.
Recall the Rosenbrock delel, ing procedure described in Section 1.4. put

w ' r = ( u i , , , . . . , w i , _ , ) r  e M  f o r d € m ,  I = 0 , . . . , t ;

so that

(Dr, - Dk,e)= i,-,r,r." - A)p(B)u,,
ts=o

where

-L,, = O il (DI^ -,4)p(6;) is omitted in the deleting procedure .

Thus ui are uniquely defined and

t i - 1

u ; (D ) :=  D  n , rL+  ,e (o i  r , . . . ,  u i , r _ r ,  _1 ,0 , . . . 0 ) "

belongs to ker .I(r,r = p(DI" -,,1,8) for evcry d 6 @. Since

|. 
-r * I

[ I I l ] 1  = | 0  ' . .  
I w h e r e W : = 1 w 1 , . . . , . - l  € M l D l ^ , ^

L  - r  l
it follow from the the proof of (ii) + (iii) in Theorem 5.2 that rknalplw = rn. Thus by Theorem
5.2 W is aminimalbmisof  !7(D), ,V[r ]^ .  I f  I /  denotes aminimal  basisof  p(DIn- A,D)
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then there exists a non-singular ? = (tij) e MlDl^x^ such that ,V = V T, By Thmrem 5.2
(iii) we have

kj  = d.Euj  = deglrr  l i :  = mu{) ,  {  deg l ; ;  l t i i  l0}- 7= ,  "  i €4

and therefore

deg 11; < /c.i - ); if ); < [;

l ; j = 0  i f ) ; > / c ;

S ince  ?  i s  non s ingu la r  thereex is t  m d is t inc t  numbers  a( f ) , . . . ,o (m)  €  q !  so  tha t  t ; , , ( ) *0
fo r  i  =  I  €  1q .  Thus  (6 .6 )  imp l ies

li < fr"(;) for all i € 11

By (i) and formula l.(4.2) it follows that

I r '  =  I " ' ( r )  =  r a p l i ( A ( t ) , 8 ( l ) )  =  I r ;  f o r a l l  t € 1
i = l  i = l  i = l

where 1 is some suitable interval.
F ina l l y  (6 .7 )  and (6 .8 )  imp ly  ( ) ; ) ;6 -  -  (& ; ) ie - .  t r

Theoren 6.3(i i) is an improvement of Proposition 5.2 in l lchmsnn (1985a) where controllabihry
is assumed. This direct proof is due to Gli lsing-Ltier(Een (1982). Applying Proposition 1.4.2 to
Theorem 6.3 yields

corollary 6.4 For (,4,8) € /nx(n+n) and with the notation as in Theorem 6,J the follorving
are equivalent:

(i) (A,B) is controllable

( i i )  [ f , k ; = n

( i i i )  ! i ! ,  ) ;  = z

( i u )  X i i r a ; ( t ) =n  f o ra l l  t e  1 \N ,Nsomed i sc re tese t ;  l anynon -vo id i n te r va l lC IR

Proposition 6.5 Let

" = [ i 
-,!,1 

e u1n1r"+rt'r'+^1
t '  "  J

be a system matrix. Then

lP is controllable s f ,1, = a,. ker,1 p(D)
i=1

where  )1 , .  . . , , \ -  denote  the  min ima l  ind ices  o f  p (P,  Q) .

Proof: By Proposition 2.11 IP is system equivalent to some

n"r=l  oJ"  !1.  atnt t^*P)x(n+m)-  
l c  E ( D )  J = ^ t " t

where n = dim ker,r P(D) and p(P,Q) = p(DI",B) (see Proposirion b.5). Since by
Proposition 3.2 IP is controllableifand only iflP"1 is controllablethe result follows from Corollary

(6.5)

(6.6)

(6 .7 )

(6.8 )

6 .4 .
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2.7 Characterizations of system equivalence

The analysis of the input rnodule in Section 5 and of the input-output map resp. the formal
transfer matrix sets us in a position to characterize system equivalence. If / : IPI a IP2 is

a system homomorphism then the corresponding formal transfer matrices coincide. For the
converse additional assurnptions have to be irnposed.

Proposition 7.1 Suppose

r , ,  ^  l
rP' = |  1: 

-Y; 
I  .  MlDlt"+Ptx("+nl

L  " '  " '  )

i  = 1,2 are systeflr uratrices with fornral tratrs{er matrices G,, tutp. Then the follorving state-

metrts are valid:

(i ) If IPI alrd IPz arc cortrollable l lten

IP l  i l  Ip ,  <+  ( l t  =  6 ,  and p(&,Qr ) )  =  p (Pz ,Qz)

(i i) If lPl and IP2 arc controllable and obsen'able thcn

P r I I P :  < +  G t - - G 2

Prooi Controll labil i ty, the formal transfer matrix and the input module are invariant with

respect to system t:quivalence. Thus by Proposition 2.2 without restriction of generality it rs

assumed that

n,. -l Dt, -/] I . 01"+rr,rn+,n), lp2 =l y,!- -;: i  I . AlDlb,+p)x(-,+nlu ' r = l a  l r r n r l E /
L  I  

-  
[ ( '  

L ' \ u ) J

P u t  B  =  [ b r , .  . , b - ]  a n d  . B / =  p i ,  . . , b / - 1 .

Necessity in (i) and (i i) follows from Proposition 4.4 and 5.5. I prove sufficiency in (i) '  Denote

the controllabil iW indices of (0, B), (0, B') by [;, kj resp. Ior arbitrary

t ,  -1

u ( r ) =  I  D \  t t y e  M l D l ^  \  { 0 } ,  , i  =  ( 0 , . . . , 0 , u ; , 1 , 0 , . . . , 0 ) r  e  M ^
,\=o

it follows from Lhe construction of the b;'s (see Scction 1.4) that u / ker i is,s. Since by

Proposition 5.6 ker h's,6 = kcr h'0,n, one has tt gi ker 1i6.13, and thus ,t; < bl. On the other

hand frl < [i and therefore
[ ; = [ l  f o r i € n r

Since IPl and IPz are controllable Oorollary 6.4 yields 2 = Dlir Ai = D[r bl = n'. Put

I 1  =  [ 0 1 . . . . . b 1 * ' - t ) . 0 r , .  . , b l i ' - t ) ]  e G L " ( M )

H '  =  lb ' t , "  ' ,b l ( r ' - r ) ,6 '2 ' "  ,0#- - t ) l  eGL^(M)
T =  I I 'H- \eGLn( / r4 )

Lct r; € ker l!t6,s so that 6{*') = Il ui. Since ker i i i ,n = ker ,l io,a, we obtain 6t(k' ' l  = gru

whencc ? 6jt ') - l! lui -.6/(l '). The last equation together rvith the definit ion of ? yields

,7 .  6 \ t )  =  6 ' ,a ]  fo r  i  €  rn ,  j  =  0 , . . . , k i



T h e r e f o r e  T H = ( H t )  = Q H )  I I + T H  w h e n c e T = 0 .
This gives

T B = B '  f o r ? € G I " ( ' R )

resp.

I : M ( P r , Q r ) - M ( P z , Q z )

(  7 . 1 )

Since G1 = Gz we have C D-tB + E(D) = CtD-rT B + Et(D). By Thmrem 3.4 the
control labi l i tyof  lP1 y ie ldstheexistenceof X e M[O1"x",Y eMlDl^x" sothat  DX*BY =
1" . Multiplying the forma,l transfer matrix from the right by y gives

c  D - t B Y  - C , D - t T  B t '  =  ( E ' ( D ) -  E ( D ) ) Y

Since D-l? =.T D-l this is eouivalent to

(c - c'r)D-t]^ - D x).D -- (E'(D) - E(D))r' D

(c -c'T)(r"- x D) = (Et - EU)DY D
resp.

(c - c,r) = ((r(r) _ E(D\)Y + (c _ c,r)\D
By comparing the coefficients of the last equation one obtains C = C,T,.E(r) = E/(D). This
together with (7.1) implies that IP1 is similar to IP2 and thus the proof of (i) is complete.

Suficiency in (ii) is proved in several steps. Instead of the formal transfer matrices the input
output maps are considered.

(a )  Pu t
Uy = {u €1, /*  lsupp u )  J}  where J -  po, l r l , ro < l r .

Then lP; is controllable if and only if the lR-linear maps

oj  :U!  -  ker l  P; ,  u( . )  + z;( . )

are surjective, where zi(.) denotes the unique free motion which satisfies zi(l) = zi(r) for
t  )  \ , i  =  1 ,2  r esp .

(lj) It is shown that there exists a unique lR-linear map /.y such that the following diagram
commutes:

tt ' u"'l "

ur \_ lt'--}}-------.=- 
r,*, n

Since oj_ is surjective it remains to prove that ker oj C ker aJ. Suppose aj(z) = O for u € ltT .
Since (z l , r )  l { r , , -1= 6.n6

v'("1,) + w1(u) = G{u) = 611"1 = v2e2,) * wz(u)

one obtains Vz(1)1A,,*l= 0. So observability of IP2 yields zl ltrr,_)= 0 and thus o!(u) = 0.

('y) Applying (B) twice yields that /.7 is in fact an isomorphism. The lR-linear map
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defined by

. f  h.*^ 4,101 (2t ,0)  = ( , f r ( r t ) ,0)

I  l ,^ztgu. , ,q,y (z! ,u)  = (z l ,u)

is a system isomorphism if one can show that / satisfies (2. ) and (2.7).
I f  ( : ,  z)  e M(h,Qr)  is  decomposed into

( z , z )  =  ( 2 r , 0 )  +  ( 21 " , u )  ( 7 .2 \

then

I G, u) = (/.r(,' ), 0) + ( z?,, u)

To prove (2.4) it. remains to show that

v(zt) + V(zl) + w1(u) = vzjtktD * v2(2f;) 11,yr1u1

or equivalently, since oy(r) = oz(u),

v1(zt)  = vz( f t ( " t \ )  (7.3)

Choose z'€ Z/i so that o;1(2,) = zr. Then

ft ("11 = oj (u,)  and ( f r ( " t ) ,u,)  = (21, ,0)  for  I  )  11.

From o1(z') = oz(u'\ it follows that

v1(zt) = v\G:) = vr(zl,\ = vzU.t(" )) for r ) 11

and (7.3) is a consequence of the identity property of analytic functions.
It remains 

!9 nrove (2.7). Suppose (z,u) e M(p1,e1) satisfies (z,u)11= 0 on some compilt
interval J. If (2, a) is decomposed as in (7.2) then by (2.4)

v t ( , ) +w(u )  =  v t ( z t  *  1 )+wr ( " )  =  v2 ( f u (21 )+  1 )+W@\

Thus V2(/.l(21) + z3) lr= 0 and observabiliry of Ip2 yields /(2, u) l;= 0 which proves (2.7).
This completes the proof. tr

For t.ime-invariant polynomial matrix systems proposition 7.r (i) is proved in pri,tzer-worters
(1981) Corollary 3'14. Proposition 7.1 (ii), considered in the time-invariant situation, restates
the well-known uniqueness theorem of finite dimensional realization theory, cf. also Einrichsen
and Prdtzel-Wolters (1980) Proposition 7.g.



Chapter 3

Disturbance Decoupling Problems - A Geometric
Approach

3.0 Introduction

The concept of ( A, B)- invariance has been introduced by Bcsile and Matro ( 1969) and Wan-

ham and Morse (1970) to solve various decoupling and pole usignment problems for linear

time-invariant multinriable systems. This concept wu generalized to non-linear systems (see

e.g. Hirschhorn (1981), /sddord, Krener, Gori-Giori and Monaco (1981)' lsidori (1985)) and to

infinite-dimensional l inear systems (se e.g. Curtoin (1985)' (1986)). In l lchmann (1985b) I

introduced a gometric approach for time-varying systems of the form

i ( t )  =  A( t )x ( t )+B( r )u ( r )+S( r )q ( r )
y(t\  = C(t\r(t \ ( 0 .1 )

where A, B, C are piecewise analytic matrices u in 1.(1.1) and ,9(') € /[x". Here g(') is viewed

m a disturbance entering the system via S(.)

The main problem is as follows: When is it possible to determine a fedbmk matrix .F(') e "4f,"

such that in the closed lmp system

i ( t )  = lA+ar l ( , ) r ( , )+s( t )q( t )
uQ) = C(t)x(t) (0.2)

the disturbance q(.) has no influence on the output y(') on a given open time interval 1 ?

The following example will illustrate an important difference between time-invariant and time-

varying systens with respect to disturbance decoupling.

Let

f o t
i ( t )  =  l a 1 ( t )  o 2 ( l )

I aa(t) a5(l)

y( , )  = [c( , ) ,0,0]r ( , )

o ' l

::[t] I '," -
f  o l  l o l
|  6 ( r )  l u ( , ) +  |  o  l ( t )
L  o  j  L , ( r ) J

(0.3)

o3( . ) ,6 ( . ) ,s ( . ) ,c ( . )  a re  no twhere the entries of the matrices are real analvtic functions and

identically zero.



If the feedback matrix is denoted bv

then

By a simple calculation it is seen that q(') has no influence on y(') if and only if ar * 6/r = 0.

I f 6 ( r ' ) = 0 a n d a 3 ( l / ) f 0 f o r s o m e l ' € l R , t h e n l / s ( r ) l = 1 f f i ; t e n d s t o i n f i n i t y a s t - t t .
'Ihis shows that disturbance decoupling might only be possibld fuithin certain interva.le. These

intervals are determined in the following time-varying gometric approach.

It is known from the timc-invariant setting that the controllable subspace im Di;l AiB is

(A,B)-invariant. As it was shown, see equation 1.(5'a), the time-varying extension of the

controllable subspace is the time-varying subspace S(l) = o(r,to)R(to). So it is no surprise

that one has to extend the concept of (.4, B)-invarianc€ to time-varying subspaces instead of

coustant linear spaces. This basic tool o{ time-varying subspaces wm studied in depth in Section

1.5 .

If the entries of the matrices A,8,.9 and C consist of real analytic functione the present set up

is a specialization of the nonlinear approach, However, there are several remons to introduce a

self-contained geometric approach for t ime-varying systems of the form (0'1):

r The class oI pieceuise real analytic systems is much richer than the class of time-varying

systems covered by the non-linear approach.

r The mathematical approach using time-varying subsprces is a natural one for the analysis

of time-varying linear disturbance decoupling problems. There is no need to use differential

gsmetry.

o The concept of (A, B)-invariance hm a nice gometric interPretation' not given in the

nonlinear cue (se Theorem 1.5 (iv)). It also can be dualized in a canonical way.

r The muirnal intervals where disturbance decoupling is possible are determined by the

zeros of certain functions of time.

o A suficient condition when disturbance decoupling is possible on / is given. This condition

can be checked on a computer if, for instance, the matrices in (0.1) are defined over lR[t].

r If disturbance decoupling is possible a constructive algorithm is given to determine the

fedback matrix -F.

In this chapter we proceed m follows.

In Section 1 the concept of (.4, B)-invariant time-varying subspaces is introduced and charr-

terized.

In Section 2 an algebraic characterization of this concept is presented'

The dua.l relationship between (A,B)- and (C,A)-invariance is explained in Section 3. An

algorithm is given which determines in a finite number of steps the smallest (C'.A)-invriant

fmily of subspmes containing a family l(t),

In Section 4 the disturbance decoupling problem for piecewise analytic state space systems is

introduced md cha.racterized. For analytic systems it can be checked, by means of the largest

r(r) = [i(,), /r(,), /3(r)]

i o r o l
A + B F =  

|  
o t + t J t  a z * b f z  a t , * A / "  

l .
L o n a s a 6 l
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(4, B)-invariant family of subspaces included in ker c(t), if and on which intervals the distur-

bance decoupling problem is solvabie.

In Section 5 controllability subspace families are defined and charrcterized'

This is used to solve the restricted decoupling problem for analytic systems in section 6.

sections 1 to 4 are bmed on llchmann (1985b), the results of Section 5 and 6 are presented in

llchmann (1986).

3.1 (,4, B)-invariant time-varying subspaces

Throughout this chapter piecewise analytic systems (A,a) € Aix{3+nl are considered' The

concept and notation of t ime-vuying subspaces (see Section 1.5) wil l be used'

Definit ion 1.1 Suppose (A,8) € Aix(n+m1 and V € W" is generated by y €,{;xt. Then y

is called meromorphicatty(A,B)-inurianlif thereexist ff € M\"r ,M €.rVfxt such that

( D I " - A ) ( v ) = v N + B M (  1 . 1 )

v is called (A, B)-inuarian if (1.1) holds true for some /[, M with entries in /o instead of

Me. l l  B = 0 we speak of (meromorphic) .4.-invariance.

This is an extension of the concept of (A, B) -invariance introduced by Basile and Marro (1969)

for t ime-invariant systems (A, B) e [tnx(z+m], see also Wonftcm (1974). In this cme a constant

vector space V of IR' is called (A, B)-inuariant if

A V  C  V * i n B

Clearly, V viewed as a constant family belongs to W* and V is (.4,8)-invariant in the sense of

Definit ion 1.1.

A simple example shall i l lustrate the difference between (A,B)- and meromorphic ('4'B)-in-

,  A = 0 2 7 2 ,  " r r l = [ l ]

= [ ? ] , ' - [ l ] '
and thus V is meromorphically (4, B)-invariant.

Proposition 1.2 Suppose

(i) (,4,,B) € r'4nx(n+n), V e Aaxk md r&p[V(l),.B(t)] = const. for all , € IR

OT

( i i )  (1,8)  €,4;x(4+-)  ,v  e Alxk and [V,B]  hu p.c.  rank.

Then v generated by v is neromorphically (,4, B)-invariant if and only if v is (A, B)-invariant.

variance- Put 
I n

y ( , ) = u ( , ) . n ,  " ( t ) = | . ;

Then 
I  n

( D r r - . a ) ( u ( t ) ) =  l i

(1 .2 )
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Proof: (i) It has to be shown that meromorphic (,4, -B)-invariance implies (,4, B)-invari-
ance. Meromorphic (A, B)-invariance yields that

(DI"  -  A(t ) ) (v\ , ) )  € [v( , ) , ,8( l ) ]  IR-+t  for  a lmost  a l l  I  € lR

Now the result follows from Proposition 1.5.10(i).

(ii) Since [llA] has p.c. rank it is sufficient to prove the usertion on an interval (ol,ol+r)
where [Iz, A],(l) hro constant rank. (The notation o{ Definition 1.5.7 is used.) Now (ii) follows
from ( i ) .

Remark 1.3 Suppose (i) or (ii) of Proposition 1.2 is satisfied.
o{ Proposition 1.2 that V is (r1, B)-invariant if and only if

im(DI"  -  A(r) ) (v( , ) )  c  V(t )  + im B(t)  for  a l l  r  € JV,

o

Then it follows from the proof

where .f{ i6 a discrete set

The following basic properties of (meromorphic) (,4, B)-invariance are immediate.

Remark 1,4 For V € w" with generator V -- 
lut,...,o*l e "41"r the following statements

hold true:

(i) Suppose (,4, B) e /ix(^+^1 is similar to (At, B') e /.i\b+n| via T e G Ln(Ap). Then V
is (meromorphically) (u{, B)-invariant iff ?-r.V is (meromorphically) (.4', B')-invariant.

(ii) V is (meromorphically) (,4, B)-invariant iff for every

s = f a;u; ,a; € Ap (a; e Mo)

there exist r e Af,,s e A! (r e Ml,s e Mi) such that

( D I " - A ) ( t : ) = V r * B s .

(iii) The sum of two (meromorphically) (,4, B)-invariant families is (meromorphically)
( ,4,  B)- invar iant  as wel l .

The concept of (,4, B)-invariance becomes clearer by the following theorem. Furthermore this
result is important for the solvability of the disturbance decoupling problem tackled in Section
4 .

Theorem 1.6 Suppose (A,B) e Aixln+n1 and V € W' is generated by V e "4|xe with
rft11V(t) - [ for all , € ]R. P(t) : IR" - V(l) denotes the orthogonal projector on V(r) along
Vr(r). Then the following are equivalent:

(i) V is (A, B)-invariant, i.e. there exist 1Y € J4rxk and M €,4f,xt such that

(Dr"  -  A(t ) (v( t ) )  = v(r)N(r)  + B(t )M(t)  for  a l l  r  € lR

(ii) There exists an F e Atr\" such that V is (.4 * B f)-invariant.

(iii) There exist /t e ,4ix" and M e Atrx" such that

(Dr"- A(t))(P(r)) = P(r)/ i( ,)  + B(t)M(t) for at l  '  e IR
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(iv) There exist N € Ar'o,M e,4frxr such that

v(,)v(ro, ,)" = o(r,  ro) + / '  o(r,  ")a(")M(s)t[( ts, s)"ds for al l  t  e IR

where t0, V denote the transition matrices of

t ( r )  = A(r) ' ( , ) ,  i ( , )  = lY(r)7 ' ( r ) , resp.

Proof: (i) + (ii) : Define
F = M(VrV\- tVr

Then
(D I " -  (A+Br )Xv )  =  (D I "  -  A ) ( v )  -  B  F  v  =  v  N

which proves (ii).

(ii) + (i) is trivial.

( i )  =+  ( i i i ) :  Pu t  Q  -  v r (VVr ) - tP .  Then  VQ =  Pand  (D In -  A ) (P )  =V tNQ-Q l+  B  MQ.

( i i i )  + ( i ) :  r f  Q := Vr (V V")- lP then

(D I "  -  A ) ( v )Q  =  (D I " -  A l (P l+  v  Q  =  P  N  +  B  M  +v  Q .

Since rbsP(t) = fr for all t € IR there exists Q, € "4ff xt so thar Q Q, - /r. Thus

( D r "  -  A ) ( v t  =  P  N  Q ,  +  B  M  Q ,  +  P  Q , Q Q ,

which proves (i).

(i) =+ (iv) : Multiplying the equation in (i) from the left by ?-t(') = O(', t6)-r yields

v '  =V '  N+B 'M  whe re  V t  =T - r  V ,  B '  =T - r  B

which by Variation of Constants is equivalent to

v ' r ( t )  =v(1. ,o)v4(ro)  + [ '  vp,4m'1s)B'r  (s)ds
J to

resp.

v'(t)ur(to,t)r = V'(to\ + l-  a'1s1u1s1u(r6, s)rds
J to

Multiplying from the left by ?(t) gives

v (t)ur(to,t)r = o(r,  ro)v(t6) + / '  o1r, , ;a1r;M(r)r l ,(rs, r)rds.
J l o

This proves (iv).
To prove (iv) + (i) reverse the arguments in the proof of (i) + (iv). o

As an immediate consequence of Theorcm 1.5 one obtains



Corollary 1.6 Suppose A e Alx" and y € l l!/o is generated by V e A"xh with rlp V(t) = k
for all I € lR. Then the following are equivalent:

( i )  V  is  ,4 - invar ian t .

(i i) There exists N e /;x" such that

(DI" - ,4(,))(p(,)) = p(,)]v(r) for au r e rR.

( i i i )  y(,) = O(,,ro)y(ro) for al l  t , lo € lR.

Remark  1 .7  l f  a  rea l  a r ra ly t i c  sys tern  (A .  B)  I  Ax(^+n)  i s  cons idered and V is  rea l  ana ly t i c ,
then in Theorem 1.5 and Corollary 1.6 all matrices are also rea,l analytic. The proofs carry over
completely.

Remark1.8  Cond i t ion( i i i ) inCoro l la ry l .6 imp l ies tha t fo revery ro€y( ro ) the f ree t ra jec to ry
O(t, t6)o6 remains in y(,) for a.l l I € lR.
Condition (iv) in Theorern 1.5 says that if co € V(ro) then there exists a control u € -4f; such
t hat the forcod mot ion

can be hold in V(l) for every I € IR. For time-invariant systems the latter condition is also
suf f i c ien t fo r (A , '8 ) - i rvar iance.  I f  th is isa lsova l id fo r t ime-vary ingsys tems ismopenprob lem.

