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Introduction

In this thesis linear finite dimensional time-varying control systems in state space form

#(t) = A(t)z(t) + B(t)u(t) (0.1)
¥t = C(=(?)
resp. in differential operator description
P(D)(z) = Q(D)(w) (0.2)
y = V(D)z)+W(D)(u)

are studied. Roughly speaking, three different mathematical techniques (algebraic, geometric
and analytic) are used to analyse various control theoretic problems of time-varying systems.

Algebraic approach

Rosenbrock (1970) introduced the well-known setting of time-invariant systems in differential
operator description (0.2). He studied the question under which conditions two constant control
systems represented by (0.2) have the same dynamics and the same input-output behaviour.
This is the problem of (strict) system equivalence. Fuhrmann (1976) and (1977) analyzed this
problem via model theoretic tools. This enabled him to associate a canonical state space mod-
ule with any factorization V(z)P(z)~1Q(z) + W(z) of a proper rational transfer matrix. So far
the analysis of the problem of system equivalence for time-invariant systems was done in the
frequency domain. Pernebo (1977) was the first who studied system equivalence in the time
domain, his basic idea was to consider solution sets of the system equations. This approach was
systematically exploited by Hinrichsen and Prdtzel-Wolters (1980) to obtain a self-contained
theory of system equivalence in the time domain. They derived an algebraic criterion of system
equivalence, defined and characterized controllability and observability, and presented a canoni-
cal state space model similar to Fuhrmann‘s model.

Concerning time-varying systems, for a long time there has been a widespread scepticism whether
an algebraic treatment in the style of Kalman would at all be possible. In particular it was not
clear how to extend transform techniques. There were some attempts to study time-varying equa-
tions of the form (0.2), cf. Ylinen (1975) and (1980), Kamen (1976). llckmann, Nirnberger and



Schmale (1984) were guided by the time-invariant approach of Hinrichsen and Prdtzel-Wolters
(1980) when they generalized the concept of system equivalence for time-varying systems. They
considered system matrices defined over a certain skew polynomial ring and introduced the no-
tion of ”full” differential operators. This set them in a position to generalize, for a fairly rich
class of time-varying systems of the form (0.2), the time-invariant results of Hinrichsen and
Pratzel- Wolters (1984). These results are presented in the first half of Chapter 2 of this thesis.
A module theoretic approach to different definition of structural indices of time-invariant state
space systems was given by Minzner and Prétzel-Wolters (1979). Via polynomial modules and
their minimal bases they proved the equality of controllability indices, minimal indices, g t

ric indices and dy ical indi Prétzel-Wolters (1981) continued this work to characterize
Brunovsky-equivalence for time-invariant systems of the form (0.2).

Guided by this approach and using the skew polynomial ring introduced in Hlchmann, Niirnberger
and Schmale (1984) I generalized the results of Miinzner and Prdtzel- Wolters (1979) and Prdtzel-
Wolters (1981) for time-varying systems (see Ilchmann (1985a)). The characterization of mini-
mal bases of right skew polynomial modules extends a result of Forney (1975). It is possible to
define a transfer matriz in the time domain and to use this to characterize system equivalence.
Different invariants with respect to system equivalence resp. similarity were defined and their
equality was shown. This is presented in the second half of Chapter 2 of this thesis.

Geometric approach

In the late sixties Basile and Marro (1969) and Wonham and Morse (1970) developed the concept
of (A,B)-invariant subspaces to solve decoupling and pole assignment problems for multivariable
systems. Later Wonham (1974) established the so called geometric approach. This approach
was generalized for nonlinear systems by Hirschhorn (1981), Isidori, Krener, Gori-Giori and
Monaco (1981) and for infinite dimensional systems by Curtain (1985), (1986), to name a few.

In Chapter 1 of this thesis time-varying subspaces are studied. This turns out to be the appro-
priate framework to extend the linear time-invariant geometric approach to piecewise analytic
state space systems. If only analytic systems are considered this approach is a specialization of
the nonlinear setting. However the concept proposed here is more "natural” for time-varying
systems (differential geometry is not used) and the class of piecewise analytic systems is richer
than the class of analytic systems. In Chapter 3 of this thesis I present the results which were
essentially given in Ilchmann (1985b) and (1986). The concepts of (A,B)- and (C,A )-invariance
are introduced, characterized and their dual relationships are shown. By using these results the
solvability of the disturbance decoupling problem and the noninteracting problem is characterized.

Analytic approach

Concerning exponential stability of systems of the form

#(t) = A()x(t), t>0 (0.3)



three aspects are studied in this thesis: for short, sufficient conditions for exponential stability;
sufficient and necessary conditions for the stabilizability of systems (0.1) by state feedback;
robustness of stability.

It is well-known that if, for all ¢ > 0, the spectrum of A(t) is lying in the open left half plane
and the parameter variation of A(t) is "slow enough”, then (0.3) is exponentially stable. See e.g.
Rosenbrock (1963), Coppel (1978). However, these results are qualitative. In Ilchmann, Owens
and Pratzel-Wolters (1987b) we derived quantitative results. This means, upper bounds for the
eigenvalues and for the rate of change of A(2) which ensure exponential stability of (0.3) are
determined. This is presented in Section 4.1 of the present thesis.

Ikeds, Maeda and Kodama (1972) and (1975) studied the problem to stabilize a time-varying
system (0.1) by state feedback. Furthermore they gave a sufficient condition which guarantees
that (0.1) is stabilizable by deterministic state estimation feedback. In Ichmann and Kern
(1987) these problems were analysed in case that the system (0.3) pc an ezp tial
dichotomy. When this is assumed the concept of controllability into subspaces, introduced in
Section 1.2, is the appropriate tool to give necessary and sufficient conditions for stabilizability.
These results are presented in Section 4.2.

In the remainder of the "analytic chapter” some robustness issues concerning the stability of
(0.3) are studied. For time-invariant systems there exist two fundamental approaches concerning
stability: the successful H-approach (see Zames(1981) and Francis and Zames (1983)) based
on transform techniques and the state space approach (see Hinrichsen and Pritchard (1986a,b))
based on the concept of "stability radius”. It is not clear how to extend transform techniques to
time-varying systems, whereas there are natural extensions in the state space setup. Hinrichsen
and Pritchard (1986a) defined the (complex) stability radius of A € C**™ as the distance of A
from the set of unstable matrices in the Euclidean topology. In Hinrichsen and Pritchard (1986b)
they also treated structured perturbations of the form BDC (B, C are known scaling matrices)
and showed that the associated structural stability radius r ¢(A; B, C) can be determined by the
norm of a certain convolution operator { "perturbation operator”). Using optimization techniques
they proved that r%(A; B,C) is the maximal parameter p € IR for which the algebraic Riccati
equation

A*P + PA—pC*C - PBB*P =0
has an Hermitian solution.
In Hinrichsen, Ilchmann and Pritchard (1987) these results were partially extended to time-
varying systems. A new class of time-varying coordinate transformations ( Bohl transformations)
was introduced and a lower bound for the stability radius r ¢(4; B, C) in terms of the norm of
perturbation operator was given. Existence of maximal bounded Hermitian solutions of the
differential Riccati equation parametrized by p ¢ R

P(t) + A(£)"P(2) + P()A(t) ~ pC(1)"C(1) — P)B(H)B(t)"P() =0, t20

was characterized via the norm of the perturbation operator. This is presented in Sections 4.3
to 4.8 of this thesis.

Each chapter has an own detailed introduction. A subject and symbol indez can be found at the
end.



Chapter 1

Controllability and Observability for State Space
Systems

1.0 Introduction

Controllability and observability are basic concepts in systems and control theory. A first math-
ematical description was given by Kalman (1960). From then on these concepts were studied
extensively not only for time-invariant state space systems, but for time-varying systems as well.
However, in this chapter some definitions and characterizations concerning controllability are
presented which have been not considered before.

The concept of controllability into subspaces is introduced, this will become useful when the
problem of stabilizability of systems which possess an exponential dichotomy is studied in Sec-
tion 4.2. Extending Rosenbrock‘s deleting procedure I define controllability indices and use this
to derive a canonical form for analytic state space systems. For the study of different structural
indices in Section 2.6 this canonical form will become useful. Controllability and observability
induce certain time-varying subspaces. Time-varying subspaces in general are studied in depth
in Section 5. This is a basic tool for the geometric approach of time-varying system presented
in Chapter 3.

So far Chapter 1 is a preliminary chapter. I have put together some basic definitions and con-
cept which I will refer to in the following chapters. On the other hand the contents of Chapter
1 have some interest of their own, they serve for a deeper understanding of controllability of
time-varying systems.

In Section 1 some notations and certain skew polynomial rings are introduced.

The concept of controllability into a subspace is studied in Section 2.

The dual and adjoint relationships between controllability, reconstructibility, reachability and
observability with respect to subspaces are explained in Section 3.

In Section 4 Rosenbrock‘s deleting procedure is generalized and controllability indices for ana-
lytic state space systems are defined. They are used to derive a canonical form.

Families of time-varying subspaces are studied in Section 5 and the results are applied to piece-
wise analytic state space systems.

Section 2 and 3 are mainly based on Ilichmann and Kern (1987); Section 4 and Section 5 are
based on lichmann (1985a), (1985b) resp.



1.1 Basic notations and definitions

In this chapter state space systems of the following form will be considered
() A(t)z(t) + B(t)u(t) (1.1)
y(t) C(t)z(t) ,tER

where A(-), B(-),C(-) are n X 5, n X m, p X n matrices, resp., with entries in a ring R.
R will be for instance

C, the set of piecewise continuous functions f : IR — IR
ck the set of k-times continuously differentiable functions f‘R-TR
Ap, A the set of (piecewise) real analytic functions f: R — R

A function f : R — IR is called piecewise real analytic if there exists a disjoint partition
Uzlav,av41) = R s{a,}, ez a discrete set so that each restriction f(-) |(avmpqs) i8 Teal
analytic and has a real analytic extension on some (!, aZ,,) ,al < a, ,a,41 < al,,. Clearly
every function in A, is piecewise differentiable.
In this chapter we consider the whole real axis as the time domain of (1.1). Most of the analysis
goes through for any subinterval I C IR as well.

Throughout the thesis a fundamental matriz of
£(t) = A(t)z(t)
is denoted by X(-) and the transition matriz by
(1, 1) = X ()X (to) 1.
Suppose
T=(t;) EGL(R)={T e R™ |IT"1 ¢ R™" Wt R : T@#)T()™ = 1.}
and T = ({;;) € R™*", then the coordinate transformati

(1) 1= T(t)~*a(2)

converts the system (1.1) into

#t) = A'()(t) + B'(t)u(t) 1.2)
¥(t) = C'(1)(t) tER
where .
A = TYAT-T-'\T ¢gRnxn
B = T-'B € Rnxm (1.3)
¢’ = TC € Rpxn

and the transition matrix $'(¢,to) of (1.2) satisfies

®'(t,t0) = T(t)"18(2, t0)T (o).

In this case (1.1) and (1.2) are called similar.
For sake of brevity the tuples

(A,B) € Rnx(n-{-m)’ (A,B,C) € RN x R1Em o RPXN

are associated with the system (1.1).



Remark 1.1 As opposed to time-invariant systems, due to the much richer class of coordinate
transformations, a system (A, B) is always similar to a system with constant free motion. More
precisely, if R is Cp,C¥, A, or A and (4,B) € R"™(**™) then the coordinate transforma-
tion T(-) = X(-), whereX is a fundamental solution of £(t) = A(t)z(t), converts (A, B) into
(O,X‘IB) € Rrxindm),

Clearly, similarity transformations will not, in general, preserve stability properties of the sys-
tems. Additional assumptions have to be imposed. If one requires that T(-), T(-)~1,T(-) are
uniformly bounded in ¢ one obtains the so called Lyapunov trensformations, introduced by Lya-
punov (1893) in his famous memoir, the stability behaviour is not affected. In this case (1.1)
and (1.2) are called kinematically similar.

In the remainder of this section certain skew polynomial rings are introduced. They will play
an important role for the algebraic description of time-varying systems. The following basic
properties of skew polynomial rings can be found, for instance, in Cohn (1971) Section 0.8.
Let R be any non-zero ring (not necessarily commutative) with no zero-divisors and z be an
indeterminate over R. Then the ring R[z;a, 8] generated by R and z is called a right skew
polynomial ring if for some monomorphism @ : R — R and a-derivation §: R — R,ie
ofr - s) = a(r) - ofs) for all r, s € R, the following commutation rule is valid

rez=z-a(r)+68(r) foralr,seR
Thus every element of R{z; @, §] is uniquely expressible in the form
ro+...+z"%n ,rNER

A left skew polynomial ring is defined analogously with commutation rule z -r = a(r) -z + §(r).
If « is an automorphism then every left skew polynomial ring is a right one and vice versa.

To introduce certain skew polynomial rings which are important for an algebraic description of
time-varying systems some notation is needed. Let M be the field of fractions of 4, i.e.:

M= {f : IR - R | f is real meromorphic}.
By identifying each f € M with the multiplication operator f : g — fg, M is a subring of
endr(M), the ring of IR-endomorphisms of M. If
DM =+ M
f - DN=f

denotes the derivation on M induced by the usual derivative, then D € endr(M) as well. The
composition of D and f in endr(M) is

(DfY(9)=D(fe) = fg+ fg=(fD+f)g) forall figeM

and one has the multiplication rule

Df=fD+§ forall f € M (1.4)

since D is algebraically independent over M
M[D}:= {fo+...+ faD™ | fi € M,i € Ny} C endr(M)
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with commutation rule (1.4) is a (left and right) skew polynomial ring. Analogously the skew
polynomial ring A[D] is defined. These rings are extensively studied in fichmann, Niirnberger
and Schmale (1984).

A degree function on A[D] resp. M([D)] is defined as usual. Since these rings do not contain
zero divisors they allow a right and left division algorithm. So they are right and left Euclidean
domains. Furthermore A[D] and M[D] are simple, i.e. the only two sided ideal of A[D] resp.
M(D] are {0} and the ring itself, cf. Cozzens and Faith (1975) p. 44.

Using this operational setup and the multiplication rule (1.4) one obtains

Lemma 1.2 If (A, B) € A™("*m) and T € GL,(A) then for i € N and (A, B') € Anx(nim)
satisfying (1.3) we have

T7'DI, - AT = DI, - A (1.5)
T~Y(DI, - A)(B) = (DI,— A'Y(B') (1.6
(DI, - A¥(B) = X(X'B) .7

where

(DI, — AY(B) := (DI, ~ A)(DI, — AY~Y(B))
Proof:  (1.5) is an immediate consequence of (1.3) and (1.4). We prove (1.6) by induction
on i. For i = 0 it holds true by (1.3). I (1.6) is true for i, we conclude
T~Y(DI, - A)*}(B) = T~(DI, - AT(T~}(DI, - A)(B)) = (DI, - A’)(DI, - A'}(B).

(1.7) is also easily shown by induction. a

1.2 Controllability into subspaces

Throughout this section state space systems (A, B) € C2*™*™ are considered.

The following generalization of the usual controllability concept will in particular be useful when
systems of exponential dichotomy are analysed (compare Section 4.2).

Suppose that for some fundamental matrix X(-) of #(t) = A(t)z(t) the function space of free
motions is decomposed into the direct sum

X(R™ =) & Va(*) (2.1)

where
Vi(t) = X(t)P;,IR® fori=1,2 ,teR

and P, P, € R™" are mutually complementary projections, ie. PR = P, P, =1I,- P,

Daleckii and Krein (1974) p. 160 have proved that the projection associated with the linear
subspace Vi(t) is similar to P; and satisfies

B(t)= X(t)PX(1)™' fori=1,2resp., teR (2.2)

7



In particular it follows that if zo € Vi(fo) at some time 2o, then the free trajectory &(-, o)z, =
X(-)X (to)~'zo going through z¢ at tg belongs to Vi(-),i=1,2.

Definition 2.1 Suppose (4, B) € C2*("*™) The free trajectory &(:, to)zo is called controllable
at time to into V, if there exists some ty > o, u(-) € (Cp)™ and () € Vi(-) (all depending on
to,xo) s0 that

Q(t,to)zo fort S to
z(t) = ¢ B(t,to)zo + f:o &(t,3)B(s)u(s)ds fortp <t <ty
z1() fort; <t

is a solution of #(¢) = A(t)z(t) + B(t)u(t).

If this is true for every zo € IR® we say that (A, B) is completely controllable into V; at time
to. If (A, B) is completely controllable into V; at any time 2o then (A, B) is called completely
controllable into V.

This definition does not say that every state in Va(fo) can be controlled to zero, but every free
motion can be forced in finite time into a free motion of V;. If ¥, = {0} the above concept
coincides with the well-known concept of controllability. In this case we omit “into V;” and
speak only of controllability.

For later purposes it is often necessary to choose the input space (Ap)™ instead of (C,)™. That

this is not a restriction is a consequence of the following propostion.

Proposition 2.2 Consider (4,B) € C,','x(""""). If the state zo € IR™ at time ¢o can be controlled
to z; € IR™ at time t; > to by u(-) € (C,)™, this can also be achieved by some i(-) € (A |p)™,
where I = (to, ).

Proof: By Remark 1.1 and Lemma 1.2 it can be easily seen that it is sufficient to assume
A(-) = 0. Then it remains to prove that imG C imH , where

GG~ W
u(*) / “ B(s)u(s)ds

I

and
H:(AlpPp™ - R’
ty
() /‘o B(s)i(s)ds

I

Let gy,..., gk denote a basis of imG C IR" and choose u;(+) € (Cp 7)™ such that G(u(-)) = g
for i € k. Cj lies dense in C, |7 with respect to the L;-norm and, by the Weierstraf8-Theorem,
the set of real polynomials restricted to I lies dense in Cy. Thus for every § > 0 there exists
@(:) € (A |7)™ such that



() - @) ll,<6 foriek
Clearly, for ¢ > 0 small enough and § € im G "|| g —g; ||< € for i € k” implies that
§1,- ..,k is also a basis of imG. Now, by continuity of H, choose § > 0 suficiently small such

that || H(#) - gi ||< ¢ for i € k. Then H(#),..., H(diz) is a basis of im G and this completes
the proof. O

Instead of the controllability Gramian
t
Wto,t1) = [ @(to,5)B(s) BT ()27 to, 8)ds
to
of (4, B) € Cp*"™+™ the induced controllability Gramian

Wa(to, t1) = Pa(to)W (to, 1) PJ (1)

will become an important tool to characterize controllability into subspaces. We call W(to, t1)
positive definite on PTIR™ if for all non-trivial vectors g € P (tg)R™ we have g7 Wa(to, t1)q > 0.

The following invariance properties are easily verified.

Remark 2.3 Suppose (A, B),(A",B') € C,','x('“"") are similar via T € GLn(Cp). If the projec-
tion Pj(-) associated with z(t) = A’(t)z(t) is defined via the fundamental matrix T-1X then

Pi(t)
Wi(to, t1)

T(t) 1 P(H)T()
T(t0)*Wi(to, t:)T(to)~*"

and

(i) (A, B) is completely controllable into V; iff (4’, B') is completely controllable into
T (Wa().

(ii) Wa(to,t1) is positive definite on P¥(to)R" iff W;(to, t1) is positive definite on PyT(ty)IR".
The main result of this section are the following various characterizations of controllability into
subspaces.

Theorem 2.4 For the system (4, B) € Cp*™+™) the following are equivalent:

(i) (A, B) is completely controllable into V; at time #o.

(ii) There exists some t; > o such that

Wa(to, 1) is positive definite on PJ (to)R™



resp.
isz(to, tl) = Pz(to)]R,"

resp.
the map

Pyt C;," — Pz(to)]R"
u(:) —  fi X(to) Py X ~1(s)B(s)u(s)ds

is surjective.
(iii) Every non trivial solution
¥() = 7 (to,") P (to)q JgER"
of the adjoint equation of £(t) = A(t)z(t)
#(t) = —AT(1)y(D)
has the property
¥ (B lito,00) 7 0
If kP, = k and A, B have entries in C**~1,C"~* resp. then (i) is a consequence of (iv).
(iv) There exists some ¢, > ?g such that
rk[Py()B(2),...,(D ~ A H(P(t)B() =n—k
for some t € (p,11).
If (4, B) € A*("+m) then (i) is equivalent to (iv) and to
(v) There exist U(D) € M[D}**", V(D) € M[D]™*" guch that for all ¢t € R

P(t) = (DI, ~ A(t)]- U(D) + Py(8) B(1) - V(D).

Proof:  Note that (1.6) also holds true for i € n — k if (4, B) € (C"~F-1)nxn x (Cn—kjnxm
Thus, using Remark 1.1, it is easily seen that it is sufficient to prove the theorem for the case
A(-)=0and X(-) = I,..

The equivalence of the three statements in (ii) is proved analogously to the usual situation where
P = I,, of. Knobloch and Kappel (1974) p. 103. We omit the proof.

To simplify the proof a further condition is introduced:

iii') For every ty € IR there exists t; > ¢ so that
y

y(-) = ®(to, ) P (to)g £ 0 = yT(t)B(t)#0 for some t € [to, 1]
and we proceed as follows
(i) = (i) = (iii) = (iii*) => (ii)

10



(i) = (ii) : For to € IR and ¢ € IR there exists ¢; > #; and an input vector u(-) such that

1
o1 =10+ /‘ " B(s)u(s)ds € P,R™.
0

Then “
Py(zy — 20) = —Pazg = / P, B(s)u(s)ds.
to

which proves the second statement in (ii).