Example 1.9 Ibr t ime-invariant systems (4, A) € n'x("+-) it is well-known that the control-
lable subspace Di-t .At imll is the smallest ,4-invariant subspace which contains fmB , see
e.g. Wonham (1985) Section 1.2. This is extended to the analytic situation as follows: The
controllable family Sl (see Section 1.5) of an a,nalytic system (,4, B) € ,4nx(n+n) is the smallest
.4-invariant family which contains jmB('). In fact, $i is an analytic family ( se Remark 1.S.11)
and thus ,4.-invariance follows from Corollary 1.6. Use of the presentation 1.(5.5) of S(!) yields
imB(t) C n(r). If y = (y(t))ren € W" is another , -invariant family with dm.B(r) C V(r)
then (DI" -,4(r))t(B(,)) c y(,) for all d e IN. Thus ft(t) C y(r) by 1(b.5) and therefore S
is the smallest,4-invariant family which contains irnB(.).

If we do not assume that the rank of V(.) i6 constant then the fedback constructed in Theorem
1.5 (i i) may have poles. ltrr disturbance decoupling problems it is importmt to locate these
poles.

Proposition 1.10 Suppose (A,B) € Anx(n+n\ , rkyB = m and V € W. is generated by
V e Anxk with rftyV = *.
If V is rneromorphically (,4,B)-invariant then there exist analytic matrices Ilt,IJz,T,W of
fo rmats  k  x  s ,m x  s ,s  x  s ,s  x  b ,  resp .  and ?- l  €  r { ,x ,  so  tha t

(Dr" - a)(v) = v Ih T-t w + B u2T-tw

?-l hm poles at t '  i f and only if

<lirn(V(fl)ftt + B(t')n ) < mu rtim(V(t)nk + BQ)n )
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Proof: By Lemna 1.5.1 G = gcld (% B) € ,4"x, satisfies

GA"  =vAk  *8 ,4 -  and  G- -V IL *  BUa  f o r  some  U1  eAk , " , I he  A  x , .

Let G €,4"x' with rkRG(r) = s for all I € lR (se Lemma 1. 5.4) such that

c(r)n'€ c(,)n,
Then G = GT for some ? €,4'x' with T'-r e M'x'. Since V is meromorphically (:4,8)-in-
variant and C is left invertible over.4 there exists some I7 € ,4"x1 so that (DI"- A)(V) = GW,
This proves (1.3). Clearlg ?(.)-! has poles at t' if and only if rfrq G(1,) < r*s G(.) which
proves (1.4).

Example 1.11 Let (A,B) e r'43x(3+1) be given by

| ,, sin t -t(t2 t 2) I [ -rr1r - z,) 
'l

, 4 ( , ) = l a a ( r ) c 5 ( r )  o u ( t )  I , B ( , ) = l  r ,  I
L  - r  0  ,  J  L  t - 2  j

and V(t)  = y(r) lR where V( l )  -  [ r2,0,  -1]?.
Using the notation of the proofof Proposition 1.10 one obtains by Lemma 1.5.1

,2 _121t _ 2)
0 1 2

- l  t - 2

= l i ] t ;s l . l  
' , ! ; " ] [ r r ]

f  t z  n ' l

G(t.y=e111711y= 
I 1 i | [ ; 

-, ',r,,1
L  

- I  U  I

G(t) = gcld (Y, B) =

=  V U t * B U t

= y(r) f f ( , )

Since

l '  = 0 is ihe only pole of T-r(l ') or equivalently

! is meromorphically (.4,8)-invariant since for

*(a =l_i1,1f,1,* ".r,, ] and ?-,1r1= 
[ I 

-' 
;Ll- 

r, 
1

(D r^ - A(t))(v (,,, = 
| 
-,;i#ii 

i:," ] 
= G1t1w 1t1 = G Q)ru)-'�w (t)

= v(t)It-,(t -2)l-aa(r)t2 + o6(r)l .- (r + 1)l + B(t)lt-2(-a4t)t, + d6(r))l
+ B(t)M(t)

( ,  . ^ -
r l p [ v ( r ) , B a ) ) = I  I  l :  

' = o
. - .  t # 0

dim(V(tt)W+ B(rr)rR) < 2.
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In the proof of Thmren 1.5 an analytic fedbmk matrix F was deternined so that
(DI"-(A+ B F)Xy) C V. In the present exmple V(.) does not have constant rank. Therefore
F is a meronorphic matrix

"t,l = a##Q[,,,0, -rl = M(vr v)-, vr

md

It depends on the zeros of oa and co if F hu poles.

3.2 Algebraic characterization of (,4, B)-invariance

Bued on P. Fuhrmann's realization theory (cf. luhmcnn(1976)), Emre ond llaulus (1980)
and fraulus (1980) give a "frequency domain characterization" of (.4' B)-invariant subsprces'
ln Hautue (f980) the following result can be found.

Proposition 2.1 Suppose (A, B) e lR,trx(n+m) and V is a subspace of IR". Tben V is (A' A)-in'
variant if md only if for every u € V there exiet strictiy proper rational functions o(s)' ((c)
with f(s) € V for all r € lR such that

a =  (s la  - ,1 ) f ( r )  -  Ba , (s ) (2 .1  )

For time-varying systems a frequency domain analysis dms not exist, however the skew polyno-

mial approach developed in Chaptet 2 can be used to extend the previous proposition. At first
the case B(.) = 0 is studied.

Propoaition 2.2 Suppose A e /lnxn ,V e '4xk and r&p V(t) = const. for all , e IR.
Then V generated by V is A-invariant if and only if for every I € r4" with u(l) € V(l) for all

t € IR there exist

, - l

{(D) = t t; Di e AlD| (i(t) € v(r) for all t e IR

and

such that
(2.2)

Using Remark 1.1.1 and fomula 1.(1.6) it is euily verified that without restriction ofgenerality
otre may assume A = 0.
Suppose V is A-invarimt and let u € ,4' such that u(t) € P(t) for all t € 1R. Use of the
multiplication in the left-skew fleld Ia(D) (see Section 2.2) yields

dD) e.AlDl with deg p > deg e

o . p ( D \ = ( D I " -  A ) . ( , ( D )

D-ro; = u;(D + 3)-l for a; e A'' U i
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So there exists p e ,4[D] such that

Put

D-l vp(D) = e@\dD) e.A"lDl

I

I n; Di = r@) and
t - l

If, (r d = {(D) := i,@)p(o).
t=O i=O

Then we get by conpming the coefrcients oI a p(D) = D e@) and using /-invuimce of V
that  f ; ( r )  € 1. , ( t )  for  a l l ,  € IR and i  = 0, . . . . t -  1.
Toprovetheconverselet  p( l )=Df=oDi! ;  andcomparethecoefrc ientsof  !dD)=D€@\
Then of1-1 - i t fu=€pt*(r - r  .  Since opt_r=(Lr* f i_r  oneobtains ( t i r j ( r i  eV(f ' for
dl , € IR . Thus by Proposition 1.5.10(i) t(r) € y(r) for all t € lR. md the proolis complete. o

Proposition 2.3 Suppose (A,B) e /Anx(tr+n) ,V e A^xt and rftp[V(t), A(l)] = const. for all
t € lR. Then V € W, generated by V is (A,8)-invarimt if and only if for every column vector
u of 7 there exist

such that

l - l

((r) = D g,pt €,4"[D], fj(r) € y(r) for all , e lR
i=0

t-1

u(D) = D r, D, e.A lDl
i=o

I

p(o\  = ln ;D;eAln l
i=O

o -p(D) = (DI" - A). {(D) - n .u@\ (2.3)

Proof: As in the proof of Proposition 2.2 assume A = 0. If p is (4, B)-invariant and u is a
column vector of I/ put

f ( r )  =  ( D r , - B F \ - t a
6(r) = r f(r)

where .P is given m in Theorem 1.S (ii).
Let p e AlDl so that {(D) := fin1p1Oy € .4"[D] and one obtains

o p ( D ) = ( D r " - B D e @ ) .

Thus for u(D) := f ((r) (2.3) is satisfied. The multiplication rule w.r.t. ,4[D] yields that
necessarily the degree conditions are valid. It remains to show that (i(t) € y(r) for all t € IR ,
i = 0,. . ., | - l. Chmse T e G L"(A) (cf. Remark 1.1.1 and formula l.(1.6)) so that

r  u .p(D\  = D . r  e@) Q.4)
since v is B.P-invariant it follows from Remark 1.4(i) that T v is 0,x,-invariant. Now order
the coefficiente of D .r {D) to the left and compare successively the coefficients in (2.4). Then
one obtains

r ( i ( r )  €  ? v ( r )  f o r a l l ,  €  I R ,  i = 0 , . . . , t _ 1 .
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To prove (A, B)-invarimce use the multiplication iule to order the coefficients in (2.3) as follows

a t-2 l-1

Drpt o'  = do + D(fr-r +(i)Di *{z-r Dt - lB,a; Di
i,--o i=o i=O

By compuing the coefrcients at D'-r one gets

v P2-1 = &-zt  i t - r -  Bu; t - r  €V (2.5)

md ordering the coefficients in (2.3) to the left gives (see formula,r 2.(5.2))

t  ' - 1  
, ^ ( t - t \ 2 r - r - r 3 ( r ) 1,  I  D '  4  =  D l€ .  +  ( r ( r  - i r )+ . . .+D( - l )

d=o ^=o \  ^  ) "  
r ' -1 r

t - l  l r  ' \
-  B u o - . . . -  D ( - t l ^ l  

" ;  ^  
I  6 r z - t - r 1 3 6 r - , ; ( ) )

)-{ I

Again, by comparing the coefrcients at Dr-r one gets

up ' t - r  - 2np l=  & -z -  t u ,  -  B  r p r .  ( 2 . 6 )

(2.5) and (2.6) inply

i , ( t ) .2p1$) eV + im B(t)  for  a l l  t  € IR

Thus
t(r) € [v(r),8(r)] IRtx- for all t € IR \ rv

where N is a discrete set.

Since rfu[V(t),.8(r)] is constmt in t Proposition r.5.10(i) yields n(t) € [y(t),8(l)] IRrx-
for all t e IR whence V is (0,8)-invariant. o

If in Proposition 2.3 all matrices are defined over 14, md [V, B] hm p.c. rank then a polynomial
charactedzation (2.3) ia also vatid with €@),ut(O),dn) defined over.4"[D]. We omit this.

3.3 Duality between (A,B)- and (C,.4)-invariance

For time-invariant systems (A, B,C) € IR,axE x IR'4xm x IRPX' a constant subspace V of IR" is
called (C,.4)-invariant iL4(y n ker C) c y. It is well-known (se e.g. Sclrumcclrer (1979))
that ) is (u{,B)-invariant ifand only if ya i8 (8T,-A")-invariant.
For time-varying systems (A,B,C) € ,41"" x,Alxn x,4!xn it hu already been metioned
in Section 1.5 that, in general, the timenrying subspace kerC(.) does not have a Senetator
W e Aixr', Even if V € wn has agenerator V e Ai\h then the orthogonal complement
yr = (V(t)l)ren doee, in general, not have a piecewiee analytic generator, Therefore equivalence
classes were introduced

i:= lw € w" I w(t) S y(r)) 161 ), = (V(l))t6n € w"

By Lemma 1.5.9 for every V generated by V e,A|xr and B e lix- one can find W, Ai't"-r'

and W, € ,rqxr' rt,O p.c. ranke eo that

(17(r)n"-r)r€R € tr
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and
(w'(r)lRr')'€R € it(tnT;E7(r))r€R

If
W ; : = { t l y € w " }

the concept of (meromorphic) (A, B)-invariance is extended as follows

Definition 3.1 Suppose (A,r) € ,rtixt"+-;. Then I e W* is called (meromorphically)
(A,B)-invariant ifthere exists a V e D eo that V is (meromorphically) (A,8)-inva.riant.

Now (C,,4)-invarimce u defined above for constant systems is qtended to the time-varying
situation as follows.

DeOnition 3.2 Suppose A e J4nxn, C e Af,x" and V € W" is generated by V €,Aixt. Choose
I7 €,4fx' eo that

* r1 r ; n .=u ( t ) nke rC ( r )

Then D is called (C, A)-invaiant il

((Dr" - A(t))(w(r)) . m,),en e I (3.1)

R.emark 3.3
(i) In Definition 3.2 one has some freedom in choosing fi. By Proposition 1.5.9 I7 may be

chosen with p.c. rank. Also by Proposition 1.5,9 choose 7 € , ixI with p.c. rank
such that (i(t)n*)r€R € V. Now it follows from Proposition r.5.10 (ii) that t is
(C, A)-invariant if and only if

(DI"-  A)(W) =VR for  some R e A: \" (3.2)

(ii) Since there always exsits 7 €,{ix& with p.c. rank 60 that (i(r)IRr)ren € f, it ma}es no
sense to introduce mercmorphic (C, A)-invariance sirnilar to meromorphic
(.4, B)-invariance.

(iii) It is easily verified that analogous statements m in Remark 1.4 hold true for
(C, .4)-invariance.

Propocition 8.4 Suppose A e A;x" , C e Apr" and V e W^ is generated by V e Aixk.
ThenD is (C,A)- invar iant  i f  andonly i f  f f  ismeromorphical ly(- .4" ,Cr)- invar iant .

Proof: By Remark 3.3 (i) usume without restriction of generality that y has p.c. rank.
Choose by Lemma 1.5.9 (ii) i € ,43x" with p.c. rank so that

vI( t ;  = 711;Pz

Since li7 € /|x, satisfies

ri'1r;n, E y(r)lRt n kerc(r)
oneob ta i ns fo ra rb i t r a r yco lumnsdo f  0and  6o fW,< t ( r ) , d ( t ) )=0 fo ra l l t e IR .Thus

(r/" - ,4)(d)1" a = -tbri - rnr Ar a = -{Drl@L+ A")(d)I. (3.3)
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If t is (C, A)-invarimt then (3.2) yields (r/" - AXo) = V r for mme t € -4f md by (3.3)

< (DI" - A"Xn), rt >= 0. Therefore

(D/" + ,4(r)")(0(r)) € (v(r) n kerc(t))r + t'n (c(r)r)
= [i(r),c(r)r] nt+P for all t e IR (3.4)

Consider an interval la",o,+r) so that [0,d?] |t.,,."*,y i" real analytic and can be real analyt-

ically extended to

lU,CTl, ot some I, t= 1ot,,a',a), ot, < oy, a,g 1 alnay,

Then by Lemma 1.5.4 (i) there exists G " e A |i't'+'l with constant rank so that

lu,crl,(t)*"r+e E c,1r;nr+" on 1,

Since rkylr,[O, CTI= rk.,,,rlr"G, there exists T, e A1\t+rlx{t+P) so that

Tu e G Lt+o(M 11,) and. lU ,crl, T;t = G,. Now it follows from (3.4) and Proposition 5.9 (ii)

that ff ie meromorphically (-A?, Cr)-invariant.
Conversely, if Vtr is meromorphically (-AT,CT)-invariant, then

(rf" + A")(n) = U m t Cr n iotaome n e Mto, rn e M!.

Thus (3.3) yields
< (DI" -,4(r)Xti'(t)), n(t) )= 0 for aJl ' € lR

whence (D/, - A(t))(O(r)) € lr(l) for all, € IR. This completes the proof' o

For timeinva.riant systems (A,B) € Rnx(n+m) it is well-known (see e.g. Wonham (1985) p.

9f) that t\e maximal (A,B)-inoaiant subspace V* included in a subsprce f, C IR" cm be

determined as follows

V " : = t

V i  : =  Ln  A - r ( imB  +  y i - r ) ,  i  €  IN

Thie sequence is decreasing, stops a.fter at moet [ = dirnf, steps and Vr = V*. It is not

clear how to generalize this algorithn to time-varying systems and subspaces, Instead one can

determine the smallest (C,.4)-inrrariant family which contains a given family 4 and use duality

to obtain the largest meromorphic (A,8)-invarimt family which is included in a given family

f,a. For [,E e W] define

T<V i f  v r ( , )Ev r ( r )

Defnition 3,6 Suppose A e Alx", B e Aix^, C e Alx".Then [(f) e W" is called the

amailett (C, A)-inuariant family which contains Z e W" if

r 
-Vlf,) 

is (C'C)-invuiant

. 7 < V , G )

r  i fFeW;  is (c , .4 ) - invar ian tand Z<W,  then VG\<W
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F(4) € W; is called the largest mercmorphically (A, B)-invariant lamily contained in

F e W i i t

t F(L'\ is meromorphically (A'B)-invmiant

o Vtr�1t1<E

r if D € ffi is meromorphicaly (A,A)- invariant and IT < F, then W <tF(L')'

To present an algorithm which determines [(f,) sone notations are neded. Suppose

)ry(r) = li(t)nc ht la e Aixt with p.c. ranck

ker C(l) 5 C(r)n' fot e e Aix'with p'c' rank

Then by Lemma 1.5.3(ii) there exista .R € v{$xrt so that

W = iv n = lcrn,a,(I|, C) Iot W e Aix' with p.c. rank

Now by Proposition 5.f0 (ii) for u € /| with

a(t) e W(t) n kerC(l) for all t € lR

there exists q € /i such 

,,(r) = w(t) q(t) *- wp1 np1q1t1

Thus it makes eense to define

(DI" - AXW n kerC\:= (DI^ - ,{Xfi n)R'.

Proposition 3,6 Suppose Ae A;x" ,C EAlx^ and4 € W* isgenerated bytr e ,4lxc' Then

the sequence

W s : = L

W; := l l ) ;4+QI"-  /X4-r  nkerC),  i  € INo (3.5)

is increasing in the sense that 
E < ffi for i € rNo

and there exists & ( n so that

E(L) =W =W,,+t for every I € /V

Proof: Let .0r €,49t"t such that

t r i1 = lcrm ( i ,C)

then

)ryl(r) = r(r)rR, +(r/"-A(r))(r(,)nr(r))Rt
= l[(t)]ftr+n



where

Proceeding in thie way one obtaina

W1 := {L,(L -  A L)Ri

)ryi(4 g I'Yr(t)n1'�+'! +"'+'i

where
W; := [W;-1, (W;-1 - A W;a) R;1, Wi-1 R; = lcrn,1,(Wi-1, C)

Therefore [ < Ifi[ for i € INo and if for eome /c e lNo, rkyWl = r]r ]7r+r then
E = W fo. all , € lN. By construction Ff is (C,.A)-innriant and Z < ffi. So it remaina
to prove that if t is (C,.4)-inuariant ard Z < V, then [ < 7. By assumption

( D I u - A X y n k e r C ) E v

and by induction on i one gets

W; = lVl- t+(DI"- .4)(W;-1 nkerC)

< v+(D/"- ,4)(y)

Thie completes the proof. o

The duality betwen the emalleet (C, A)- and largest meromorphically (A, B)-invariant family
is given a^e follows

Proporitlon 3.7 Suppw A e "42x", C e Agx" . IIT eFi;and some t eT isgenerated by
L e .A;xl then the following a,re equivalent

(i) t is emallest (d, A)-invarient family containing Z.

(ii) llr is the largeet meronorphically (-4r,C?)-invariant fmily included in Zf.

Proof: (i) + (ii) : If W is arepreaentativeof the largest meromorphically (-AT,Qr\-in-
variant funily which ie included in lr then

v ' ( r ) E l r y ( , ) t r r ( r )

end thug
q 0 E ) r y r ( r ) t v ( r )

Since f is the smallest (C, A)-invariant family it follo's that D = D.
The rcverse direction ie proved analogously.

RcmrrkE.t Forerealanalytic:yrtem(r{,8)61"xt"+-litisdemonstratedhowtodetermine
IF(IerC(t)) : By Propoeition 3.? thir problem ir equivalent to determine [, the smallest
(BT, - lr)-invrrieat farnily contrining ler C(t))4.
Let

(tcrc(r))r € Z1tlnt for rorne L e tlnxq with rftp I(r) = q Vr € IR (g.6)

end

te r t r (O3C14n '  f o r comc  e  eAnx ,w i t h r f nd ( r )= . rV r€ tR  (g .7 )
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Applying algorithn (3.5) yielde

(kerC(r))r c r(r)IRe c w;-r(r) c n(r) c y(r)rR"-*

for some

f1 Er4ax(n-t l  wi th r*Ri(r )=n-f t  foral l  retRand lv i iyd-* ; i .^=4.

Thue
kerc(r) :) (r(r)n,r)a I )'y.l.r I )ryil(r) ) y(r)nr

Iot V e ,ALxh auch that ('(l;n"-t;r = V(r)IRr for all r € IR, By Proposition 3.? it follows
rhat 7=f;(kerc(r)).

Example S.S F(kerO) will be calculated for a system (A,B,C) where A € ;t3x3 and B €
r'{sxl are u in Example 1.ll and d(t) := [1,0,12]. Using the notation of Remark 3.8 one hu

[ ' l  f l Ir ( r ) = l o l , c 1 r 1 = l o  t - 2 1
L r ' l  L r ' �  o  l

which satisfy (3.6) and (3.7). For this situation the algorithm

Wo = trlRr
w; = w;-t+(DI,+,4TX)4ri-1 nCIR2)

ie a.s follows

)v1(,) = 
li ] 

"- @+ Aro)) ( ti ] 
" 
)

l r  o  I= Ll, '1'1 "'
w2(t) = 

il:,(''].,"-,{r(r))(r1,0,',t" 
n)

Therefore I given by

I r  o l
y* ( r )=  |  0  I  l . rR ,

L , ' o l
is the smallest (8", -Ar)-invariant family containing iI6Z[)f and thus F is given by

y.( ,)  = [-1,0, ur.n

Now we are in a position to prove the main result of thie section which is a summary of the
foregoing.

I



Propoeition E.lO The set

Sc7- of(C, A) - invarimt families of T[]

is a lattice with respect to
E n
E v

where 
-V*(Vr 

t Vr) denotes the emallest
Furthermore the set

E = En)r-
E = tJr'Tt,�

(C, A)-invariant family which containe [1fr.

rS1,B of neromorphically (A, B) - invariant faniliee of W*

ig a lattice with respect to

E r E = I t i ' ( % n y u )
E v E = D i T Y l

where F(V1nV2) denotes the largest meromorphically (/, B)-invariant family which ir included
in EiE.
The map

Q :,Ss,a - S-1r.sr, f * fir

is a lattice aatiisomorphiem, where 'anti" meana

C(EnIt) = davr)vd(E)
6(TvI',) = C(-yl)^d(E)

Compate Figure 3,1,



Sc,t

4

s -ar ,sr

4

F + tr' = O' n"%lr

F(Yi n Yri) = v,r((vr + vz)r)

Figure 3.1':

Proof: It is easily Ben that the definition of the lattice operations doec not depend on the

representativs. It remains to prove that { ir an antlisomorphism. usinS the fmt that for finite

dimengional vector sPaces (yr(r) n yz(t))a = yr(t)r * vz(t)r holde true' we obtain

41trnE) = d(t;n16) =iffitr)] =il;E'

- AtitTAD=d(E)vd(E)
Thie proves the first equation of the antlisomorphirm. To prove the eecond one uoe Propocitioo

3.7 to conclude

o(trvE) = c(E(vr +vr)) = v*(vr + v,)

= t--((h{vrDa) = F(v*ov1r)=O([l)rC(E)'
o

w
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3.4 Disturbance decoupling problem

In this eection we conaider e 8y8tem (A,B'C) € ,41x" x ,4lt- x ,4fx" with aa additional

digturbance c() eCt entering the syatem via S € /4lx'.

i ( r )  = A(r)c( t )+8(t )u(r)+s( l )q( t )

y(r) = d(r)a(r) (l.t)

The dictur0ancc decotpling pmbten ( DDP ) on (tq,t1) is to find a etate feedbs.k matrix

f(.) € dfx" ruch that arbitrary q(') has no influence on the output

y(r) = C(r)[op(r,to)co + /tor(r,r)S(.r)q(r)dc] for all t € (t6,11)'  
Jto

of the closed loop system

i( l )  = Ap(r)a( t )+s( t )q( t )

y(t) = c(t)t(t) (4.2)

where 
Ar(t) z=A(r) + 8(4r(r)

an<l tr('") denotes the transition matrix of i(t) = Ap(t)a(t)' Thic notation will be ueed

throughout the remaining aections. The following definition is a,n extenaion of the timeinvariant

case, Eee Wonlrcm (1985).

Dcinition4.l Theeyotem(4.1)iecalleddtslsrDoncedecoupldon(ts'11)ifforsome
r(.) € llx"

tr
y(t) = C(t) 

Jner(t,s)S(r)q(r)d, 
= 0 for all, € (to'tr)

and erbitrary C()eCi (4.3)

Ueing the controllability Gramian of the cloecd loop system (4.2)

wr(ro, tr) ,= /'rrlto, r;s(r)sr(r)o$(rq, c)ar
J h

thc DDP for piecewiee analytic systems can be characterized as followe

Proporition 4.2 Let I = (ro,tl) and f(') € ,Aft". R = !,.2[4,,c,11) denotee a partition

ro that ;{r(.) end S(.) are real anelytic on (a,' a,11) n f. Then the following are equivalent

(i) (,t.1) ir dirturbance docouplcd on I bv F(')

(ii) tr(t,to) imWr(h,t) c lcer C(l) for dl t € f

(iii) rF(t,h)[D;ro dm (DI. - rr(h))'(S(to))

+-DI=, D>o im(DI^- u{p(4,))i(,s(c,))l c karc(r) for ail t e r

wlcrc to € [do,or), f 6 (c1v,o1v11).



Proof: Coneider the map

t r 1 0 , 1  : ( C p ) ' + l R '

c(.) + l,t" op(t,c)S(c)q(c)ds

By Knobluh and K appel (197 4) p. f 03 it followe that

imLlo,s = i- /' o"1t,";s(s)sr(t)ofi(l,r)ds
J lo

= OF(t,ro) imWF(to,t\

Thio provee (i) {+ (ii). (ii) c+ (iii) is a coneequence of Proposition 1.2.6. D

If the eyetem (4.1) is a^nalytic then by Proposition 1.2.6 we obtain the following sinple result

Corollary 4.3 An analytic system (4.1) ie disturbance decoupled on f by F(') €,4 lfx" ifr

l ;m1Ot"- ,4F(t) )d(S(t) )  c  kerC(t)  for  a l l  t  e r .
.20

Due to the ldentity-Theorem of malytic functions, for an analytic system (4.1) condition (4.3)

has to be checked only on an arbitrary emall interval (to"o * e). More precisely we have

Propoeition 4.4 Suppose (4.1) is analytic and I(') e ,4 l?" where .I = (t6'11)' then the

following are equivalent:

(i) (4.1) is disturbance decoupled on I by F(.)

( i i )  (4.1) isdieturbancedecoupledon( lq, ts le)byf( ' ) forarbi t rary €€(0 'h- to)

Proof: By Propoeition 1.2.2, Definition 4.1 des not depend on whether we admit piecewise

continuous or analytic dieturbance, Since the vector function

t * s(t,q),= / ' o"1,,r;s1r;o1r;a,
J lo

is real analytic on 1 for every q € / l? the ldentity-Theorem of analytic functions yields

C ( t ) g Q ' q ) = l  f o r a l l l e r

if and only if
C(t )v?,d=0 for  a l l  t  e ( 'o ' 'o*e) '  0 (  e (  11 -  te

Thia provea the proposition, D

For an analytic system (4.1) the largest meromorphically (A,B)-invariant eubspace 9-'(kerC)
included in kerd(l) with generator V e Anxh of constant rank /c was constructed in Remarh
3.8. By Proposition 1.10 one obtains

(DI" - AF)(v) = VIITT-|W where ,F = U,rT-rw(vrv)-1vr (4.4)

Thus the set oI critical points for the fedbmk F is given by

P = ltt e lR I an entry of U2OT-|(')W(') has a pole at ,')



Let I C IR be an open interval. Then

f( . ) is  analyt ic  on f  i f  PnI  =0

and furthermore by Proposition 1.10

P n I = 0  i f  r e p [ V ( t ) , 4 ( t ) ]  = c o n s t .  f o r a l l l € /

Now for every .f C IR \ P the differential equation

i(t) = dr(t)c(r) ,, € I

ie solvable on L This retB us in a position to state the main reeult of this section which is a
generalization of the constant cme (eee Wonham (1985) Theorem 4.2).

Theorem 4.6 Suppose the system (4.1) is analytic and V E t4x* with rfu1V(t) = & for all , e
lR generates F(kerd) constructed in Remark 3.8. Then for / = (to,tr) we have:

(i) If the DDP is solvable on .I by .F(.) € ,{ l+x", then

S(I)IR'c Y(r)IRtr for all t € I

( i i )  I f Ic  |R\P and
S(t)n,'c Y(t)nt for all t € I

then the DDP is solv-able on .t by F(.) , r4ll.t given in (4.4)

Proof: (i) : By Corollay 4.3

im 5(r) c | ;n 1ot" - AF(4)r(S(r)) c ker C(l) for all r e r.
i>0

By Rema,rk 1.5.11 there exists 7 e,4 lix' with constant rank on I go that

v1r;:= 71116. = ! im (D/" - Ar(r))i(S(r)) for an I € r
i:o

Thus Theorem 1.5 yielde that i i6 (4,8)-invariant on f . This together with i(r) C ker C(t)
for all t € IR givs

714n'E v(r)IRt ; for all r € r
Since V(t) has constant rank on / one gets

s(r)IR'c 71r;n'c v1r;n} for all r € I

which proves (i).

(ii): Since S(t)R' c V(t)lRt for all I e / and (V(l)R*)j6a is Ap-invariant one obtains

in 5(r) c ! im 1ar" - /F(r))r(s(r))
.>o

c D ;m(Dr"-,{F(4)r(v(r))
.>o

- Y(l)nt c Ler C(t) for all t € f

Now (ii) follo'o from Corolh,ry 4.3. o



Remark 4.6 If the entries of the matrices of (4.r) belong to the ring IR[r] then it is com-
putationally not too expen'ive to check the asumptions of rheoren 4.5 (ii). The main tool
is to transform a matrix into an upper triangular form. This algorithm is described in detail
for instance in wolorich (ls?g). It can be implemented via the Jgebraic programrning system
Redue. (se lleorn (1985)).

Example 4.7 Consider a 6y6tem of the form (4.f) specified by

|  , "  s i n t  - t ( t z + U l  l - f 1 t - 2 1  I
A ( , )  =  l c a ( r )  c 5 ( r )  a e ( r )  I ,  a t r l = l  t z  l ,

L - t  o  r  I  I ^ r , _ ,  I
l , " lc( , )  =  [1 ,0 , r , ] ,  s ( r )= l  0  |
L - r l

By Example 3.9 y(r) = [-12,0,11" is a generator of V'(kerC). By Example 1.9 the set of
critical points is P = {0}. Since

dm S(t) c V'(t) for all , € tR

Theorem 4.5 (ii) says that the disturbance decoupling problem is solvable on every open interval
I c l R w i t h  0 d 7 .

3.5 Controllability subspace families

In this section we will extend the concept of controllability subspaces (see wonham (19gs)) to
analytic time-varying system (A, B\ e Anx(n+m).

Deffnition 6.1 A family of subspaces V € Wo generated by V € ,A"xt is called a
controllobility subspce tamily (c.s.f.) of (A, B) e ,4"x("+n\ i!

(i) V is (.4, B)-invariant

( i i )  forevery zo € V(ro) ,  cr  € V(t r ) , ts  (  !1 ,  thereexists acontro l  u( . )eC{ such that  the
forced trajectory of i(r) = A(t)x(,) + B(t)u(r) satisfies

r( t )  € y(r)  for  a l l  t  € ( t6, t1)  and r( ro)  = ro,r ( r r )  = r r . ( 5 . 1 )

In cue of t ime-invariant systems (i i) implies (i) (see l lonham (19g5) Section 5.1).

Example 5.2 The controllablefamily S (se Section 1.5) of (/,8) € Anx(n+ml is a c.s.f. In
Example 1.9 it is shown that S is A-invariant whence it is (.4,8)-invariant. For,0 € n(ro)
and c1 € S(t1) a control u(.) e Cf; satisfying (5.1) can be constructed as foll lows: Set

i1  := O(ro,rr )cr  € S(ro)
x6 := xo -  t r  € n( to)

i  := o(r,  ro)za + 
;[ '  

o1r, r ;a1r;r1r;a,

Choose u(.) € Cf, such that
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fulfills C(11) = 0 and i(r) € S(r) for r € [ro,rrl. Thu6

'(') 
= lllf]:: + 4!(r's)'(',u,",', .*,,,

with ae(lq) = ro and c(t1) - c1 .

P ropos i t i on6 .SSupposeV( t )=y11 ;p r f o r someVeAaxEw i th r l pV ( t )=k fo ra i l , e lR .
Then V is a c.s.f. of (A, B) € r nx(tr+n) if and only if

v(r) = t hn (Dr^ - AFo)\i(BG(t)) for ail r e rR (5.2)
.>o

for some F e Anxn ,G e A^xm.

Proof: Assume that (5.2) is vatid. Then for given cs € y(ro) , cr € l/(rr) there exists by
Example 5.2 Ar e Ctr such that

i(t) = AF(t)x(t) + BG(,)n (5.3)
c(r)  € y(r)  for  r  6 [16,11] ,  c(r6)  -  cs,  c(r1)  = c,

Thuscondi t ion( i i )ofDef in i t ion5. l issat is f ied.  v is( ,4,8)- invr iants incei t is thecontrc l lable
family of the system (5.3), see Remark 1.5.11.
To prove the conver8e let F E t4mx" such that for some 1V € ,llhxr

(Dr^-  AFlv\=V N

Then V is also a c.s.f. of the sysrem

i=Art )x( t )+r( r )u(r )

Choose by Lemma 1.5.1 G e Amxn , L e A*x^ such that

B G = V  L =  t c l m ( B , V ) .

This proves ' c ' in (5,2) . For the reverse inclusion let s(l) denote the controllable family of
(5.3). clearly y(t) c n(t), and since ft(l) can be presented by the right hand side of (5.2) (sce
(f.(5.5)) the proof is complete. o

The foregoing and the following proposition are genera.lizations of the constant ca"se, s ee wonham
(1985) p.  r04.

P r o p o s i t i o n S . 4 S u p p o s e V 6 W " i s g e n e r a t e d b y y € , 4 n t [ w i t h c o n s t a n t r a n k t . I f V i s a
c.s.f. of (A,8) € ,41trx(n+n) ild

;nB(t)nVQ) = imBG(t\ for some G e Amxn

then
v(, )  = D im(Dro-,4F(r)) r (BG(r))  for  a l l ,  e tR

,20

for any F € /-x" which satisfies

(DI^ - AF)V) = v N for some lr € J4ix* (5.i )
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Proof: By Proposition 5.3 there exists an Fo € ,4-x" so that

y(,) = t im (Dr"_,4rb(,))r(rc(r))
i20

Put
v,(r) := ! im (Dro _ AFADT@G\)\

i>0

for some .F which satisfies (5.4), then V'(t) C V(l). For the reverse inclusion it is suftcient to
show that V' iB (A + B.Fs)-invariant. This is proved completely analogously to the constant
cN, see Wonham (1985) p. 105.

3.6 Noninteracting control

Consider a state space system with several outputs

t( ,)  = .a(r)c(t)+B(t)u(t)
z;(t)  = C;(t)x(t),  ieb ( 6 .1 )

whe re .4 ( . )  , 8 ( . ) ,C . ( . ) a rezxn ,nxm,p i xzma t r i ces , resp .de f i nedove r l .The res t r i c t ed
decorpling problem ( RDP ) for (6.1) is to find an F € ,4-x" and c.s.f.,s V; e W" , d € &, such
that the following conditions are satisfied for all ! € lR , d € k

y,(r) = xr:o im (Dr^ - Ar(r))r(Bci(r)) I
where G; € Anxn such that imBG;(t\ = itnB(t)nV;(t) J

C j ( , ) Y i ( , ) = 0  t o r i l i

Ci(t)ViQ) = imC;(t)

(6.3) is called the noninteraction condition and is equivalent to

v , ( r ) cnke rC / r )
i+i

(6.4) is called lhe output controllability condition and is equivalent to

V;(t) + ker Ci(r) = A"

(6.2) is referred to as the compatibilitg condition of the families V;.

(6.2)

(6.3)

(6.4)

(6.5)

(6 .6 )

Deflnition 6,1 Some families V; € W" with generator V. e Anxri (i e &) are caLled compatible
relative to (6.1) if there exist .P € ..4-x" and ff; € ,4"ix', . so that

(DI"-  AF)(V;)=U Ni  for  i  € l . ( 6 . 7  )

Lemma 6.2 Suppose V1,92,V1t\Y2 6 W* are generated by V; € /"xr with r,tnyi(t) = const.
fo ra l l l  €  lR ,  t  €  l resp .  I f thereex is t .q  € ,4 -x"  and 1y i  €  J4 ' ;x ' i  so tha t

(DIn - AF,)(Vi) = Vi Ni for i e i

then Vl and V2 are compatible.
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Proof: Let
P ; ( l )  :  lR  *  Y ; ( t ) \ y , ( r ) ny2 ( r )  i = r , 2
P 3 ( t ) : l R ' Y r ( t ) n Y 2 ( t )

denote the orthogonal projection on V;(t) \ yr(t) n yr(r) , yr(r) n V2(l), resp. Then by the
assumptions and Proposition 1.5.6 it follws that P; € ,4'x" for i e l. Thus for

F : = F r R 1 ' F 2 P 2 q F s P s C A  x n

(6.7) is satisfied. tr

Defnition O.3 Some faniliee V; e W^ , i € *, are called independcntil

vr(r)ni y, = {0} for all i e A.
i*;

Lemma 8.4 Let V; g W" be generated by t{i E ,4"x'; with r*pV;(t) = const. for all
t C IR, i € fr. If the families V; are independent and

(DI"-  AF:)(U) = V; lV;  for  i  € &,  for  some 4 €,{-x" ,  JV.€,A' ix ' ,

then V; are compatible.

Proof: Since V; are independent, there exists a Y € W" such that

IR" = vr(t) 0 ... o vl(r) O v(r) for all , e IR.

According to this decornposition we define

r(r) :
Df=r u;(r) * y(r) * tf=r 4(r)ui(r)

Since I}i have constant dimensions, F E t4^xt. Thus F satisfies (6.7). O

Using the previous lemmata we are now in a position to prove the rnain result of this section, i.e.
a characterization of the RDP which is a generalization of the constant case given in wonham
(1985) Section 9.3.

Propoaition 6.5 Suppose

f- l loc.1t)= 101

Then the RDP is solvable iff there exists c.s.f.s V; generated by V; e Anx,i of constant ranks,
i € k resp., such that for all I € IR and d e /c

Yr(,) c n ker C/t) (6.8)
i* i

and

l; * ker Ci() = n".
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Proof: The 'only if'part is immediate from the definition. To prove the 'if'part note that

by (A,B)-invriance of V; there exist ' lvi € /d'ixr such that

( D r " -  A F t ) ( V i ) = U N i , t € &

The familiee K; defined by

r,p1 := 1 ker d;(t) ,i € &
i+i

are independent. This is proved analogously to the time-invariant case, see Wonfram (1985)

p.225. Since yi(r) c rci(r), it follows that the *'s are also independent. By Lemma 6'4 they are

compatible. Application of Proposition 5.3 yields (6.2) and the proof is conplete' o
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Chapter 4

Stability, Stabilizability Robustness, and
Differential Riccati Equations

4.0 Introduction

In this chapter I study various problems concerning exponential stability oflinear time-varying
eystems of the form

i  = ,a( t ) r ( t )  , r  > 0 (0.1 )

It is well-known that if, for eah I ) 0, all eigenvalues of,4(l) ue lying in the proper open
left half complex plane, then the system (0.1) is not necessarily exponentially stable (se e.g.
IVu (1974)). Exponential stability is secured if, additionally, the parameter variation of,4(!)
is " slow enough" , see BosenDmf (1963) and Coppel (1978). However, these are qualitative
results. In ajoint paper with Owens and, Prdtzel-Wolters(1987b) we derived gudntdtatiu€ results.
This means, upper bounds for the eigenvalues and for the rate of change of .4(l) which ensure
exponential stability of (0.1) are determined. This is presented in Section l.

Ikeda, Maeda and Kodoma (f972) and (1975) studied the problem to stabilize a system of the
form

i( t )  = a1t ;"11;*  B(t )u( t \

by some state fedbmk. In llchmann arul Kem (1987\ stabilizability of (0.2a) wu characterized
under the additional msumption that (0.1) possesses an exponential dichotomy, Furthermore
Iheda, Maedo and Kodoma(1975) gave a suftcient condition so that (0.2), i.e. (0.2a) and

y(t )  = c( t ) ' ( , )  + E(t )u( t ) ,  (0.2)

is stabilizable by a deterministic state estimation feedback. In Section 2 these problems are
studied under the msumption that (0.1) possesses an exponential dichotomy.

In the remainder of thia chapter I turn to the problem of robustness of stability of (0,1). For
time-invariant linear systems there exist two fundmental approaches concerning robutsness.
One is the successful ll6-approrch introduced by Zomea(lg8l) and, Fmncis and Zamec (1983)
which is based on transforrn techniques, see Doyle ond.9fedn (l9El), Postlcthwaite, Edmuwls and
Moc Farlane (1981), ffua&emac[ (1984). It ie not clear how to extend these tchniques to the
tine-varying cue. Recently Hinrichaen and Pritchord (1986 a,b) have propoeed a state space
approach to robustness. Their problem is closely related to a wellknown problem of perturbation
theory: Determine a bound for all perturbation rnaterices A(.) euch that exponential stability
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of(0.1) is preserved ifthe generator is additively disturbed by A('):

t(t) = [,4(t) + A(,)]'(,) ,, > 0 (0.3)

See for instance Eoht (1913), Perron (1930), Ilahn (1967), Daleckii and Krein (1974), Coppel
(1978). However these bounds are conservative. Hinrichsen and Pritchard (1986 a,b) - in the

constant cue - were interested in a chcrp upper bound, that is the (complex) stability mdivs

r 6(,4) = ial{ll a llr-l (o'e) is not exponentiallv stable} (0'4)

or, if (0.1) is subjected to structured perturbations of the form L = B D C (B,C are known

scaling matrices), the s!roctured (complex) dability mdius

r 6(A;B,C) = in l { l l  D l ln* l  D€ C"xpand (0.3) is  notexponent ia l lvstable}  (0 '5)

Hinrichsen and Pritchant (1986 b) proved the one-to-one correspondence betwen r a(Al B'C)'

the norm ol the perturfution operator

tr: u(.) * [' 6 et('-'\n u1s1as
JO

and the sol%bility of the parameterized algebraic Riccati equation

A ' P +  P A -  p C ' C  -  P  B  B ' P  = 0 ,  p €  I R

These methods and results were partially generalized for time-va.rying systems by Hinrichsen,

Ilchnann and Pritchant(1987). This is presented here in Sections 3 to 8. we proceed u follows.

In Smtion 3 the group of Bohl transformations, containing Lyapunov trmsformations as a

subgroup, is introduced. A Bohl transformation applied to (0.1) m a similarity action does not

change the Bohl exponent.
In Section 4 the structural stability radius for time-varying systems is defined analogously to
(0.5). Its invariance properties are discussed.
A generalization of the perturbation operator (0.6)

tr10 : u(.) * 
/o 

c1.;o1.,r)B(s)u(s)ds (0.8)

is studied in Section 5. Its relationship to the structured stabil ity radius is partly clarif ied.

However an open problem remains.

Instead of the algebraic Riccati equation (0.7), in the time-varying setting one has to study the

parametrized difierentiol Ricmti equotion

P(r) +,4'(r)P(,) + P(,).4(,) -  pC'(t \C(t) -  P( ')B(t)B'(t)P(t) = 0' p € [t  (0.e)

In Section 6 a precise relationsship between the norm of the perturbation operator (0.8) and the

solvability of (0.9) is established. This result yields a complete generalization of the situation in

the time-invariant case.

In Section 7 the dependence of the maximal bounded Hermitian solution of (0.9) on the param-

eter p is analysed.

In Section 8 the robustness analysis is extended to nonlinear perturbations and a common Lya-

punov function for a clms of perturbed systems (0.3) is determined.

(0.6)

(0.7)
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4.L Sufficient conditions for exponential stability

Consider the homogeneous linear time-varying diferential equation

i( t )  = ,a(r)c( t ) ,  .4( . )  € Pc( lR+, e ' " )  ( l . l )

where PC(|R1, Cx") denotes the set of piecewise continuous complex n x a matrix functions
on IRa = [0,oo).

Often we will xsume that A(.) is bounded or more generally that A(.) is integmlly bounded,i,e.

. r+ l
sup / ll .4(s) ll ds < m

l € R +  J l

Le t  < ' , . >  be theusua l i nne rp roduc ton  C  , n )  1 ,  l l . l l  t heusoc ia ted  no rmand  l lA  l l  t he
induced operator norm for any linear operator A € C( C-, A-).

Deffn i t ionl . l  Thesystem(1,1) issaidtobeerponent ia l lysta6le i f  thereexistM,o>0such
that

ll O(r,ro) ll< M e-'lt-tol for all I ) rs ) 0

( "for all t > to > 0" means "for all, > ,o and all t6 ) 0')

Due to the linearity of (1.1) exponential stability can be characterized m follows, cf. lVillems
(1970) p.  10r.

Proposition 1.2 The system (2.1) is exponentially stable if and only if it is unilormly asymp-
tolicolly stable, i.e. there exists b independent of 16 such that

O ( r , r o ) l l < k  f o r a l l ! ) ! e > 0  ( r . 2 1

and

,\g ll o(t,to) ll= 0 uniformly in lo € /R+ (  1 .3 )

If,4(.) is a constant matrix it is well-known that (1.1) is exponentially stable iff the real parts
of the eigenvalues of A are lying in the open left half plane. For time-varying systems, even if
they are analytic and periodic, exponential stability does neither imply

n e o @ ( t ) )  c  C - = { s €  C l . 0 e s < 0 }  f o r a l l t e  I R 1

nor does for some a > 0 the condition

guarante exponential rt.bility: 

o('a(t)) < -a for all t € lR+

Example 1.3 (i) Iloppenstcedl (1966), p. 3: Let

I  eost  - ' inr  I  [  - l  -s  I  I  cosr  s inr  IA ( ' � ) =  |  
-

,  : i n t  cos l  I  [  0  - 1  
]  [  

- s i n l  cos l  . l
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Then r(A(t)) - 
{-r} for all I € IR+ and it can be easily verified that a fundamental matlix is

given by

I  er(cost  *  *s inr) ,  e-3t(cost  -  !s in!)
^ ( t J  =  

[  e . i e i n t  -  j cos t i ,  e -3 t i s i n r+  f cos t )

Thus i(t) = A(t)c(t) is not exponentially etable.

(ii) llzu (197a) : Let

/(,) = [ +"""":$ 
""" fi"Itf',r,r, ]

Then a(,a(t)) = {2, -13} for all t € IR1 and a fundmental matrix is given by

X( t )  =

I  l c - t ( c q 6 r * 3 a i n 6 t ) + * e - t 0 ! ( c q 6 t - 3 e i n 6 r )  l c - t ( c o s 6 t + 3 s i n 6 r )  - r € - l o r ( c 6 6 1  - 3 s i n 6 l )  l

[ ! c - ' ( f c c O r - e i n 6 r i  
- l e - t 0 i ( 3 c o e 6 r + s i n 6 r )  [ e - ' ( 3 c c 6 t - e i n 6 t ) * [ e - r 0 ' ( 3 c o e 6 t + s i n 6 t ) l

since o(.,.) satisfies (1.2) md (1.3) the system (1.1) is exponentially stable by Proposition 1.2,

The system presented in Example 1.3 (i) is in some sense "too fmt" in order that condition

no(A(t)) ( -1 implies exponential stability. Various usumptions on the pilameter variation

of,,l(.) ue known, such that if 6 > 0 is sufrciently small then anyone of the following conditions

guarantes exponential stability of (1.1):

l l ,i(r) ll< a . for all t) 0 (Rosenbrccl (1963)) (1.4)

l l  A(h)  -  / ( t ' )  l lS d l l  12 -  t r  l l  for  a l l  11, t2 )  0 (doppet (1978) '  p.5)  (1.5)

As a consequence of the following Proposition 1.4 (iii), (1.6) implies exponential stability if 6 is

small enough. (1.6) is less restrictive than a similar condition \n Kreisselmeier (1985)' Lemma

3:
lim sup ll A(t + r) -.4(r) ll= 0 for all lr > 0
t - -  o < ' < , ' '

Furthermore (1.7) is less restrictive than the criterium in Xmuse and Ktmar (1986) which is

sup ll .4(r + ') - .4(,) ll< d
o<'Sh

.4(.) is continuou., ll i(.) ll is uniformly bounded 
'l

and there exists T ) 0 such that l
l,?*t ll ,itr) ll d, < 6 ? for all to ) o. )

(  1 . 6 )

( r . r . ,

there exists a To < m such that 
I

L';*t ll ,i(r) ll dt < 6r for all 16 >0,r >To I
( 1 .8 )



Krcvse snd l(umar (1986) present a very lengthy proof to show that (f.8) implies exponential
stability of (1.1) if d is suffrciently small and moreover A(.) satisfiee:

Re o(A(t) )< -c for  some o > 0,  for  a l l ,  € IR+ 
l
I

l l  a( . )  l l  and l l  i1 .1 1;  are bounded 
I  , t . ry
I

L(.) is continuou. J

ln llchmann, Owens and Pr,\tzel-Wolters (1987b) we proved in a short way that if the weakened
Krause md Kumar condition (1.7) is msuned, then exponential atability cm be derived by a
slightly nodification of fiosenbmt'a (1963) prmf.