(i) = (i): It suffices to determine for arbitrary t; € IR,z € IR™ some t; > o and a control
function u(-) such that

1;
z(t1) = Pyzo + Paxo +/ ' B(s)u(s)ds € B,RR™.
to

By assumption there exists t; > to such that W;(to, 1) is positive definite on PTIR™. Defining

a(t) = —BT ()W (to,t1)Pyzo fortg <t <ty
- 0 fort >ty

gives
Py(Pazo + /: " B(s)u(s)ds) = Pyzo — /: PB(s)BT(s)PTds W;(to,t1)Pyzo = 0.
o
This proves z(t;) € AIR™.
(i) = (iii): by contradiction. Assume that for some PJ¢ # 0
yT()B(t) = ¢" P,B(t) =0 for all ¢ > t.

Then "
T Walto,t1)q = / " P,B(s)BT(s)PTqds =0 forallty > to
to

which contradicts (ii).
(iii) = (iii‘) is proved analogously as in Knobloch and Kwakernaak (1985) p.33.
(iii) = (ii): It suffices to prove that for arbitrary tg < t; the implication
()= PTg#0 = yT()B(t) #0 for some t € [to, t1]
implies that Wy(to, ;) is positive definite on P{IR". The proof is immediate by contradiction.

In order to prove (iv) = (ii) the following notation is used.
Let
L 0

-1 —
S PIS_[O 0

] for some § € GL,(IR)

11



Define

Foy= | 5o =[8 In-‘:]s"”(’)”‘""’
Sty |

[ fera(t)
F(t):= | : € R(—¥)xm,

L at)

At first it is shown that for arbitrary ty < t; the following are equivalent:
() Wa(to,t;) is positive definite on P{IR™.
(8) [ F(s)F (s)ds=n—k
() The row vector functions fg41(t), ..., fa(t) are linearly independent on [to-ta].
(a) & (B) : We have
S—'Walto, 11)S = /‘ " P(s)FT(s)ds.
o

Since
Okxk Ok x (n—k)
F@)FT(t) = ,
On-kyxk FOF (1)
the equivalence is obvious.

(8) @ (v) is a consequence of Gram's criterium, cf. Gantmacher (1959) p. 247.

Since

rk[Py()B(1), . .., (Pa(t)B(t))*F]

rE[S(F (), ..., S(OFB@)] = rk(F(t),..., F"H ()]
rh[F(®), ..., Fr (1)

it follows that (iv) is equivalent to

rk[F(t),...,F" (1) = n—k for some t € (to,11)
Now by Lemma 1 in Silverman and Meadows (1967) this condition gives () and thus (iv) =
(ii) is proved.
If (A, B) is an analytic system then due to the Identity Theorem (iv) is equivalent to

rk[F(t),. .. ,T("—k)(t)] =n — k for a set of points dense in (%o, 1) (2.3)
By Lemma 3 in Silverman and Meadows (1967) this condition coincides with (). Hence (i) ¢

(iv) is proved.
It remains to prove (iv) < (v) in the analytic situation. Since (iv) ¢ (2.3) it is sufficient to

12



show that (2.3) is equivalent to the existence of some I/ € M[D)(n=K)x(n—k) { & p[D}mx(n-k)
such that L

Ik =Dl -U+F-V. (2.4)
This equation is valid iff

0 0]cu_o[Dn 0] 1. e[ 0] ot 0] ¢om
S[O In_k]s ‘S[o DI,._,,]S s[ﬁ]s +S[T-] Vs,

Since

_olo 0l _ o[ DI 0] oy _ 0
P,_s[o 1,._,,]5 ,DI,.-.S[O DI,._;,]S ,P,B(t)_s[ﬂt)]

(2.4) is equivalent to (v) with A(-) = 0.
For the following proof of (2.3) > (2.4) compare Ilichmann, Nirnberger and Schmale (1984) pp.
357/8. Suppose (2.3), then there exist Y; € M™X("—k) {=0,... n— k such that
Yo
[T, . ,T(“_k)] = In_g.
Yn-—k

Using the multiplication rule (1.4) it is easily proved by induction that

FDi = f ( : )(—1)AD*-*T<*)+(-1)-'T(" = D-My(D)+(-1)F®  (25)
A=0
where i )
M(D):=Y ( N ) (-1 D=1
A=0
Thus
FlYo - DYi+ ... +(=1)""*D""*y, ;)

= FYo- [DM(D) - FIVi + ...+ (=1)""*[DM,_x(D) + (~1)**F" Ry, _,

. n—k
= FYo+Fi+...+ F" Y+ Y (1) DMy(D)Y;
A=1

YO n—-k
= [F...F"9 [ : } +D Y (-1 MA(D)Ya
yn—k A=1
n~k

= ILix++D Z(—I)AM)\(D)Y,\
A=1

and (2.4) is proved.
Finallay suppose (2.3) holds true and

V=3 DV, Ve M™% for =0,...,q

-

=0

13



By (2.5) one obtains
Lex = DU+F-V

= DU+3 Y (1) ( : ) DFWY,

=0 A=0
= Dt‘1+§: [Z(—1)"( :\ ) DFN 4 (1T
i=0 A=0
= DfI+D[Zq: §(-1)'< ) i=A-1Fg i?‘"(-l)"f’;
=0 A=0 i=

and comparing the coefficients yields

f:?(-n"fa- =Ink

=0

Since rku[F,.. .,T(i)] considered as a function of i can only be strictly monotonic within the
set {0,...,n — k}, (2.3) follows and the proof is complete. o

Suppose the system (A, B) is controllable at time 2o, i.e. P, = 0. Then condition (ii) of
Theorem 2.4 is proved in Kalman, Ho and Narenda (1963); (iii) is a recent result of Knobloch
and Kwackernaak (1985); (iv) was shown by Silverman and Meadows (1967);(v) is proved by
Iichmann, Nirnberger and Schmale (1984).

If Py = 0 and additionally (4, B) € R**("+™) then (iv) is known as the rank condition of the
controllability matrix derived by Kalman (1960), (v) represents the left coprimeness of sI, — A
and B, see Rosenbrock (1970).

Remark 2.5

(i) Suppose (4,B) € Cy x{ntm) i completely controllable into V; at time ;. Then a control
which forces a free trajectory ®(-,%)z¢ from time o into V) at time ¢ is given by u(t) =
- BT (£)Wa(t,, t1)~1 Pa(t0) (compare the proof of (i) = (i)” in Theorem 2.4). Since there exists
a minimal time t; > #o such that Wy(to, 1) is positive definite on P{ (to)IR™, every zo € R" can
be forced into Vi(¢;) is finite time § = ¢t; — ¢y, t; does not depend on zo.

(ii) Since imgy, = Wa(lo,11), where oy, is the map given in the third condition of Theorem 2.4
(ii), we have

imW(to, t)) C imWa(to,t]) for ty > ¢ > to.

Thus the function ¢ — rkW;(to,t) is monotonically increasing on (tg,00) . If (4, B) € A*(ntm)
then the entries of W,(to, -) are analytic as well and by the Identity-Theorem of analytic functions
rkWa(to,-) is constant on (tg,00). Therefore, if (A4, B) is analytic and completely controllable
into Vi, then every state zo € IR" at time ¢y can be forced into Vy(t;) in arbitrary short time
ty —tg > 0.

The next proposition will show that for (piecewise) analytic systems imWs(to,¢;) can be com-
puted in terms of A and B . The knowledge of the transition matrix is not necessary.

14



Proposition 2.6 Suppose (A, B) € A"("+m) and ¢, < t; . Then

imWa(to,t1) = ®(to, 1)) im(DI, — AWV (Pa(t)B(t)) forall t € [to,ty]  (2.6)
i>0

Suppose (A, B) € AP+ and R = U,ez[av, @,41) is a partition such that A(-) and B(-) are
analytic on every (a,,@,+1) . Then for 1o € [20,81) and t; € [an,an41) one obtains

N
imW(to, 1) = Y im(DI, — A(to))'(B(t)) + 3 3" im(DI, — A(a,))'(B(a,)) (2.7

i>0 v=1i20

Proof:  Using Remark 1.1 and (1.6) it is easily seen that without loss of generality one may
assume 4 = 0, X = I, . So it remains to prove

imWy(to,t1) = Y im(PB(t)D  for all £ € [to, 1]
>0

which is equivalent to

kerWa(to,th) = [3_im(PB)D)E  for all t € {to, 4]
i>0

Due to the properties of analytic functions it is easily seen that

q € Wa(to, 1)

&

(PB(1))Tg=0 forallte [t,t]
&

[PgB(t)]T(')q =0 for somet € [lp,t], foralli>0
4

g € ( ker[PBO)]™ = (3 im(P,B(1)))}* for some t € [to, ;]
i>0 20

This proves (2.6). (2.7) follows from (2.6) and the fact that

isz(to,tl) = isz(to, al) +...+ isz(aN,tl)

Remark 2.7
(i) Set P, = I and t = ¢g in (2.6). Then for time-invariant systems an application of the
Cayley-Hamilton-Theorem reduces (2.6) to the well-known fact that the controllable space is
given by

imB +imAB + ...+ imA"'B

(ii) In general it is not possible to restrict the sum in (2-6) independently of #o to only finitely
many summands. See an example in Kamen (1979) p. 871.

(iit) If A(-) and B(:) are defined over IR[t] it can be shown that the sum in (2.6) can be restricted
to finitely many summands. Cf. the subclass of constant rank systems considered in Silverman
(1971) and Kamen (1979).
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It is well-known that for many control problems uniformity constraints are necessary. Uniform
controllability as introduced by Kalman (1960) is extended in the present set-up as follows:

Definition 2.8 The system (A, B) € Cp X(n+m) i called uniformly completely controllable into
V, if there exist o,a,b > 0 such that

al, < Wi(t,t+0) <bl, on PT({)R* forallte R (2.8)

Remark 2.9
(i) Suppose A(-) is bounded, i.e. there exists ¢ > 0 such that || A(t) ||< cfor allt € IR . Since

i(t) = A(t)I(t), t(to) =g
is equivalent to .
z2(t) = 2o + / A(s)z(s)ds
to
one obtains .
B(t,t0) = In + / A(3)®(s, to)ds
to
and thus .
N8t t0) < 1+ [ clf #(s,t0) |l ds
0
Now an application of Gronwall‘s Lemma yields
Il ®(2,10) ||< et=*)  for all t > 1,

Using this fact it is easily shown that an upper bound in (2.8) always exists if A(:) and B(-) are
bounded.

(ii) A straightforward calculation shows that uniform complete controllability into V,; is pre-

served if a kinematical similarity transformation is applied to the system (A, B).

For later use we state the following lemma.

Lemma 2.10 Suppose (A, B) € C2*™*™) is bounded and the matrices F(-) € Cpxm E() €
Cp**™ are bounded as well. Then (A, B) is uniformly completely controllable into V; iff the
system

#(t) = [A(t) + BE)F(D)]e(t) + B(1)E(t)u(t)

is uniformly completely controllable into V; .

Proof:  The result is proved for uniform complete controllability by Silvermann and Anderson
(1968). It carries over without any difficulties for uniform complete controllability into V; . O
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1.3 Dual and adjoint relationships between controllability, re-
constructibility, reachability and observability

Throughout this section we consider systems (4, B) € Cp x(ntm)

The well-known concepts of reconstructibility, reachability and observability (cf. Kalman (1960),
Knobloch and Kwakernaak (1985)) are generalized with respect to time-varying subspaces. How-
ever, [ only concentrate on those definitions and propositions which are of interest in the follow-
ing. Analogous results as for controllability in Section 2 can be derived without any difficulties.

Following Kwakernaak and Sivan (1972) we define
Definition 3.1 The dual system of (4, B) € CP*"+™ yith respect to some arbitrary fixed
time ¢t* is given by
(1) AT — )a(t) + CT(* — t)u(t) (3.1)
y(t) = BT —t)z(2).
The adjoint system of (A, B) is defined by
#(t) = -AT(0)z(t) - CT(t)u(t) ‘ (3.2)
v(t) = -BT()(t).

Remark 3.2 It can easily be derived that a fundamental matrix X9(-) resp. X(-) of the dual
resp. adjoint system satisfies

il

X4t
X1

X7 - o)
X7

the associated transition matrices satisfy
¥Ut,5) = BT(t" -5t -1)
®%(t,s) = ®T(s,1)
and the time-varying subspaces are defined by
Va(t) XYPTR" i=1,2
Vi) = X¥t)PTR" i=1,2

To state the dual and adjoint relationship of controllability into a subspace the following defini-
tions are introduced.

Definition 3.3 (A,B) € C,','x("+m) is said to be completely reconstructible wrt V; if for every
fo € IR there exists a t_; < g such that for every z¢ € X (to)PTIR™ the condition

CL)2(-5to)Zo Jp_, 1= 0 (3.3)
implies 29 = 0, for ¢ = 1,2 resp.
The induced reconstructibility Gramian is given by

Hi(t_v,t0) = XV (1) P X T (1) - /t © 87(s,t0)CT(s)C(s)(s, to)ds - X (to) PT X (1)

for 7 = 1,2 resp.
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Definition 3.4 (A, B) € C2*™*™) is said to be completely observable wrt V; if for every to € IR
there exists a t; > to such that for every zo € X (to)RTm" the condition

C(-)2(-,t0)Zo ljtg, 1= 0 (3.4)

implies zo = 0, for i = 1,2 resp.
The induced observability Gramian is given by

3
Giltorti) = X (o) PXT(t) - [ 7 (3, t)CT(IC(9)%(s, to)ds - X(t0) PF X ~'(t0)
to
for i = 1,2 resp.

Proposition 3.5 Let t* = 0, then the Gramians associated with the system (A, B), the dual
system and the adjoint system, resp. , satisfy

Wa(to, 1) = Hg(—-il, —t9) = G;(tu, t1) (3.5)
Furthermore the following are equivalent:
(i) (A, B) is completely controllable into V;.
(i) The dual system (3.1) wrt ¢* = 0 is completely reconstructible wrt Ve .

(iif) For every to € IR there exists a t_1 < to such that Hg(t_1,t0) is positive definite on
Xd(to)PTR" .

(iv) The adjoint system (3.2) is completely observable wrt V3 .
(v)  For every to € IR there exists a #; > o such that G§(to, ) is positive definite on
Xo(to)PJIR™ .
Proof:  The formulas in Remark 3.2 give
t
Waltotr) = X()Ps- [ X7H(s)B&)BT()X " (s)ds P X7 (to)
to

= X ()P, - / X9 (=5)CHT (~8)C%(~8)XU(~s)ds - P{ X4 (~to)

= X (-w)p,- / X ()T (r)CH )X (r)dr - PYX (~t0)
= Hi(~t1,—10)
and
Wylte,tr) = X*(to)P2 / X°T(s)(~C*T(s))(-C*(s))X*(s)ds P{ X*™"(to)
G3(to, 1)

Hence (3.5) is proved. Now (i) ¢ (iii) and (i) ¢ (v) follows from Theorem 2.4. In order to
prove (ii) « (iii) put

@ X4 (to)PTR™ — (Cplt—1, k)™
20— CU ¥ t0)z0
for some t; < ?o. Then (3.3) is equivalent to zo € kery and this is equivalent to =z €

ker HJ(t-1,t0) (see Knobloch and Kappel (1974) p.112). The proof of (iv) & (v} is analogous,
it is omitted. n]
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Definition 3.8 The system (4, B) € Cp *x(+m) 16 called completely reachable from V, if every
free trajectory ®(:,%)xo, for to € IR,zo € IR™, can be reached from a suitable free trajectory
z2(+) € Va(-), i.e. there exist t_; < to,u(-) € C;* (both depending on g, 2o ) s0 that

z2(t) fort <t
z(t) =< B(t,t-1)z2(ty) + f,‘_ll ®(t,8)B(s)u(s)ds fort_; <t <ty
Q(tit())-‘t() for e <t

The induced reachability Gramian is given by

Yi(t-1,t0) = Pi(to) - /‘ j ®(to, 3)B(s)BT ()87 (t0, 5)ds PX(ty).

Analogously to Proposition 3.5 one can prove the following, the proof is omitted.

Proposition 3.7 The Gramians associated with the system (4, B), the dual system and adjoint
system, resp., satisfy
Yi(t-1,0) = G3(~to, —t1) = HE(t-1,%0). (3.6)
Furthermore the following are equivalent:
(i) (A, B)is completely reachable from V, .
(i) For every to € IR there exists a t_; < #o such that Y1(t_1,1o) is positive definite on
PT(to)R".
(iii) The dual system (3.1) is complete observable wrt Ve
(iv) The adjoint system (3.2) is completely reconstructible wrt Vi .

=]

As opposed to time-invariant systems, complete controllability (observability) is not equivalent
to complete reachability (reconstructability). For this see the following simple example.

Example 3.8 Put n = 1,A(-) = 0 and

0, t<0
B(t)z{l , 1>0

Then (0,1) is not reachable from V; := {0} however the system is completely controllable into
Vs

As an immediate consequence of Remark 2.5 (ii) and the positive definite conditions on the
Gramians we have the following corollary.

Corollary 3.9 If (4, B) € A"*("+m) then (A, B) is completely controllable into V; (observable

wrt Vp ) iff it is completely reachable from V, (reconstructible wrt V; ).

1.4 Controllability indices and a canonical form

Rosenbrock (1970) has introduced the controllability (Kronecker) indices for time-invariant sys-
tems. His definition will be extended to time-varying analytic systems (A, B) € Anx(n+m)
Set

Ki(A,B) = [B,(-1)(DI, - A)Y(B),...,(~1)(DI, - A)(B)], i€ Ny
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where
(DI, — A)¥(B) := (DI, — AY(DI, — A}"1(B)) foriek
The matrix
K(A,B):= K™(A,B)
is called the controllability matriz of the system (A,B). If (A, B) is a constant system then
K(A,B) = [B,...,A" 1B} is the well-known controllability matrix. For time-varying systems
K (A, B) was introduced by Silverman and Meadows (1967) in a slightly different form, namely

without the factors (—=1)* in it (cf. Theorem 2.4 (iv)), here it is modified for computational
reasons.

Clearly, if (A, B) and (4’, B') are similar via some T(-) then by (1.6)
T'.K(A,B)= K(A',B) (4.1)
and (1.7) yields
K(A, B) = [B,(-1)&(@'B)V, .., (-1)**¢(8"1B)»~].

Analyticity of the system makes it is possible to define the controllability indices of (A, B) by
generalizing Rosenbrock’s deleting procedure (see Rosenbrock (1970) p. 90) as follows:

Eliminate in the controllability matrix of (A, B)
K(A,B) = [B,(-1)8@'B),...,(-1)""'&(3"'B)* V)]

from left to the right all column vectors which are linearly dependent over M upon
their predecessors.

If the columns of B are denoted by by,...,b,, one obtains after reordering

H = [b,..., (1)1 (& 15, )(k1-1) se ey by ooy (—1)Em1B(B by, ) Em 1))

{61, ..., (=1)"Y(DI, — AY=2(b1) .. sbm,.. (~1)m=Y(DI, ~ AYem=1(by)] € A
(4.2)

with »’ < n and some ky,...,kn € IN. If k; = 0 then the corresponding columns in H are absent.

Note, if ®(®-1b;)1)) is linearly dependent over M on its predecessors, then ®(&-15;)0+1) is as

well. The numbers ky, ..., km are called the controllability indices of (A, B). As an immediate

consequence of (4.1) they are invariant with respect to analytic similarity transformations.

Example 4.1 Let

et -t 0
(A,B):=| Oas, | t-1 1 't
0 t t

It is ealisly computed that

et —et 0 —et e 0 e —€ 0
K(A,B)=| t-1 1t -1 0 -1 0 00
0 t t 0 -1 -1 0 00
and
et —et —et
H(t) = [bu(0), (), )] = | t-1 -1 1
0 0 t

Therefore (k1, k2, k3) = (2,1,0).
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As a complete generalization of the time-invariant case we prove the following characterizations
of controllability.

Proposition 4.2 Suppose (4, B) € AX("+m) has controllability indices k1,...,ky and £ :=
rkpmB = Yi,501. Then the following are equivalent.

(i) (A, B) is completely controllable
(i) rhkmK(A(),B())=n
(ii)) rkpE™(A(),B())=n

(V) Tlhiki=n

Proof: (i) 4 (ii) follows from Theorem 2.4 (iv). (i) > (iv) and (iii) = (ii) are immediate.
It remains to prove (ii) = (iii) : Without restriction of generality assume &y > 1,...,k, >
1,ke1 = ... = kym = 0. The assumption that there exists i € m such that ki >n—1+1 leads
to the contradiction n = Y4_; ki > I~ 14+ n—!+ 1 = n. Therefore ki<n-1+1fori€mand
(iii) is proved. s

Brunovskyj (1970) has introduced a family of indices for time-varying systems
(A, B) € (C®)m*{n+m) a5 follows

ri(1) == rkr K'(A(t), B(t)) ~ rkrK*~1(A(t), B(1)), i=0,...,n-1
where K~1(A, B) := 0. Let a;(t) denote the number of r;(t)’s which are bigger or equal to i,

ie.
ai{t):= Y. 1 foriem.
Jiri(t)2i
If A and B are analytic matrices then r;(-) and a;() are constants on IR \ N for some discrete
set N and
0< Tn-—l(t)
0 < an(t)

ro(t) = rkrB(t) <m
o) <n forallt e R\ N.

A IA
A IA

The functions a(-),...,am(+) are called the geometric indices of the system (A,B) . Again
(4.1) yields that the geometric indices are invariant with respect to an analytic similarity action.
If ky,...,k; denotes the controllability indices of (A, B) € Anx(n+m) then for every interval
ICR\N

ia;(t): "z-f o= Er_,—(t):ran(A(t),B(t)): f:k,- forallte I  (4.3)
i=1 7=0iti<r;(t) =0 i=1

It is not obvious how the controllability and geometric indices are related. By using the theory
of M([D] right modules it will be shown in Section 2.6 that these families coincide.

Since the geometric indices are time-varying functions they contain more information about the

system than the controllability indices do. More information than in the geometric indices is
contained in the r;(-)'s. This illustrated in the following example.
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Example 4.3 Consider the system given in Example 4.1. Then

1 for t=0
ro(t)=rkRB(t)={ 2 fz: 120

n(t) = rhalB(), B(O) - rknB(t) = 3= ro(t) = { HPA
r(t) = rkaK(A®), B(®)) - rkrlB(t), B(®)] = 0
and (a1(t), aa(t), as(t)) = (2,1,0).

fl

In order to derive a canonical form for the analytic similarity action on A"X("+m) 3 gecond
family of indices will be defined. Suppose (A4, B) € A"*("+m) is controllable with controllability
indices kq,...,km. Then

Ho=[byy .o (1) Y (DE - A 1By, by e, (1) Y (DI, — Yo7 (b)) € GLn(M)
and U € M™*™ is uniquely defined by
(DL, - AY1(by),...,(DIn — AYor (b)) = HU (4-4)

It follows from the construction of H, see (4.2), that U = [uy,. .., u,,] has a very special structure
with many zero entries in it, namely

w o= (ul,..,ui_,0,...,00T | .., _
woo0ifky=0a<i [ TR=0 (45)
u = (u‘i'o,...,u‘;'k‘__l,...,uﬁn‘o,...,u‘;mkm_l)T
wiocolif A=k and j>i if ki > 0. (4.6)
L if A>k

By Lemma 1.2 U is invariant with respect to coordinate transformations T € GL,{A).

Lemma 4.4 Suppose (4, B) € A®*("+m) jg controllable with controllability indices ki, ..., kn
and H is given by (4.2). Then

H'[DI, - A,~B] [ ;’ 10 } = [DI, - Aq, B,)
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and A, B. are in column form, i.e.

_— .
1
- 0
A, = - € MnXn
*
0 *
11.
0 |
[ .0 :
L * | 1 + |

where the diagonal blocks are k; X k; matrices, for k; > 0, and the corresponding *-columns
coincide with u; as described in (4.6), resp.,

B.=[5,...,b2]

be = e.,.,s.-=k.-+...+lc,'_1+l, if k>0
Tl w asin (4.5) if ki=0

where e; denotes the j-th unit vector of IR", k_, := 0.
Proof:  Since H € GL,(M)
B = {by,...,(-1)" (DL = AB7Yby), . by ooy (=1) Y (DI, = AYm=1(5,.)}
is a basis of M[D]" , viewed as a right M[D] module. Now
[DI, — A]: M[D]* — M[DJ*, v(D)w DI, — A]-v(D)

is a M[D]-right linear map and by the mulitplikation rule (1.4) one obtains for
Y = (—l)i(DI,. - A)i(b;)

[DIn - A] - vi = vD + % — Av; = ;D + (DI, ~ A)(v;) = ;D — vy (4.7)
The linear map [DI;, — A] relative to the basis B is associated with the matirix
H-YDI, - AlH = DI, - A,

and by (4.7) it is immediate that A, has the form described in (i). It follows from the construction
of H that H-'B = B, . o

Note that in general A, B. are not associated with a state space system since H may have
meromorphic entries.
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Proposition 4.5 Consider the class
57 = {(A, B) € A”(t™) | H defined in (4.2) belongs to G La(A)}

Then every (A, B) € ¥ is analytically similar to (A, B;) € J_ with the form as in Lemma 4.4.
If (A, B),(A', B') € ¥ are corresponding to (A., B.), (4., B.) € _ resp. then

(A, B) analytically similar to (4, B') ¢ (A, B.) = (4., B)).

Proof:  Since H associated with (A, B) belongs to GL,(A) it follows from Lemma 4.4 that
(Ae, B.) € A™X(ntm)_ 1f (A, B) is similar to (A’, B') then by (1.6) and Lemma 4.4 (4., B,) =
(AL, B!} . The opposite direction is trivial. This completes the proof. o

The previous proposition says that (A, B.) is a canonical form for the analytic similarity action

ony .

Remark 4.6
(i) For time-invariant controllable systems (A, B) € IR™*("*+™) Popoy (1972) derived the anal-
ogous result to Proposition 4.5 in a complicated way.

(ii) Supppose (4,B) € A™("+m) i5 controllable and the associated H defined in (4.2) is
invertible over A . Then it can be shown that (A, B) is analytically similar to some (A,, B;)
in row form, cf. Ilchmann (1985a) or for an alternative but incomplete (see Iichmann (1987))
proof Nguyen (1986). However (A,, B,) is not a canonical form. As opposed to the constant
case (cf. Kailath (1980) Section 6.4) the proof of the row form is by far more tricky. For systems
(A, B) € (C®)™*(»+m) Brunovskyj (1970) derived the row form in a completely different way.

1.5 Time-varying subspaces, the controllable and the unrecon-
structible family

In this section time-varying subspaces are studied. This framework will be useful to tackle
disturbance decoupling problems of time-varying systems in Chapter 3.

V=(V(t)her is called a time-varying subspace if V(t) is a subspace of IR™ for every t € R.
So V is a family of subspaces parameterized by ¢t € IR.
W, denotes the set of all time-varying subspaces V = (V(t))icr where V(t) is a subspace of IR
foreveryte R .
If V(t) is given by

V() = V()R* ,2€ R where V € AZ**

then V is called the time-varying subspace generated by V.
A problem arises: If V € W,, has a generator V € A?** then Vi := (V(t)!)ier € W, does,

in general, not have some piecewise analytic generator W € A™** . Consider for instance
] Y P

—y. 1_J O if t#0
V(t)=t-R, then V(i) _{IR i t=0

which belongs to W, but does not have a piecewise analytic generator. To cope with this
equivalence classes are introduced:
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Two families V1, V; € W, are called equal almost everywhere (a.e.) on an interval I ¢ IR
Vl(t) !—"e VQ(t) on I

if Vi(t) = Va(t) for all t € I\ N, where N denotes some discrete set.
In this sense one obtains for the preceeding example V(t)L = {0}.
Analogously, one defines Vy is included a.e. in V; on I .

I is omitted if I = IR.

The notation

MO EV,(t) onl

is used if Vl(t) C VQ(t) forall t € I and vl(t) 3 Vz(t) onl.
"a.e. equivalent” is an equivalence relation on W, and the equivalence class of V € W, is
denoted by

V={We W, V(@) E W)}

In order to show basic properties of time-varying subspaces some results concerning divisors and
multiples of analytic matrices are proved.

Suppose P € A™X¥ Q € A"X¢. Then G € A™X" is called a greatest common left divisor of P
and @, G = gcld(P, Q) for short, if for every common left divisor G’ of P and @ there exists an
analytic matrix R of appropriate size such that G'R= G .

K € A" is called a least common right multiple of P and Q, K = lerm(P,Q) for short, if for
every common right multiple K’ of P and @ there exists an analytic matrix S of appropriate
size such that K/ = K §.

A greatest common left divisor and least common right multiple of matrices over certain rings
have been examined by several authors (see for example, Mac Duffee (1956)). Unfortunately
their results are only valid for Euclidean domains or principal ideal domains; the set of real
analytic functions is not a principal ideal domain, however it is a Bezout ring, i.e. if f,g € A
have no common zeros then there exists a,b € A so that af + bg = 1 , see Narasimhan (1985)
Section 6.4. Nevertheless, the proof of the following lemma is partially based on Mac Duffee's
ideas.

Lemma 5.1 Suppose P € A"** Q € A™*! with rkpmP = k, tham@Q = ¢, rkm[P,Q] = r. Then
forsi=k+¢-r

(i) there exists G = geld(P, Q) with rkpG = r which is unique up to multiplication by an
invertible matrix from the right. Furthermore there exist analytic matrices Uy, Us of appropriate
sizes such that

G = PU; + QUs
and
G- A =P A1+Q A

(ii) there exists K = lerm(P,Q) with rkapK = s which is unique up to multiplication by an
invertible matrix from the right and

K-A=P.AnQ. A
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Proof: (i) By Silverman and Bucy (1970) ! there exists

U U2
U= [ Us Us ] € GLrye(A)
such that

[P, Q] U= [Gv Onx:]y rkmG =1 (5'1)

Let V = [ I‘;l “;2 ] be the inverse of U partitioned in such a form that
3 Vy

Uy U iw va|_| L ©

(o % w]-1e 2]
Then P = GV;,Q = GV; and G is a common left divisor of P and Q.
All matrices used in the following are defined over .A and are of appropriate formats.
Now it is proved that G is a greatest common left devisor. Assume P = GW, Q = GW' and
& = GR. Since rkMG’ < rkpmG it is assumed without restriction of generality that Gisanxr
matrix. By (5.1)

G=0GS, where S:= WU + W'Us
Thus rkRG(2) = rkrG(t) for all € R . Let I C IR be an open interval such that G is left
invertible over A |1 . Then G(t) = G(t)R(2)S(2) for all t € I implies I, = R(2)S(¢) forall t € I.
Since R and S are analytic I, = R(t)S(t) holds on R . Therefore G = gcld(P,Q) and the
uniqueness statement is proved as well.

(ii} K := PU; = —QU, is a common right multiple of P and @ . At first it is proved that
7kpmK = s. Assume rkaK < s. Then there exists a Z € GL,(A) such that KZ = [K,0] =
PU;Z = —QU4Z. Since P and Q are left invertible on an open interval I C R, U3Z and ~-UsZ
are of the form [+,0] on I. Therefore

U- L, 0} _| U {*,0]
0 z| | U [+0
which contradicts the invertibility of U on I .
Secondly it is proved that K = lerm(P, Q). Let
K'=PY =QY'and G = gcld(K,K"), GH =K, GH' = K'.
Clearly rkapG > s. By (i) there exist N and N’ such that
G=KN+K'N'and thus G- A" C P-AnQ- A%

Since by (i) max,er dimg[P(t)-IR¥N Q(t)- R = s we have rkpG < s. Therefore rkaG = s

and without restriction of generality let G be a n X s matrix. From the equations above we
compute

PlU;N +YN')= KN+ K'N' = G = Q[-UN + Y'N']. .
Let E:=U;N+YN'and F:= ~-UyN +Y'N', then

—QUy=PU; =K =GH=PEH =QFH.

! Wedderburn (1915) proves that a matrix over the ring of holomorphic functions can be transformed into a
diagonal matrix by unimodular matrix operations, cf. Narasimhan (1985). This result is also valid for matrices
over the ring of real analytic functions. However, in the following we will quote Silverman and Bucy (1970). This
weaker result is sufficient for our purposes.
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Since @ and P are left invertible on some open interval I C R, -Usy = FH and U = EH on I.
Therefore

I, = VaUz 4 V4U4 = V3EH - VqFH = (V3E - V4F)H on I

and since all involved matrices are analytic H is invertible over A. Thus K’ = GH' = KH-1H'.
Using similar arguments one can prove that also H' is invertible over .4, whence
K = GH = K'H'-'H. This completes the proof. [n]

Remark 5.2 It is also possible to define and to show the existence of a gelda,(P,Q) and a
lerm g, (P, Q) for matrices P and Q defined over A, instead of A.

This is demonstrated for a gelda, of p,g € A,. Suppose IR = U,ezlav, av41) is a disjoint
partition such that py,q, € A |y, q,,,) have analytic extensions on both sides of (a,,a,41), see
Section 1.1. For short, put

fu=f |[au,au+1) for f=gor f=h.
Let
9y = gerd(py, ¢.) € Alaya,41) 20d g = poe, + q.d, for a,,d, € A ltav.auqs)s ¥ € Z.
Now it is straightforward to prove that g defined by g i[u.,,a.,.u):: g, is a geld 4, (p, q) € A,.

Using Remark 5.2 it is immediate that the statements of Lemma 5.1 can be extended to piecewise
analytic matrices as follows

Lemma 5.3 Suppose P € A;"‘" and R = Uuel[u,,,a,,ﬂ) is a disjoint partition so that
P llay0,41)0 Q lla.augr) have real analytic extensions on some (af,al,;), a < a,, a,41 <

aj,y- Then
(i) there exists G = gelda,(P,Q) € APX™ so that
G jay.ap4,) 8 of the form [¥,0,y,,]

where

rkm P |[n.,,a.,“)= ky, rhpm@Q |[ﬂv.au+]): by, Thm[P,Q] l[av.ﬂy+l)= Ty
and s, =k, + £, ~7,.
Furthermore there exist Uy € AK*", Uz € AEX™ 50 that

G =PU + QU3
(i) there exists K = lerma (P,Q) € AZ*" with rkpK lfawraps1)= 9w and
o L k ¢
K-AD=P A +Q-A,
Lemma 5.4 Let C € AP*®, V € AP V(1) = V(1)RF .

Then there exist real analytic matrices V,U,C, W of formats n x k, » X (n — O, nxs nxs,
resp. which have constant ranks and satisfy

ORR%6) & V()R = rhpV
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G) V()t 2 DR

2 Py
(iil) kerC(t) = C(H)R? ,8=n—rkpC = rkpC
(iv) Y@ NkerCR)EWRRY 8 = rkpC + rkpV - rkp[C, V)

Proof: (i) By Silverman and Bucy (1970) there exists S € GL,(A) so that
VT.§5=[W,0), Vi€ A rkyVy=t
Therefore
o]
(VORMY* £ 5(1) [ L ]m’*"
n—t{
and
V(t) = 5T(1) [ o ]
has constant rank and satisfies (i).
(i) is valid for U(t) := S(t) IO . ] .
(iii) Let R € GLn(A) so that
COE(®) = [C1(1),0), C1 € AP0, rhmCr=n—s

Clearly,

€)= R [ H ]

s

satisfies (iii). i
(iv) Use Lemma 5.1 (ii) to determine W := lerm(C, V) with rkpW = /. Now by (i) one can
choose W € A™X? 50 that (iv) holds true. u]
In order to characterize when the rank of V(-) € A™*F is constant in ¢ the following definition
is needed.
Definition 5.5 For a family V € W,, let

P(t): R" — V(1)
be the orthogonal projector on V(t) along V(¢)1. V is called an analytic family if P € A™Xn

resp. a piecewise analytic (p.a.)family if P € Ap*".

Note that analyticity of V € A™X* does not ensure that the family V generated by V is an
analytic family, consider for instance V(t) = ¢.

Proposition 5.8 If V € W,, is generated by V' € A"** then V is an analytic family if and only
if
rkrV(t) = const. forallte R.
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Proof:  If the orthogonal projector P(t) on V(2) is real analytic in ¢ € IR then by Corollary
A.5 in Gohberg, Lancaster and Rodman (1983) the function ¢ — rkrV (t) is constant (continuity
of P(-) is already sufficient). Conversely, if t — rkrV (t) is constant on IR then by Proposition
A.11 in Gohberg, Lancaster and Rodman (1983) V is an analytic family. [u]

Proposition 5.6 will be extended to the piecewise analytic situation. For this a definition is
necessary.

Definition 5.7 V € A;"‘" is said to have piecewise constant (p.c.) rankif there exists a disjoint
partition IR = U . z[a.,a,+1) so that each restriction

V l(av.avss) i real analytic

and has a real analytic extension

V, on some (af,a},,), af < a,, @41 < @,y
and

rkrV,(t) = const. for all t € (al,al,,).

Proposition 5.8 If V € W,, is generated by V € ARXE then V is a p.a. family if and only if V
has p.c. rank.

Proof: If Vis a p.a. family then there exists a partition R = U,cz[av,a,41) 80 that each
restriction V' |y, o, ap P l[,,m,,u +1) is real analytic and has a real analytic extension V,, P, Tesp.
on some (al,al,,) where ¢! < a,, a,41 < a},;. Now it follows from Proposition 5,6 that for
each v € Z, rkrV,(t) = const. for all t € (af,al,,). This proves that V has p.c. rank.

The opposite direction follows by reversing the foregoing arguments. [u]

Proposition 5.9 Let C € A2*",V € A2k, Then there exist V € Am%E and U,C,W € Anxn
with p.c. ranks so that

@) VOR*Ey@Rre
@) (VORY: 2 pome
(iii) kerC(t) % G(H)R™

(iv) VORFNkerC(t) ¥ W()R”

Proof:  To prove (i) choose an interval [4,, a,4,) so that V {{ @, @,41) is real analytic and has
a real analytic extension V, on (af,al,,). Then by Lemma 5.4 (i) there exists V, € A |z‘a’§"n, )
with constant rank so that e

(et -
V.(OR* = V,(OR™  on (af,al,,)
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Since this can be done for every interval of the partition corresponding to V € AmX* (i) is
proved. For the proof of (ii) - (iv) use the similar arguments. u]

Proposition 5.10

(i) Suppose V € W, is generated by V € A™** and rkgV(t) is constant in t € R. If v € A"
satisfies

v(t) € V(t) forallt€IR\ N, where N is a discrete set (5.2)
then there exists r € A* so that

v(t) = V(E)r(t) forallte R (5.3)

and thus
v(t)e V(t) forallte R.

(ii) Suppose Y € W, is generated by V € A:"" and V has p.c. rank. If v € A} satisfies (5.2)
then (5.3) is valid for some r € A.

Proof: (i) Let £ € IN so that rkgV(t) = £ for all t € IR. Then by Silverman and Bucy
(1970) there exists § € GLi(A) such that

VS~ =[W,0] for some W € A™*¢ with rkrW(t) =£ forallt e R.

ey
r=S [Ok—t]

where ' := WT(WWT)~1y then r satisfies (5.3).

Put

(ii) Use the notation of Definition 5.7. It is sufficient to prove the assertion on some (al,a’ +1)

where rkgrV,(t) is constant. Then (ii) follows from (i). a}

Time-varying subspaces arise when controllability subspaces of time-varying systems are con-
sidered. This will be described in the remainder of this section.

For systems (A, B) € C3*™*™) the following is well-known ( see e.g. Kalman (1960)): There
exists a control u € C3* which forces the state 2o € IR" at time tp to zero in time ¢; — ¢y > 0, i.e.

- ®(t1, to)zo + /. " 8(ty, 5)B(s)u(s)ds = 0,

if and only if 2o € imW(lo,1,). In terms of Definition 2.1 this means that the free trajectory
®(-,to)2o is controllable at time tg into V; = {0} . Thus

%(to) = U imW(to,tl)
1>t

is the vector space of all states which can be controlled at time tg to zero in finite time. We call
R = (R(t))er

the controllable family of the system (A, B) € C;,‘x("+m).
Clearly,
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R(to) C Q(to,i_l)ﬁ(t_l) for t_; < 1.

If (A, B) € A™*(n+m) i5 a real analytic system then

rkrW(to,t) = const. forallte R\ {to}

Thus
R(t) = 8(2,10)R(to) for all ¢,2, € IR. (5.4)
Now Proposition 5.6 and formulae (5.4) and (2.6) yield

Remark 5.11 The controllable family ® = (R())¢er of an analytic system (4, B) € An*(n+m)
is an analytic family given by

R(t) = Y im(DI, - A®))(B(1)) ,tER. (5.5)
i>0

It is also well-known that the state zo € IR™ at time # is unreconstructible iff z¢ € ker H (t-1,%)
for all £_; < tg. Thus

B(to): ﬂ kel‘H(t..l,to)

1<ty

denotes the vector space of the unreconstructible states at time ;. We have the following dual
relationsships.

Proposition 5.12 Let R9(tg) resp. B%to) denote the controllable resp. unreconstructible
subspace of the dual system of (A, B) € CE*(**™) with respect to t* = 2t5. Then

() R(to)* = B4(to)

(i) B(to)* = R4(to)

Proof:  Only (i) is proved , the proof of (ii) is entirely similar. Since
(2, t0) = BT(2* — to,t* — 1)

is the transition matrix of the dual system, for arbitrary t;, >ty and z € C* we have

I.LSE(to)
&

eT [ 3(to,s)B(s)u(s)ds = 0 for all u(-) € cr
&

BT (-8)8T(ty,—s)z = 0 for all s € {~#;, —tq]
&

BT(t* — s)%(s,t* —to)z = 0 for all s € [t* ~ t;, o)
<

z € H (2l ~ t1,1)
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Remark 5.13 (i) If (4, B) € A"X(*+m) then by Proposition 5.12 and (5.5) one obtains the
simple presentation

B(to) = Ri(to)*
= (Y im(DL, - AT(2to — 10))(CT (200 — o)) |*

i>0

= Nim(DI, — AT(ta)}(CT (o))"
i>0

= () kerl(DL - AT(t)}(CT (20" (56)
i>0

(ii) For time-invariant systems (5.6) reduces to the well-known result that the unreconstructible
resp. unobservable subspace is given by

N ker CAY,

i>0
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Chapter 2

Differential Polynomial Matrix Systems - An
Algebraic Approach

2.0 Introduction

Equations of a physical system are usually not in state space form and it may not be obvious how
they can be brought to this form. For this reason Rosenbrock (1970) proposed the well-known
setting of systems in differential operator description

P(D)(z) Q(D)(x) (0.1)
y = V(D)z)+W(D)(u) (02)
where the entries of the matrices are polynomials in D (the usual differential operator) with real
coefficients. Since there is some free choice in selecting the internal variables z of such a system
the question arises under which conditions two systems of the form (0.1) have the same dynamics
and the same input-output behaviour. This is the problem of (strict) system equivalence already
studied by Rosenbrock (1970). Wolovich (1974) further developed the polynomial approach. Via
module theoretic tools Fuhrmann (1976) and (1977) was able to associate a canonical state space
model with any factorization V(2)P(z)~1Q(z) + W(z) of a proper rational transfer matrix. So
far the analysis of the problem of system equivalence for time-invariant systems was done in
the frequency domain. Pernebo (1977) was the first who studied system equivalence in the time
domain, his basic idea was to consider solution sets of the system equations. This approach was
systematically exploited by Hinrichsen and Prdtzel-Wolters (1980) to obtain a self-contained
theory of system equivalence in the time domain. They derived an algebraic criterion of system
equivalence, defined and characterized controllability and observability, and presented a canonical
state space model similar to Fuhrmann‘s model.