The disadvantage of (1.4) - (1.7) is that they are qualitative conditiona in the sense that 6 must
be small enough. We can improve the results and give quantitative bounds.

Proposition 1.4 Suppose ,4(.) e PC(IR+, Cx') satisfies for some a,M > O and all t ) 0

l l e ( t )  l l  s  u
a ( A ( t ) )  c  O - " = { s €  C l R e s < - a }

Then the system
i ( t ) = A ( t ) e ( t ) ,  , > 0  ( 1 . 1 0 )

is exponentially stable ifone ofthe following conditions holds true for all I ) 0:

( i )  -a < -4M

(ii) A(.) is piecewise differentiable and

,  t  n4L-2

l lA( ' )  l ls  6 <; -  ,M-c-

( i i i )  Fo rsome  t  >  0 ,ae  (0 ,  1 )  anda>2Mq*  ?1 "e1

quq l l  A( ,  + r )  - ,a(r )  l l<  6 < n"- ' (o  -2t r [qt  
?. .0,0SrS*

( iv)  a > n-  1 and forsome ?€ (0.1)

, ,  A ( ,  +  h )  -  A ( t \  . .

i " rB l l  
- f f  l l !  d  <  21 " - ' ( o  - 2Mq+  ( z  -  l ) l og4 )

Proof: We will use the following important inequality due to Coppel (1978):

l f  e/ ( t ) "  11.  1 l {yt  e l "+a'  for  a l t  a, r  )  0 and for  a l l  e e (0,2M) (1.11)

For fixed to € IR+ (1.10) can be rewritten in the form

t( t )  = A(to)r( t )+[ .a( t ) - .4( tu) ] r ( t ) ,  t  > 0

and for c(16) = co € lRn its solution is given by

r(l) = sn(ro11r-r.1 h I [.' 2e$ft-4 [A(s] - e(ro)lr(r)a,
r a n

I
I

t
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Hence by (1.11)

ll r(l) ll < K.€(-"+"Xr-to) ll to ll
l l

+x" 
JroeG"+'l(t-') 

ll ,4(s) - /(to) ll ll o(s) ll ds for all t ) lo

where 
.2M ,- - ,

x6  : =  ( - r ' -

Multiplying this inequality by e(o-c)t and applying Gronwall's Lemna yields

ll e("-4''(r) ll( x" e(o-")to ll c6 ll .erp[r. 
/' ll o(") - A(tu) ll ds]

J to

Thus

l l  , ( r ) l l<  n ,exp l ( -a+€X, - to ) *^ .  / ' l l  ,a (s ) - ,a ( rs )  l l  ds l  l l  r s l l  fo ra l l t> ls  ( l ' 12)
J to

Now we prove the statements (i)' (iv).

( i ) :S i nce l f  A ( s ) - , a ( f u ) l l <2Mfo ta l l s , t s )0 ,  ( 1 .12 ) i np l i es fo ree (O ,2M)andsome / r>0 :

ll "(r) ll < K.el-d+'+x'2Ml(t-'o) ll t(,o) ll

! n,21,+*,zu-4M-^l(r-ro) ll r(ro) ll .

The function
l : ( 0 , 2 M 1  - P

e  r  € * x " 2 M - 4 M - h

is continuous nd f(2M\ = -h. Thus there exists € e(l'2Mlsuch that.f(e) < 0'

(ii): Consider

n(r) := / -  eAr( t t 'eAt t \ ,ds (1.13)
Jo

which solves
n(r),A(,) + d"(,)R(,) = -/"

and satisfies for some c1 ' c2 ) 0

0 < clln < R(l) ! c2I" for all I ) 0'

The derivative of .B(') is given bY

rttrl = /- rA'(')"[a(r)ri(t) * i'p611"eu\"as (1'1a)
Jo

(cl. Brukett (1970) pp. 203 and 206) . Now we show that

V(r , t ) := , r  n1t1,

is a Lyapunov function of i(t) = ,{(,)t(')' Its time derivative along any solution is:

t ^

f iv {x1t\, t1 = xI (t l l -1"+ R(t) lc(t).

We have to show that
i1r; < r" {or all ! ) 0. (1.15)



Applying Coppel's inequality to (f.ta) and (1.13) yields

ll n(,) ll < lo* {Ayat "2(-d+.),ds.2 ll n(r) ll ll i(,) ll

="f-;':-:"""1i":'-::':o^"'  e  ' 21 -a+  e ) '

and thue (f.15) holds iffor some e € (0,o)

6 < z .1L-yt"-r)(a - e)2 =: e(e).

It is euily verified, that g(.) achieves its muimum on (0,a) at es = ISo and

2a1^-2g(ro) = 
itlr)aFf;G:Jt.

( i i i ) :  By (f .12) we haveforevery l€ IN, * ) 0 and 1 € [ro+l l ,ro+(t+ t)* l :

ll c(t) ll = K. e1(-to-tht ll r(ro + lA) ll

1 Ii!,',',-^^',r) ; fi il[i'i,--'i;,',io' "
:
5 6rar "r(r-io) ll "(ro) ll

w h e r e  7 : = - a * € + K . . 5 .
Thus

l l  "(r) l ls r.  erori .+a(t-to) l l  c(ro) l l .
a n d s i n c e ( t - t o ) > Z ' *

ll r(r) lls r. e(tst-+'xt-ro1 ll r(ro) ll .
It remains to determine e <2M and [ > 0 such that

l o 8 ^ t  
+  " .  o[  ' - -

which is equivalent to

o < l c f ( o - € - l o 8 ^ . )
x . k

However, for every € € (0,a) there exists ft > 0 such that

losx,
a - € - - ; - > 0

and thus (1.10) ie exponentially stable for every A(.) which satisfies

6up  l l  , { ( r+ r ) - , 4 ( r )  l l < l  <  1 (o -€ -  l oq^ . )
o3 ' ! r '  

-  -K . ' -  -  
k  '

Now (iii) follows with 7 = fi'.
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(iv): Assume

tt 4(l i]:L0) tt< a" h

for every [ > 0. Then by (1.12) we have

ll ,(r) ll S r" s(-o*")(r-ro)+". JT-'o r,'c,^ 
ll ,(ro) ll

3 r. s(c-o+^.f'6)C-.0) ll r(ro) ll .

and
ll ,(l) ll< K. ea(r-ro) ll r(to) ll for t € lro,ro + l]

w h e r e ' y  = e - a * i x , 6 ,
If , e lro + t,to + | + l], I € IN we conclude u in the proof of (iii)

ll t(r) ll< x" e(be "+tltt-tol ll t(to) ll

Now logr. * f < 0 if

6 < 2(h)"-1 (a- e - logl?s Y-r;

and  ( i v ) f o l l owsw i t h l=  f i .  
D

Note that the proof of (iii) presents a short proof of Lemma 3 in Kreisselmeier (1985)'

If additional information on the exponential decay of et(t)" is known the bounds in Thmrem

1.4 can be simplified as follows.

P ropoa i t i on  1 .6  Suppose .4 ( ' ) €PC( IR+ ,  Cx " ) sa t i s f i es fo r some  M,K ,u>  0anda l l t >0

l lA( ' )  l l  <  M
ll e/rtl" 11 3 K "-."

Then the system
i ( t ) = . a ( t ) r ( t ) ,  , > 0

is exponentially stable if one of the following conditions holds true for all | ) 0:

( i )  M  < t r * .
(ii) A(.) ispiecewise di{Ierentiableand ll /(r) llS 6 < 2(ft)'�.

(iii) There exists h > 0 such that

s u p  l l A ( t + r ) - . 4 ( r ) l l S  J  <  3 - ;  Yo<rSh

(iu) supr,>o ll 4ll4}-41'!) ll < 6 < 2* - 285.

Proof: (i): Since ll e(") - A(to) llS 2M' (r.12) implies

l l  " ( r )  l l< K e-u( t - tot+K2Mtt- to)  l l  c6 l l

which proves the statement.
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(ii): Similarly to the proof of Proposition 1.4 (ii) one obtains

ll rt(,) ll < !o- xz e-z"as.2 ll a(.) ll ll i(t) ll

< 2IK2 [* "-z-"4"12.5-  

* ,  - t o= 
bro

Since by assumption e ,= $t < I one concludes

t1x1  =  x ' g , a+RA lx *x ' i t a  =  x ' l - I ^+ l i l l c  a  ( e  - 1 ) l l  c l l ' �

This conpletes the proof.

(iii): For t € [ro, to + h], (1.r2) implie

,l c(r) llS I( e(-u+'(6xt-to) ll o(to) ll

Hence for I € IN and I e lto + lh,to+ (l + l)hl

ll r(l) ll S v "t(-to-tht ll r(ro + fh) ll

< K e1(.-to-tht..ti ear ll c(ro + (t _ r)h) ll
= K2 e1(t-t.-tt-r)r) ll z(ro + (t _ 1)h) ll

I Kt+r e1(t-i") ll ,(ro) ll

where 7 - -u I K6. Since (t - to) > Z'h

ll '(r) ll < n €z'rotr(+1(t-ro) ll ('o) ll

< 1, "tbf!+r)tr-ro) 11 c(ro) ll

This proves (iii).

(iv): If t € lto,to + l] then (1.12) yields

ll '(r) ll S K erpl-o(I- ,o) + fi 
lo'-'o 

oodhl ll r(16) ll

< x €(_.+K*Xr_h) l l  , ( ro)  l l

Fo r  I  €  [ t s+ l , t o+ ( r+  l ) ] ,  I  €  lN  weconc lude  u  i n  ( i i i )

l l  ' ( r )  l l  < Kt+ '  eG-+K*t( t -h)  l l  ' ( ro)  l l

I /f s(t"rlr-.+rtx.-to) ll r(ro) ll

which proves (iv). o

The previous propositions show that there is m interplay between the bound of the real parts

of the eigenvaluee of A(t) and the parameter variation of A(.) . However, for these sufficicnt

condition the assumption that A(.) is bounded is essential. Only few results are known to have

sufhcient conditions for exponential stability if A(.) is unbounded. In the remainder of this

section we will present some results where A(.) is not bounded but of the special structure

A(t) = A - l(t)D where fr(') is a scalar function.
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Proposition 1.6 Suppose A,D e Cax" and &(') e PC(IR+'IR+) is tnonoionically nondectem-
ing with liml*- ft(l) = o. Then the following statements are equivalent:

( i )  a ( D ) c  Q = { s e  C l . R e s > 0 }

(ii) liml-- Re ),;(t) -- -o for i € &
where )i(l) , i 6 s, denote the eigenvalues of A - h()D.

(iii) the system
r(,) = (A-fr(r)D)c(r), r > 0 (  1 . r6 )

is arbitnry Jast exponentially stable, i.e. for some o(') e PC(l\,IR.r) monotonically
non decreaing with limrr- ar(t) = o and some M > 0 the transition matrix of (1.16)
satisfies

ll O(t,to) ll1 M e-'kl(-to) for all , > to > 0.

Proof: (i) + (ii): Select [1 > 0 and ? € Gr"( C) such that

a n d  P e I ;  >  1 , 6 i  €  { 0 , 1 )

coincide and by Gerschgorin's Circle Theorem (see e.g. Nolle and Daniel (1977 )) we have

o(A+ b( t ) )  c  Uci ( , )

where

f r ' o '  l
|  

" .  0  |
"(e,D)"-r = I I

l o  ' " - ' l
L  ) " . l

for i € n. The spectrum of A - [(r), and

A + btl:= r Ar-t + (-qll)r htDr-l'  
lc1

C;(r) := {p(r) . " ' t -? ); + a;; - r(,) I 3 l a r ; l + f o r ) ,  i e n .

Since Re )i ) I we conclude

1im Xe P(l) = -oo

for every p(t) e Ci(t), whence (i i) follows.

(i i) + (i): Assume there is an eigenvalue i; of D with .Re i; < 0. Then the real part of

the corresponding eigenvalue [(!)I; of ft( l)D either remains 0 or tends to -@ as I * m'

Thus by Gerschgorin's Theorem there exists l '  > 0 such that at least for one l;(ft(t)) we have

R€ )i(e(r)) ) 1V > -oo for all t > t ' . This contradicts (i i).

( i) + (i i i): Let P = Pr > 0 and Q = Qr > 0 such th^t DrP + P D = 0. It is proved that

V(r(t)) := c(t)rPc(t) is a Lyapunov function for (1.16). Ditrerentiation yields

v1'1r;1 = x(t)r lA' -  (&(,) -  &(/))r l"  PxQ\ + x(t)r PIA'- (k(t) -  *(/)) l l r( t)
= x(t)rlA'r P + P A'lz(t) - (,t(t) - e(,'))r(t)r8r(t)

\.
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wnete
A'  := A- k( t ' )D.

Choose l'suffciently big such that for some p1 > 0

xrlArP + P A'la < -p, ll " ll2.

Since 91 ll z llz< xTQx for some qr > 0 one obtains

v('(0) < -trr + 1t1t) - k(r'))qrl ll '(r) ll' for all I 2 I'

This proves (iii).

(iii) + (i): Since limlo-- o(ts) - oo one may as6ume that /(.) = O, se a disturbance result
in Coppel (1978\ p.2.
Now (i) follows since if some eigenvalue i of D satisfies Re i < O then i(t) = -f(r)Dc(r) is
unstable. o

If the conditions on A and D are rela:<ed the systern (1.16) is, in general, not arbitrary fut
exponentially stable, however it is exponentially stable. To prove this regult the following "in-

terconnections lemma" is neded.

Lemma 1.7 (Interconnections lemma)
Consider the interconnected system

rlrr = [ 4'! ') 4,\ ' l l ,rn. :t t= [a r t r i  e . i r i J ' t t t '  '>o  ( r ' r7 )

where 41,,42, .43, Ai i le piecewise continuous complex txt , tx(n-l) ,(n-Z) xt , (n-t) x (a-t),
resp. natrix functions and

ll ez(t) l l< or, l l  A3(t) l ls ca for all , € IR+ and some a2,a3 ) 0.

Morover we assume for the transition matrices generated by ,41 and Aa

l l  O1(t 's) l l  < Mt "-^t ' - ' )

l l  O a ( t , c ) l l  <  M n " ' " t ' - 4  f o r l ) s ) 0

resp.,forsomeMl,Ma,,\ ,e>0.Thenif , \>a+€-l(Ml Mao2as) theinterconnectedsystemis
exponentially stable with decay -i. = -e - (e - \)-1(M1Maa2a3).

Proof: Let z1(t) € d,z2(l) € C-', then the following integral equations are equivalent to
(1 .17 )

rr( r )  = 01(r , ro)cr(ro)  + l , ' "  01(r ,s)42(s)c2(s)dc

x2(t) = O{(,,ro)c2(ro) + f,i" Oa(r,s)ft(s)r1(s)ds

Now

ll "z(r) ll i Ma e-.(-to\ ll rr(,0) ll * 
l:" 

,, e-"t'-,tazlMr "-r(r-t6)

ll 'r(ro) ll * t'" 
,' "-\Q-rto, ll x2ft) ll drld.s
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and

lle,tz2(t)lli Mt "no ll rr(ro) ll + 
MoTMtl"na,o - €.,o1 ll ,r(ro) ll

+  K  f t  "o '  [ "  , *  l l r r ( r ) l ld rds
Jto Jto

where 6 := e - ) < 0 by assumption, K := MrM&zat .
Integration by parts gives 

[, "r" ," e^, ll x2(r) ll dr ds

= [-t "6r I;oe^, ll ,?(r) ll dr ll" - Ilo 6-t "t" . e], ll z2(r) ll ds

- 6-1 e6t Ito er' ll r2(r) ll dr - Il" A-t e"" ll x2(s) ll ds

Applying this to the above inequality yields

l l e'tx2(t) ll S e""lMnll,,(ro) ll -Y+*11,,(ro) ll l - + l:"e" ll r,(s) ll ds

and by Gronwall's inequality one obtains

l l  ' r(r) l l  !  lMrl l  r2(1)l l  -6-rMlMaas l l  ' r(ro) l l l€-4'- 'o) ,- f( t- to)

Setting It = max {Mz,-6-r M1Maa3} and choosing the muimum norm we have

ll rz(t) ll ! It' e-^(t-'o) ll r(to) ll for I ) ls

Consider now r1(l), the solution of

i 1 ( t )  = , 4 1 ( l ) c 1 ( t )  +  1 2 ( , ) o 2 ( , )

which satisfies

l l  rr(r) l l  < Mre-)(-to1l l  r ,(ro) I l  + [ '  ure.\^(- ' la2y"-hQ-ts\ l l  r(16)l l  ds
J to

Thus

l l  e ) to1( t ) l l  S  Mr" r ' " l l  r r ( ro ) l l  +AJ! tp tx -n \ '+ ' r 'o -€ ) !o l  l l  r ( ro ) l l

and

l l  ' , ( r ) l l  s  [M1 l l  11( t6 )u-u :az ! t '  l l  x ( ro ) l l l e - r ( ' -h t rMJaz i  l l  r ( ,o ) l l  e -^ ( t - to )"  
) _ h  

i l * \ ' u / i l r -  '  
) _ h ' , - \ - u l i l "

F ina l l y )> [g i ves

l l ' r ( r )  l l< I i '  e-h( t - 'o)  l l ' ( to)  l l

for some Ii > 0 and this completes the proof.

Proposition 1.8 (High gain feedback)
Suppose .4, D € 8x" satisfy

(i) there exist k',€ ) 0 such that

o(A - kD) C C-' for all * > ft'
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(ii) if 0 € o(D) then 0 is semisimple, i.e. all corresponding blocks in the Jordan canonical form
are of size 1 x 1.

Then the system

n Q ) = I A - t ( r ) D l c ( r ) , , > 0
isexponentiallystableforeverypiecewisecontinuous k(.): lR.r + IR+ with limr-- rt(t) = o.

Proof: The invariance of exponential stability with respect to constant coordinate transfor-
mations together with (ii) implies that we can msume D to be of the form

)r 6r

" = [ t  3 ] , * n * " n =

Then

A - k(t)D =

and choose S e Gl"-{ C) such that

| " * '
I

e{ '= s ars-r = 
|
L

Ar - [(r)A
A3

5,+t

, ) i l 0 , 6 i € { 0 , 1 }

,  6 j  €  { 0 ,1 } .

" .  6 t t

lr

i : l

d"-r
)n

For r > 0 and T = diag(a2a1,..., a") € Gr"-.(n) one obtains

[ {, "J ] t, 
- nr,rrr [ il' ,"r1,-, ] =

Ar - [( ,)A ,ar(rST)-t I
rST At rAr4r-t J

T At1'I:-r = t t i ' d " - t

t"

For r sufficiently small and ai suitable chosen Gerschgorin'sTheorem together with (i) implies

n€ ) i ( k ( t ) )+  - €  6  t  -  oo ,  d  € !

and

n " , \ i  <  - 9 e  f o r  i  =  l *  1 , . . . , n
4

Now the result follows by Proposition 1.6 and Lemma 1.7. O

The previous proposition was also proved by Mdrtensson (1986), However the proof given
here, resp. in llchmann, Ouens an l Prdtzel-Wolters (1987a), wu found independently and the
presentation is completely different.



4.2 Stabilizability of systems with exponential dichotomy

In this section it is uumed that the linear differential equation

i ( t)  = A(t) ' (r) ,A(r) € PC(IR+,1R"'") (2.r)

posoesses an exponential dichotomy, i.e. for some fundamental matrix X(.) of (2.1) there exist

K ,L ,a ,P  )  0  such tha t

(2.2)

where P1 € Clx" is a projection, i.e. Prz = P1, and P2 := Io - Pt. The first and the second

inequality in (2.2) say that at each time the state space splits into the direct sum of two subspaces

such that the free trajectories starting in one subspme are exponentially decaying whereas the

trajectories starting in the other subspace are exponentially increming. The third condition

in (2.2) means that the angular distance betwen the subspaces Vr(r) = X(I)f iIR" and

Vz(t) = 111;prp" cannot become arbitrary small under a variation of l. More precisely, there

exists some c > 0 such that

i n l { l l  u1( t ) -  q ( t )  l l  l o i ( , )  €  4 ( t ) ,  l l  u ; ( t )  l l=  I , i=  1 ,2 }  >  c  fo ra l l  I  )  0

(This is proved in Dalechii and Krein (197a) p. 163)

Re mark 2.1 The conditions (2.2) are eouinlent to

l l  x(t)P1cs l l  < I i  e-o(t-!)  l l  x(s)Prro l l  for t  )  s I
l l  X(r)P2rs l l  S L e-?( '- t t  l l  X(s)P2cs l l  for s > t )
l l  x ( r ) P r x - t ( , ) l l  s  u  f o r r ) 0 . f

( 2 .3 )

for some lit, Lt > 0 (see Coppel (1978) p.11).
Using this fact it is immediate from Remark 1.3.2 that the adjoint system of (2.1) possesses an
exponential dichotomy of the form

l l  X(r)P1X-l(s) l l  < 1( 'e-"(r- ' )  for ,  > s \
l l  X ( r )PzX- t (s )  l l  <  L '  e -9G- t )  fo r  s  >  t  J

ll X"(t)P[xs ll 5 ; e-"('-,) ll X"(s)P{xs ll for t ) s 
'l

ll X.(t)Pr"o6 ll < Ii e-P(t-n ll X"(s)P,"rs ll for s > t I
l l  x ' 1 r ; r , r 7 6 " - ' , t \ l l  <  M  f o r t ) 0 J

( 2 .4 )

for some L, R > o.

In the following we wil l use the notation of Section 1.2 and split the vector space X(.)lR" of

fre motions into

x( . )n"  = Yr( . )0 Yr( . )
and the projections associated with each subspace are given by

4( t )  =  x ( t )4x- r ( t )  , i  =  r ,2

With respect to the control system

t(r) = /(,) '(,) + a(,)u(,)

1 1 0

(2 .51



where .4(.) € PC(IR+,m"x") and B(.) € Pc(ltt+,lR"x-) we wil l analyse the following

Stabil ization Problem: (2.6)

Under which (necessary and) sufficient conditions does exist a state feedback ,F(.) € Pd(lR+,lR-x")
such that the closed lmp system of (2,5)

i ( t ) = ( A + B r x , ) ' ( r ) , , > 0 (2 .7 )

is exponentially stable. If a feedback exists, how can it be constructed?

Two ideu are essential to answer these questions: There is a result by Coppel(1978) which says
that every system (2.1) of exponential dichotomy can be transformed by a Lyapunov transfor-
mation into a disconnected system

o ( , ) = [ 4 , ( , )  .  . 9 . l , , , , . , > o' ' - [ o  a r f t l ] " " "

The second idea is the concept of controllabil i ty into resp. reconstructibil i ty wrt subspaces
introduced in Sections 1.2 and 1.3.

S u p p o s e ( 2 . 5 ) i s u n i f o r m l y c o m p l e t e l y c o n t r o l l a b l e i n t o V l , i . e ,  t h e r e e x i s t a , a , 6 > 0 s u c h t h a t

a I^ < W2(t,t * o) < b I* on P2r(r)m" for all r e IR1 (2.8)

In order to solve the problem we have to introduce

wr1t,t  + o1 := X(t)Pz [ '+'  11-'1"1n1"18r1s;x-r '1s1e-2d'(t- ' ' tds P{ xr(t)

for some a' > a ,
Thus

a e-2od' In S w2(t,t + o) < b e2., ' I.

and (see Coppel(1971) p. 4l)

b - re -2dd '  In  <  w l r ( t , t  +  o )  <  a - re2" " '  In

Now we can state the main result

Proposition 2.2 Suppose (2.8) and for some c > 0

l l  Pl(,)B(,xPr(,)B(,))" l l< c

F@ = -; Br e)w;t (t , t  + o\p2(t)

on P2T(r)lR" for all , € IR+

on P2(|)IR" for all t € lR+ (2.9)

f o r a l l l € l R a ( 2 .10 )

Then the transition matrix l[p(.,.) of the closed loop system (2.7) with respect to the fedback

satisfies for some ff' > 0

l l  op( t ,s )  l l<  1 ' " - " t t - ' t

l l l

f o r a l l l ) s ) 0 .