For a long time there has been a widespread scepticism whether an algebraic treatment in the
style of Kalman, i.e. a module theoretic framework, would at all be possible for time-varying
systems. In the second half of the seventies there were some attempts to introduce time-varying
systems of the form (0.1), where the entries of the differential polynomial matrices are usually
elements of some skew polynomial ring M[D] and the coefficients belong to some differentially
closed ring of functions M or generalizations of such a ring. The choice of M represents a main
decision with regard to the chances for a successful treatment of systems described by (0.1) and
to the applicability of the results.

Ylinen (1975) collected basic algebraic results necessary for an analysis of equation (0.1) in case
where M is a ring of endomorphisms. He also discussed basic system theoretic problems. How-
ever, concrete results suffer from restrictive assumptions which in situations of interest turn out
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to be unrealistic in the time-varying case.

Kamen (1976) assumed for his main result, that M is Noetherian. Under this hypothesis he
constructed a state space representation for (0.1) with monic P(D) . The Noether condition
seems to be rather restrictive (see examples given by Kamen (1976)). The ring of analytic func-
tions is not Noetherian.

In another report of Ylinen (1980) he concentrated mainly on the situation where M is a subring
of C*°. He also treated controllability, a coprimeness criterion similar to the one known from the
time-invariant case was approached and partially established. The main restriction required for
his substantial results are: A must not contain zero-divisors of C* and the composite matrix
[P(D),—Q(D)) and all its right factors of the same format must be row equivalent to a matrix
in upper triangular form with coefficients also in M and monic diagonal elements.

In lichmann, Nirnberger and Schmale (1984) we were guided by the time-invariant approach of
Hinrichsen and Pratzel-Wolters (1980). We chose M to be the field of fraction of real mero-
morphic functions and considered "full” operators P(D), i.e. every local analytic solution f of
P(D)(f) = 0 can be continued to a global solution of P(D)(f) = 0 . Analytic systems consid-
ered by Ylinen (1980) and constant systems in differential operator descriptions introduced by
Rosenbrock (1970) fulfill these assumptions. Furthermore the assumptions set us in a position to
present a far reaching algebraic analysis of systems of the form (0.1). The results of Hinrichsen
and Pratzel-Wolters (1980) were generalized. This is presented in the first half of the present
chapter.

A different algebraic approach to various definitions of structural indices of time-invariant state
space systems was introduced by Miinzner and Prdtzel- Wolters (1979). Using polynomial mod-
ules and their minimal bases they proved the equality of controllability indices, minimal indices,
geometric indices and dynamical indices. Prdtzel-Wolters (1981) continued this approach to
characterize Brunovsky-equivalence for time-invariant systems of the form (0.1), (0.2). Guided
by this approach and using the skew polynomial ring introduced in Ichmann, Nirnberger and
Schmale (1984) I generalized the results of Miinzner and Prdtzel-Wolters (1979) and Prdtzel-
Wolters (1981) for time-varying systems (see llchmann (1985a)). The characterization of mini-
mal bases of right skew polynomial modules extended a result of Forney (1975). It is possible to
define a transfer matriz in the time domain and to use this to characterize system equivalence.
Different invariants with respect to system equivalence resp. similarity were defined and their
equality was shown. This is presented in the second half of this chapter.

In Section 1 matrices over the skew polynomial ring M[D] are analysed and the lattice of full
polynomial matrices is established. The basic idea of considering matrices defined over M[D],
where M is the field of real meromorphic functions, and assuming that P(D) is full, makes an
algebraic study of systems of the form (0.1), (0.2)possible.

In Section 2 solution vector spaces associated with (0.1) are studied. Using this, system equiva-
lence is defined and algebraically characterized. It is shown that every system of the form (0.1),
(0.2) is system equivalent to an analytic state space system.

The results of Section 1 to 3 are complete generalizations of the time-invariant case, see Hin-
richsen and Prdtzel-Wolters (1980).

Although for time-varying systems there is no transform technique, in Section 4 a formal transfer
matrix is defined as a matrix over the left-skew field of fractions of M[D)]. This matrix is as
powerful as the input-output map in the time-domain.

Instead of the differential equation (0.1), Minzner and Pritzel-Wolters (1979) considered in
the time-invariant case the algebraic equation P(D)z(D) = Q(D)u(D). In Section 5 this is ex-
tended to the present setting. M[D]—right modules of M[D]" and their minimal bases (see
Forney (1975) for commutative rings F[D], F a field) are analysed. In particular the input mod-
ule of a system (0.1) is studied. This module is invariant with respect to system equivalence.

34



In Section 6 the question (posed in Section 1.4), how the controllability - and geometric in-
dices are related, is answered. Dynamical indices are defined via the formal transfer matrix (see
Forney (1975) for the constant case) and by use of the input module it will be proved that all
indices (roughly speaking) coincide.

In Section 7 system equivalence is characterized via the input module and the formal transfer
matrix.

2.1 Differential polynomial matrices

For an algebraic study of time-invariant polynomial matrix systems the solution module ker P(D),
P(D) € R[D]™*", turned out to be very useful, see Hinrichsen and Pritzel-Wolters (1980). In
order to extend this approach to time-varying systems I introduce

kerz, P(D) = {f € F{| P(D)(f)=0},  P(D)e M[D]"*

where I C IR is some open interval and F;(F = A or M) denotes the algebra of real-analytic
or meromorphic functions on 7. We omit I if I = IR.

Firstly the scalar case is discussed. There are considerable differences to time-invariant polyno-
mials. If p(D) € R{D], i.e. p(D)has constant coefficients, it is well-known that dim kerr, p(D) =
deg p(D). This is, in general, not true for polynomials p(D) € M[D]. Consider for instance
p1(D) = tD + 1, then keryq p3(D) =< 1/t >g and kerg pi(D) = {0}. Moreover there are
polynomials for which even the dimension of the kernel over M does not coincide with the de-
gree of the polynomial: if p;(D) = t*D + 1 and 0 ¢ I then kera, p2(D) =< €'/t >g whereas
keru p2(D) = {0}. Since for every p(D) = pp + ...+ p.D" € M[D] there exists an interval
I C IR such that the numerators and denumerators of the pi‘s do not have zeros on I one ob-
tains dim kers, p(D) = deg p(D). By enlarging the interval I one might loose a meromorphic
solution, as illustrated by the preceeding example. So in general

dim keryr, p(D) < deg p(D) (1.1)
This leads to the following definition.

Definition 1.1 p(D) € M[D)] is called full wrt F (F or .A or M)if p# 0 and
dim kerr p(D) = deg p(D).

It is immediate from the definition that the concept of full polynomials can be characterized as
follows,

Proposition 1.2 p € M[D],p# 0 is full wrt F iff the map
my:kerr p(D) — kerr, p(D)
fo= fl

is an isomorphism for every open interval 7 C IR.

Thus a polynomial p(D) is full wrt F if any local solution f of p(D)(f) = 0 on I can be
analytically resp. meromorphically continued to a global solution. Every p(D) € R[D] or
monic p € A[D] is a full polynomial wrtA. There are non-monic polynomials p € A[D] which
are full, consider for example p(D) =1tD — 1 with kery p(D)=<t>g.
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Proposition 1.3 Suppose p,¢,g € M[D] satisfy p =qg and pis full wrt F. The g is full wrt
F and q is full wrt M.

Proof: Choose I C IR sufficiently small so that p,q,¢ are full wrtA; and Ay C img. Put
kera, p(D) = kers, g(D) @ V, where V is some complementing vector space. Now g(D)(V) =
kery, ¢(D) and g is injective on V. Since p is full wrtF all solutions of kers, g(D) extend to
solutions of kerr g(D) and all solutions in g(D)(V) extend to solutions in keraq g(D). This
completes the proof. ]

The set of full polynomials does not form a multiplicative semigroup. Consider for example
p(D)=tD+1 and ¢(D) = D which are full wrtM since its solutions are 1/¢ resp. 1. However
keram, pg = keraq, (D + "—;‘lD) =< 1,fn|t|>g for every interval I with 0 & I.

Since there exist a left and a right division algorithm for polynomials in M[D], it can be shown
(see Ore (1933) pp.483) that for any p,q € M[D)] there exist a greatest common right divisor
g = gerd(p,q) € M[D)] and a least common left multiple £ = ¢ctm(p, q) € M[D)]( gerd and Letm
over M[D] are defined analogously as over A"**, see Section 1.5). g and ¢ are unique if they
are required to be monic. Ore (1933) has also proved the existence of a,b € M[D] such that
g=ap+bq

and

deg p+deg g=deg £+deg g (1.2)

This is an extension of the results known for IR[D] since for every p, ¢ € R[D] we can show that
the greatest common divisor and the least common multiple of p and q denoted by gedrip(p, q)
resp. Lemp(py(p,¢) coincide with gerd(p,q) and £elm(p, q), resp. Put p = p'g, ¢ = ¢'g such
that g = ged(p,¢') € R[D] and p/,q’ are coprime over R[D]. Then p/, ¢’ satisfy the Bezout
equation, i.e.

1=ap’ +bg for some a,b€ R[D),

hence p'q’ are right coprime over M[D] as well and g = gerd(p',¢’). The same holds true for
femppy(p, g). This yields fempp)(p,q) = gp'q’- Since

deg £ctm(p,q) = deg p+ deg q — deg g = deg (gp'q’) = deg fempp)(4,9)
it follows that gp'q’ = felm(p, q).

Before further properties of the gerd and €efm are stated a basic lemma is shown. This was
already known to Schlesinger (1895) p. 81.

Lemma 1.4 Let p(D) € M[D] and 0 # f € kerp p(D). Then there exist a r(D) € M[D]
such that p(D)=r(D)-(fD - f).

Proof: (i) The right Euclidean algorithm leads to
p(D) =r(D)-(fD - f)+s for some s& M,r(D)e M[D).
Now p(D)(f) = 0 implies s = 0. o

Proposition 1.5 For p,q € M[D] and ¢ = gerd(p,q), £ = €cfm(p,q) we have

(i) kerr g =kerr pNkerr g
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(it} kery £ = kerr p+ kerr ¢ if p and q are full wrt F
(iii) If p is full wrt F and kerr p(D) =< f1,...,fa >R then
(D) = u-Lefm{(f;D - f;), i € n} for some u € M*".

(iv) If p,q are full wrtF then g and £ are full wrtF as well.

Proof:
(i) is obvious from Lemma 1.4 and the definition of g.

(ii) Since the inclusion ” D ” is immediate it suffices to prove that dim kery £ < dim (kerr p+
kerr ¢). Now by (i), (1.2) and (1.1) one obtains

dim (kerr p+ kerz ¢) dim kerr p+ dim kerr g — dim (kerr pNkerr q)
deg p+deg g—deg g
deg ¢

dim kery ¢

IV LIV i

(iii) Suppose fi,..., f, are linearly independent. Then by Lemma 1.4 £ := lclm{(f;D—f;) ,1 €
n}is aright factor of p(D) withn > deg £. By (1.1) deg £ > dim kerr £ > n. Thusdeg p = deg £
and the proof is complete.

(iv) By Proposition 1.3 g is full wrtF. Using (ii), (i) and (1.2) yields that

dim kery £ = dim (kerx p+ kerr ¢q)

dim kerr p + dim kery ¢ — dim (kerxr pNkerr ¢)
deg p+deg g—deg g

deg £.

[

Thus by Definition 1.1 £ is full wrt F, o

Proposition 1.8 Let p,q € M[D] and suppose p is full wrt F. Then

kerr p(D) C kerr ¢(D) iff ¢(D) = r(D)-p(D) for some (D)€ M[D].

Proof:  Sufficiency is obvious. If the inclusion of the kernels is valid Proposition 1.5 (iii) gives
a representation for p{D). Thus by Lemma 1.4 p(D) must right divide ¢(D). [u]

We are now in a position to show an important result: The lattice (wrt gerd and £em) of left
ideals M[D]p(D) generated by full (wrt F) polynomials p(D) € M[D] is antiisomorphic to
the lattice of finite dimensional IR—subspaces of F. Since this result is included in the matrix
case, see Proposition 1.2.1, it is not proved here.

In the following a canonical form for matrices over M[D] with respect to multiplication by

matrices of GL,(M][D]) from the left and the right is presented. For this a definition is needed.

Definition 1.7 p,q € M[D] are called similar if they can be put in a coprime relation, i.e. if
pa = bg for some a,b € M[D] and the only common left (right) divisors of p, b(a, ¢) are units.
p.q are called associated if pu = vq for some units u,v € M.
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Clearly, associated elements are similar. The more general notion of similarity is needed for
normal forms over non commutative principal ideal domains. In a moment it will be shown that
if p, q belong to the commutative ring R{D] and are similar wrt IR[D] then p, g are necessarily
associated.

First, let us note that similarity is an equivalence relation. This is due to the fact (see Cohn
(1971) Section 3.2) that p, g € M[D) are similar if and only if
M[D]/ , MiD] are isomorphic as M[D] right modules
pM(D] qM(D]
and this holds true if and only if
MDYy M[D]p M(D]; M(D]q 2re isomorphic as M([D] left modules.
Thus similar polynomials have necessarily the same degree.

Assume p, ¢ € R[D] are similar. Then
PRID} = Ann( RIDY ypipy) = Ann(RIDY gpip)) = aR(D],

where Ann( ]R[D]/ p]R[D]) ={z e R[D]|Fz =0VFe€ R[D]/ pIR[D] }, and thus p and ¢ are
associated.

Proposition 1.8 Suppose p,q € M[D] are similar. Then they can be put in a coprime relation
pa’ = b'q with deg o' = deg ¥’ < deg p = deg ¢ for some da’,b' € M[D].

Proof: If pa = bq is a coprime relation for some a,b € M[D], then by the right Euclidean
algorithm there exist r,a’ € M[D] such that a = rq+a', deg @' < deg ¢. The coprime relation
pa = by is equivalent to pa’ = b'q where o’ = a — rq, V' = b — pr. It is easily seen that pa’ = b'g
is coprime as well. Since deg b’ = deg @' < deg ¢ = deg p the proof is complete. a

As a consequence of Proposition 1.8 similar polynomials of degree 1 are associated. This holds
in general not true for polynomials of degree greater than 1. Consider for instance p(D) = D?
and ¢(D) = D% 4 1. 1t is casily seen that they are not associated. However pa = bg with

a(D):= (tsint+2cos t)D +2sint —tcostand b(D):= (tsint+2cost)D +tcost

is a coprime relation. To see this assume that ¢ and ¢ have a common right divisor. By Lemma
1.4 this divisor can be assumed to be of the form fD — f Since f € kerr g there exist z,y € R
such that f = z sin t4y cos t. From a(D)(f) = 0 it follows that z = y = 0. By using the same
arguments the left coprimeness of p and b is shown.

If two full polynomials p,qg € M[D] are in a coprime relation pa = bg then a,b are not
necessarily full. To see this let ¢(D) = D? and a(D) = t2D + 1. a is not full wrt M. However
pa = bg = fcfm(a, q) is a coprime relation and p is full wrt M.

In order to characterize the equivalence classes of full polynomials a lemma is needed.

Lemma 1.9 Let f;,..., f, € M be linearly independent over R and hy,...,h, € M. Then
there exists a € M[D] withdeg a <n—1 sothat af; = h; fori€ n.

Proof:  Put £:= fcfmica{fiD ~ f;)}. Then the Wronskian of &(D)(f) = 0 is given by

fl jn
W=l ;
fl(n—l) . jkn—l)
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and W is invertible over M since ty, ..., 1, are linearly independent, see Coddi gton and Levinson
(1955) p. 83. Thus we can determine the coefficients of (D) := anyD" V4 ...+ ap asa
solution of .
o(D)(t:) % by
=wT|: =1:
a(D)(ta) Gy by

and the proof is complete. o

Theorem 1.10 Suppose p € M[D] is full wrt F and deg p = n. Then the similarity class of p
consists of all full polynomials wrt M of degree n .

Proof:  Assume pa = bq is a coprime relation and ¢ is full . Since a and ¢ are right coprime
a acts as a monomorphism on kerys ¢, use Lemma 1.4. Therefore dim kerrp > dim kerpq gq.
Since p and ¢ are full and of the same degree we obtain deg p = dim kera g = n.

So it remains to show that any full polynomial ¢ of degree n can be put into a coprime relation
with p. Let fi,..., fr and hy,...,h, be a basis of kerpqq and kers p, resp. Since by Lemma
1.9 there exists a(D) € M[D] with deg a # n—1 so that a(D)(f;) = h; one obtains kers ¢(D) C
kerp p(D)a(D). By Proposition 1.6 there exists b € M[D] such that pa = bg. By construction
a and g are right coprime. Suppose p = up/, b = ub’ for some u,p/, b’ € M[D] such that p/, b’
are left coprime. Since a acts as 2 monomorphism on keraqq, pa = b'q yields as in the first
part of the proof deg p’ = n. Thus u € M and the proof is complete. |

Now we are in a position to generalize the concept of full polynomials to the matrix case.
Firstly a normal form for matrices over M[D] is given. P,Q € M[D]J™*" are called equivalent
if P=UQV for some U € M[D]™*™ V € M[D]**" invertible over M[D].

Proposition 1.11 Suppose P(D) € M[D]™*". Then P(D) is equivalent to some

1

F(D)= p(D) € M[D]™*"

where p(D) is uniquely determined up to similarity.
Let £ denote the number of non-zero entriesin P.(D).1f £ > 1 then p(D) can be chosen arbitrarily
within its similarity class.

Proof:  Cohn (1971) p. 288 proves the normal form for a more general ring. Since the ring
M[D] is simple, i.e. the only two-sided ideals of M[D] are the trivial ones {0} and M[D), the
result simplifies considerably. To prove the last statement of the proposition it is sufficient to
consider the case m = n = 2. Suppose p,q are full and are in a coprime relation pa = bg. Then
by Cohn (1971) p.89 there exist r,s,v,w € M[D] such that the inverse over M[D] of

v=[11]
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is given by

Now -ra+ sq =1 yields

01 p b 10 1 —e | S ] 01} _|(10

10 r s 0 ¢ 0 1 -r 0 10l (0 p
and the proof is complete . o
Definition 1.12 Let P(D) € M[D]"*" be equivalent to some P.(D) as in Proposition 1.11.
Then P(D) is called non-singular if no zeros occur in the diagonal of P.(D). The degree of
p(D) is called the order of P(D), for short ord P.

A non-singular P(D) € M[D]™*" is called full wrt F if the map

w1 :kerg P(D) — kers, P(D)
f = fh

is an isomorphism for every open interval I ¢ IR .

Lemma 1.13 If P € M[D]"*" is non-singular then

Pz =0 foreveryz € M[D]” = 2=0
Proof:  Use the normal form and the fact that M[D] does not contain zero divisors. o

Proposition 1.14 Suppose P(D) € M[D]™*" is non-singular and equivalent to P.(D) =
diag(1,...,1,p(D)). Then

P(D) is full wrt Fiff dim kery P(D) = deg p(D) = ord P.

Proof:  Clearly for every open interval I C R
deg p > dim kera, p = dim kerpq, P = dim kerp, P > dim kers, P.
Since for sufficiently small I equality holds in the above inequality the proposition follows. O

Theorem 1.9 and Proposition 1.14 immediately give

Corollary 1.15 Every full P € M[D] " is equivalent to
1
P(D) = 0| € RID>", where n = ord P.
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Example 1.186

(i) In the time-invariant polynomial framework polynomial matrices over IR{D) are extensively
studied, cf. Rosenbrock (1970), Wolovich (1974). If P € IR[D]™*" is transformed into a Smith
form P, = diag(py,...,p,) by unimodular (over IR[D]) matrices then

r
dim kerqy P = dim kery P, = Zdeg Pi.
i=1
Thus every non-singular P € R[D]"*" is full wrt A and ord P = deg det P.
(ii) Every monic P € (A™*")[D] is full wrt A. To see this reduce P(D)(f) = 0 to (DI, —
B)(g) = 0 where B€ A™*™ and P = Y0, P; D%, P, # 0. (This is done in the same way as a
nth-order differential equation is reduced to a first order matrix equation, see e.g. Coddington

and Levinson (1955) p. 21.) Since the solution spaces of P(D)(f) = 0 and (DI,, — B)(g) = 0
are isomorphic the claim follows.

(iii) Every non-singular P € A[D]™" which is in normed upper triangular form (as considered
in Ylinen (1980)) is full wrt A. P is called in normed upper triangular form if (1) it is an upper
triangular matrix and (2) if (0,...,0,p; o, %, ..., *) denotes the i-th row of P so that p; ;, # 0 is
monic and piy14, = ... = prjo =0, then deg py;j, < deg pij, forall Aei—1.