Proof: UseaLyapunovtransformation,se Coppel(I979)Lecture5,totransformthesystem
(2.5) by a simila.rity action into the form

g;[] 
]* ' ,  

(2 r l)

Then

[ ;lliJ = [ ̂ 'J" ^,1,, ] [ ;:[l]] -
with fundarnental matrix

x(,) = 
[ 
"b,', 

",0,,, ]

w "1 t , t+ " ,= [3  v ,u , l+o \
where

v2(t,r + o) = ['*' o"1r,"1arg)B[alp,s\e-ta'(t-)4".

The feedback law becones

u(,) = r(,)x(,) = -|  o[ plv;,(t , t  + o)cz(t)

md the closed loop system is of the form

i  (r) = ,41(r)r ,Al - 
|  

nr4nle\V;t(t , t  * o)rz(,) (2.12)
1 -

nz1) = lar(t\ - i 
B2Q)B|Q\v;t(t,t + o)lxz(t).

Ibeda, Maeda and Kodoma (1975), Theorem 3.1, proved that the fre motions of (2.12) are
uniformly asymptotically bounded, more precisely:

l l  oz(t) l lS cr e-a'( ' - ' )  l l  rz(,) l l  for I  )  s ) 0 (2.13)

for some c1 > 0.
(2.12) is equivalent to

r1 ( l )  -  01( t ,s ) r , t r )  -  I  / '  o r ( , , r )Br ( r )B t (  av ; t ( r , r  +  o \x2( r )d r  (2 .14)

Let  c2 :=  |  I (  ca- rc1  e2oa '  a \d  app ly  (2 .2 ) ,  (2 .10) ,  (2 .9 )  and (2 .13)  to  (2 .14) .  Then

l l  ' r(r) I l  < r i  e-"( '- t  l l  "r(") l l  +", [ '  r  "-att-r"-atf t-s\ l l  rr(s) l l  dr. (2.15)
J t

Because a' > a we obtain

l l  , r(r) l l  < I i  e-o(t-st l l  11(s) l l  1---93-1"-"t ' -") -  €-o'(r- ' ) l  l l  rr(") l l

S cs e-a(t-r) i l l  ' r(") l l  +( l  -  €("-" '(1-4) l l  ' r(r) l l l  (2.16)

S cs e-"(r-,)  f l l  rr(r) l l  + l l  rr(s) l l l

where ca := nar {I(,;|a} . Finally, the result follows by (2.13) and (2.16). tr

For a bounded system (2.5) it can be shown that uniform complete controllability into V1 is also
n eces sary for stabilizability.
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Propoaition 2.3 Suppoee (2.5) is bounded, i.e. A(.) and B(.) ae uniformly bounded in t .
Then there exists a bounded F(.) such that the closed loop syetem (2.7) is exponentially stable
if and only if (2.5) is uniformly completely controllable into V1.

Proof: Cleuly the feedbmk given in Proposition 2.2 is bounded if (2.5) is bounded and
uniformly completely controllable into v1. To prove the converse note that the boundedness of
(2.5) inplies the upper bounded in (2.8), see Renark 1.2.9(i). The lower bound is proved in the
same way * in lkeda, Maeda and, Kodoma (1972\, the necessity prt of Thorem 3. o

The opposite problem of (2.6) is treated in the following

Anti - stabilization problem : (2.1 7)

Under which (necessary md) suflicient conditions dcs exists a state fedback r'(.) € PC(IR+, A- x" 
)

such that (2.7) is completelg exponentiallg anstable, i.e.

ll Op(t,s) ll< L' e'p$-t\ for all s ) I and some L,,A > O,

where Op(.,.) denotes the trmsition matrix of (2.7). This mean6 every solution of the closed
lmp eysten is bounded from below by an exponentially growing function.

Deflnition 2.4 The system (2,5) ie said to be uniJormlg completely rcachableJrom }]2 if there
exist a. at.6' > 0 such that

a ' I ^<Y1 ( t - o , t ) <U In  onP f ( r ) n " ,  f o ra l l  t )  o (2 .18 )

Using the matrix

- t t
i l1t - ",t1 t= X Q\P, 

J,_" 
X-r1s;f(s;n"1s1e-ze'(t-r\ 11 -tr 1s7as ff Xr 1t) for I ) o

and some p'> B one obtains the following result.

Proposition 2.6 Suppore (2.18) and for some c > 0

ll Pr(r)B(r)(Pr(r)B(r))r ll< c f o r a l l l ) a (2 .19 )

Then every fundarnental matrix Xp(.) of the closed loop system (2.2) with respect to the feed-
back

r( , )  = 
;  

Br ( ) i ' l t  ( t  -  o, t \p1(t )

satisfies for some .L' > 0

fl Xp(t)rs ll< L' e-Pb-tl ll Xr(s)co ll for alt s / t ) o, ro e R" (2.20)

Proof: Suppose (2.5) is of the forrn (2.11). Then

t 1 t -o , t1= [ " ' J , l  3 ]

h$) -- 
l:_, 

o1(r, s)41(s)Bir(B)oJ(,,s)e-2p'(t-')ds
where

l l 3



Application of the fedback

yields

r ( , )  = ; [ "i(') B] = irrl.l",-,r,1, or;llil l'I
tr(l) = ta,(r)+ irr(,)Blf(r)yr-r(r)l 'r(r)
ir(t) = A2(t)x2(t) + 

; 
B"Q)BTQ)l;1(,)'1(,)

Ikeda, Maeda anrl Kodoma (1975) Theorem 3.3 have proved that

ll rr(r) ll S L1 e-e'("-t1 ll "r(") ll for all s ) r ) a (2.22\

and some tr1 > 0 . (2.21) yields

x2Q) = a2Q,s)x,(q + 
I: 

oz{r,r)} B.F;B{(r)i';l(r)x{r)ilr

Taking norms and applying (2.2b), (2.19) and (2.22\ gives for some -12 ) 0

l l  'z(r) lf < L2e-F(r-tt l l  ,z(s) l l  + l" ' 
tr"-ot,-,t j" 11 v;'1'; l l  Lte-p'(,-,th l l  'r(r) l l

(2.18) yields yr-t(t) S I s2o9'. 51n"" p' - p > 0, we conclude

l l  r r ( r )  l l  s  L2e-e(t - t \  l l  r r ( " )  l l  +L [ '  , t -o*o 'v*pt-P'"ar  l lz{s) l l

L= L2 e-B{s-t) l l  ,r(") l l  +v}vl"-o't"-,) - e-d(,-r)l l l  ,r(r) l l

S L2 s-9{"-t'1 ll rz(r) ll

(2.2r)

(2.23\

for all s ) t ) a. Now by (2.22) and (2.23) the result follows for L' := max lLulzl,. cl

Similar u in Proposition 2.3, for bounded systems one can prove that uniform complete reach-
ability from V2 is necessary and sufficient for anti-stabilization by a bounded feedback.

Proposition 2.6 Suppose the system (2.5) is bounded. Then there exists a bounded F(.)
such that every fundamental solution of the closed lmp system (2.7) satisfies (2.20) iff (2.5) is
uniformly completely reachable from V2.

Proof: Suficiency follows from Proposition 2.5. To prove the necessity part note that
boundedness of .4(') and B(.) implies a uniform upper bound for Y1(t - o,t). This can be shown
similar to Remark 1.2.9(i). The lower bound for Y1(t - o,t) is proved analogously to lheda,
Maeda and Kodoma(1972\ Theorem 3,4. o

As an application of the previous results, in the remainder of this section we will treat the prob-
lem of stabilization by feedback of determinsitic state estimation. This problem was analysed
for time-varying systems by lkeda, Maeda and Kodoma (1975).
Here we will show how controllability and observability assumptions can be relaxed if systems
of exponential dichotomy are considered.
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(2.24)

and assume that i(t) = A(t)c(t) posse8reB an exponential dichotony u in (2.2) and A(.) e
PC(IR+,lR"x-) , C(.) € PC(IR+,lR, x") , D(.) € PC(IR+,ntPx-) .
Following Jolrnaon (1969) the n-dimensiond deterministic state eetimation ehould be of the form

2(t) = (A -.Fc)(r)z(t) + (8 - IrD)(t)(t) + Ir(t)y(t) (2.25)

where the dcign parameter tr(.) € PC(IR+,lR"xp) h6 to stabilize the homogeneous equation

e(4 = (A - Irc)(t)e(t) , e(t) := r(t) - z(t\ (2.26)

Applying the statenents of Remak 2.1 and Proposition 1.3.7 concerning the adjoint system to
Propooition 2.5 yields the following corolluy.

Corollary 2.7 Suppose the system (2.24) is uniformly completely raonstructible wrt Vf md

ll P{(t) cr(t)(Pl (4c"(r))? ll< c for all ! } a

and some c > 0. Then there exists a compensator I1(.) e Pc([a,o),Ruxe) such that the
tramition matrix Os(.,.) of (2.26) satisfies

l l  Og ( t , c ) l l <Le -P t t - ' l  f o ra l l  t 2 r ) a  udso rne  i >0 .

The state estimate z(.) given by (2.25) will now be subetituted for the real state r(.) into the
control law

u(, )=r( r ) ' ( r )+0(r )
After a straightforward calculation one gets for the closed lmp system

[ ;[[li J = [',1,.3,u o(,)- "(;2{,1?,,,,",,, ] [ ;gl ]. [ 3[;i ]*"
y(t)  = tc(t) ,D(,) f( , ) t [ : l : ] l -D(r)u(r)  (2.27)

L - \ - /  I

Using the previous resulte, sufhcient conditions can be derived to ensure exponential stability
of the homogeneous part of (2.27).

Propoaition 2.8 Suppoee the system (2.24) is uniformly completely controllable into V1 and
uniformly completely reconstructible wrt Vf with controllability and reconstructibility intervals
of length a > 0. Moreover the following inequalities

ll Pr(t)8(,) (Pr(t)B(t))" ll < c for all, > 0

ll Pr(r)c"(rxP;(,)d"(r))r ll < c for dl r > 0

hold for some c > 0.

Then there exist a feedback f(.) € PC(IR+,ln-x") and an estimator gain II(.) € PC(IR+, BnxP)
such that for some M > 0

Consider the system

i(r) = A(r)c(r) + a1r14r1 \
t(t) = c(t)x(,) + D(,)il(,) J

'(r)
z(t)

where ar := min la,p|.

=, :ft|€-u(t-to) for r ) 16 ) o



Proof: By Proposition 2.2 and Corollary 2.? there exist Jr(') and Il(') such that

i(r) = (,4-Br)(r)c(r)
e0\ = @- Hc)(t)e(t)

are exponentially stable with decay rate c resp. B. Now we ue in a position to mirror completely
the proof of Ilceda , Maeda and Kodoma (1975) pp. 323-325 for our situation. This goes through
without difhculties, we therefore omit it. o

4.3 Bohl exponent and Bohl transformations

Consider a diferential equation of the form

r ( r )= ,4 ( r ) ' ( r ) ,  r>0  (3 .1 )

where .4(.) € PC(IR+, Cx"). For a characterization of the stability behaviour of (3.f) the

following definition due to Eoil (1913) is useful.

Deflnition 3.1 (Bohl exponent)
The (upper) Bohl erponent &s(.4) of the system (3.1) is given by

*B(A) = inf{ -o € lR I  I  M. > 0:  t  )  ro > 0.+l l  O(r , ro)  l l< M.e-u(t - to l l

It is possible that fts(.A) = +o. If (3.1) is time-invariant, i.e. A(') = ,4 € llx", then

kB(,4) = qr-ax Re );(,{)

where );(.4),i € a, are the eigenvalues of,4..

The following properties ofthe Bohl exponent can be found in Daleckii and Krein (197a) pp.

119  -  l 2 l .

Proposition 3.2 (i) The Bohl exponent of the system (3.1) is finite if and only if

o.;:1t., l l  
o(t 's) l l< o (3'2)

In particular *B(,4) is finite if,4(.) is integrally bounded (cf. Section 1).

(ii) If ks(A) < o it can be determined via

tcs(A) -  l imsup 
log l l .o( t 's)  l l  .  (3.3)

r . r - r -L t  -  3

For later use we need the followinc more restrictive definition

Deflnition 3.3 ( Strict Bohl exponent)
The Bohl exponent of the system (3.1) is said to be atrdc! if it is finite and

,. los l l o(t,s) l l
, , t - ! r 6  I  - . 3
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Lemma 8.4 Suppose a(.) € PC(IR+, C) has a strict finite Bohl exponent and
A(.) € PC(IR+, C"x"), then

( i )  f r s ( - c )= - t s ( c )

(ii) &g(c/" + A) = ftB(a) + eB(/) (shift property).

Proof: (i) follows from

, , f.'qo.,, lt or,rdtrs(a)=i i l ;_:_T#=Tff*
In order to prove (ii) note that the trmsition matrix of 2(t) = lA(t) + a(r)Iilr(r) ia given by

f(t,r) = o(t,s)exp( [' a|r-)a,1.
J t

Thus by Definition 3.1
ra(,{) < ka(A* aI") - frs(o), (3.4)

which proves (ii). o

In the literatur l\e (upper) Lyapunot etponentis better known

t r , ( ,A )= in f { - o€  IR  |  3M .  ) 0 : t  } 0  + l l  o ( r , 0 ) l l <  M .e - ' , 1 .

For time-invafiant systems the Bohl and Lyapunov exponents oincide whereas in general

kLG\ < kEG).

The following exarnple due to Pcrron (1930) illustrates that these exponents may be diferent
even for scalar Bystems.

Example 3.6 (Penon equation)
Consider the scalar systern

i ( t ) = a ( t ) r ( t ) ,  , > 0 ,  ( 3 . s )

where c(.) € PC(!R+, C) is given by

c(l) - sin log t { cos log I

The trusition matrix is
A(1, a) = €ttinlo!l-"ihlo6'

and since a(') ie integrally bounded, we have

rtr,(c) = l irn 5up sinlog! = l.

The Bohl exponent, however, can be ehown to be .p (se Daleckii and Krein (1g74)
p. 123). o

Rcmerk 8.6 For the syatem (3.1) one has *1,(,4) < 0 if and only if (3.f ) is asymptotically stable,
i.e. (1.2) holds true but t may dcpend on to and the convergence in (1.3) ned not be uniform.



The following charuterizations of exponential stability are proved in Daleckii snd Krein (197 4)

p. 129 and p. 130.

Thmrem 3.? Suppose A(.) is integrally bounded and p € (0' o)' then the following statements

are equivalent:

(i) (3.1) is exponentially stable

(ii) k8(.4) < o

(iii) there exists a constant cp, such that

t*
I ll O(t,lo) ll? dt < co for all 16 ) 0.

Jro

(iv) For every bounded /(.) € P C(R+, C), the solution of the initial value problem

i( t )  = A(t )z(r)  +, f ( t ) ,  t  )  0,  r (0)  = 0

is bounded.

Under the weaker assumption *p(.4) < oo, conditions (i) - (iii) are equivalent.

We now malyse the effect of time-varying linear coordinate trmsformations z(t) = f(t)-12(l)

on the 6y6tem (3.1); where "(.) € Pcr(IR+,6I"( C)) (the piecewise continuously difrerentiable

n x n functions on lRa which have nonsingular values), cf. Section 1.1.
The group of Lyapunov transformatione pteserves the properties of stability, instability and

uymptotic stability. The property of exponential stability is invariant with respect to a larger
group of trmsformations.

Def nition 3.8 (Bohl transformation)
"(.) € PCr(n+,Gr"( C)) is said to be a Bolrl trunslomationil

in f {e e f i  |  lM" > 0: l l  T(r) - t  l l  ' l l  r ( r )  l l i  M,"qt-" t  Vl ,s  > 0}  = 0.

In the following example scalar Bohl transformations ue characterized'

Example 3.9 Suppose 0(') € Pdl(lR+, O) , and let a(') = d(')A(')-1 so that

01t1 = a1t1f�1t1 and (0(,)-r) = *o(,)r(t)-1.

The fundamental solutions of these differential equations ue

e\,to\ = o(t)o(to)-t and OQ'to) = 0(t)-14(t0).

ByDe f i n i t i on3 .S  0 ( . ) i saBoh l t r ans fo rma t i on i f andon l y i f f o reve rye )0 the reex i s t sM . )0
such that

M- re - . ( - . \  <  9 ( r , r )  <  M .e . ( - ' l  f o ra l l  t > r>0

md this condition holds ifand only ifc(') hu strict Bohl exponent 0 .

The following proposition impliea, in particula, that Bohl transformations preserve exponential
stability (but not necessaily stability and uymptotic stability).
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Propoaition 8.lO

(i) The set of Bohl transformatione forms a group with respect to (pointwise) multiplication.

(ii) the Bohl exponent is invariant with respect to Bohl transformatione.

Proof: (i) is m irrmediate conrequence of Definition 3.8. To prove (ii), let t(t) = i(r)r(t) b€
eimilar to (3-.1) via the Bohl transformation ?(.). Since the traneition marrix of i(t) = i(r)r(r)
is given by iiilt,r; = "(t)-1O(r,s)"(s) by Definition 3.8 one obtains

ft8(A) s ft8(i).

By (i), it follows that *B(,4) = eB(/i). tr

Example 8,11 Coneider a perioddc acalar system

i ( l ) =o ( t ) a ( t ) ,  t >0 ,  ( 3 .6 )

where a(.) € PC(IR+, C) is of period p > 0. Set

oo r= ! [' o1r1dr and a(t) = ao + d(r).
u J o

Then | fid(r)dr I is bounded in t ) 0 and so

e0\:= eliaFJa"

defines a Bohl transformation. Hence by Propcition 3.10

ks(o) = ks(a - 0-t 6) = as.

Thus (3.6) is exponentially stable if and only if

l t p- 
Jo 

a(r)dr < 0.

Proposition 8.12 Dvery ecalar eystem

i ( r ) = c ( r ) r ( t ) ,  t > 0

for which a(.) has strict, finite Bohl exponent a(.) e Pd(I&,., C) can be transformed via the
Bohl transformation

o(r) = exp( l'@G\ - ks(a))dr)
JO

into the time-invariant linear eyetem

t ( t ) = h B @ ) z ( t ) ,  r > 0 .

Proof: Lemma 3.4 yields

fre(c- *s(c)) = tr(c) - ts(c) = 0.

Thue by Example 3.ll the 0(.) which mlves

i(r) = (a(,) - rs(a))a(r), ,(o) = 1
defines a Bohl-transfornation. Setting z(t) = C-t(t)r(r) yields

;(r) = [o(r) - 0-r(r)d(r)lz(r) = &B(c) .z(r).



Remark 3.13 The Perron equation in Exmple 3.5 together with the previous proposition
impliea that, in general, a Bohl transformation does not preserve the Lyapunov exponent.

This section is concluded by stating some known perturbation results concerning the Bohl ex-
ponent for the system

r ( r )= [ , 4 ( , )+a ( r ) ] ' ( r ) , , >0  (3 .7 )
where A(.) € PC(IR+, ex").

Proposition 3.14 For any e > 0 there exists 6 > 0, such that

r imsup ; !  [ '11 n1411a, . t
r ' t - ' + @  ' - o  J ,

lmpI6

*B(/  + A) < kB(A\+ e.

The proof is straightforward and can be found in Dalechii and Krein (1974) p, 125.

Corollary 3.15

(i) Suppose A € P C(lR+, CXn) satisfies

t t l

l:,1"':g , * /, l l  ̂ ( ')l ldr = o.

Then

e 8 ( A + a ) = k B ( A ) .
(ii) If systems of the form (3.1) are identified with the corresponding matrix functions A(.),
then the set of exponentially stable systems (3.1) is open in Pd(lR+, Cx") with respect to the
.L- -topology.

Systems (3.1), (3.7) are cilled asgmptotically equitalent(resp. integmlly equitalent)if

a6

, l i rg l l  A(,) l l= 0 (resn. 
/o l l  a(,) l l  d, < o).

The above corollary shows that uymptotically or integrally equivalent systems have the same
Bohl exponent.

4.4 The structured stability radius

In this section it is assumed that the nomina.l eystem (3.1) is subjected to perturbations of the
form A(t) = B(t)D(t)C(t), so that the perturbed system is

i ( t \= lA( t )+B( t )D( t )c ( t ) l x ( t ) ,  ,>0  (4 .1 )

where D(.) is an unknown, bounded, time-varying disturbance matrix (r(.) € pcr(lR+, C"rp))
and B(') and c(') are known time-varying scaling matices defining the structure of the per-
turbation. Throughout this section we assume the tripel D = @,8,c) consists of matrix
functions

.4(.) € PC(IR+, e""),  a(.) € pC(rR+, e'-),  C(.) € pC(A+, Cpx"). (4.2)

r20



Consider for instuce the timeruying oscillator

e( t )  + a l ( t ) ! ( t )  + cr( t )y( t )  = s.

This can be written in the form of (3.1) with

l n r l
. 4 ( , ) = l  

' . . .  
I .

L  
- o r ( r )  - c r ( r )  

I

If the parameters o1,c2 are uncertain we can model this by setting the scaling matrices B =
[ n ' l  l n l
|  ;  I , C =  I z , w h e r e a i f o n l y a 2  i s u n c e r t a i n  w e s e t . E =  |  ;  I , C =  [ 1 , 0 1 .
t ' l  L ' l

By Corollay 3.15 (ii) the set of exponentially stable systens is open in PC(IR1, Cx") with
respect to the .L--norm. r Its complement which is closed will be denotes by 1,1"(IRa, C). We
will call the elements of l,/"(1R1, C) unstable (not exponentially stable). Note, however, that
with respect to this shorthand terminology an unstable system may in fact be uymptotically
stable. The following definition extends the concept of stability radius introduced in l/inriclrsen
and Pitchanl (1986a,b) to time-varying systems.

Deflnition 4.1 (Stability radius)
Given ! = (A, B, C), the (complex) stabilitg radius r s(Ai B,C) is defined by

rq (A iB ,C )  = i n t { l l  , l l - ;  De  Pc ( lR+ ,  cnxp ) , / +  B  DC e t r " ( lR+ ,  c ) } .  ( 4 . 3 )

The unstmctured stability radius of (3.1) is defined by

r 6(A) = r  6(Ai  1" ,  \ ) .

Note that r 6(Ai B,C)= inf 0 = m if there does not exist a perturbation matrix
,D e PCa( lR+, Omxe) suchthat  A* B D C er"( lR+, C).

R.emark 4.2

(i) Theunstructedstabilityradiusrs(.A)measuresthedistanceofA(.)fromthesett/"(IR+, C)
of unstable matrices with respect to the .L--norm.

(ii) If D = @,8,C) consits of reclmatrix functions the real stability radius ri(A;B,C) is
defined in an analogous fmhion. Unfortunately, this stability radius - although more important
for applications - is much more difrcult to analyse and so we concentrate on the complex stability
radius.

(iii) In the time-invmiant cue it is shown in Hin"ichsen and Pritchard (1986 b) that

'|
r 6(AiB,c\ = 

;a,q,ilB(id)]I

where G(io) = C(U -.A)-tB (in pmticular r s(Ai B, C) = oo if G = 0J.

The unstructed stability radius hu the following properties

Thia crpr*ion ia uaed although ll . llr- ie only r p*udenorn on PC(R1, Ox").
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Lemma 4.3

( i )  1 6 ( , 4 ) = 0  e  A e l . / " ( l R + , C )

( i i )  r 6 ( a , 4 )  = a r a ( A )  f o r a l l a ) 0

(iii) ,4 * r 6(,4) is continuous on PC(IR1' 8'")

( i v )  r 6 ( . 4 *A )  >  r 6 (4 ) -  l l  A ( . ) l l r , _ t o , - , 6 " ' " t  f o ranyA€PCr ( lR+ ,  gx " )

(") 0 < r 6(.4) 3 -ka(/) if ,4(') is exponentially stable.