Let U € GL,(A[D]) so that the entries of P’ = PR satisfy pl; = 0if i > j, pl; = pis, deg pl; <
min (deg p;,deg pj;) if i # j. Put

Q = diag(D*™*, ..., D*"" ) where sy := mazic, deg pj;, s; = deg pl; fori€r.
Then @ P U is a monic element of A"*"[D] which is full by (ii). This implies fullness of P .
As a generalization of the scalar case one obtains
Proposition 1.17 Suppose P,Q,G € M[D]"*" and P = Q G. Then
(i) Gisfull wrt F and Q is full wrtM if P is full wrt F
(ii) ord P =0rd Q + ord G.
Proof: (i) is a straigtforward generalization of the proof of Proposition 1.3. To prove the
order formula note that for every interval I ¢ R
dim kery, P > dim keryp, Q@ + dim kery, G (1.3)

Now for I sufficiently small kerpm, @ C im(G |1). Thus equality holds in (1.3). Choosing I
eventually smaller one can achieve that dim kers, P = ord P and the analogous statement for
@ and G . This proves the order formula. a

The following proposition extends Proposition 1.6 to the matrix case.

Proposition 1.18 If P € M[D]™*" is full wrt F and Q € M[D]**" then
kers P(D) C kers Q(D) iff Q = RP for séme R € M[D]"*".

Proof:  Only necessity has to be shown. By Corollary 1.15 there exist U,V € GL.(M[D])
so that P = UP.V where P, = diag(1,...,1,D"). Since P is full, V-1(f) € kerz P for every
f € kerr P.. By assumption kerr P, C kerr QV 1. Since

kerr D" C kerr (QV1);, for i€ rp,
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by Proposition 1.6 there exist ty, . . ., t,, € M[D}such that (QV~1!);; = t;D". Let QV-Yjer,
denote the colums of QV 1. Then

[(QV—I)I)H-v(QVﬂl)r-ly(tlv~-vtrl)T]diag(lv-"ﬂlvD") = Qv_l
=1T
and thus (TU-1)UP,V = Q. This completes the proof. o

In the time-varying setup we have the nice result that for every finite dimensional IR-linear
subspace V of F” one can find a full polynomial matrix P € M[D]*" which annules exactly this
subspace V. This is proved in the following proposition and extends the scalar case considered
in Proposition 1.5 (iii).

Proposition 1.18 Suppose V =< fy,..., f, >R is an n-dimensional subspace of F". Then
there exists a P € M[D]™*" full wrt F such that kers P(D)=V.

Proof:  Denote f; = (fu,..-, fir)T for i € p and

fu - fm
A= | :
flr e fnr

Without restriction assume that the first row of A is non zero otherwise multiply A from the
left by an invertible matrix. Choose a IR—basis of the first row entries and multiplication from
the right by some Uy € GL,(IR) yields

gin .- Gin 0 ... O
912 Gn2
A=) i
g1r Inr

with g11,...,¢:,,1 linearly independent. The columns of AU, are still a basis of V . By Lemma
1.9 there exists p; € M[D] such that pagr1 = gre for k € 45.
Therefore with

1
P= € M[D]rxr
0 1
one obtains
g ... ga 0 ... 0
PAU; = 0 ... 0 git12 --- 9n2

*

Defining ps,...,pr € M{D] and Ps,..., P, € M[D]"*" in a similar way gives

g1 .- Gt 0 ... 0

i1 41,2 cc- 2

P,...PAU; = Sz g
0 : :

Giy41r oo Gnr
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Applying this procedure successively on the remaining submatrices we finally obtain
P € GL,(M(D])and U € GL,(IR) such that

g ... gin 0 0
a2 .. 63 o
. 0
PAD = _,,{73 ggfg
0 0
0 0

for k € r and the elements gi‘fj) in every row are linearly independent. Now define

g = lClmlzczi,(gg)D - gg)) forjek

For @ := diag(q,...,qx,1,...,1) € M[D]"™*" we have QP AU = 0. Since Q is full wrt F the
product P = QP is also full wrt F and kerr P = V. 8]

Algebraic properties of common divisors and multiple hold true analogously to the commutative
case (cf. for instance Mac Duffee (1956)). For P € M[D)'*",Q € M[D]"*™ a greatest common
right divisor G = gerd (P,Q) and a least common left multiple I, = Lefm(P,Q) are defined
analogously as for analytic matrices in Section 1.5.

Lemma 1.20 For P € M[D)*",Q € M[D]"'*" we have
(i} There exists G = gerd(P,Q) and A € A[D)"*", B € A[D)"*" such that
G = AP + BQ.

If P is non-singular then G is unique up to left multiplication by an invertible matrix.
If Pis full wit F, G is full wrt F as well.

(i) I r =rand both P and Q are non-singular, then there exists L = Letm(P, Q) which is
unique up to multiplication from the left by an invertible matrix.

If P and Q are full wrt F, L is full wrt F as well.

(iti) P and Q are called right coprime if every square common right divisor of P and Q is
invertible over M[D]. This is true iff there exists § € M[D]"*",T € M{[D] "1 guch that

I, =5P+TQ.
Proof:  The main idea of the proof is as follows: There exist matrices

_| U U, 1|V Ve (r4ri)x(r4r1)
U_[U3 U4],L =7 2 | eMippernxieen (14)

where Uy is a r X 7 matrix and all other matrices have appropriate formats such that
P — G X7
o[2]-[5] cern

This is proved analogously as in Newman (1972) p. 15, he considers matrices over commutative
principle ideal domains.
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That G is a gerd of P and @ and satisfies the uniqueness statement is proved analogously as in
Mac Duffee (1956) p. 35. If P is full it follows from Proposition 1.17 that G is full. Using the
same computations as in Mac Duffee (1956) p.36 yields that

L:=UsP = -UsQ = tebm (P, Q).

To prove that L is non-singular assume z L = 0 for some z € M[D]**". Then zU3 P = 0 = 2U4Q,
and hence zU; = zU; = 0. Since UaVz + UsVy = I, by (1.4) it follows that z = 0. To prove
that L is full wrt F is more difficult. Put V = kers P + kerr Q , then by Proposition 1.16
there exists L' € M[D]*" full wrtF such that kers L’ = V. Thus by Proposition 1.16 L'isa
common left multiple of P and @ and there exists E € M[D}"*" such that E L = L'. Since L'
is full (ii) follows from Proposition 1.17.

(iiil) is a consequence of the presentation of the gerd given in (i). [n]

Now we are in a in a position to state the main result of this section. It shows in particular that
full matrices have a one-to-one correspondence to finite dimensional linear subspaces of F".

Theorem 1.21 Let F = A or M. The set
Ly = {M[DI™ - P| P € M[DI" full wrt F}
of left M[D] modules generated by full matrices is a lattice with respect to the operations
MDD P v M[DI™-Q = M[D]"™ -gerd(P,Q)
M[D]™".P A M[DI'*"-Q

M[D]™*" - Letm(P,Q)
The set
Ly :={V C F7|V is a finite dimensional linear subspace of 7"}

is a lattice with respect to intersection and sum.
The map
h : Ly — Ly
M[DY*r-P + kers P

is an anti-isomorphism, where 'anti’ means

h(M[DT>"- P v M[D]™-Q)

t

MM[DI*" - P) + h(M[D]™*" - Q) (1.5)
RM[DY*" - P)N h(M[D}"*" - Q) (1.6)

WMD" - P A MDI™*"-Q)

Proof: By Lemma 1.20 (i) and (ii) the gerd and the £cém of full matrices are full as well,
whence L; is a lattice. The map h is well-defined by Proposition 1.18. Injectivity and surjectivity
of h follows from Proposition 1.18 and 1.19. So it remains to prove (1.5) and (1.6) which are
equivalent to

kerr L = kerx P+ ketxr Q ,for L = fcfm(P,Q) (1.7)
kerr G = kerr PNkerr Q ,for G = gerd(P,Q). (1.8)

» 5" in (1.7) is evident. To prove the converse inclusion note that by Proposition 1.19 there
exists ' € M[D]*" such that

kerr P+ kery Q = kerr L'.
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Now Proposition 1.18 yields L’ = EL for some E € M[D]"*" and thus kers L C kery L’ which
proves (1.7). (1.8) is easily proved by using Proposition 1.18, here the assumption that P and
Q are full is not necessary. a-

For the sake of completeness it is shown that the degree formula (1.2) carries over for matrices
as follows.

Remark 1.22 Suppose P,Q € M[D]'*" and G = gerd(P,Q), L = Letm(P,Q). Then by using
(1.7) and (1.8) and choosing I C IR sufficiently small one obtains

dim kerpq, P +kerpq, Q dim (keram, P +keraq, Q) +dim (keras, P Nkerp, Q)

dim kerpq, L+ dim kery, G.

N

For I eventually smaller this gives

ordP+ordQ =ord L +ord G (1.9)

2.2 Polynomial matrix systems, solution vector spaces and sys-
tem equivalence

In this section we will analyse time-varying finite dimensional linear systems in differential
operator representation.

P(D)(z) = Q(D)(w) (2.1
¥y = V(D)(2)+ WD) )

where P,Q,V,W are r X r,7 X m,p X r,p X m matrices, resp. defined over M[D].
u €U™ = {u € (C*)™ | supp u bounded to the left }

Additionally it is assumed that

(A1) P(D) is full wrt A.

(A2) im QC im P, ie. for every u€ U™ there exists z € (C®)" such that
the first equation in (2.1) is satisfied

(A3) If w€l™ then it follows that ye (C)r.

The first assumption yields that every free motion of the first equation in (2.1) is defined on
the whole time axis IR and does not have poles. Furthermore the requirement "full” allows, as
we will see, an algebraic treatment of systems of the form (2.1). (A 2) is natural from a system
theoretic point of view, for every input u(-) the existence of an "internal state” and an output
is expected.However, if only (A 2) holds it may happen that for some u € U™ the output is of
the form

(;—1,.,.,;—”) where y; € C%°,§; € A", i € p.
p

The poles occur from the poles in the coefficients of V and W. Assumption (A 3) ensures that
the output does not have poles. If V and W are defined over A[D] this is clearly satisfied.

In the following the matrix
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is called a system matriz if it corresponds to (2.1) and (A1) - (A3) are satisfied.

This class of systems covers in particular

e time-invariant systems in differential operator representation as introduced by Rosenbrock
(1970).

systems where P € A[D]"*" is non-singular and in normed upper triangular form as dealt
with in Ylinen (1980), cf. Example 1.16 (iii).

e state space system of the form

#(1) = A(D)z()+ B)u(t) (2.2)
y(t) = C()z(t) + E(D)(u(1)

1]

where A, B,C are analytic n X n,n X m,p X n matrices, resp. and E(D) € A[D]P*™.

The following proposition shows that the solution (vector) space
M(P,Q):= {(2,u) € (C®) xU™ | P(D)(2) = (D) w)}

can be decomposed into the direct sum of the R-linear subspace of forced motions starting from
zero

M (P,Q) 1= {(zu,u) € M(P,Q)N (U" x U™},

(where throughout this chapter z, denotes the uniquely defined forced motion starting from
zero) and into the IR-linear subspace of free moti

kerq P x {0} := {(#',0) € M(P,Q)}.
As opposed to time-invariant systems where M(P,Q) is an R[D] -module, for time-varying

systems of the form (2.1) M(P,Q) is, in general, only an IR—vector space not an R[D] - or
M{D)]-module.

Proposition 2.1 Suppose P € M[D]"*" is full wrtA and Q@ € M[D]"*™, then

M(P,Q) = M(P,Q) & (kera P x {0})

Proof:  That the sum is direct follows from the definition of the vector spaces and the fact that
P is full. It remains to prove ” C *. Let (z,4) € M(P,Q). Then u |;= 0 for some I = (—00,%o)
and (z,v) |r= (z |, 0). Since P is full there exist 2’ € ker4 P such that 2’ |;= » |1 . Thus
(z,1) = (,0) + (z — 2', u) where (z — 2/, u) € M (P, Q). 8]

The next lemma is frequently used in the following.

Lemma 2.2 Suppose A(D) € M[D]"*™. Then

ADYu)=0 forallueU™ = A(D)=0
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Proof:  Suppose A(D) = Y%, 4;D* . For to < t; choose u € C* such that

feo t < &
“(t)"{l o<t

If e; denotes the j-th canonical basis vector in IR™ one obtains
A(D)(eju(t)) = Agej =0 fort >t and j € m.
Since Ao is analytic Ap = 0. Inserting successively teju(-),...,t"e;u(-) yields
A(D)(t*e;u(t)) = Are; =0 fort>t,jemken
Therefore Ay =0for k=0,...,n. a

Proposition 2.3 Suppose P; € M[D]r**i, Q; € M[D]"*™ for i =1,2.
(i) I Py is full wrtM and im Q; C im P, then
M(P1,Q1) C M(P,Qa) it T[P1, Q1] = [P2,Qa] for some T € M[D]’2%".
(ii) Assume ry =7y, P and P, are full wrt M and im @1 C im P;. Then
M(P1,Q1) = M(Py,Q2) iff T[P1,Q1] = [P, Qq) for some T € GL, (M[D]).
Proof: (i) Sufficiency is trivial. To prove necessity note that kery Py C keryg P, yields the

existence of some T' € M[D]2*" such P, = TP;, see Proposition 1.18. Now im QL Cim P
implies Q3(u) = Po(2) = TPy(z) = TQy(u) for all ¥ € U™ and thus by Lemma 2.2 (i) is proved.

(i) Applying (i) twice yields the existence of some T, 7" ¢ M[DJ1xmt guch that T[Py,Q;] =
[P2,Qz) and Py = T'P;. Hence P, = T'TP; and by Lemma 1.13 7' = T-1, u]

For time-invariant systems in differential operator description Hinrichsen and Prétzel-Wolters
(1980) have studied system equivalence via certain homomorphisms between the solution mod-
ules. The following definition extends this approach to the time-varying setting.

Definition 2.4 Suppose
= | B @ (ri+p)x(ri+m) | =
IP'—[V,- W‘]EM[D] W(i=1,2)

are system matrices.

(i) A R-linear map f: M(P,Q;) — M(P2,Q>) is called a solution homomorphism if
f(z,u) = [g‘(D) Y(Z')] ( 12‘) (2.3)

for some T, € M[Djrzxr1 Y ¢ M[D]r*m,

(i) A solution homomorphism f : M(Py, Q) — M(Py,Q3) is called a system homomorphism
if

Vi(D)(2) + Wr(D)(u) = [Vo(D), Wa( D))(f(2,u)) for all (z,u) € M(P,Qy). (24)
(iii) IPy,TP; are called system equivalent, denoted by IP; X IPy, if there exists a system
isomorphism f: M(P1,Q1) —» M(P2,Q;), ie fisa system homomorphism which

is invertible as a system homomorphism.
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Using the notation of the previous definition a system homomorphism f makes the following

diagram commute
(z,4)
M(P1,Qn)
Vi(2) + Wi(u)

€=y

% — Va(2) + Wa(u)

/

M(P2,Q2)
(z,u)
In other words: f does not transform the controls u , the output of the first system correspond-
ing to the solution pair (z,u) is the same as the output of the second system corresponding to
the associated solution pair (f(z,u),u) , the internal variables are transformed.

Since a solution space M(P, Q) can directly decomposed as in Proposition 2.1 a solution homo-
morphism (2.3) induces the following IR -homomorphisms

fo:kery P — kery P2 (2.6)

z = Ty(D)2)
i My(PL,@Q1) — My(P,Q3) (2.7

(zuyu) = (Ty(D)(zu) + Y(D)(u),v)
In particular, f preserves the direct decomposition, i.e.
fM4(P,Q1)) C My(P,Q9)
f(kerq Py x {0}) C kery P, x {0}
Example 2.5 (i} Two state space systems of the form (2.2) associated with

[ pr,-4 -B

i (n+p)X(ntm) 4
IP"_|:C.‘ E,(D)]EA[D] ’ ,1—1,2

are called similar via T € GL,(A) if
7! 1 T~ 0
[ 0 I, ] Py =P} [ 0 Inm ]

This extends the concept of similarity introduced in Section 1.1, cf. also Lemma 1.1.2.
If IPL, is similar to TP it is easily verified that the map

f: M(DI, - Ay, Bi) » M(DI, = A3, By), (2,u) [ . P ] ( : )

is a system isomorphism.
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(ii) Consider the n-th order scalar differential equation
n{D)(z) = qu

where py(D)=ap+...4+a,_1 D"~ + D" € A[D], q € A.It is well-known that this equation
is equivalent to the first order matrix differential equation.

Py(D)(z) = Qau

where
0 1
0
PyD)= | DI, - K ) Q=
0 1 N
—ap . ~Qn-1

The solution isomorphism is given by

fiMp@) - M(P,Q2)
1

o | 1
o |1 211
Dn-l 0 u
0 1
Proposition 2.8 Suppose
i DI,, - A; -B; )
(- L0 i R (ri+p)x(ri4+m)
P, = C E{D) ] € A[D]

are associated with two state space systems of the form (2.2), i = 1,2 resp. Then

Pl is similar to IP?, iff P}, X P2,
Proof:  Sufficiency is proved in Example 2.5(i). Assume IP!, X IP?,. Thenkery DI, —A; ¥
ker4 DI, — A; and thus r; = rp =: r. Since every state space system is similar to a state space

system with constant free motion (see Remark 1.1.1) and similar systems are system equivalent
we assume without restriction of generality that A; = A2 = 0. Let

f:M(DI,,B;) = M(DI,,By), (z,u) [ g‘ IY" ] ( i)

denote the system isomorphism, T3 € M[D]"*",Y € M[D]"*™. Choose @ € M[D]"*",H €
M%7 guch that Ty = Q DI, + H. Then

J(zw) = (Mi(2) + Y(u), v} = ((Q By + Y)(u) + Hz,u).

Hence fy : kery DI, — kery DI, is an isomorphism described by z — Hz and therefore
H € GI,(R). Furthermore

DL((QB1+Y)u)+ Hz)= Bou  for all (z,u) € M(DI,, B;)

49



and defining Y := Q By + Y yields
DI,(z) = H™Y(B, = DI, Y)(u) for all (z,u) € M(DI,, By).
Thus by Lemma 2.2 H-(B, ~ DI, Y}) = B;. Comparing the coefficients gives H-1Y, = 0
and H-' B; = B,.
It remains to prove C; H = Cy and E((D) = Ey(D). By (2.4)
Crz+Ey(D)(u) = (Cy, Eo D)) To(2)+Y (), )T = CoH 24 Eo( D)(u) for all (z,u) € M(DI,, By).

Since kery DI, = R™ one concludes for u = 0 that C; = C;H. Furthermore by Lemma 2.2,
Ey(D) = E3(D) . This proves the proposition. a

For the algebraic characterization of the injectivity and surjectivity of a solution homomorphism
(2.3) a lemma is needed.

Lemma 2.7 If f is a solution homomorphism as in (2.3), then there exists a T € M[DJ2Xn
such that

TPy, Q1] = [Py, Q) [ OT‘ 13; }

Proof: Note that

FIM(P, Q1)) C M(P,Q2) & M(P,Q1) C M(PTy,~PY + Q).

Thus the results follows from Proposition 2.3(i). o

Proposition 2.8 Suppose f, fo are given as in (2.3), (2.6). Then we have
(i)  fisinjective & fy is injective ¢ Py, T) are right coprime
(i) If imQy Cim Py and T € M[D]?*" is given as in Lemma 2.7 then

f is surjective & fois surjective < T, Pyare left coprime

(iii) If f is bijective then f~1 is also of the form

™ v
0 I,

] with ' € M[D]"*"2 Y’ € M{D]"**™,

Proof:  Itis trivial that f is injective (surjective) iff fy is injective (surjective). The remainder
of the proof is completely analogous to the time-invariant situation, see Hinrichsen and Pritzel-
Wolters (1980) Lemma 5.1, and therefore omitted. D

The following algebraic characterization of system equivalence generalizes the time-invariant
result of Hinrichsen and Prdtzel- Wolters (1980).

Proposition 2.9 Suppose

U I R 7 P I (retp}x(ritm)
lP‘"[V; W;] € M{D}
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are system matrices, i = 1,2. Then IP; X IP; if and only if
there exist T, Ty € M[D]"2*"t | X € M[DPF*",Y € M[D]"**™ such that

. T 0 _ T Y
(i) [X Ip]lpl—lpzl:o ImJ
(ii) T, P, are left coprime and Py, T; are right coprime.

Proof: Suppose the system equivalence of IP; and IP; is described by f as in (2.3). Then
M(P, Q1) C M(PT1,—PY + Q) and by Proposition 2.3 there exists T € M[D]"2%" such
that

T[PL, Q) = [P, Qi) [ o L ] -
Thus it remains to prove the existence of some X € M([D]P*™1 50 that
XP+Vi=VuTy and XQ+ Wy = VoY + W,.
This follows from Proposition 2.3 since by (2.4)
M(P, Q1) C MWV = Va Ty, Wy — Wy + V4 Y).

The coprimeness conditions hold true by Proposition 2.8.
To prove sufficiency define a map f as in (2.3). Then by (ii) and Proposition 2.8 f is a system-
isomorphism. (2.4} follows from (i). This completes the proof. [ul

By using the algebraic characterization of system equivalence it will be shown how fairly rich
the equivalence class of a system matrix is.