Proof: (i) - (iv) follow directly from the definition. (i) yields the first inequality in (v) and

the second is a consequence oI A-ka(A)I^ e r/"(lR+, C) (since ks(,4-fts(,a)) = 0 by

Lemma 3.4 ( i i ) ) .  o

Remark 4.4 Suppose D= @,8,C) and k6(.,1) < 0, then it is easily verified that

'  o(A) 3 l l  B( ' ) t t  " , - t  l l r - '  l l  C( ' ) t t , " , -7 117- ' r  6(Ai  B'C) for  a l l 'o  > 0 '

(where we def ine 0 'o = o) .

Now several important inrariance properties of r a(A; B, C) are derived

Proposition 4.6 (Asymptotical or integral equivalence)
Suppose the system (4.1) is mymptotically or integrally equivalent to i(r) = ,4(l)c(t)' then

r  c (A ;  B ,C \  =  r  6 (A ;  B ,C \ .

Proof: By Corollary 3.15(i)

kB (A+  B  D  C )  =  kB (A+  B  D  C )

forubi t raryD € PCb( lR+, Onxe).Thusth€clmsof destabi l iz ingD's isthesamelor AIBDC

a l l ' d  A + B D C .  o

Corollary 4.6 Suppose B,C are constant and i(l) = .A(t)r(l) is mymptotically or integrally

equivalent to a constant exponentially stable system i(t) = Asc(t) , ,4o € C"x", then

r s lA;B,Cl

In contrut with the Bohl exponent the unstructed stability radius is not invariant with respect

to Bohl transformations. In fact any exponentially stable time-invariant system i(t) = Ao(t)

cm be brought arbitrary close to an unstable system by constmt similarity transformations.

The following example illustrates that there exists sequences of time-invariant systems such

that  &6(.41) + -6,  r6( ,41) + 0 u k *  oo.

A- = - [t 
*i],'- = [1-, 3]

Example 4.7 Set
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t hen  a (A j )  =  { -& } ,  o (A* }  D* )=  {0 , - 2k } .  S i nce  l l  D1  l l +  0  u  &  +  m ,  r o (A1 )  -  6  *
& * oo, but

kB(Ak)= murte t r i (At)  = - f t  *  -oo m k + o.

For scclar Bohl transformations one obtains

Proposition4.8 Suppose D = @,8,C\ and d(.) e PC1(IR+, C) is a Bohl tranformation,
then

r 6(A -  0- t  i t l^ ;  B,C) = r  s(A;  B,C).

Proof: By Proposition 3.10 (ii)

k B ( A - s - t i t l * +  B  D C ) = k B @ +  B  D C \

for every D(.) e PCI(IR+, CmxP). The result follows just a in the proof of Proposition 4.5. o

The stability radius r 6(,4; B, C) is invariant with respect to general Bohl transformations if the
scaling natrices B(.) , C(.) are transformed as well as the nominal system matrix,4(.).

Proposition 4.9 Suppose D = @,8,C) and T(.) € PCr(IR+,Gr"( C)) defines a Bohl trans-
formation, then

r 6(T-1 AT -  T- l i tT-r  B,C T) = r  q(Ai  B,C).

Proof: By Proposition 3.10 (ii)

kB(T-t  AT -  T- t i  + T-t  B D C T) = kB@ + B D c)

for every ,(.) € PC6(n+, C"'P). o

For exponentially stable scalar systems we have the nice result that the unstructured stability
radius coincides with the negative of the Bohl exponent. This ie a direct consequence of the
previous proposition and Proposition 3.12 for the case where the scaJar system hu a strict finite
Bohl uponent. However the same result holds without this usumption,

Proposition 4.10 Suppose a(') e PC(lRa, C) and the scalu systen i(r) = a(r)t(r) , I > 0 is
exponentially stable, then

r 6(a)  = -&s(c) .  (4.4)

We omit the proof which is straightforwa.rd.

Note that the proof of Lemma 4.3 shows that for time-varying scalar systems the constant
disturbance d(.) : r 6(A) destabilizes the nominal system.

4.5 The perturbation operator

In the time-invariant case ( see llinrichsen and Pitchard (1986b)), the stability radiue can be

characterized via the convolution operator

'06 : .02(0,o; O") * I2(0'oo; CP) |' 
,t.j * 1iJ-' 1;b"eu-oaug1a"1. 

(5'1)
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where trq(ro,o; O-) denotes the set of functions h: [te,o) r C" such ttrat Ji ll h(s) llq
d s < o , l o € l R ,  g > 0 .

Proposition 5.1 Let ! = (A,B,C) be a tripel of constant matrices and i(t) = Ar(r) be
exponentially stable, then

r  6 (A iB ,C )=  - : -
l l  , 0  l l

where l l tr6 l l  is the induced norm of the operator tro defined in (5.1).

In order to explore the possibility of obtaining similar results for time-nrying systems we ilsutrre,
throughout this section,

,{( .)  € PC(IR+, ex"), B(.) € PC6(IR+, C, '-) I
) (s'z)

d( . )  €  PC6( |R+,  CPx" ) ,  [B( .4 )  <  0  ]

With any such tripel ! = (,4, B, C) we associate a parametrized family of perturbation opemtors
(Il)r,en+ defined by

L2^  :  L2( ts ,x ;  C" )  '  L2( ts ,a i  [ t \  , to  )  0  t<
"(.) * (i;i: b1rfo1r,,;r1,y,i,;a,; (5'3)

In the following proposition we will show that these maps are well defined. Note that in the
time-invariant case ll If; ll=ll Io ll for all tg ) 0.

Proposition 5.2 Suppose (5.2) and let f, = (A,B,C). Then

(i) trl is a bounded operator.

(ii) to *ll .Llo ll is monotonically decreuing on IR1.

(iii) ll  ̂ t,e ll-t ! r 6(A1 B,C ) for all tq ) 0.

(iv) lI A,B,C are periodic with some common positive period, then

l l  , i  l l=ll zl l l  for au !o,rr € rR+.

(u) In the unstructured case, i.e. B(.) = C(.) = 1., if

l l  O ( l , s ) l l l  M e - u ( t - ' )  f o r a l l  , ) s 2 0  a n d s o m e  M , u > O

then

f r  su r , t"  l l - '  s,r i -  l l r i  l l - '  S 'o(/)  S - f t r(A).  (5.4)

Proof: We write as short hand notations tr1^ instead of
Ifl and Lr(ls,r) instead of tro(to,oo; g), q.r j t.

(i) tet n(') e L2(to,rn) then by changing variables and using the inequality

l l f  * o l l u  <  l l  / l l z , . l l  u l l ; .  f o r f  e h ,  o e L z
f @ t l ^

l l  Luul lL6a = 
Jro l l  /"  

C(r)o(t 's)B(s)z(s)ds l lz d!
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< 0 c lh.- ll B llu M), [* l [' ,--u-n ll u(s) ll ds]rdr
J to  J to

= 0 c lk- ll B llu M), 
l"* , l"' 

"-uQ-ot ll ',(a + 16) ll do l2 dr

S 0l c lh,_ l l B lb.* M),l l e-. l l?,,ro,rr . l l  u(.+ ro) l l l ,o,_,
, < Kl c llr_ ll a ll* M)' l,2l ll u ll?.,r,",_r .

This shows that tr10 is bounded and the first inequality holds in (5.4).
( i i )  Suppose 0 < ,o < 11 and r( . )  e Ly( \ ,m),  l l  ( ' )  l l= l .  Extending u( . )  to u( . )  by z( t )  = o
for ,  € [ ro,r r )  y ie lds u( . )  e Lz( to,m) wi th l l  E( . )  l l= r .  Now

ll L,,,llL"a,,,t = 
/"- " l', c1r1o1,,"1n(r)u(s)ds ll2 dr

16 t l
= | l l  /  C(,)o(,,s)B(s)a(s)ds l l2 dr

J ta  J tn

= ll ,'" "llL"uo,rt.

From which (ii) follows.
(iii) tet D(.) € PC6(16, o; CnxP) be such that

l l  p l lr_< l l r," l l- '  (5.5)

then we have to show that the perturbed system

i ( , )= [ , { ( , )+B( r ) r ( , )c ( r ) ]c ( , ) ,  r ) ro ,  (5 .6 )

is exponentially stable. By Thorem 3.7 and Proposition 3.2 it is suficient to prove that the
solutions c(.) = c(.; t[, c6) of (5.6) (with t6 ) to ) satisfy for some * > 0

sup ll c(.;ti,cs) llr.1r6,"y < k ll cs ll for all oo € f (5.?)
t6)to

sup ll o(t;ti,rs) ll S fr ll ro ll for all co € f . (5.8)
0slr-16lst

Now by variations of constants, fot t 2 tt6

r(l; t[, c6) = o(r, ti)cs + /' o1r, r;a1r;D(s)C(s)r(s; r[, ze)ds (b.e)
J to

and hence for y(t) := C(t)r(t), yo(t) := C(t)O(t,t[)cs e L2(tlo,p)

y(r) = yo(r) + (Lr,"Dy)(t).

By the contradiction principle and (5,5) equation (5.9) hu a unique solution in L2(tto,fi and

ll v lh,,t,a,ol < ll (r - Lr'"D\-'ll ' ll vo llr,t'a'ol
< (l- ll L'tD ll)-'ll vo lL,,q,rr
s (1- l l  r 'a l l  l l  o l l)- ' l l  vo l lr,r,6,,r.

So the norm is uniformly bounded in tl > 16.
Replacing C(c)c(r; t[, ca) by s(s) in (5.9) yields

x(t; ti, a6) = o(r, r[)26 + /' o1r, r;a1r;D(a)y(s)de.- 
J.L



Similu estimates to these used in (i) show that the input to state map

M{o : L2(tts'm) - Lz$'o,n)- ' " , t . j  
*  1 i* i l 'o1r , , ; r (s)z(s)ds)  

(5 '10)

is uniforrnly bounded in l[ 2 fe. Hence (5.7) is satisfied and a similar estimate as in (i) applied
to (5.9) yields (5.8).

(iv) Let p ) 0 be the common period of A,8,C. The right shift  ̂ 9,

Su :  L2(ts, r )  -  L/ to* p,r )
u ( r )  -  0 ( t - p )

is m isometry. Now O(l * p, s * F) = O(r, s), hence

(5) o -06 z)(r )  = [ ' -u "( r -  p)o( ,  -  p,  s)B(s)u(s)ds

I t -P
= I  C(t ) i | ( t ,s+ p)B(s)u(s)ds

l r
= I  C(t )6( t , r )B(r  -  p)u(r  -  p)dr

Jto*u

It
= I C(t\o(t,r)B(r\Suu(r)dr

Jlo+p
-- (Lto+, o Sru)(t).

Hence the following diagram

Lh
L2( ts ,m) Lz(to,P)

L2(ts {  p,m\ Lz(to *  p,p)
Lto+,

Figure 5.1.

commutes. Thie proves ll fr" ll=ll .L1oa, ll and the result followe since ts Hll tr1. ll is decreasing.
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(v) The second end third inequalities in (5.4) follow fron (ii) and (iii) and the lut ig a conse.
quence of Lemna 4.3 (v). B

Throughout the remainder of this paper we use the notation

t (A iB,C):=, r in  l l  r i  l l - '  .  (5 .12)

As a consequence of (iii) we obtain the following roboustnees result:

Corcllary 6.3 Suppoee D = @, B,C) and (b.2). If D(.) € P C5(0, o; Cnxp) satisfies

,r!L l l  D(') |t,",-rl lz- < t(A; B,C) (s.13)

then the perturbed syetem (5.6) is exponentially stable.

IntheunstructedcaseitisknownthatperturbationsD e PC5(IRa, Cnxp)ofnorm ll O(.) l[,_<
ft (u,U as in Proposition 5,2 (v)) do not destroy the exponential stability ofthe system (se
Coppel(1978) Proposition 1.1). In view of (5.4), condition (5.13) is less conservative.

In contrast with timeinvariant systems the following example shows that the inequality inequal-
ity

I (A ;B ,C )  <  r 6 (A iB ,C )  ( 5 .14 )

is in general strict.

Example 6.4 Coneider the scalar system

i ( t ) = a ( t ) c ( t ) ,  t 2 0

where c(t) = -1+*o(t), ft € A, a(.) e PC(]fu, C) ie periodic with period 3T,T = ln2,given
by

[  0  , € [ J i ? , ( J i + l ) " )
I
Ic ( r ) =  {  l  r € [ ( 3 i + l ) " , ( t d + 2 ) r ) ,  i € r N o

I
t  - 1 ,  €  [ ( 3 t + 2 ) r , 3 ( i + l ) " )

Let ! = (a,l,l) then in view ofExample 3.11, Proposition 4.10 md Proposition 5.2 (iv), we
have

-&6(o) = r  6(a)  = I  and t ( ,4;  I , l )  = l l  , f  l l - r  .

We will show that ll IF ll-r< 1.
Let p(t):= k ![a(r)dr and u(t) = st]()-zt. A straightforward calculation ehows

ll r'u lr'- lr, r' = tri,,:"!;rl|_.*'::,::r,,,,'.:;, -ezp('t-L)(tt

Jo
tT  16

= 
Jo 

e2t(t-2e-t)dt+ 
Jr 

e2p(tl-2.0-2e-tldt.

Since l -2e-t  >0 for t  >? onecanchooee* sothat  ther ighthand s ideisposi t ive.
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Equality holds in (5.14) if the system f, ia aeymptotically or integrally equivalent to a time
invariant eystem. To prove this we ned the following proposition

Proposition 6.6 Suppose that ! = (A,B,C) satisfies (5.2) and let i(t) = A(t)x(t) be mymp-
totically or integrally equivalent to i(t) = A(t)t(t\. Then for t= fA,n,C)

,JTL ll ri - ri tt= o. (5.r5)

In particular
t (A;  B,c)  = e\ i  B,c) .  (5.16)

Proof: If.4(.) generates O(.,') and i(.) generates ii,1.,.;, the.e exist M,o > 0 such that

l l  O ( r , s ) l lS  yu -u ( t - t \ , l l  , e ( r , s ) l l s  Me -@U- . | ,  f o ra l l  r >s )0

(since &s(,4) = kB(,i)) . Set A(r) = i(l) -.4(r), then

, i i 1 r , " ; =  o ( l , c )+  / '  o1 r , t ; l 1 r ; , i , i r , s )d r ,  f o ra l l  l ) s )0

and so

l l  , i ,(r,s) - o(r,s) l l  I [ '  u"--u-u l l L,(r)l l  Me-.t '-"\ar

= Mze-u(t-,t 
l, ll a(r) ll ar.

Now let  u( . )  e L2(ts,m),  l l  u l l= I  then

l l  (ri, - zi,)z l l '  = [* | I '  c(r)[o(,,r) - i i ,(,,s)]r(s)u(s t(tsll2 .tt
J to  J lo

< ll c l l?-l l B l lL- [* t ft uze-'u-; 
t '  '

"-- rto 'rto )/, l l  a(' l  l l  dr l l  z(s) l l  dslzdt'

In the case of integral equiralence this yields for J(\:= e--t

ll (ri - ri),, ll' s x<ll ll a(r) ll dr)'�/o- llo' "-'a-o ll ,(ro +,) ll a,l'ar

, *,l* ll A(r) ll dr), ll / ll?.,1o,,111 ull?.,1,o,^y
t< 

-r-

< ,r( J,. l l  
A(r) l l  dr)z l l  u l l i ,r,",-r

In the case of asymptotic equilalence, we have for g(t\:= te--t

ll (ril - .r*)r ll' S r sup ll A(r) ll, [* t [' €--('-")(, - s) ll u(rs + s) ll ds]rdr
r2to Jo Jo

a " 
:ll ll a(") ll'� ll o ll?,,10,ry ll ,ll2t"po,^y

< l- ". : l l"  l la(") l l ' l l , l l l r ,",-r

and thie time the rsult followe since sup">ro ll A(t) ll,* 0 u te * 6. B

Propoeition 4.5 and 5.5 ehow that a^symptotically or integrally equivalent systems have the same
etability radius and the same limit l(A; B,d). Hence Propositions 5.1 and 5.5 imply



Corollary 5.0 Suppoae D = (4, I, C) aatisfiee (5.2) md 8, C are con.tent matricca. If t(t) =
,a(l)a(t) ie uyurptotically or integrally equivalent to a time-invariant t(4 = Aor(r), then

r s(Ai  B,C) = t ( \  B,C) = r  s(As;  B,C) = t51g l l  c( io l  -  i {o)-ra l l l - r .

It ie clear from the definition of trio that this operator is invuiant with respect to Bohl trans-
formations if the transformation is applied not only to A(.) but aloo to 8(.) and C(.) :

L'^= L'rf , to 2 0 for Er = (TAT-r - tT-l,TB,CT-r\.

However contrary to the Bohl exponent and the stability radiue, l(r{; B, C) is not invariant when
scalar Bohl transformations me applied to A(.) alone. In fut applying Propoaition 3.12 thie is
demonstrated by Exarrple 5.4.

In order to fill the gap betwen /(A; B, C) and r 6(.4; B, C) one might try to use scalar Bohl trane-
format iou d and consider Do_= ( , {  -0-r i ) I " ,B,C).  Then r  6( ; l ;B,C) = r  6( .4 -0-rd l^ iB,C\
ild it is eaay to se that lfi,t = g-llDt"e, Unfortunately we have not been able to prove or
dieprove the lollowing

Coqiecture 6.7 Suppose (5.2) and f, = (A,B,C), then

r s(A; B,C) = eup{l(, 

 

- |'riJl"i B,C)i0 a scalar Bohl transformation }

By Proposition 3.12 the conjecture holds true for scalar systems.

This section is concluded with an alternative interpretation of the perturbation operator. From
a control thmretic viewpoint trf;, may be thought of u the inpd-outplt opemlor of the ayrtern

i ( t )  =  A ( t ) x ( t ) + r ( r ) r ( r )  ,  c (16 )=0
v0) = C(t)z( t )  ,  t>to

(5.17)

since y(t) = (IArXt). Formally (4.1) may be interpreted as a closed loop eystem obtained by
applying the time-varying feedback u(t) = D(t)y(t) to (5.f7).

If the triple D = 6, B,C) is such that ftB(d) < 0 (intemal stabildty) then by Propoaition 5.2(i)
the input-output operator.Lfl is bounded (etternal stability\.
Several authors, for example Aaderson (1972), Anderson and Moore (f969), Brutett (1970),
Mcgan (1976a), Siheman and Anderson (1968), have investigated the relationehip between
internal and external stability. Clearly one cmnot expect external stability to imply internal
stability without additional assumptions concerning the interaction between the input n('),
output y(.) md state r(.) in (5.17). One hu to impose uniform controllability (eee Definition
1.2.8) and the following definition.

Defnition 5.8 The system (5.17) ie said to be rnilomly obsenableif for eome p6,p1,o > 0

I t
f o l " 3  I  O ' ( s , t - a )C ' ( s )C (s )O( r , t - o )ds< fu l "  f o ra l l t ) a .

(here ! denotes the order relation between Hermitian matricee.)

The following proposition can be deduced fron a result of Anderson(L972\
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Propoeition 6.9 Suppose the system D = @, B,C) with B, C bounded is uniformly control-
lable and uniformly observable. Then the following are equivalent

(i) i = A(r)r(t) is exponentially stable

(ii) If" : L2(ts,m) - Lz(to,p) ic bounded independent of ls > 0.

Using a result of Megan (1976a) the characterization in Proposition b.g can be extended.

Propoaition 6.1O Let q € [2,oo] md ! = (A,B,C) satisfy the conditions of Proposition 5.9.
Then &s(A) < 0 if and only if the operator

LD1.,e ; Le\o,m1 - Lo\s,p)
z(.) e (r * f,' C(l)O(t,s)B(s)u(s)ds)

ig bounded uniformly in lo ) 0.

Proof: Necessity follows as in Proposition 5.2(i). To prove sufrciency note that in Megan
(1976a) Corollary 5.3 it is shown that boundedness ol lhe input-state opemtor

fuh : L2(ts,m) + I,-(16,m)
r( . )  e ( t  *  1,r"  O(t ,s)B(s)u(c)ds)

implies *B(.4) < 0. Therefore it remains to prove

.Lf; is bounded + &o is bounded .

Suppose iZlo is not bounded. Then for iV ) 0 there exiet u(.) e L2(tn,m) with ll u(.) ll;.= 1
md t- o ) ts such that ll (nZ1"r)(r- o) ll = ll r(r-a) ll >.tV, where c(,) eolvei

i ( t )  = A(t ) t ( t )  + B(, ) i ( t ) ,  c(rs)  = 0,r  > 0

a n d  n ( s )  =  { : ( ' )  
'  . l € [ ' 0 " - d ]

I u  ,  E > t - o

Uniform obeervability yields

N'go < ll x(t - o)2 ll po < I'_"ll 
c(s)o(s, r - o)x(t - o) ll2 ds

= L_"Uy(s) ll2 d.: s ll y(.) ll?,r,",r1 = ll (re,iX.) lh,(,.,")
s  l l r I " l l .

Thur .f,f;, ir not bounded and the proof is complete.

4.6 The associated parametrized differential Riccati equation

In thla section we exa,mile the parernetrized difierential Riccati equation (DF.IF,)'

P(r)+A.(4P(,)+p(r)A(r) - N.(t)c(t)-p(,)B(r)8.(r)p(,)= 0, r > rs, p€ tR
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usociated with the system

i ( t )  =  A ( t ) c ( t ) +8 ( l ) ( r ) ,  r ( t q ) - c6e  f  rR
y(t) = C(t)c(t) 

to'l)

Throryhout this section ue assume (5.2).
For time-invariant D = 6, B,C) it hu been shown in Einrichten awl Pitchard (1986b) that

tiJne algebmic Ricati cquation (ARE),

A'P + PA- PC'C -  PBB'P =0

admits a Hernitian eolution P if and only if p 1 r s(A1 B,C\. Guided by thir result we wish

to determine the muimal p for which there exist bounded Hermitian rclutions of (DRE), on

[tq,o). Kclman (1960) and Reghis and Megan(L977), among others' have studied diferential

Riccati equations, however their results cmnot be applied to (DRE), if p > 0.

We will proceed via the following optimal contml prcblem:

(OCP), Minimize the cost functional

Jr(cs, [16,11),  u1.1;  '= / "11;  r ( r )  l l ' -p l l  y(s)  l l ' ]ds
J t o

for t(.) e L2(ts,t1i C") eubject to (6.1)

where 0 ! to ( tr ( 6, ro € F and p € IR. We begin by examining the fnfte ldme problem

where l1 < o. Since the optimal control is expmted to be feedbrck we start with some lemnata
on the cost of feedback controls t(t) = -f(,)t(,)' To describe theee costs we need the following
well-known lemma about differential Lyapunov equations'

Lemma 6.1 tet ;(.),R(.) e PC([,o,o); e'") , ,6(.,') be the traneition matrix of i(l) =

A(t \ r ( t \ .

(i) The unique eolution of the differential Lyapunov equation

P(r) +;'(r)P(,) + P(ti(') + R(t) = 0, ' € lto,trl (6.2)

with final value P(t1) = 0, ie given bY

P$) = [" ,i'(r, r)R(s),i(s, r)ds, r € lro, h].
J T

(ii) If t(r) = i(r)r(r) is exponentially stable and R(') is bounded, then

P(r) = /- 6'(s, r)R('),i,(r,t)dc

ie the unique bounded mlution of (6.2) on [16, oo).

Lemma6.2 Suppose r( . )  € PC([ to, t r ] ;  ( : " ' " ) ,  t1 (  co,  Ap(t)  = A(t ) -A( l ) f ( t )  wi th

traneition matrix Op(.,') and let

zp(t )= - .F( t )c( t ) ,  ,  € [ to, r r l



where a(.) satisfies
i ( t \= AF()r( t \ ,  t  € [ ro, t r ] , t ( ro)  = so'

Then
Jr(an, l ts , t ) ,up( ' ) )  =< xs,Pp(t6)26> (6.3)

where
l'L

PF(t) = I 
- 
o!(s, t)[r'(s)r(c) - pc'(s)d(c)]op(s, t)ds, , € [to, hl (6.4)

is the solution of rhe ;ifrerent;al Lyapunot eqration, (DLI)) o

P(t)+,{ i-( t)P(t)+P(t)AF(r) - pC'(t)C(t)+r '( t)r(r) =0' ,  € [ ,o,tr]

with final value P(t1) = Q.