Corollary 2.10 Suppose
_ P _Q (r4+p)x{r+m)
P= [ v ow } € M[D]

is a system matrix and P is equivalent to Py, i.e. UP = P,U, for some U, Uy € GL,(M[D)).

Then
s | Py -UQ
P~ [ Vot w ]

Proof:  Since
voollrp -@]_[n -vgllu, o
0o L||lv w|Tvipr w 0 In
the claim follows from Proposition 2.9. o

An important result is that in every equivalence class of system matrices lies an analytic state
space system. More precisely

Proposition 2.11 Every system matrix

_{P -Q (r+p)x(r+m)
IP_[V W]EM[D] 4
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is system equivalent to some

DI, -B

o= { ¢ EW) ] € A[D)HPIX(nFm) -y = ord P

with B, C analytic matrices. Py is uniquely determined up to a constant similarity transfor-
mation.

Proof: By Corollary 1.15 P is equivalent to diag(1,...,1, D*)and to DI,. Thus by Corollary
2.10 one may assume that IP is of the form

_| DL -Q (n+p)x(n+m)
P = [ v W ] € M[D] .

Let B e M™*™ .C e MPX™ Y € M[D]™** X € M[D]P*" such that
-@Q=DI,Y~B and V=X DI, +C.

Then for E(D):= W + X Q ~CY one obtains

I, 0 ~ I, Y _| b, -B
{—X Ip]]P_lP,,[O Im]' whereIP,t—-[C E(D)]

and by Proposition 2.9 P X IP,,.

It remains to show that IP,, is defined over A[D]. Since im B C im DI, it follows that B cannot
have poles and thus B € A"*™. Since kerq DI, = IR" it is allowed to insert successively u = 0
and z = e; € R*(j € n) into y = Cz+ E(D)(u). By assumption (A3) y does not have poles
and thus C' € AP*™, Using again assumption (A3) and the same trick as in the proof of Lemma
2.2 yields E(D) € A[DJP*™. This completes the proof. a

Now we are in a position to give an alternative definition of a solution homomorphism (see
Definition 2.4(i)).

Proposition 2.12 Suppose
P, = 1:’ Qi (rit+p)x(ri+m) ; —
! [ Vi W; ] € M([D] y i=1,2

are system matrices. Then a IR—linear map f : M(P,Q,) - M(P,,Q3) is a solution homo-
morphism if and only if f satisfies
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for every (z,u) € M(P;,Q,) and every compact interval J there exists an
IR ~ linear map f |; such that the diagram commutes

I
M(P, Q1) M(Py,Q»)
restriction on J restriction on J
flg
M(P, Q) s M(P,Q2) |y

or equivalently for every (z,u) € M(P},Q;) and every compact interval J we
have

(z,u) ly=0 = f(z,u)|y=0
For the proof the following theorem of Peetre (1960) will be applied.

Theorem 2.13 Suppose Y : (> — C% is a linear map, where
€2 :={f €C>| supp fis compact).
Then Y is local, i.e. supp Y (u) C supp u for all v € c2, if and only if

Y(u)= Za;u(‘)

20

where {a;}, v, is a unique family of distributions which is locally finite , i.e. for every compact
interval J C R o; |s= 0 for i sufficiently large, and locally contained in C®,i.e. foreveryt € R
there exists a neighbourhood J; of ¢ such that a; |;,€ Cce.

Proof of Proposition 2.12 If f is defined by (2.3) then it satisfies (2.8). To prove sufficiency
assume f satisfies(2.7). We proceed in several steps.

(i) By Proposition 2.11 IP; is system equivalent to some

_[Dh
,=

i -B;
Pu=|c" ) ]

8

€ A[D)m+PIX(mtm) - = 1 9 resp. .

The system isomorphisms‘ describing these equivalences satisfy (2.5). Thus it is sufficient to
consider the case IP; = IP{, ,i=1,2.

(i) f induces a IR—linear map

Jo:kery DI, — kerq DI, zv fo(z).
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Since kerq DI, (i = 1,2) have constant bases, fo can be represented by some T € IR™2*™,

Therefore f is given by
T Y z
en=[3 a2 ](3)

where Y : Y™ — U™ is an R—~linear map.
(iii) It is shown that Y is local, i.e.
wly=0 = Y(u)|s=0 for every u € U™ and every compact interval J.

u|y=0 then (z,u)|s=(2°0)|s where z° € ker DIy, issome constant free motion. Since
(z— 2°,u) € M(DIy,, B1) and (z—2%u)|;=0, (2.7) yields f(z - 2%u)|s=0. Now

flz=22u) s = (Bi(z =2+ Y(u)hu) s = (Ti(z = 2%) s +Y (¥) [1,0)
implies Y (u) |;= 0.

(iv) IfY is restricted to (C2°)™ then by (iii) Y ((C°)™) C (C°)"2. Since Y is local an application
of Theorem 2.13 yields that f can be presented by

fzu) = [OT 1?,,. } ( f‘) for u € (CZ)™

where YV = 3":50 Y;D'I,,, and the unique families ((),I:t))iemo are locally finite and locally con-
tained in C2° for k € ny, L€ m, Yi= ((Yi))-

(v) It remains to show that

k
Y =Y YiD'I, € A7 (D) for some k € INg.
i=0

Choose u € U™ and I = (o, 00) so that u(-) |;= e;, j € m. Then for some z € (C*)™" %= Bu
and thus 2 {;€ A [} . Since Yp is locally contained in (Cg°)"2*™ for t € I there exists an open
neighbourhood J C I of t such that Yy [s€ (C* |5)"2*™. From

f(z,u) = (Tz + Y(u),u) € M(Dl,,, Bs)
one obtains
(Y(w)) s = (Yoe;) ls= ~DIny(T2) |y +Bae; |5 € A7
and thus Yp |y€ A [22X™ . Since ¢ € IR was arbitrary one obtains Yo € A™X™.
Now inserting successively u(t) = t'e; on I gives as above Y; € A™*™ for i > 0. Since

{Yi};eIN is a locally finite family, the identity property of analytic functions yields the existence
of some k > 0 such that

3
Y =YY, D'I, € A*"[D]
i=0
This completes the proof. o
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2.3 Controllability and observability

In Chapter 1, Definition 2.1 and 3.4 controllability and observability were introduced for state
space systems. Now this will be generalized for systems in differential operator representation
of the form (2.1).

Definition 3.1 Suppose

=| P -@Q (r+p)x(r+m)
P= [ v ow ] € M[D]
is a system matrix.
Then P is called controllable on [to,t1], to < t1, if for every 20 € kery P(D) there exists a
control ¥ € U™ with supp u C {to, t1] such that

0
0 _ )2t fort<ty
(< +z")(t)_{ 0 fort > t;

where 2, denotes the unique forced motion, see Proposition 2.1.
IP is called observable if V acts as a monomorphism on ker4 P(D) or, in other words,
kery PNkery V = {0}.

Note that by Proposition 1.2.2 these are extensions of the definitions concerning state space
systems. Observability is not defined on an interval since if V is a monomorphism on kera, P(D)
then, because P is full wrt A , V is injective on ker4 P(D) as well. In Proposition 3.4 it will
be seen that the analogous fact holds true for controllability.

Controllability and observability are invariant under system equivalence. More precisely we have
Proposition 3.2 Suppose

L F; “Qi (rit+p}x(ri+m) ;=
]P'—I:V" M}GM[D] , 1=1,2

are system equivalent and I = [tg, ], t5 < t;. Then
P, is controllable on I (observable) iff IP; is controllable on J (observable).

Proof: Let the system isomorphism be given by f : M(Py, Q1) — M(P2,Q3) defined in
(2.3).

I IP; is controllable on I then for z! € kery P, there exists u € U™ with supp u C {to, ty] such
that

1
1, . ) 2t)  fort <t
(2 +2)0) = { 0 fort > 1,
where (21, u) € My (P, Q). Since f preserves the direct decomposition of M (P1,Qy) ,
(22, u) = (Tu(2}) + Y (u), u) € M4 (P2, Q2).

Furthermore |1, o)= 0 yields Y (u) |{t:,00y= 0 and thus

2
2, 2 _ ) 22 fort <tg
(25 +2)() = { 0 fort >ty
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Since for every 22 € kers P, there exists 2! € kery P, such that Ty(z') = 22 it has been
shown that IP; is controllable on I . Using the fact that f is a system isomorphism the converse
directjon is proved similary.

It remains to prove the statement for observability. Assume IP; is observable and z € ker4 PN
kers V3. Then, by using the algebraic criterion in Proposition 2.9 (i). = = T1(z') for a unique
z' € kerg Py and V;Ty(z') = X Py(z') + Vi(z') = 0. Thus z' € kery PyNkery V2 and since IPy
is observable 2’ = 0. Therefore z = 0 and thus IP; is observable.

This completes the proof. 8

In order to characterize controllability by left coprimeness of P and Q , as it has been done for
state space systems in Theorem 1.2.4(v), a lemma is needed.

Lemma 3.3 If

Vi

P; = [ B _I;QVI. ] € M[D](r¥pdx(ritm) -y _q o
are system equivalent, then Py, Q, are left coprime if and only if P;,Q; are left coprime.
Proof:  Itissufficient to show one direction. Using the notation of Proposition 2.9 one obtains
TP = P11, Q2 = PY +TQ; and condition (ii) yields the existence of some A, B, E, F of

appropriate formats so that I, = TA + P,B, I,, = PLE + Q,F.
Therefore

T=TRAE+TQF = RbLTVE+(Q:-PY)F = P,(ME-YF)+Q: F
and the following equations are equivalent

TA
I,-P,B

PATVEA-YFA)+Q,F A
PATYEA+B-YFA)+Q, FA

This proves the lemma. a

Proposition 3.4 For a system matrix

P = { 5 —l?/ ] € M[D](r+p)xtn+m)

the following statements are equivalent

(i) P is controllable on {to,;], to < t;.

(ii) TP is controllable on every interval.

{iii) P and Q are left coprime, i.e. there exist X € M[D)"™*" , Y € M[D]™*" such that
PX+QY =1,

Proof:  Because of Proposition 3.2 and Lemma 3.3 it is sufficient to consider the case IP =

IP,;, where IP,; is associated with an analytic state space system of the form (2.2). Now the

equivalence (i) ¢ (ii) follows from the analyticity of the system, see Remark 1.2.5(1). (i) & (iii)
is proved in Theorem 1.2.4. Thus the proof is complete. o
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Proposition 3.5 A system matrix

| P -@Q (r+p)X(r4m)
IP= [ v ow ] € M{D]

is observable if and only if P and V are right coprime, i.e. there exist X € M[D]"™*" Y €
M([D]"*? sucht that
XP+YV=I.

Proof: Let G denote a gerd of P and V . Then by (1.6) kera G = kery PNkery V.
If P and V are right coprime G is necessarily invertible and thus kerg G = {0} whence IP
is observable. Conversely, if P and V are not right coprime then G is not invertible and thus
ker4 G # {0}. Hence IP is not observable. This proves the proposition. [a]

2.4 Input-output map and formal transfer matrix

The decomposition of the solution vector space M(P,Q) (see Section 2) enables us to define
an input-output map of systems in differential operator description. In general, there does not
exist a frequency domain analysis for time-varying systems. However, one can define a formal
transfer matrix and show its close relationship to the input-output map.

Definition 4.1 Suppose

- P -Q (r+p)x(r+m)
P= [ v wlE€ M([D]
is a system matrix. The input-output map of the system associated with IP is defined by

G U™ — Yr
v+ V(D)(2u) + W(D)u)

where 2, denotes the forced motion starting from zero, (z,, u) € My(P,Q).

Remark 4.2 The input-output maps of two system equivalent systems coincide. This is imme-
diate from (2.3) and the fact that f(M,(P;,Q,)) C Mi(P, Q7).

In order to define the formal transfer matrix we have to introduce the left-skew field of fractions
of M[D)

M(D):={p~"q| p € M[DI",q € M[D]}
This field is constructed as follows ( cf. Cohn (1971), p. 20):
For pairs (p,g) € M[D]* x M[D] define an equivalence relation between them by the condition:
(P1,@1) ~ (p2,q2) iff there exist uy,up € M([D]* such that

uzpr = wp2 and  wq =g
The equivalence class containing a pair (p,¢) is denoted by p~!q. The multiplication
e pte = (wap1)™M(urge)  with uy,ug € M|D]" such that uyp; = uaqy

depends only on the equivalence classes of the factors and is associative.
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Definition 4.3 Suppose

_| P -Q (r+p)X(r4m)
IP—[V W]EM[D] »

is a system matrix. Then
G=VPQ 4+ W e M(DP*™

is called the formal transfer matriz of the system associated with IP.

Proposition 4.4 If two system matrices are system equivalent then their formal transfer ma-
trices coincide.

Proof: Suppose IP;, i = 1,2, satisfy condition (i) in Proposition 2.9. Then it follows that

WPQ + Wy (VTP - X)Qu+ Wi = WY + VT PIQy + W,

VaPy Y PY + TQu) + Wa = VaP' Qe + W,

and the proposition is proved. D
In the following proposition the relationship between the input output map
G:U™ S UP, uw V(D) z,) + W(D)u)
and the formal transfer matrix as a multiplication operator
G: MDY = M(D)?, u(D)+r V(D)P(D)'Q(D)u(D) + W(D)u(D)
will be clarified.

Proposition 4.5 Suppose the system matrices

| B - (ritp)X(ritm)
IP"[V,- W‘_]EM[D]

have input-output maps G; and formal transfer matrices G‘,-,i = 1,2. Then we have
Gi1=G; & Gi(u)=Gy(w) forall uel™

Proof: By Remark 4.2 and Proposition 4.4 it is assumed without restriction of generality
that

DI,, -B
C; E;(D)

The multiplication rule (1.4) in Chapter 1 and multiplication in M(D) yields

P =P, = [ ] € A[D)mpIX(nitm) 5o g 9,
eD™' = (D - S)'lc forall c € A\ {0} (a.1)

Denote Cy = ((c}))) for A = 1,2. Then

2y
C\D™'Io By = (([D - E‘Ai]-lc;.‘j By, A=1,2. (4.2)

3
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where the entries of

N
([D- ﬁg]-'c?j»

are defined to be zero if c?j = 0. Put

k(D)

& . .
chm{D—c—:j-|c;\j;£0,162,]€g,/\=1,2}

= HOND- )

for some s{(D) e M[D],i€p,jen,A=1,2 resp.
Now by (4.2) the entries of

k(D) Cy D7 L, = ((sh(D)e})) € M[DJPxm (4.3)
are polynomials and therefore it is allowed to write

(K(D)CAD)(za(1))

]

(K(DYCAOD™YD(=(1))) (4.4)
(K(DYCA(BDTY( Ba(t)u(t))

where (2),u) € My(DI,,,By) for A = 1,2. This enables us to prove the proposition.
CiD MUy Bi+ Ey(D) = Gy = G3 = CoD™ 'L, By + Ey(D)
is valid if and only if
K(D)YC1D™' By + k(D)EA(D) = k(D)C2D7' B, + k(D)Ey(D) (4.5)

Since the entries of the matrices in (4.5) are polynomials Lemma 2.2 yields that (4.5) is
equivalent to

(k(D)CyD~V)(Byu) + (k(D)Ey(D))(u) = (K(DYC2D~YY(Bau) + (k(D)Ey(D))(u) for all u € U™
which by (4.4) can be rewritten as
K(D)(Crz,) + k(D) Ey(D)(u)) = K(D)(C322) + k(D) Ex(DYu(t)) for all u € U™ (4.6)
By Proposition 1.5(iv) k(D) is full wrt A since it is the cém of full polynomials. For all u € Y™
and A =1,2 C»z) + E\(D)(u) has a support bounded to the left and thus (4.6) holds true if
and only if
Gi(u) = Ciz} + E((D)(n) = Cp2? + Ea(D)(u) = Ga(u) foralluey™

This completes the proof. o

Corollary 4.6 Suppose two analytic state space systems associated with

i _ | DI - A; -B; (n,+p) X (ni+m)
P=1 E(D) | € AP

(i = 1,2) satisfy G} = G, or Gy(u) = Ga(u) for all w € U™. Then Ey(D) = Ey(D) .
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Proof: By Remark 1.1.1 IP%, can be transformed to a system with constant free motion
and E;(D) is not changed, i = 1,2 resp. Thus by Proposition 4.4 and Remark 4.2 it is assumed
without restriction of generality that A; = 0 for i = 1,2. Using the notation of the proof of
Proposition 4.5 gives

k(D)[C1D™' By = CaD7' By] = K(D)|Ex(D) ~ Ey(D)) 4N
Let £ := deg k(D). Then the degree of the left hand side polynomial matrix in (4.7) is smaller

than £ and by comparing coefficients in (4.7) one obtains D/[Ey(D) ~ E;(D)] = 0 . This proves
the corollary. a}

2.5 M|[D}-right modules and the input module

In Section 2 we analysed the solution vector space M(P, Q) of a system matrix

P - r r4m
]P:[v ‘I‘Q/]GM[D](+p)X(+)

and considered the differential equation
P(D)(z) = Q(D)(u) for (z,u) € (C*) x U™.
Now we will study the algebraic equation
P(D)z(D) = Q(D)u(D) for (2(D), w(D)) € M[D]" x M[DJ™
It is important to distinguish between two operators induced by
k .
P(D)=3" P D' e M™"[D]
i=0
One is P as a differential operator acting on (C*)*
P(D) : (=P - (C®) 4
z o~ P(D)(2)= Tk Pz
the other is P as the formal multiplication operator acting on M[D]"
P(D) : M[D]* — MI|DJ
AD) = P(D)xD) =Tk, RDxD)

First, submodules of the free M[D]-right module M{D]" will be studied. If M is a right-(left-)
M{[D]-module its rankis the cardinality of any maximal right-(left-) linearily independent (over
M[D]) subset of elements of M , see Cohn (1971) p.28. Since M[D] is a right and left Euclidean
domain it follows for the free M[D]~right module M[D]" that each of its submodules is also
free and of rank at most r , see Cohn (1971) p.46.

For a matrix P € M[D]"** the column (row) rank is defined as the rank of the right (left)
M[D]~submodule of M[D]"(M[D]'**) spanned by the columns (rows) of P . Both ranks
coincide, see Cohn (1971) p. 195.
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Definition 5.1 For v(D) = (v}(D),...,v"(D))T € M[DJ set
deg v(D) = max deg v'(D)
i€r

Let V(D) = [v(D),...,v(D)] € M[D]"** , then
Ai:=deg v(D) s called the i — th index of V,

W = V(D) - M[D}f

denotes the right M[D] submodule generated by V.

V is called (ordered) minimal basis of W if its columns are linearly independent over M[D] and
the sum of its indices, Ef;, A; , is minimal among all bases of W (and Ay > ... 2> Ag).

If v(D)= E}\éo Div;; for i € k, then

V(D)o = [vr,0y5 -+, Vkr ] € MT*) 055 = 0if vy(D) = 0
denotes the leading (column) coefficient matriz of V. The definition of this matrix does not
depend on the side of which the coefficients of v;( D) are written.
Using these notations a minimal basis of W can be charactzerized as follows.
Theorem 5.2 Suppose W = V(D) - M[D]* and thpmip)V{(D) = k. Then the following are
equivalent:
(1) V(D) is a minimal basis of W.
(i) rharlV(D)]e = &
(i) For any z(D) = (e}(D),...,z*(D))T € M(D]*\ {0}

deg V(D) 2(D) = I?Ea‘rx{z\"+deg #4(D)| z'(D) # 0}

(iv) Ford e INy the M—vector space
Wy := {v(D) € W | deg v(D) < d}

has dimension

dimpy Wy = Z (d+1—x\,‘)
i <d

Proof: (i) = (i) : Assume (my,...,mi)T € M*\ {0} such that T, vy, mi =0
and ), is the maximal index with A, # 0. Then

k
v o= Z v,-D(AP"\‘)m,-
i=1
Bl
23 Divij+ DYugy ) DX Mmy,
i=1 j=0
k=1 k
E Z D’v.‘jD(A*’"\"m,- + Z D’\'(D(’\"”\‘)v.-,,\, + wi)m;

=1 7=0 i=1

1

il
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Since

with w; such that deg w; < Ap = Ag

k
=w+ DS v um;

=1
with w such that deg w < A,
=w.
k
v, = (v - Z v,'D“"'A‘)m.-)rn;l
i=Li#p

the matrix [vy,...,vp_1,',Up41,...,Um] is a basis with lower order than V. This contradicts

).

(it) = (iii): Let z = (z1,...,2x)T € M[D]*\ {0}. Then

k
degVz = degy vz; < max{degz; + |z #0} =:a

i=1

Let ;= deg z; fori € k,and N:={i€k |{;+ X\ =a}. Then

koA . 4
Ve = EZ DJ'D.‘J'ZD“I"“
i=1j=0 p=0

kX &
= Y S DY (D*0ij + yuij)Tiu,  with y,i; such that deg yui; < p

i=15=0 5=0

= D*Y vz, +y, with ysuch that deg y < a
€N

By (i) Y;enr virZi, # 0 whence (iii) follows.

(iii) = (iv): For arbitrary @ € IN and z = (z!,...,2%)T € M[D]* one has

Since

degVz <a © degz' <a-\ forall i €k,z* #0

k
dimpy Wy = ZdimM {Veir' | z' € M[D],deg V e;2* < d},

i=1

where e; denotes the i—th unit vector in IR¥, it follows that

dimpy Wy = E (d+1—A,‘)

ih<d

(iv) = (i): If the numbers of indices of V equal to d are denoted by A(d) = Yir=al, d € No,
then (iv) yields

h(d)

2 @HI=X)+H([@-1-2) - 2d= X))~ 30 (d-1-A)

i) <d ih=d
Yod+1-2)+ Y (@d-2+1-2)- S d-1-2a)-2 Y (@-1+1-1)
i:Ai<d i:Ai<d f:hizd iAi<d
SE+1-2)+ Y (d-2+41-A)-2 Y @-1+1-)
ihi<d A <d-2 #:<d-1

dimap Wy + dimayg Wy ~ 2 dimayg Wy_,y
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The equation follows for d € {0, 1} by direct calculation and defining dimags Wy = 0 ford = 0, 1.
This proves that, if (iv) is valid, then h(d) is only determined by the module, not by the specific
basis. If w = [wy,...,ws] is another basis of W,, then vk i deg w; = Ya>1d h(d). Since
(1) = (iv) has already been shown, every minimal basis W = {wy, ..., wi] necessarily satisfies
Yk deg w; = a1 d h(d). Now if (iv) is valid then for V as in the proposition

zk:deg v = i: Zdh(d)
i=1

i=1 a>1
and thus V is minimal. o

The foregoing theorem is a generalization of Forney’s Main Theorem (1975), see also Mdnzner
and Prdtzel-Wolters (1979) p. 293.

Remark 5.3
(i) The last part of the proof of Theorem 5.2 shows that the families of indices of different
minimal bases of W coincide, they do only depend on the dimension of W.

(ii) The direction (i) = (ii) of the proof of Theorem 5.2 leads to an algorithm which transforms
an arbitrary basis V(D) of W in finitely many steps into a minimal basis V(D)of W.

The set of basis transformation matrices which transform a minimal basis can be characterized
as follows.

Proposition 5.4 Suppose V(D) € M[D} ** is an ordered minimal basis of submodule W with
indices A1,...,Ar. Then V(D() = V(D)T(D) is an ordered minimal basis of W iff
T(D) is invertible over M[D] and satisfies

deg t,'j(D) < /\j - A for A; < Aj
tii(D)y = 0 for A; > A;
i.e. T(D) is of the form
*
T= " 0 e GLUMID))
*
*

where the square diagonal blocks have meromorphic entries and the formats are corresponding
to the multiple of the indices.

Proof:  Put _
V=lv,...,u), V=[01,...,%] and T = ().
If V is also a minimal basis of W then T € GLi(M[D]) and minimality of V' yields
k
deg%; = degz v = r&leakx{deg Lit At #0} = A

i=1
Therefore
deg t; A=A for A < A; and L =0 for A; > A
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To prove the converse direction note that

k
degﬁj = degzt.‘j v £ lflea.hx deg v; t; < I?éa@x /\,'+(/\]'~—A,'): Aj

i=1

This proves minimality of V and the proof is complete. o

The foregoing results will now be applied to systems associated with
— P —Q {r+p)x(r+m)
P= [ vV ow ] € M[D] .
Consider the right M{D] module

ker [P, ~Q] := {z € M[D]"™*™ | [P,~Q]z = 0}

and the so called input module

W(P.Q) = {ue M[DI" | 3: € MDY : ( : ) € ker [P, -Q]}
Suppose [ 5 ] € M[DJ+mIxk i5 2 M(D)] basis of ker[P,~Q], then U € M[D]™** is a basis

of u(P,Q) . This is seen as follows. If U a =0 for some a € M[D) then PZa=QUa=0
and since P is invertible over M(D), Za = 0.

As an immediate result we have:

Proposition 5.5 If two system matrices

| B -Q o
]P'_[V,- m]eM[D] i=1,2

are system equialent then p(Py,Q;) = u(P,Q2).

Proof:  Using the notation of Proposition 2.9(i) yields that

ker[ Py, — Q1] — ker[ P2, —Qo], ( Z ) = ( T,(z):Y(u) )

is a R-homomorphism. Thus u(Py,Q;) C p(Py,Q2) and since system equivalence is a sym-
metric relation the proof is complete. o

For state space systems of the form (2.2) the input module can be characterized in terms of
(DI, — A){(B). For this we need the right M -homomorphism

Eap : MDDI™ > Mr ) )
Yo Diui = KA, B)ug,...,ux)T = TEo(=1)(DI, ~ Ay (B)u;
Proposition 5.8 Let (4, B) € A"X(*+m} _ Then
(DI, — A,B) = ker K4

and
dimpgpy (D1, — A, B) = m,
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Proof:  The following multiplication rules, which are easily proved by induction, will be used.

ND = Z(_n*( \ )D““N‘“ forie IN, Negmmm (5.1)
A=0
LI LA ) A .
NZODx v = ZODI AZ-(_l)z\—l ( Ao ) N(’\_')UA
for ke IN, N € M™™, v, .. o€ M™, (5.2)

Using Remark 1.1.1 and equation 1{1.6) it is easily seen that it is sufficient to consider the case
A=0.
Suppose u(D) = T2Eo D' u; € (DI, B). Then there exists z(D) = Y Diz; € MIDP so
that

Dz(D)= Bu(D)

which by (5.2) is equivalent to
LSy i i A A-i
D;‘]Dz,:gp g(-n (A_i>5 uy (5.3)
Comparing the coefficients in (5.3) yields for i = 1,.. Lk
0= i(-l)A BV uy ey = 3 =i A ) pe-n
- MTiy = E( ) (A—i) uy (5.4)

Thus u(D) € ker Ko g. Conversely, if u(D) € ker Ko g then define z(D) by (5.4) and (5.3) is
valid. This shows u(D) € u(DI,,B) and the first statement of the proof is shown. To prove
the second equality use H defined in 1(4.2). Then it is obvious that for every £ € m there exist

uf = (0,...,0,%,0,...,0) € M™, i=0,...k

£—th element

so that
ke R
ue(D) := Z D uf- € ker Ko p.
i=0
Since the vectors uy(D),...,un(D) are linearly independent the second equality is clear. O

2.6 Invariants of system equivalence resp. similarity

In Section 1.4 two families of invariants of state space systems were introduced: the controllability-
and the geometric indices. They are both invariant with respect to similarity. In this section I
shall present two other families of invariants and - using the unifying power of the input module
- prove that (roughly speaking) they all four coincide.

Forney (1975) Chapter 7 conciders proper rational input-output maps G(s) : R(s)™ — R(s)?
and the minimal indices of the rational vector space {(u(s), G(8)u(s))T | u(s) € R(s)™} which
he calls the dynamical indices of G(s). Miinzner and Prétzerl-Wolters (1979) show that these
indices coincide with those of the module {u(s) € R[s}™ | G(s)u(s) € R[s]?} . By using Section
4 and 5 we are now in a position to carry over Forney’s approach to time-varying polynomial
systems.
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Definition 6.1 Let
=| £ -Q (n+p)x(n+m)
P= [ v w ] € M[D)

be a system matrix with formal transfer matrix G = VP1Q + W € M(D)pxm,
The indices of the minimal basis of (P, Q) are called the minimal indices of IP .
The indices of a minimal basis of the M[D]—right module

M, := {u € M[D"™ | Gu € M[D"}

are called the dynamical indices of G.

By Remark 5.3(i) the minimal and dynamical indices are well defined.
Proposition 5.5 resp. Proposition 4.4 imply that the minimal resp. dynamical indices are
invariant with respect to system equivalence.

Proposition 6.2 If IP as in Definition 6.1 is observable then
Mg = u(P,Q)

and thus the families of minimal and dynamical indices of an observable system coincide.

Proof:  If 2 € M[D|" such that Pz = Qu then Gu=Vz+Wu. Thus u€ Mg To
prove the converse note that since IP is observable there exist X € M[D]*** | Y € M[D]r*?
such that I, = X P+ Y Y. Thus,ifu € Mg,

z:=P'Qu = (XP+YV)P'Qu = XQu+Y Gue MDD

a]

Theorem 6.3 For (4, B) € A™*("+™) the families of controllability, geometric and minimal
indices coincide.

Proof:  The controllability-, geometric- and minimal indices are denoted by
ki,oo ki aa(5), .. am(?) and Ay,...,An, resp.
(i) Itisshown that the family (ai(-))iem coincides with the family (Ai)iem- The proof is similar
to the time-invariant case, see Minzner and Pritzel- Wolters (1979) p. 298, and is generalized
as follows. Put Vy:={v € M[D}™ | degv < d},d € INo . Then
Kap(Va) = {K%A, BYuo,...,uq)T | ug,-..,uq € M™}
where the map KA'B is defined in Section 5. Since the map
f o I;’A,B(Vd) e Vd/Vd n kerI;'A'B

Kug,...,uq)T = wuo+...+ Ddug+(Vyn ker K 4,)

is a M—right homomorphism one obtains for My := V4N ker IA(,LB

dimag K4 p(V4) = m{d + 1) — dimay My (6.1)
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From now on the system is considered on a non-void open interval where the ri(t)’s, defined in
Section 1.4, are constants. Then it remains to prove that

Yo lsh(d)=kd):= Y 1 (6.2)
gidy=d jiay=d
Using the prove of (iv) = (i) in Theorem 5.2 one has
h(d) = dimap My + dimayy My - 2 dim My_, (6.3)

Since

Ek(d):21= Z 1 = rey

did>¢ i >t i1<i<re_y
it follows that
k(d) = rg1~ra = 2rkp K47NA B) = rkaq K2%(A, B) - tham K%A, B) (6.4)
If dimp Rap(V_1):= 0 the equations rka KA, B) = dimpy Ka8(Va_t), (6.1),(6.3)
and (6.4) yield for d € IN

k(d) = 2dimap Kap(Vao1)~ dima Ka,p(Vaog) — dimpg Ka5(Va)
dima My + dima Mgog - 2 dimag My_g
h(d).

This proves (i).

(ii) It remains to prove that the family (M\i)iem coincides with the family (ki)iem.
Recall the Rosenbrock deleting procedure described in Section 1.4. Put

wf‘:(w;“,...,w;;m)TEM'" foriem, p=0,...,k
s0 that .
(DI = 45 (b) = 3_(=D*(DI, = AY(B)w},
=0
where

wLU =0 if (DI, — A)*(b;) is omitted in the deleting procedure .
Thus wf‘ are uniquely defined and
k-1 ) ) )
wi(D):= Y D*wl + D¥(wi,,...,whi 1, ~1,0,...07
#=0
belongs to ker RA,B = pu(DI, — A, B) for every i € m. Since
-1 *

Wle=1o . where W :=[wi,...,wn,] € M|D]mX™
-1

it follow from the the proof of (ii) = (iii) in Theorem 5.2 that rkpp)W = m. Thus by Theorem
5.2 W is a minimal basis of W(D) M[D]™. If V denotes a minimal basis of u(DI, — A, B)
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then there exists a non-singular T = (t;;) € M[D]™*™ such that W = V T. By Theorem 5.2
(iii) we have

kj = degw; = deng,- ti; = r;;ax{/\;+ deg t;; | t;; # 0}
i=1 rem
and therefore
deg tij < kj - A if A; < kj (65)
ti; =0 if Ay > kj (56)

Since T is non singular there exist m distinct numbers ¢(1),...,0(m) € m so that Lo #0
for i = 1 € m. Thus (6.6) implies

Ay < kgy foralliem (6.7)
By (i) and formula 1.(4.2) it follows that
m m m
DN = Y ailt) = rkr KA, B(t) = Yk forall tel (6.8)
i=1 i=1 i=1
where [ is some suitable interval.
Finally (6.7) and (6.8) imply (Adiem = (Kiiem- a|

Theorem 6.3(ii) is an improvement of Proposition 5.2 in Ilchmann (1985a) where controllability
is assumed. This direct proof is due to Glising-Lier@en (1987). Applying Proposition 1.4.2 to
Theorem 6.3 yields

Corollary 6.4 For (A4, B) € A"*("+m) and with the notation as in Theorem 6.3 the following
are equivalent:

(i)  (A,B) is controllable
(i) Y ki=n
(i) Ty A= n

(iv) T ei(t)=n forallte I\ N,N some discrete set; I any non-void interval I C IR
Proposition 6.5 Let
P = P -Q c M[D](r+p)x(r+m)
vV W

be a system matrix. Then

IP is controllable < Z/\,— = dim kery P(D)
i=1

where Ay,..., ), denote the minimal indices of u( P, Q).

Proof: By Proposition 2.11 P is system equivalent to some

_[pr, -B
]P“'[C E(D)

where n = dim kers P(D) and p(P,Q) = p(DI,,B) (see Proposition 5.5). Since by
Proposition 3.2 IP is controllable if and only if IP,, is controllable the result follows from Corollary
6.4. [u}

] e A[D](ﬂﬂ)x("*—"ﬂ
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2.7 Characterizations of system equivalence

The analysis of the input module in Section 5 and of the input-output map resp. the formal
transfer matrix sets us in a position to characterize system equivalence. If f : IP; — IP; is
a system homomorphism then the corresponding formal transfer matrices coincide. For the
converse additional assumptions have to be imposed.

Proposition 7.1 Suppose
P, = [ r; «v% } € M[D]rHp)X(ribm)
i

i = 1,2 are system matrices with formal transfer matrices G, resp. Then the following state-
ments are valid:

(i} IfIPy and IP; are controllable then

P X1P, @ Gy=Gyand p(P, Q) = p(Py, Q2)

(ii) If 1P, and IP; are controllable and observable then

lP]s'\L:IPz =4 Cl=(;'2

Proof:  Controlllability, the formal transfer matrix and the input module are invariant with
respect to system equivalence. Thus by Proposition 2.2 without restriction of generality it is
assumed that

_{ v, -B (n)xindm) . . | Dl =B (n'4p)x (0! +m)
IP‘“[C E(D)]EA v Pe=1 E{D) € A{D]
Put B = [by,...,b,] and B = [b},..., 0]

Necessity in (i) and (ii) follows from Proposition 4.4 and 5.5. 1 prove sufficiency in (i). Denote
the controllability indices of (0, B), (0, B) by ki, k! resp. For arbitrary

k-1
w(D)y= ¥ D*uy € MDI™\ {0}, ur=(0,...,0,u,0,...,07 € M™
A=0

it follows from the construction of the k;’s (see Section 1.4) that u ¢ ker Kgp. Since by
Proposition 5.6 ker Ko p = ker IA\'OVBV one has u € ker Ko p and thus k; < k!. On the other
hand k! < k; and therefore

ki=k! foriem

Since IPy and IP, are controllable Corollary 6.4 yields n = Y72,k = $7 ki = n'. Put

i=1 K

H o= [by....,8B 1 by blEm=D] € GLL(M)

H = (B, BB e D] € GL (M)

T = H'H'eGL,(M)
Let u; € ker I;"ovg so that hﬁk‘) = H u;. Since ker 1;’03 = ker fi’o'B, we obtain b:(k‘) = H'y;
whence T bf“') = Hlu; = ). The last equation together with the definition of T yields

TV =69 foriem, j=0,....k
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Therefore TH = (H') = (T Hy H+4 T H whence T = 0.
This gives

TB=B  forT€GLy(R) (7.1)

Since Gy = Gy we have C D-'B + E(D) = C'D-'T B + E'(D). By Theorem 3.4 the
controllability of IP; yields the existence of X € M[D]"*" ,Y € M[D]™*" so that DX +BY =
I, . Multiplying the formal transfer matrix from the right by Y gives

CD'BY -C'D-'TBY = (EY(D) - E(D))Y
Since DT =-T D~! this is equivalent to

1]

(C-C'T)YD™Y(I,-DX)-D = (E'(D)- E(D))Y D

resp.
(C-C'TYI,- X D) = (E'-ED)YD
resp.
(C-C'T) = (E'(D)- E(D))Y +(C -C'T)X)D
By comparing the coefficients of the last equation one obtains C = C'T, E(D) = E'(D). This
together with (7.1) implies that IP; is similar to IP; and thus the proof of (i) is complete.

Sufficiency in (ii) is proved in several steps. Instead of the formal transfer matrices the input
output maps are considered.

{a) Put
UT = {uelU™ |supp uD J} where J = [to,11],20 < t;.
Then IP; is controllable if and only if the IR -linear maps
o LU - kerq P, u(-) - 2'(2)

are surjective, where z*(-) denotes the unique free motion which satisfies 2i(t) = 2*(t) for
t>t1,i=1,2 resp.

(8) It is shown that there exists a unique R—linear map f; such that the following diagram
commutes:

2 kerA Pg
97
up fs
ol
J kery P,

Since o} is surjective it remains to prove that ker o} C kero}. Suppose o}(u) = 0 for u € UP.
Since (2}, u) |(t;,00)= 0 and

Vi) + Wi(u) = Gi(u) = Ga(u) = Va(22) + Wi(u)
one obtains Vp(2}) (1, c0)= 0. So observability of IP; yields 22 |(;, 0)= 0 and thus o}(u) = 0.
(7v) Applying (8) twice yields that f; is in fact an isomorphism. The IR—linear map

[ M(P, Q1) = M(P,Q3)
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defined by
(£5(21),0)
(z3,u)

is a system isomorphism if one can show that f satisfies (2.4) and (2.7).
If (z,u) € M(P;,Q,) is decomposed into

 Ikers Pxgoy (21,0)
f g (20, u)

(z,u) = (%,0) + (2}, 9) (7.2)
then
fzw) = (£5(),0)+ (22, )
To prove (2.4) it remains to show that
Vi) + Va(2)) + Wiu) = Va(fs(21) + va(22) + Wi(u)
or equivalently, since oy(u) = aa(u),
Vi(z') = Va(fa(2Y) (7.3)
Choose ' € UF so that a}(v’) = 2!, Then
[z = o3w) and (fs(z),u) = (2,0) fort2 .
From o3(u') = o3(w') it follows that
Vi(sh) = Va(zh) = Va(a2) = Va(fo(=Y))  for £

and (7.3) is a consequence of the identity property of analytic functions.
It remains to prove (2.7). Suppose (z,u) € M(Py, Q) satisfies (z,u) {y= 0 on some compact
interval J. If (z,u) is decomposed as in (7.2) then by (2.4)

Vi(2)+ W(u) = Vi(z' + ) + Wi(n) = Va(fs(21) + 22) + Walu)

Thus Va(f5(2')+ 22) |s=0 and observability of IP; yields f(z,u4) |y= 0 which proves (2.7).
This completes the proof. 8]

For time-invariant polynomial matrix systems Proposition 7.1 (i) is proved in Prdtzel- Wolters
(1981) Coroliary 3.14. Proposition 7.1 (ii), considered in the time-invariant situation, restates
the well-known uniqueness theorem of finite dimensional realization theory, cf. also Hinrichsen
and Prdtzel- Wolters (1980) Proposition 7.8.
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Chapter 3

Disturbance Decoupling Problems - A Geometric
Approach

3.0 Introduction

The concept of (A, B)— invariance has been introduced by Basile and Marro (1969) and Won-
ham and Morse (1970) to solve various decoupling and pole assignment problems for linear
time-invariant multivariable systems. This concept was generalized to non-linear systems (see
e.g. Hirschhorn (1981), Isidori, Krener, Gori-Giori and Monaco (1981), Isidori (1985)) and to
infinite-dimensional linear systems (see e.g. Curtain (1985), (1986)). In Ilchmann (1985b) I
introduced a geometric approach for time-varying systems of the form

1) = A(Dz(t)+ B@u(®) + S(t)g(?)
y(t) = C=(y) (0.1)

where A, B, C are piecewise analytic matrices as in 1.(1.1) and §(-) € A7**. Here g(-) is viewed
as a disturbance entering the system via §(-)

The main problem is as follows: When is it possible to determine a feedback matrix F(-) € A;'*"
such that in the closed loop system

#(t)
y(t)

the disturbance g(-) has no influence on the output y(-) on a given open time interval I ?

I

[A + BF|()z(2) + 5()q(t)
C(t)(1) (0.2)

The following example will illustrate an important difference between time-invariant and time-
varying systems with respect to disturbance decoupling.

Let
0 t 0 0 0
&(t) = | ai(t) aa(t) as(t) [=z()+ [ b(t) |u()+ ]| O |g(t)
aq(t) as(t) ae(t) 0 s(t)
y(t) = [e(2),0,0e(2) {0.3)

where the entries of the matrices are real analytic functions and as(-),b(-),s(-),¢(*) are not
identically zero.
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If the feedback matrix is denoted by

F(t) = [A®), fa(t), fS(t)]

then
0 t 0
A+BF = | a1 4+bfy az+bfa az+bfs
a4 as ag

By a simple calculation it is seen that g(-) has no influence on y(:) if and only if a3 + bf3 = 0.
If b(t") = 0 and as(?’) # 0 for some ¢’ € R, then | f3(t) |=| %ﬁ)l | tends to infinity as t — t'.
This shows that disturbance decoupling might only be possible within certain intervals. These
intervals are determined in the following time-varying geometric approach.

It is known from the time-invariant setting that the controllable subspace im Y7=) A'B is
(A, B)—invariant. As it was shown, see equation 1.(5.4), the time-varying extension of the
controllable subspace is the time-varying subspace R(t) = ®(t,%0)R(to). So it is no surprise
that one has to extend the concept of (A4, B)—invariance to time-varying subspaces instead of
constant linear spaces. This basic tool of time-varying subspaces was studied in depth in Section
1.5,

If the entries of the matrices A, B, S and C consist of real analytic functions the present set up
is a specialization of the nonlinear approach. However, there are several reasons to introduce a
self-contained geometric approach for time-varying systems of the form (0.1):

The class of piecewise real analytic systems is much richer than the class of time-varying
systems covered by the non-linear approach.