Proof: By (6.4) and the definition of "1, we obtain

(  cs,PF(to)ro > = / "111 r1r ;o"1r , ,  ) ro l l '  -p l l  C(s)op(s,rs)r6 l l ' � lds
t rfr,

= 
f"'tt l  

"rk)l l2 -p l l vp(r) l l2lds
= J,(ca, [ ts ,h) ,up(. ) ) .

That Pr solves (DLE), follows from Lemma 6.1(i) by setting A(t) = AF(t) and .R(l) =
-pc'(t)c(t) + r'(r)r'(t). 0

Note the following relationsship between the differential Riccati equation (DRE), and the dif-

ferential Lyapunov equation (DLE)r.

Remark6.3 P(.) isasolut ionof  (DRE),on[rs, t1]  i f  andonly i f  P( ' ) isasolut ionof  (DLE)e

on [t6,11] with r(t) = ,'(r)P(t).

Our construction procedure for solutions of (DRE), (cf. proof of Theorem 6.7) ie based on this
simple observation.

L e m m a 6 . a L e t F ( . ) € P c ( [ l o , r r ] , C " ' " ) , d ( . ) E L z ( t o , h ; C " ) , u r ( t ) = - r ( t ) ' ( r ) , t €

[!s,h], where now

4q = iltf:1,ifg?,'tr1;l+o('))' ,1,:)r3'j:l (65)
If u(t) = ur(t) +a(l), t € [ro,,r], then

Jr(cs'[ ts,t1),t( ' ))= a oe,Pp(r6)os >

+ l.'"' ll t(s) * a'(s)Pp(c)c(c) ll'�ds

- l,'j ll [r(s) - B'(r)Pp(s)]c(s) ll'ds

where Pp(.) ie defined by (6.4).
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Proof:  Di f rerent iat ionofV(t) :=ac( l ) ,Pp(t )c( t )>,  r€[ to, t r l ,a longthesolut iona(.)of
(6.5) gives (we leave out the argument , )

V  =  <  A rc *  Bz ,P r t>  I  < r , i , r x>  *  <  x ,Pp (Apa+BE)>
=  1B f r ,Ppz  >  !  <s ,PFB i>  *  <  t , (& 'C  -  I "F )u  >
= - l l  ur l l2 +pllcrl l2 +z n" <i,B.ppx )
- - l l  E l l, - l l  " l l , -2 Re <i,u > +pllC' l l2 +z nc <n,(B.pp - f)" >
= - ll u ll' +pll c,ll, + ll r, + B'ppx ll2 - ll (B'pr - F)" ll,

lntegratingon [to,rr] and using Pp(11) = 0 yields

- I rs,Pp(tsxs;= - Jr(rs,[rq,r1),2(.)) + /" 1; ,1r1 + a.(r)pp(s)c(r) ll, ds
Jao

/' 11 1a'1,yr"1,y - r(r)lc(s) ll, dr
J lo

from which the result follows. tr

If p > 0 md 0 ( to ( tr ( l: S m, then

o )  
" t " t i l ' f "* )Je(to ' [ to"r) 'u( ' ) )

2 ".r,tlo,{,, *t 
Jp(xo,lto,t2),u(-)) (6.6)

whereas the converse inequalities hold if p ( 0. These inequalitie show that the minimal costs
are finite over m arbitra"ry interval ifthey are finite over [0,oo).

Lemma 6.6

(i) inf"6;;olro,nyJr(0,[ts,oo),u(.))=0 <+ p Sll Len-,

(here by definition ll If; ll-'�= m if ll If, ll= o).

(ii) For every p € (-o,ll lf;, ll-,) there existE a constant c, > 0 such that

inf J,(ro, [t, m), u(')) > -", ll ro ll, for atl r ) to,xo E P (6.7)
u e L a ( , m l  ' '  - '

Proof: (i)

" € ;? [ , - ) J , ( 0 ' [ ' o ,m) , ( ' ) ) =s  
<+  [ l l  u l l ' - p l l  ' e " l l ' ]  >0  f o ra l l z€  L2 ( t s , n )

which proves the equivalence in (i).
(ii) We need only consider the case p € (0, ll ,f;, il-2). Since

2Re<a ,b><o l l  o l l ' + " - 1  l l  D l l 2  f o ra l l  a>0 ,o , [ €  L i l t o , i l ,

we have

J,(cs,Fe,o),r(.)) = l l,(.) l l , -p l l(tBu)(.)+c(.)o(.,r6)ca l l,
= l l  z(.) l l ' �-p l l  c(.)o(.,ts)xall2 -2 p Re < (I!"2)(.),cOo(.,r0)zo >
> ll "(.) l l ' �  -p(t + c) l l  (rB')(.) l l2 -p(l + o-r) l l  c(.)o(.,ro)'o l lz .



For sufficciently small o

J , (cs ,  [16 ,  o ) ,  u ( . ) )  >  -p ( r  +  o - ' )  l l  C( . )o ( . , ,o )eo  l l ,  .

Since i(t) = A(t)a(t) is exponentially stable, there exists c > 0 such that

l l  C ( . ) o ( . , t 6 ) 2 6  l l ' S " l l  r o l l 2  f o r a l l 1 6 > 0 .

S o w e m a y t a k e c r = p ( 1  + a - l ) c  t o e n s u r e ( 6 . 7 ) f o r t 6 . T h e r e s u l t f o r a n y t ) t s f o l l o w s s i n c e

[ , P  | < | | , e  [ .  E

Lemma6.6 Suppose Ap(.)  e PC(t6, t r ;  C" ' ) ,  [  € [ . ] ,  l1  (  m converges poinrwise to
A(.)  e PC(to, t r i  Cx")  on [ ro,  r r ] ,  i .e.

l im l l  Ar( t )  -  l1t )  11= 0 for  a l l  t  € po,  t r ]
l -6

and ll ,41(t) ll< c for all , € [ro, rr] , h € IN. If A6(.) generates !D1.(.,.) and ii,) generates ,i(.,.),
then for every e > 0, there exists [q € IN, such that

l l  o s ( l , s )  -  , 61 t , s1  11<  e  f o r  a l l  [  )  * o ,  l o  3  s  1 t  1 \ ,  ( 6 . 8 )

Proof: The proof is similar to the one of Lemma 2.2 in Reghis and Megan (1977). Put
A1 ( t , s )  = l l  o1 ( l , s )  -  o1 t , s ;  11  .  s i nce

I t  r t
O1( t , s1  =  I "+  

J "  
A * ( " lE r ( r , s )d r  and  , i , ( r . " )  =  I "+  

J "  
A ( r \O ( r , s \ d r

one obtains for  a := max{ l l  6(r ,s)  l l  l to <,  < r  < , r }

I t
A1(r ,s )  =  l l  / ,46( r )01( r ,s ) - , { ( r ) . i ( r , s )a r

J ,

I t - - t t
S l l  /  ( ,a* ( r ) -  A( r ) )o ( r .s )d r  l l  +  /  l l  a * t r l  l l  A1( r ,s )d r

J '  J I

I t - t t
3 "  /  l l  A{r)  -  A(r)  l l  t t r  -  c  I  A1(r ,  s)dr .

J S  J S

Since ll ,4p(t) -,{1t; ;1* 0 for all t € [ro,rr] by Lebesgue's dominated convergence theorem for
every € > 0 there exists ,bo € IN such that

I t r

l ' '  l l  l * ( r )  -  , i ( r t  l l  d . r  I  Lr-" t t t - to)  for  a l l  [  > ko.
Jto 

-  
a

Hence 
rl

A6( i , s )  <  e - c ( t , ' r o ) . €  t c  
J "  

L t l r , s l d . r  f o ra l l& )  k6

and by Gronwall's inequality

A;( t ,s)  !  e-c l t t - to)€€4t- ' )  < e foral lA>ks.

This proves the lemma. c

We are now in a position to solve the optimal control problem (OCP), on finite intervals.



Theorem 6.7 Suppose p <ll Lf" ll-, ,0 < t6 ( 11 ( oo. Then:

( i )  Thereexistsa(unique)Hermit iansolut ionpt , ( . )  €Cr( ts, t1 i  Cx")  of  (Df i_g)rwi th
P r ! ( t l )  =  0 .

( i i )  I f p>0 ( resp .  p<0 ) t hen  P t , ( l ) i snonpos i t i ve ( resp .  nonnega t i ve ) f o ra l l t € [ t o , t r l .

(iii) The minimal cost ol (OC P)o is

i n f  _ . J r ( r s . [ t 6 , t r ) , u ( . ) )  =< ro ,P t ' ( t o ) r o ) .  ( 6 . 9 )
s€Zz(ro,tr; U")

(iv) The optimal control is given by

u'( r )  = -8.( t )P"( t )e(r) .

Proof: Starting with Ps(') = 0 we recursively define a sequence p*(.) e Cr(ro,rl; fxn) ,
t e lN by the following sequence of differential Lyapunov equations

Pr( t )  + ,41-rPr(r)  + P*(r)Ar-r( , ) -pc ' ( t )c( t )
+ P*t( t )B(t )B' ( , )P*-r( r )  = 0,  ,  € [ ro,r r ] ,  (6.10)

Pr(rr )  = 0

where
Ak_ t ( t )  = ,4 ( r ) -B ( r ) a . ( r ) p r_ r ( r ) ,  r €  [ r o , r r ] ,  k>  l .

We will show:

(a) Ph(r) = liml*- P1(t) exists for atl , € [to,rr]

( b )  f r ' 1 . ; i s t heun iqueHerm i t i anso lu t i ono f (DRE)oon l ro , t t ]  w i t hp t r ( r t ) =0 .
After establishing (a), (b) we have by Lemma 6.2 and Remark 6.3

Je@o,l to, t t ) ,  -B ' ( . ) r ( . ) )  = < r0,p, ! ( ro)ro >

and applying Lemma 6.4 with .F(t) = B.(r)Pt,(r) yields

J r ( cs , [ 16 , t 1 ) , 2 ( . ) )  =  <  co ,P ' , ( r o ) ro . '  +  [ "  l l  u ( s ) -  u ' ( s )  l l z  ds .
Jto

This shows (iii) and (iv) so it remains to prove (a), (b) and (ii). Note that by (6.10), p1(r) =
Pp(t) where r'(t) = A'(t)P1-1(t). Set

z r ( r )  =  -B ' ( r )P r ( r ) zs ( r ) ,  E r ( r )=  u3 ( r ) - z j _1 ( l ) ,  r  €  [ r o , r r ] , *>  I

where zs(.) solves i1(t) = An(t)r*(t), rr(16) = c6 and t[ € [ro,rr] is arbitrary. By Lemma 6.2
and Lemma 6.4

< cs,P[+r(r6)ro > - < 16,P1({)xe ) = Jo@n,lt!o,t),u{.)) - < rs,p}(r6)ro >
I t r

= - 
J,, ll [B'(s)P1-1(c) - a'(s)P1(c)lc1(s) ll2 ds < 0

for all k < 1, t6 € [ro, tr]. But by Lemma 6.5(ii)

< 'o,Pr(r6) '0 t  > ".r1t1,,,_,Jr(". , [16,t ' ) ,r( .)) )  -",  l l  "o l l2 .
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So (P1(ti))1y1 is a decreasing sequence uniformly bounded from below and the l imit

/IL I'o('l') = P" ('6) = (P'r ('6)).

exists for every l l € [r0, rr]. This proves (a). Moreover

A1 a*(,) = A(t) -  B(t)B'(,)P" (,)  tur al l  ,  € [ro, ,r ] ( 6 .1  1  )

and since Pr(r), A > 1 is monotonically decreasing and bounded from below we see that l l  a*(f) l l
is uniformly bounded on [ls, t1]. Thus by Lemma 6.6 Oi(.,.) converges uniformly on [t6, t1] to
Ott(.,.) the evolution operator generated bV A(.) - B(.)8.(.)pt,(.). Next we apply Lebesgue,s
dominated convergence theorem to the sequence

f t t
Pk( t )=  -  

J , "  
O i - r { " , t ) loC ' (s )C(s) -  P1_1(s)B( .s )B- (s )Pp_y(s ) los_1(s , r ) r i s

to obtain

r l l

Pr' (,)  = - 
L o;,1",t11pC'1s)C(s) - p" (s)B(s)8.(s)p, '  (s)1o,, (s,,)ds

Thus Pr r ( . ) .u t i .n " ,  1 lR-O;o  on  [ ts , t1 ]  and Pt , ( t r )=  0 .  The un iqueness  o f  the  so lu t ion  p ' , ( . )
of (D RE), with P" (tr ) = 0 follows from general theorems. This proves (a) an<l (b).
Applying Lemma 6.2 and Remark 6.3 to the above equation yields

. rt\
P"(t )  = -  

J t  
o(s,r ) [pc.(s)C(s)  + p, '1s;r1"yB'(s)p, ' (s) ]o(r , , )ds

frorn which (ii) is obvious. (Note that 4ir(r) > p;'(r) holds for k ) I and not for A = 0, if
p < 0.) This shows (ii) and completes the proof. o

Corol lary 6.8 Suppose p <l l  Le l l - ,  ,  0 S to 1t t  1r2 (  m. Then

Pt,Q) < P^(t )  for  a l l  r  e [16,11]  i f  p > 0
pt , ( r )  > pt ' ( r )  for  a l l  I  € [ ro,r r ]  i f  p < 0.

Proof: Follows from Theorem 6.7 and (6.6). u

we now proceed to examine solutions of (DRE)o on infnite intervals anrl relate them to the
infnite time optimal control problem (OCP),, tr = oo. The following lemma plays a key role.

Lemma 6.9 Suppose ,o 2 0,p € IR ,  u( . )  e L2(t6,m) and e( . )  € Cr( t6,m; CX")  is  a bounded
Hermitian solution of (D.BE),. If r(.) solves

t ( r )  = ,4 ( r ) ' ( , ) +  B ( t ) u ( t \ ,  I  )  l e , r ( 16 )  =  16 (  6 .12  )

Then

Jo@s,lts,a1,"(.D = l* l l  ,(s) + B'(s)O(s)r(s) l l2 ds t < xo,eeo)xo > . (6.IJ)
Jh

In particular,

< xs,Q1o)xo t S 
u.ff,to,-, 

/r(16, p6, o), u(.)), co € c". (6.1.1)
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Proof:  Since &e(A) < 0 wehavec(. )  e L2(ts,n)  and weshowthat  r ( t )  *  0 as I  *  o.
Given e ) 0, choose h ) tq such that ll u(.) l[,:(r,,-]( c, then

l l  , ( r )  l l  s  l l  o(r , !1)c(r l )  l l  + / '  i l  o(r ,s) .8(s)u(s)  l l  ds,  I  > 11.
J t r

Hence by the Schwarz inequality

l l  '(r) l l  < Me-u(t-t ' t l l  c(rl) l l  + M ll B l lL* (2-)-i l l  , l lr,(r,,-) .
Now

ft < x(t),QQ)t(t) > = p l l c(r)r(r) l l , + l l  a.(r)Q(r)c(r) l l ,
t2 Re < B(t)u( t ) ,Q(t) r ( t )  >

= p l l c(t\t(t) l l , + l l  z(r) + a.(r)Q(r)'(,) l l ,- l l  ,(t) l l '  .
Integrating over [te, t1] md taking limits ro tr * m yields (6.13).
Since (6.13) holds for all u(.) e L2(tx,a), (6.14) follows. tr

The above lemma yields immediately the following necessary condition for the existence of
bounded Hermitian solutions of (DRE\,.

P ropos i t i on6 .10  Suppose (5 .2 )  and ro>0 .  I f 8 ( . ) €Cr ( t 6 ,m ;  f xn ) i saboundedHerm i t rm
solution of (DR.e), on [t6, oo) then

p sll rB l l- '  . (6.15)

Proof:  By (6.14),  0 (  " I r (0, [ ts ,m),u( . ) )  for  a] l  u € Lz( to,m).  This impl ies (6.1b) by
Lemma 6.5 (i). tr

The following converse result is the main thmrem of this section.

Theorem 6.11 Suppoee (5.2), D = @,8,C) and p <ll ,e ll-, , ts ) 0. Then we have

(i) There exists a unique stabilizing bounded Hermitian solution

P+( . )  eC r ( t 6 ,o ;  f x " )  o f  (D ,0E )oon [16 ,o ) .

(ii) P+ is maximal in the sense that, for any bounded Hennitian solution e(.) € Ct(t6, @i ex")

on f t f i ,oo) , tL2to,
8(r) S P+(r) for all t ) tfi.

(iii) The minimal costs are

inf , Jr(rs, [rs, oo), u(.)) = < rs, P+(to)ro > (6.16)
reLl(to,m,

and the optimal control is given by

u( t )= -B '111P+( r ) ' ( r ) ,  t> to  (6 .17)

where r(') solves

i( t )  = (A(r)-  B(t )B' ( t )p+QDr(r) ,  r>rg,  o(16) = 16.  (6.18)

(iv) If the system ! is uniformly observable and p > 0 (resp. p < 0) then

P+(t) < -.t I, (reep. P+(r) > 7 I") (6.19)

f o r s o m e T > 0 m d a l l  t ) f 6 .
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Proof: First, let p > 0. By Lemma 6.5 and Theorem 6.7 there exists c, > 0 such that for all
, r  >  r o , ,  €  [ r o , r 1 ]

- c ,  l l  r o  l l 2  <  -  
j n f  

. Je ( ro , [ r ,@) ,u ( . ) )
L C ! 2  (  r i m  J

s " ' " , i I ! , , * ,J ' ( to ' [ t ' t t ; ' "1 ' ; ;  (6 '20)

= <  co ,  P t ' ( l ) ro  >  .

Thus Pi'(!) is bounded below and since by corollary 6.g it is monotonically decreaing we have
that

P + ( t )  = , l i m  P ' r ( , ) ,  ( 6 . 2 1 )

exists for all , € [ro, oo).
Similarly, if p < 0, exponential stabil ity implia that for every ,1 > ,o , , € [ro, rr]

0  <  < r o , p t ' ( r ) c o >

=  i n f  . / , ( r o , [ r , r r ) , u ( . ) )
u€L2( t , r r  i  an  )

S  _ j n t  . . / e ( x o , [ t , m ) . u ( ' ) )
uEL2 l t ,m)

I  " / r (c6,  p,m),0)  < o.

since (Pt'(t)) is monotonically increroing in t1, the limit (6.21) exists for all r e p1,m) in the
c m e p < 0 m w e l l .

In both cases, Pn(') satisfies

P r1 ( , )  -  p , , ( r o ) -  
/ ' [ r . ( " ) " , ' ( " )  +  p r ' ( s ) , 4 ( s )  - pC . ( s )C (s )

J to

-  P"(s)A(s)4.(s)P'r (s) lds.

Taking limits (as t1 - m ), yields

p+(r)= p+(r ' )*  
/ ' [ r '1r ; "*1r ;  + p+(s)A(s)  -  pc ' (s)c(s)

-  P+(s)B(s)Bt(s)P+(s) lds

and difrerentiation shows that P+(') € c1(t6,o; cx") is a bounded Hermitian solution of
QnE)e on [ ts ,m).

Before showing that P+(.) is stabilizing we prove (iii).
I fQ ( . ) €Cr (16 ,m ;  Ox " ) i saboundedHerm i t i anso lu t i ono f (DB .O) rand ,a ( . ) -A ( . ) ,B . ( . )A ( . )
is the generator of Oq(.,.), then

n

fr[oi(s,ro)g(s)oq(s,16)] = ob(s,roXpc.(s)c(s)
-Q(r)B(s) .B.(s)Q(s) loq(s,  16).

Hence

< xs,Q(to)to > = < oa(t, ro)ro, q(,)o aU,to)xo , * 
I'" 

. oq(s, ts)c6,

[Q(s)8(s)B'(s)Q(s) - pC.(s)C(s)]oq(s, ro)ro > ds (6.22)
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First we consider the cme p J 0 for which P+(r) > 0,, > ro. The above equality with
Q( ' )  = P+(.)  y ie lds

< c6,P+(ts)c6 > > Jr(c6, [ t6,oo),  -B' ( . )P+(.)op+(. , r0)co).

Inpart icular0( . ) := -B' ( . )P+(.)Or,+( . , ro)co € t r2( t6,m)andapply ing(6.13)wi thg(. )  = p+(. )
we find

".ri,f,f",-,'rr("o' [t6' o)' z(')) = Jp(co, [,o, oo), (')) = < 26, P+(t6)ca > .

The case p ) 0 is more diftcult. To do this we extend the finite time optimal control by 0 to
fte,m) and define t1,(.) E L2(t6,n)by:

u , , ( r )= {  ^ -B ' ( r )P t r z1 , ( l )  Jo ,
[ 0 Ior

t 6  1 t  1 t
t 1  1 t

where z;, (.) solves

i ( t ) =  A ( t ) x ( t ) + B ( r ) 2 1 , ( r ) ,  r ) l o ,  s ( r o ) = c o .

Then by Theorem 6.7

. /o(cs, [ ls ,o) ,21,( . ) )  = , f# l l l  , , , ( " )  l l2  -  p l l  C(s)os,(s)  l l r ]ds
-  

f f  P l l  C(s)r1 ' (s)  l l2  ds

= q c6,P' t ( lsro> -  o l f ,  l l  C(s)21,(s)  l l2  ds

By applying (6.Ia) to P+(.)

(6.23)

Jr(r6, [t6, m), z(.)) > < cs, P+(ro)ro > for all tl € L2(rs,m)

lim1,-- li ll C(s)e1,(s) ll2 ds = g,

l iml, *- "/r(c6, [to, oo), u1, (.)) = < oo, P+(to)co > .

(6.24)

(6.25)

and so

Now from (6.23) we have for every a > 0

0  >  < ro ,P ' ! ( t o ) co>

> Je(ro, [ro,()), ilrr(.))
[*,,,= 

/" tll u,, (s) ll' -p ll c(.s)o(s, t6)co + (ri u1, ) ll2|dc (6.26)

) (t - p(r + a) ll rf; ll'). ll ",, 111,r,",-1 -dl + a-r) ll c(.)o(.,ro)co ll!"1,",r1
by the same estimate m that used in establishing Lemma 6.5. choosing a > 0 small enough we
se there exists a constant 1( independent of le, so that for all ts ) 0

ll ",, ll?.(,0,-l s r ll to ll' . (6.27)

Hence {z1r,l1 ) 16} is bounded in L2(t6,m), so there exists a sequence (21.)16n,t1 - o
which converges weakly to some i(.) e L2(ts,m). By (6.2a) and (6.2b), (21.) is a mininmizing
sequence' It is easy to se€ that .I, is strictly convex. Moreover it follows frotn the last inequality
in (6.26) - which holds for arbitrary u € ,2(to, m) instead of u1, - that u * Jr(c6, [t6, o), z(.))
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is coercive. Hence (Ekeland and Temam(1976) p.3S), a(.) is the unique optimal control and the

minimum cost is

4(co ,  l to ,  oo) ,  t ( . ) )  =  <  "o ,  P+( ro) to  >

Lemma 6.9 implies for 0(.) = P+(.)

J , (c6 ,  ps ,  o ) ,  d ( . ) )  =  i  

-  
l l  a (s )  +  .B ' (s )P+(s) ' (s )  l l ' �  d3

*  <  co ,  P+( to )oo  >

and so

r ( r )= -B ' ( , )P+( , ) r ( r ) ,  r ) ro .  (6 .28)

To prove the uniqueness and maximality, ilsume that Q(.) is a bounded Hermitian solution of
(DRE), on [t!, m). Using Lemma 6.9 and (6.16) we obtain

< rs ,QU)xo  r  S , . j L { , _ , J r ( r o , [ , . € ) , u ( . ) )  =  <  r o ,P+ ( t ) co>

for all I > ll and all ro € f . Hence the maximality of P+(.). Now msume that Q(.) is
stabilizing, then for every i6 > t5 the feedback control u(l) = -B'(t)Q\hO, t > fs is in
L2(is,a; C") and so by Lemma 6.9

Jr(rs,  [ fs ,  o) ,  z( . ) )  = < rs,8( io)ro )  S < cs,  P+(fs) to > .

Hence by (6.16) uniqueness holds.
To prove the fedback system(6.18) is exponentially stable we note that by (6.16) when p ! 0
and via (6.27) and the weak convergence when p ) 0, we have

l l  A l l ' " . t  " ,o31i  l l  16 l l ' �

for some constant.If. Then it is euy to show, that the solution r(.) of(6.18) satisfies

ll r(.) ll?,rt,",*l< F ll ro ll ', with F independent of lo. The exponential stabilization then follows
from Theorem 3.7.
It only remains to prove (iv). Suppose that f, is uniformly observable and p > 0, then

<  c6 ,P+ ( t ) 16 ,  =  
" r l ! [ , , ^ r J r ( r o , [ , 0 ,@) ,u ( . ) )

< .Ip('6, [,0, oo), 0) = -p /* 11 c1s;o1,, r;'6 ;1' a,
J t

<  - p p o l l  7 0 l l 2 .

The proof for the cue p < 0 is more difrcult. Using (6.22) with Q(.) = f+1.; ,l = o, yields

< ca,P+(t6)cs> = /*  < Or*1r, ro;16, [P+(s)A(s)A*(s)P+(s)

-pC'(s)C(s) lQp+(s, lo)co > ds (6.29)

where Op+(. , . )  is  generated bV 1(. )  -  B(. )B' ( . )P+(.)  and hence

op+(r ,s)  = O(r , i )  -  f t  Op,op1o1B'(o)P+(o)t ip+(o,s)do.  (6.30)

Given e ) 0, suppose there exist t,16 such that < ro,P+(r)ro > S 6 ll cs ll2, then from (6.29)
with le - l, since p ( 0, we have

f , -  l l  B ' (s)P+(s)op+(s,1)c6 l l ' �ds I  e l l  c6 l l ' �

l- ll c(s)op+(s, t)ca ll2 ds s fi ll oo ll '� .
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Let M,a ) 0 be such that ll A(l,s) ll< i!/e-'(t-'l for all I ) s ) 0. Then the first inequality
and (6.30) imply

l l  op+(. ,r)es- o(. , , )ro l lZ,r , ."r  S 4d$U tt  .  t t r .
But  then

l l  c(.)o(., r)cs 111,"p,o,1 3 2il1 c(.xo(.' ') - ap+ (. ' !))ze l l l ,1',01
+ ll c(')op+ (. ',) n l l?..u,,i

<  2eg:  l  c( . )  l t?  l  B(  ' " '  I  " '  ' �7
-  , e z  . ) l l Z * + ; o 1 l l l  r o l l ' '

For e sufficiently srnall this contradicts the assumption that I is uniformly observable and this
completes the proof. tr

Proposition 6.10 and Theorem 6.11, together, imply the following characterization of l l  I l  l l  in
terms of the solvabil ity of (DRE)o:

l l  r i  l l  =  sup{pe IR; (D.0E) ,  hm abounded } le rmi t ian  so lu t ionon [ ro , - ) ] .  (6 .31)

More precisely, if p <ll f,f, l l-2, then (D.0.O), possesses abounded Hermitian solutionon [le,m)
wherero for p >ll .Le ll-' there does not exist such a solution. However, there may exist solutions
onsomesmal le r in te rva l [1 ! ,oo) , t 'o> to .Thefo l low ingcoro l la ryshowsthat l (A ;8 ,C) isa t igh t

upper bound for those p € IR for which there is a bounded Hermitian solution of (DRE)' on

some interval unbounded to the right.

Corollary6,12 Suppose (5.2). If p < I(A;B,C)2 then there exists a bounded Hermitian
solutions of (DRE)' on some interval [ro, m) , to > O.

Remark 8,13 The above results are not applicable to the limiting parameters value
p' =ll LEh ll-2 (resp. p- = l(AiB,C)2\. In the time-invuiant cue it is known that (.4.R8), has
a Hermitian solution for p' =ll Lo l l-2 but the corresponding closed lmp system is no longer
exponentially stable and there may not exist a solution of the corresponding optimal control

problem (OCP)0. (see Hinrichsen and Pritchard (1986b)). So the differential Riccati equation
(DRE)o and the optimal control problem (OCP)o are decoupled at the parameter value
p' =ll Lo ll-2 .

In the remainder of this section we show that if f is uniformly controllable, under the conditions
of Thmrem 6.11, there eists a solution P-(.) of (DRE), on [ts 1o,m) such that the closed
loop system i(t) = [,4(r) -,8(r)B'(r)P-(r)]x(t) is completely unstable (i.e. the adjoint system
i(,) = -[A(r) - B(t)B'(t)P-(t)]"(r) is exponentially stable).

P r o p o s i t i o n S . l 4 S u p p o s e ( 5 . 2 ) , D = G , B , C ) , p S l l L ? , l l - t , t o > 0 a n d ! i s u n i f o r m l y
controllable with controllability interval of length o. Set

y( ro , , )  = f o r l ) t e ) 0

where On'(.,.) denotes the evolution operator generated by A+(.) = A(.)- B(.)A'(.)P+('). Then

P-( t )  = P+(t)  -  Y-r( ,0,  r )  for  t  )  t6 {  o

/ '  
o*1,o,,;41,;B'(s)oi(rs, s)ds
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is a bounded Hermitian solution of the (DRE)o on [t, + a, o) and the system

i( t )  = ,a-( t )c( t ) ,  ,4-( t )  := ,4(r)  -  8( t ) t ' ( , )P-( t ) ,  t  )  to *  o

is completely exponentially unstable.

Proof: By Lemma 3 in ,9ilueman and Anderson (1968) it is cleu that (,4a,.8,C) is also
uniformly completely controllable with the same length of the controllability interval o. Thus,
see Coppel (1978), there exist ,o, ,r > 0 such that

-6oI^ < -y-r(ro,r) < -61.18 for all I ) lo * o.

This proves that P- (.) is bounded. Next we show that it solves the (D RE)o. By difrerentiation
of Y(16,.) we see

11 lo , r ; - , 4 i ( r ) y ( r o , r ) - y ( r o , r )A+ ( , ) -  B ( s )8 . ( s )  =0  f o r  r  2  t o  ( 6 .32 )

Since Y(ts, l )  is  invert ib lefor  t  )  to *  o i t  fo l lows that  -y-r( ro, t )  = P-( t )  -P+( l )  solves

*1t1+ tri1t1x1t) +x(r)A+(,) -x(r)B(,)B'(,).x(,) - 0 for, > ro + '.

Thus (leaving out the argument t ):

P- + l 'p- + P- A- P- BB' P- = P+ * A'P+ + P+ A - P+ BB' P+.

But P+ solves the (D-BE), on [te, o) and so the left hand side is equaJ to pC.(.)C(.). Therefore
P- is a solution of the (D.RE), on lro + o, o).
Using (6.32) it is easy to see that Y(t6, l) solves the following Lyapunov equations for t ) ts 1 o

v  =  lA-  BB. (p-  +  y - r ) l y  +y lA-  BB. (p-  +  y - r )1 .  +  ra ,
=  - ( - ,41 |Y-Y( -A ' - ) -BB- .  (6 .33)

It now follows by applying Theorem 5.2in Megan(t976a) to (6.33) that the system

t ( t )  =  - / : ( r ) ' ( t ) ,  t>  to+o

is exponentially stable. Hence the proof is complete. o

The following example will show that, in contrast to the time-invariant case, P-(.) will no, rn
general be a minimal solution of (D.E,O), on [ts 4 a, o).

Example 8.15 Consider

t ( r )  = - r ( r )+u(r )
y(t) = x(t)

and the associated, (DRE),
l(t) - zp(r) - p - p(t)2 = o.

Then ll -t1o ll= 1 ana

o11y =  L" ' " 'OJ  j ) . - [ : - " ) .  [€  tR ,a2  =  r  -  p
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whence

Now

but for I large

p ( t ) 2p -Q)  f o r , t  )  I  o r  *  (  0 , t  >  0

p ( t ) 3 p - 0 )  f o r 0 < & < 1 .

4.7 Dependence of the solution P/(t) on the parameter p

In this section we examine properties of the maps

P.+(,) : (-@, l l r i l l-r l - c"x" ,r ) ro
p * PIU\

and analyze how the norm of the perturbation operator I|oP of the closed lop system De =

(Ae, B,C\ changes with p ,

Ae()=  A( t ) -  B( t )B ' ( t \P i (o ,  r  >  ro .

Let Or(.,.) denote the evolution operator generated by Ar(.).

Proposition 7,1 Assume (4.2).

(i) The map p * P[(t) is diferentiable on (-o, ll ffi, ll-,) for every t ) !s md

hr; u, = - 
l,* o;t",t)c'(s)c(s)oo(s,r)ds.

( i i )  I f  p1 < p2 <l l  I f ,  l l -2 then

P[,( t )> PI@ for  a l l  I  )  ls .

(iii) If p1 < p < ll LDr.ll-2, then Pr+(.) - P;(.) is the muimal bounded Ilermitian solution of
the differential Riccati equation

i1r; + a;,1r)x1t) + x(t)Ap,(t) * (p - p)c'(t)c(r) - x(r)s(r)B'(r)x(r) = 0 (?.1)

on [ts, o).

( iv) I f  p <l l  I l  l l - ' ,  then

l lr? ll-,=ll t7"ll-" -p.



Proof: Subtracting (DnE\^ form (D.R.O),, yields

n( 
pf - pil + A;,(p+ - pi) + el - pi) A ̂  - (p - pt)c' c * (pp - pp,)B B. (pe _ p,,) -_ 0.

Hence by Lemma 6.1 (i i)

(P[  -  Pf , ) ( t )  = -  
l , *  

o i , (s , r ) [ (n-pr)c ' (s)d(s)

+@l - r[)(s)a(r)B'(sxP/ - P;X")]o^(,,,)tu (7.2)
<  0  i f  p > p t .

Hence (i i) is proved, To prove (i) note that Ior p I p1 (7.2) is equivalent to

Lo0) - @ - e,) lr* 
o'0,{",t) Ar(s)a(s)D'(r)Ao(s)o,, (s, r)ds

f 6=J, oi,(s,t)C'(s)C(s)O,,(s,r)ds (?.3)

where

A e ( r )  =  - P ; ( t )  
-  P ; ' Q )  

.
P - P r

Now usume p < h <ll L?"ll-" . Since ks(., lr,) < 0 the right hand term in (2.3) is uniformly
bounded in I and then by (i i) and (2.3)

0 < A r ( l ) < o . I " ,  t > r o  f o r s o m e r e a l c o n s t a n t  a > 0 .

Hence

]:? 
_o,t, l = _ 

l,* e.o,{",r)c.(s)c(s)a,,(s,r)ds.
9 < p ,

Since this limitis continuousin p1 it follows from KabQ976) p. 494, that

l r :or  ' -
d p .  . p = p r = - /  o i ' ( s ' t ) C ' ( s ) C ( s ) o , ' ( s , t ) d s .

To prove (iii) note that since

i(t) = IA e,g) _ B (t) B' (t)(ry _ rj )(r)lr(r) = [A(,) _ B (t) B. (t) pf (t)b Q)
is exponentially stable, Thmrem 6.11 applied to (7.1) yields that (Pr+ - p;)(.) is its muimal
bounded Hernitian solution.
It remains to show (iv). Now since (P"+ - P;X.) solves (7.r) on [ts,oo), it follows frorn
Proposition 6.10 that

p - h < ll tD^" 11-z for all p € tp,, ll rB ll-r).

Hence

l l ,i l l- '< ll r,""" ll-" +pr.
Now suppose that

ll Ii" ll- +€ = ll I,;. ll-, +A for some e > 0.
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Then by Thmrem 6,ll there exists a bounded Hermitian solution P(') € Cl(lo, o; (Ir") of the

differentiaJ Riccati equation

i '  + A'o,P + PAo, -  l l  L ' , " l r ' �  -pt  +; \c 'c  -  PBB'P =0 (7.4\

with the property that i(t) = lAe,(\ - B(t\B'(t)P(r)lc(r) is exponentially stable. Adding (7.4)

to the (D.RE)r, shows that (PA + FX') € Cr(ls, o; f x") is a bounded Hermitian solution of

* + t 'x + xA - (l l  Li"l l4 +r\c'c - PBB'P = 0

on [ts, o) with the property that

r(,) = [A(r) - B(t)B'(t)(P^ +FX')] ' ( t)
= lAe,Q) - B(,)B'(r)F( ') l ' (r)

is exponentially stable. This is a contradiction by Proposition 6.10. tr

4.8 Nonlinear perturbations and robust Lyapunov functions

In this section we extend our robustness analysis to nonlineat perturbations of the form

A(r) = B(r)il(C(t)t(t),t) so that the perturbed svstem is

i ( r )  = A(r)c( t )  + B(t )N(C(,)c(r) ' r ) '  t  > t6,  r ( ts)  -  'o  (8.1)

where (,4,8,C) satisfies (5.2) and y'f : IRp x IR.r - IR- is continuously differentiable. We

usume /V(0, l) = 0 so that 0 is an equilibrium state of (8.1), Our aim is to determine conditions

on the "norm" ofthe nonlinear perturbation such that exponential etability of(8.1) is preserved.

To this end we need the following lemmata.

L e m m a S ' 1  S e t ! e = ( , 4 + e I " ' B ' C \ . T h e n f o r a l l e e [ 0 , e e ) , e o < - k s ( A \ ' t h e r e e x i s t s x
independent of e such that

ll ,F _ trD,o llc(r,,(,o,_1, h(to'\lS K e. (8.2)

Proof: Let A(.) + € I, generate O"(., .), then o"(t, s) = "c(t-r) 611, r; and hence

l l  o . ( r , ro)-o(r , ro)  l l  s  I  l -€s( ' - ro)  l .  l l  o( r , to)  l l .

Since there exist M and o e (eo,-,ts(.A)) such that ll O(r,ro) ll< Me-'P-to),, > ,o' we obtain

l l  o"(r , r0)-6(r ,10) l l  < M I  l -6c( t - to1 le- ' ( t - to)

S rV e e-('-"Xt-ro)

3 iY e e-''(t-lo)

lot ut := u- €6 and sone 1V > 0. Then for f(t) := e-''t md every z(') e lz(to'o; C")

ll (I;' - ,eX,(.)) ll?oro,-, o)
t6  l .= 

I, tt / c(t)[o"(t,r) - o(r,s)]B(s)u(s)dsll2 dt

s ll c(.) lli_ll B(.) lllL* N,{ I* u* ll u ll)r(r)d,

< ll c(') ll?- ll B(') ll21* N2 e2u'-2 ll u(') lllra,-, *t
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which proves the lemma. o

By Pf we denote the maximal bounded Hermitian solution of the Riccati equation

P( t )  + [ / ( t ) +€ / " ] 'P ( t )+P ( , ) [ , 4 ( , )+€ . I " ]  -  pC ' ( t )C ( t ) -P ( , )B ( , ) .B ' ( , )P ( t )=0 .  ( 8 .3 )

Lemma t,2 Suppose 0 < p <ll ri ll-t. Then there exists 60 > 0 such that for all e ! e6

Pj(') exists on [t6, o)

P:( t )  S P:( t \  < P.( t l  for  a l l  t  )  16

ll 4(to) - Po(s) ll< K e for some x independent of e

Proof: For es sufficiently small 6 <ll ,A' ll-, by Lemma 8.1. hence (8.4) follows from
Theorem 6.1r. If F = P;(.) - Pr(.), then

F + [ , 4 +  e I ^ -  B B . p o ] ' P  + F l A +  e I , -  B B ' p o l + 2 € p e - P n n - F  = 0 .

S i n c e  A 6 ( , 4 + € 1 " - B B ' P p ) < 0  f o r a l l e  ! e s a n d e s s u f f i c i e n t l y s m a l l , w e o b t a i n b y L e m r n a
o . l

P@ -- 
I  ol(s,r)[2ePe(s)- F(s)B(s)B'(s)F(s)]o.(s,,)dj ( 8 .7  )

w h e r e [ , 4 + e I " - B B ' P e l ( . ) g e n e r a t e s O " ( . , ' ) . N o w P r ( r )  S 0 f o r s ) t 6 a n d t h u s F ( r ) < o i o r
I > 16. This proves the right inequality in (8.5). The left inequality is established in a similar
way.

Bv

(8.4 )

(8.5)

(8.6)

(8.8)

(8.e)

> 0 then

F(t) s 2€ /- 11 o.1,,,; l lr l l  pp(r) l l  ds
JT

and eince Pr(.) is bounded it remains to show the existence ofsome x, > 0 such that

/- , '
, ,, O.(s, t) l l2 d,s 1 x' for all I ) ,o,e S €o.

J I

If ,i,(.,') is generated by lA- BB'Po\(.) and ll it,(s,r) ll< Me-a("-') for some ,t,A
Variation-of- Constants yields

l l  O.(s,r )  l l |  U e-ao- ' t  + l "  u "-ot"- t te l l  o. ( r , l )  l l  dr .
J t

Multiplying this inequality by ea, and applying Gronwall's Lemma gives

ll e;'O.(s,t) ll< M eat e"ti("-tl

Thus (8,8) holds for eo sulnciently small and the proof is complete. o

If a global bound for the nonlinear perturbation is known we obtain the following result.

Theorem 8.3 Suppose (5.2) ,  D = @,8,C),  t6 )  0 and for  some ? <l l  , l  l l - t

l l  ly(y,t) l lS r l l  y l l  for arl  t  > to,y e CP.

Then the origin is globally exponentially stable for the system (8.1).
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Proof: Choose p e (r'�, ll ZB 11-z; and e ) 0 suficiently small such that Pj(.) exists on
[ts, m). (Note that, by msumption (8.10), the right hand side of (S.f) is linearly bounded and
so the solutions of (8.1) exist on [t6, m) . Consider the functional

V ( t , x )=  -  <  r , $ ( t ) x  > ,  t  )  t 6 , c  €  f .

Its derivative along any solution z(.) of (8.1) is

v( t ,a( t ) )  = -  2ev(t ,x( , ) )  -  p l lc( t ) ' ( t )  l l ' �  -  l l  B ' ( t )Pi( , ) ' ( t )  l l ' �
2  ne < Pf  ( t ) r ( t ) ,  8( l ) rv(d( t ) r ( t ) ,  t )  >

= --';i"t'l;:l ) ;"[ 3' il'lirJi]ili]'l' fl f '1' r t' r'' I t t'
Hence

t1t,x1t17 ! -2ev(t,z(t\)-d l l c(r)c(r) l l ' ,  r > ro
where 6 = p - 72. Integrating yields

v(h,r( t r ) \e2, i  -v( to, t ( to\ \e2, to .  -o [ "  "2d 11c1tyn1t111,  at
J t o

for all t1 > ro and since y(rl,r(tr)) > 0

[- "r<r-ro\ l l  c(r)r(r) l l2 , ] t  < -. t- ,  < r6,g(r6)ze > . (8.11)
J t ^

Now if ,4(.) gu.".rt". O1', ';

l l  '(r) l l  S l l o(r,rs)r6 l l + / '  l l  otr,,)r(s)N(C(s)z(s),s) l l  ds.
J to

But there exists M,o ) 0 such that ll O(t,s) ll3 Ae-.U-4,t ) s. Hence

e€(,- to)  l l  , ( r )  l l  S M€-(o-4( ' -h)  l l  ,o l l
t t

+1 I  M l l  B l l ;_ e- t . - , ) t ' - ' )€s( , - ro)  l l  C(s)c(s)  l l  ds
J tn

> Me_(u_.x,_h) l l  ,o l l

+1M l l  Bl l61[ '  "-zt -a(r-,)ds]][  
[ '  "r ,{"-,o' t  l l  c(s)r(s) l l ,  dc}}.

J to  J to

So, by (8.10), there exists a constant .& ) 0 such that

ll r(r) ll S Ke-.(-.o) ll r(ro) ll for all r > re ) 0

This concludes the proof. o

If condition (8.9) is required only locally then the following local version of Theorem 8,3 is
available. However, one neds to know Pr(f) for all t ) !o.

Thorem 8.4 Suppose (5.2) ,  D = @,8,C),  16 )  0 md 0 < p <l l  Z* l l - ,  .  I f  there exist
d > 0 a n d 6 > 0 , s u c h t h a t



Proof: Suppose that - < x(t\, P;(t)r(t) > < d then by Lemma 8.2 for e suficiently small
- < c(t), Pr(t)o(t) > < d. Now the proof follows in exactly the same way as in Theorem 8.3.

The dependency on e of the region of exponential stabil ity in the above thmrem is not very
satisfactory. Ilowever as a consequence of Lenma 8.2 we have the following corollary.

Coro l la ryS.6  Everybounded se t  in  {cq  €  0  I  -  (  c6 ,Pr ( ts )os  >  <  d}  i s  a reg ionof
exponential stabil ity at 16. This follows from Lemma 8.3 since for all c6 € 0 and e S eo

-  <  e 6 , P j ( t o ) o o >  *  <  1 6 , P r ( t s ) t g  >  <  K €  l l t o  l l ' �

The proof of Theorem 8.3 shows that y(r,o) =< x,Pf(t)r > is a joint Lyapunov function for
all the systems (8.1) satisfying (8.9) with ? <ll ,e l l-t . In the l inear case one hm

Propos i t ion  8 .6  Suppose (5 .2 ) ,  D  =  (A ,B,C)  and p  < l l  I f l  l l -2  fo r  some t6  )  0 .  Then

V ( t , x )  =  -  < x , P o $ ) x > ,  l > 1 o , r €  f f

is a common Lyapunov function guaranteeing the exponential stabil ity of all the systems

E p :  i ( l ) =  [ A ( , ) +  B ( t ) D ( t ) C ( t ) ] x ( t ) ,  ,  > 1 6 ,  r ( t 6 ) = c 6

w i t h D ( . ) € P C ( 1 6 , o ;  C n x p ) a n d  l l  , ( . )  l l i _ r , " , _ ,  c _ , p 1 ( p

P r o o f :  S u p p o s e  t h a t  D  e  P C U o . a ;  C a x p )  a n d  ? : = l l  D  l l r - <  p i  .  V 1 t , 1 1 i s  n o n - n e g a t i v e
and its derivative V1t,x1 along the trajectories of f,p is non-positive by the previous proof.
H e n c e V i s a L y a p u n o v f u n c t i o n f o r ! p . M o r e o v e r , a p p l y i n g ( 8 . a ) w i t h E = 0 , 6 = p - 1 2 w e
obtain

f j  11 cal ,a l l l2  dt  < b- tv( lo , ro)
J-o

for all tf I 16 and trajectories r(') = xp(';tts,ro) of Do. Thus, for any ro € O., we have for
some It > 0

sup l l  C(.)cp(.; l l , ro) l l r ,( ,6,oo)< I i  l l  c6 l l
tL2to

and this implie the exponential stability of f,p (see proof of Proposition 5.2 (iii)). D

A Lyapunov function could be ca.lled oI mazimal ro6ustness with respect to perturbations of the
structure A(t) = B(r)r(r)C(t) tf ir guarantees the exponential stability of a/l the perturbed
systems !p with ll D ll1-< r 6(A;B,C). In the time-invariant case a Lyapunov function
of maximal robustness can in fact be constructed using the maximal solution of the (AftE),
with pi = r q(A;B,C\,see Einrichsen and Pritchanl (1986b). The time-varying cue is more
complicated since ll Ifl ll-r does not equal r a(A;B,C) in general. In fact one can improve
the result of Proposition 8.6 by using scalar Bohl transformations. If ll , llU_< p and pL, I
sup6 l(,4 - $I*; B, C), then the perturbed system !p will be exponentially stable. We will now
construct a joint Lyapunov function for all these perturbed systems. Let f,p = (A - *1", B,C\
and consider the differential Riccati eouation

P(r)+[,4(,) - a(r)-rd(r)/"] 'p(,)+ p(,)[/(r) * 0(t)-t i(t)r"]
- pc. (t)c(t) - P(r)B(t)B' (t)P(t) = o.
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Suppose pi < (,(A - *I"iB,C). If P'(.) is the muimal bounded Hermitian solution, then
differentiation of

v e 1 t , t 1 = - < c , P o ( t ) x >

along any solution of !e yields

ve1t,,1t11= - l l  B*(t)pc\)x(t\ + D(r)c(r)o(r) l l ,
- k- l l  D(r) l l ,) l l  c(t\x(t)l l , .

Now in a similar manner to Proposition 8.6 it follows that f,p is exponentially stable and since
9(.) is a Bohl transformation !p is exponentially stable as well.
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