The mathematical approach using time-varying subspaces is a natural one for the analysis
of time-varying linear disturbance decoupling problems. There is no need to use differential
geometry.

The concept of (A, B)—invariance has a nice geometric interpretation, not given in the
nonlinear case (see Theorem 1.5 (iv)). It also can be dualized in a canonical way.

o The maximal intervals where disturbance decoupling is possible are determined by the
zeros of certain functions of time.

o A sufficient condition when disturbance decoupling is possible on I is given. This condition
can be checked on a computer if, for instance, the matrices in (0.1) are defined over IR{t].

If disturbance decoupling is possible a constructive algorithm is given to determine the
feedback matrix F.

In this chapter we proceed as follows.

In Section 1 the concept of (A, B)—invariant time-varying subspaces is introduced and charac-
terized.

In Section 2 an algebraic characterization of this concept is presented.

The dual relationship between (A, B)— and (C, A)—invariance is explained in Section 3. An
algorithm is given which determines in a finite number of steps the smallest (C, A)—invariant
family of subspaces containing a family £(t).

In Section 4 the disturbance decoupling problem for piecewise analytic state space systems is
introduced and characterized. For analytic systems it can be checked, by means of the largest
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(A, B)—invariant family of subspaces included in ker C(2), if and on which intervals the distur-
bance decoupling problem is solvable.

In Section 5 controllability subspace families are defined and characterized.

This is used to solve the restricted decoupling problem for analytic systems in Section 6.

Sections 1 to 4 are based on Ilchmann (1985b), the results of Section 5 and 6 are presented in
Ilichmann (1986).

3.1 (4, B)-invariant time-varying subspaces

Throughout this chapter piecewise analytic systems (4, B) € A:x("+m) are considered. The
concept and notation of time-varying subspaces (see Section 1.5) will be used.

Definition 1.1 Suppose (4, B) € .A;x("+'") and V € W, is generated by V € A2*F. Then V

is called meromorphically (A, B)—invariant if there exist N € Mﬁ"" ,Me M;,""‘ such that
(DI, —A)V)=VN+BM (1.1)

V is called (A, B)—invariant if (1.1) holds true for some N, M with entries in A, instead of

M,. If B = 0 we speak of (meromorphic) A—invariance.

This is an extension of the concept of (A, B)~—invariance introduced by Basile and Marro (1969)
for time-invariant systems (A, B) € R™("*™) _see also Wonham (1974). In this case a constant
vector space V of IR is called (4, B)—invariant if

AV C V+imB

Clearly, V viewed as a constant family belongs to W, and V is (4, B)—invariant in the sense of
Definition 1.1.

A simple example shall illustrate the difference between (A, B)— and meromorphic (A, B)~in-
variance. Put

V(t) = o(t) R, o(t) = [‘t’] A = Ogxzy B(l) = [ [‘)] (12)

(DIZ—A)(v(t))z[(l)]z[g]t"-&-[;]o

and thus V is meromorphically (A, B)—invariant.

Then

Proposition 1.2 Suppose
(i) (A,B)e Amx(ntm) V€ AnXk and rkgp[V (1), B(t)] = const. forallt € R

or
(ii) (A,B)€ .A;,'x("'”") , V € A2%k and [V, B] has p.c. rank.

Then V generated by V is meromorphically (A4, B)—invariantif and only if Vis (4, B)—invariant.
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Proof: (i) It has to be shown that meromorphic (A, B)—invariance implies (A, B)—invari-
ance. Meromorphic (A, B)-invariance yields that

(DI, — A@)(V®) € [V(), B(t)] R™* for almost all t € IR
Now the result follows from Proposition 1.5.10(i).

(i) Since [V, B] has p.c. rank it is sufficient to prove the assertion on an interval (af,al,,)
where [V, B],(t) has constant rank. (The notation of Definition 1.5.7 is used.) Now (ii) follows
from (i). o

Remark 1.3 Suppose (i) or (ii) of Proposition 1.2 is satisfied. Then it follows from the proof
of Proposition 1.2 that V is (A, B)—invariant if and only if

im (DI, — A(HNV (1)) C V() + im B(t) for all t € N, where N is a discrete set
The following basic properties of (meromorphic) (A, B)—invariance are immediate.

Remark 1.4 For V € W, with generator V = [vy,...,v] € AZ*¥ the following statements
hold true:

(i) Suppose (A,B) € AP+ o similar to (A, B') € ARXOm) a7 e GL,(Ap). Then V
is (meromorphically) (A, B)—invariant iff 77!-V is (meromorphically) (4’, B')—invariant.

(ii) V is (meromorphically) (A, B)—invariant iff for every
k
v = Za.-v.- ,0; € Ap (a; € Mp)
i=1

there exist r € A%, s € A7 (r € ME, 5 € MT') such that
(DI, - A)(v)=Vr+Bs.
(iii) The sum of two (meromorphically) (A, B)—invariant families is (meromorphically)

(A, B)—invariant as well.

The concept of {4, B)—invariance becomes clearer by the following theorem. Furthermore this

result is important for the solvability of the disturbance decoupling problem tackled in Section
4.

Theorem 1.5 Suppose (4, B) € AX™™ and V € W, is generated by V € Anxk with
rkrV(1) = k for all t € R. P(t) : R™ — V(t) denotes the orthogonal projector on V(t) along
VL(t). Then the following are equivalent:
(i) Vis (A, B)—invariant,i.e. there exist N € A’;"" and M € AT*k such that

(DI, — A(t}{(V (1)) = V(O)N(t) + B(1)M(t) forallze R
(ii) There exists an F € AT*" such that V is (A + B F)—invariant.
(i) There exist N € A7*" and M € A" such that

(DL, - A@)(P(t)) = P()N{®)+ B@M(t) forallteR
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(iv) There exist N € Ak M € A™** such that
» p

t
V(£)¥(to,t)T = &(1,10) +/ Q(t,s)B(s)M(s)'Il(to,s)Tds forallte R
to
where ®, ¥ denote the transition matrices of

#(t) = A()z(t), #(1) = N(@)Tz(t) ,resp.

Proof: (i) = (ii) : Define
F=MVTv)y-yT

Then
(DI, - (A+ BF)}(V)=(DI, -A(V)-BFV=VN

which proves (ii).

(i) = (i) is trivial.

(i) = (i) : Put @ = VT(VVT)"1P. Then V Q = P and (DI, - A)YP) = VINQ - Q]+ BM Q.

(i) = (i): If @ := VT(V VT)=1P then
(DI, - A)(V)Q = (DI, - A)(PY+VQ=PN+BM+VQ.
Since rkp P(t) = k for all t € IR there exists Q, € Am** so that Q Q, = Ix. Thus
(DL, -A)(V)=PNQ,+BMQ. +PQ.QQ-
which proves (i).
(i) = (iv) : Multiplying the equation in (i) from the left by T—1(-) = ®(-, to)™! yields
V=V N+B M whereV' =TV, BB=T'B
which by Variation of Constants is equivalent to
V() = W(tto)V Tlta) + | “W(t, 5)MT ()BT (s)ds
o
resp.
V() ¥(t0, )T = V'(to) + /t " B(s)M(s)¥(t0, 5) ds
o
Multiplying from the left by T'(¢) gives

V(O)¥(ta, O = 2(t, )V (1) + [ 8(t,5)B(s)M()¥(to, )T ds.

This proves {iv).
To prove (iv) = (i) reverse the arguments in the proof of (i) = (iv).

As an immediate consequence of Theorem 1.5 one obtains
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Corollary 1.8 Suppose A € Ap*™ and V € W, is generated by V € A™*¥ with rkg V(t) = &
for all t € R. Then the following are equivalent:

(i) Vis A—invariant.
(i) There exists N € A7*" such that

(DI, — A())(P(@t)) = P()N(t) forallt€ RR.
(i) V(t) = ®(t,t)V(ty) forallt,to € R .

Remark 1.7 If a real analytic system (A4, B) € A"X("+m) 5 considered and V is real analytic,
then in Theorem 1.5 and Corollary 1.6 all matrices are also real analytic. The proofs carry over
completely.

Remark 1.8 Condition (iii) in Corollary 1.6 implies that for every zo € V(to) the free trajectory
@(t,t9)zo remains in V(¢) for all t € R.

Condition (iv) in Theorem 1.5 says that if 2o € V(ty) then there exists a control u € AP such
that the forced motion

- zu(tito, To) = ®(L,to)z0 + /;l ®(t, s)B(s)u{s)ds

can be hold in V(t) for every ¢ € R. For time-invariant systems the latter condition is also
sufficient for (A, B)—invariance. If this is also valid for time-varying systems is an open problem.

Example 1.9 For time-invariant systems (A, B) € R™*(**™) it is well-known that the control-
lable subspace Y773 A imB is the smallest A—invariant subspace which contains imB , see
e.g. Wonham (1985) Section 1.2. This is extended to the analytic situation as follows: The
controllable family ® (see Section 1.5) of an analytic system (4, B) € A"*(*+m} 5 the smallest
A~—invariant family which contains imB(-). In fact, ® is an analytic family ( see Remark 1.5.11)
and thus A—invariance follows from Corollary 1.6. Use of the presentation 1.(5.5) of R(t) yields
imB(t) C R(1). U V = (V(t))ier € W, is another A—invariant family with imB(t) C V(t)
then (DI, — A(t))'(B(t)) C V(t) for all i € IN. Thus R(t) C V(t) by 1(5.5) and therefore
is the smallest A—invariant family which contains imB(-).

If we do not assume that the rank of V(-) is constant then the feedback constructed in Theorem
L5 (ii) may have poles. For disturbance decoupling problems it is important to locate these
poles.

Proposition 1.10 Suppose (4, B) € A™("*™)  rkyB = m and V € W, is generated by
V € A"k with rkyV = k.

I V is meromorphically (A, B)—invariant then there exist analytic matrices Uy,U;, T, W of
formats k X s,m X 5,5 X 8,8 x k, resp. and T~! € M?*X* 50 that

(DI~ AV)=VILT'W+ BU, T'W (1.3)
T-1 has poles at ¢’ if and only if

dim(V(t)R* + B(t')R™) < max dim(V(t)RF + B(t)IR™) (1.4)
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Proof: By Lemma 1.5.1 G = gcld (V, B) € A™** satisfies
GA*=VA* + BA™ and G =V U+ BU; forsome U; € A¥¥*, Uz € A™X*,

Let G' € A™** with rkg G(t) = s for all t € IR (see Lemma 1. 5.4) such that

G(t)IR* & G@)R*

Then G = G T for some T € A*** with T~! € M***, Since V is meromorphically (A, B)~in-
variant and G is left invertible over A there exists some W € A*¥* so that (DI, — A} (V) = GW.
This proves (1.3). Clearly, T(-)~! has poles at ¢’ if and only if rkg G(t') < rkaq G(-) which
proves (1.4). o

Example 1.11 Let (4, B) € A3*(3+1) be given by
t; sint —t(1?+2) ~t3(t ~ 2)
A(t) = | aq(t) as(‘) as(t) » B(ty= 2
-1 t t—2

and V(t) = V()R where V(1) = [t2,0, -1]T.
Using the notanon of the proof of Proposition 1.10 one obtains by Lemma 1.5.1

-t2(t - 2) }

G(®)

Vm+3m
—tz(t—2) 0 0
[ [0 +[ “o 1]

12

0
G(t) = GOT() = [o 1 } [(1) w63 ]
-1 0

V is meromorphically (4, B)—invariant since for

W) = [ e ] and T7'(t) = [(1) -t"z(t—‘é’)]

geld (V,B) = |:

and

—aq()? + ae(t) -2
~13(t+ 1)
(DL, = AW)(V(2) = | ~a4(t) + ae(t) | = GOW(H) = GRT() ' W(1)
tt+1)
= VOt - 2)[~aq(t)® + ae()] - t(t + 1)] + B(t)[t‘z(—u(t)t’ + ag(1))]
= V(@)N(t) + B@)M(t)

Since

rkR(V(?), B()] = { > etz

t' = 0 is the only pole of T-1(#') or equivalently

dim (V(t)IR + B(t)R) < 2.
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In the proof of Theorem 1.5 an analytic feedback matrix F was determined so that
(DI,— (A4 BF))XV) C V. In the present example V(-) does not have constant rank. Therefore
F is a meromorphic matrix

Py = o) + ae(t)

2 0 _1]= T yy-1 yT
w0 -ll= MYy

and

—-t3(t-2) 0 (t-2)
2 0 -1
(t-2) 0 -2

—aq(t)t? + aq(t)

B)F() = —2E

It depends on the zeros of a4 and ag if F' has poles.

3.2 Algebraic characterization of (A, B)—invariance

Based on P. Fuhrmann‘s realization theory (cf. Fuhrmann(1976)), Emre and Hautus (1980)
and Hautus (1980) give a "frequency domain characterization” of (A, B)—invariant subspaces.
In Hautus (1980) the following result can be found.

Proposition 2.1 Suppose (4, B) € R**("t™) and V is a subspace of IR". Then Vis (A, B)~in-

variant if and only if for every v € V there exist striztiy proper rational functions w(s), £(s)
with £(s) € V for all s € IR such that

v={(sl, — A)¢(s) -~ Bw(s) (2.1)

For time-varying systems a frequency domain analysis does not exist, however the skew polyno-
mial approach developed in Chapter 2 can be used to extend the previous proposition. At first
the case B(-) = 0 is studied.

Proposition 2.2 Suppose A € A" |V € A"** and rkg V(t) = const. for all t € IR.
Then V generated by V is A—invariant if and only if for every v € A™ with v(¢) € V(1) for all
t € IR there exist

-1
ED)=Y. &D'eAD], &()eV(t)forallte R
=0

and
p(D) € A[D] with deg p > deg €

such that
v-p(D) = (DI, — A)-£(D) (2.2)

Using Remark 1.1.1 and fomula 1.(1.6) it is easily verified that without restriction of generality
one may assume A = 0.
Suppose V is A—invariant and let v € A" such that v(t) € V(t) for all t € R. Use of the
multiplication in the left-skew field M(D) (see Section 2.2) yields

D'y = v(D + %'%)_1 for v; € A*.
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So there exists p € A[D] such that

D™ vp(D) = §(D)p(D) € A"[D]
Put . 1
Y mDi=p(D) and Y &Di=¢(D)i=E(D)p(D).

i=0 i=0

Then we get by comparing the coefficients of v p(D) = D £(D) and using A—invariance of V
that £(t) e V(t) forallt e Rand i = 0,...,4— 1.

To prove the converse let (D) = ¥ o Dip; and compare the coefficients of vp(D) = D§(D).
Then -y — e = €2+ €1 . Since vpry = &y +€-1 one obtains (He)(t) € V(t) for
allt € R . Thus by Proposition 1.5.10(i) #(t) € V(¢) for all t € IR and the proof is complete. O

Proposition 2.3 Suppose (4, B) € A™X("+m) |V € Anxk and rkg[V(t), B(t)] = const. for all
t € R. Then V € W, generated by V is (A, B)—invariant if and only if for every column vector
v of V there exist

-1

&D) = go &D' e AMD], &(t) e V(t) forallt€ R
w(D) = lz:; w; D' € A™[D]
pD) = Z;j) pi D' € A[D)
such that )
v-p(D) = (DI, - A)-£(D) - B -w(D) (2.3)

Proof:  As in the proof of Proposition 2.2 assume A = 0. f V is (A, B)—invariant and v is a
column vector of V put

éD) (DI, ~ BF)™ '
D) = FED)

where F is given as in Theorem 1.5 (ii).
Let p € A[D]so that £(D):= £(D)p(D) € A"[D] and one obtains

vp(D) = (DI, ~ B F){(D).

Thus for w(D) := F §(D) (2.3) is satisfied. The multiplication rule w.r.t. A[D] yields that
necessarily the degree conditions are valid. It remains to show that £(2) € V(t) forallt € IR ,
i=0,...,6~ 1. Choose T € GL,(A) (cf. Remark 1.1.1 and formula 1.(1.6)) 50 that

Tv-p(Dy=D-TED) (2.4)
Since V is B F~invariant it follows from Remark 1.4(i) that TV is 0,,xn—invariant. Now order

the coefficients of D-T£(D) to the left and compare successively the coefficients in (2.4). Then
one obtains

TE() ETV() forall teR, i=0,...,.0~1.
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To prove (A, B)—invariance use the multiplication rule to order the coefficients in (2.3) as follows

4 -2 -1
SvpD' = b+ (Ea+&)D & D' -Y Bu D
=0 i=0 =0

By comparing the coefficients at D¢~1 one gets
vPy =€ +é1 - Bupa €V (2.5)
and ordering the coefficients in (2.3) to the left gives (see formular 2.(5.2))

4 -1
vY. D'Pl =D& + (Del-é,)+...+?:(—1)*(’;1)D‘-l-*gﬁi’l]
=0

=0
-1 N )
- - - E - - —1-X
Bwa A=0( 1) ( A ) D (Bw[_l)

Again, by comparing the coefficients at D‘~! one gets
vppy —20py =€z~ €1~ Bwes. (2.6)
(2.5) and (2.6) imply
o(t) - 2 pj(t) € V + im B(t) forallte R

Thus
#(t) € [V(2), B@)) R¥*™ forallte R\ N

where N is a discrete set.

Since rkm[V(t), B(t)] is constant in ¢ Proposition 1.5.10(i) yields #(t) € [V{(¢), B()] R**™
for all t € IR whence V is (0, B)—invariant. o

If in Proposition 2.3 all matrices are defined over A, and [V, B} has p.c. rank then a polynomial
characterization (2.3) is also valid with £(D),w(D),p(D) defined over A,[D]. We omit this.

3.3 Duality between (A, B)— and (C, A)—invariance

For time-invariant systems (A4, B,C) € R™*" x IR**"™ x IR?*™ a constant subspace ¥ of R" is
called (C, A)—invariant if A(VNker C) C V. It is well-known (see e.g. Schumacher (1979))
that V is (A, B)—invariant if and only if V1 is (BT, —AT)—invariant.

For time-varying systems (4,B,C) € Ap*™ x AZX™ x AP*" it has already been metioned
in Section 1.5 that, in general, the time-varying subspace ker C(-) does not have a generator
W e A',}""'. Even if V € W, has a generator V € A;"" then the orthogonal complement

V4 = (V(t)1)ier does, in general, not have a piecewise analytic generator. Therefore equivalence
classes were introduced

Viz {(We W, |W(E)EV(H)} forV=(V()er € Wn

By Lemma 1.5.9 for every V generated by V € A2** and B € AZ*™ one can find W € A;‘x(""‘)
and W’ € AZ**' with p.c. ranks so that

(W(t)R"*)ep € VT
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and
(W'()R¥)em € (V) N ker BT(1))en
If
W,={V|VeW,}

the concept of (meromorphic) (A, B)—invariance is extended as follows

Definition 3.1 Suppose (4,B) € A”™™  Then ¥V € W, is called (meromorphically)
(A, B)—invariant if there exists a V € V so that V is (meromorphically) (4, B)~invariant.

Now (C, A)—invariance as defined above for constant systems is extended to the time-varying
situation as follows.

Definition 3.2 Suppose 4 € A3*" ,C € AP*" and V € W,, is generated by V € A;‘X“. Choose
We A3*? 0 that

W(t)R? 2 V(t) Nker C(t)
Then V is called (C, A)—invariant if
(DI - AR)W()) - R*)er € V (3.1)
Remark 3.3 R
(i) In Definition 3.2 one has some freedom in choosing W. By Proposition 1.5.9 W may be

chosen with p.c. rank. Also by Proposition 1.5.9 choose V € .A';x" with p.c. rank

such that (V(t)R*);cm € V. Now it follows from Proposition 1.5.10 (ii) that V is
(C, A)~invariant if and only if

(DI, — AYW)=VR for some R € A (3.2)
(ii) Since there always exsits V € AZX* with p.c. rank so that (V(t)IR¥),cr € V, it makes no
sense to introduce meromorphic (C, A)—invariance similar to meromorphic
(A, B)—invariance.
(iii) It is easily verified that analogous statements as in Remark 1.4 hold true for

(C, A)—invariance.

Proposition 3.4 Suppose 4 € A3, C € ALX" and V € W, is generated by V € A;""‘.
Then V is (C, A)—invariant if and only if VI is meromorphically (~AT,CT)—invariant.

Proof: By Remark 3.3 (l) assume without restriction of generality that V has p.c. rank.
Choose by Lemma 1.5.9 (ii) U € AZ*™ with p.c. rank so that

Vi) = U()R!

Since W € Ap** satisfies

1180

WHR? £ V@)R* nkerC(1)
one obtains for arbitrary columns @ of U and % of W, < i(t), B(t) >= 0 for all ¢ € IR. Thus

(DI ~ AT @ = ~oTd — &7 AT & = —aT[(DI, + AT)(&)). (3-3)
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If V is (C, A)—invariant then (3.2) yields (DI — A)() = V r for some r € Af and by (3.3)
< (DI, — AT)(@), & >= 0. Therefore

(DI, + AWT)@(1)) € (V()NkerCE)* +im (C@H)T)
=[0@),C@O)TIRH? forallte R (34)

Consider an interval [a,,a,41) s0 that [0,C7) ljov.av4y) i8 real analytic and can be real analyt-
ically extended to

ied —(al
[0,CT), onsome I, :=(af,al,), o< ay, auy1 <@y

Then by Lemma 1.5.4 (i) there exists G,eA nx(+P) yith constant rank so that
L

- < -
0, CTLOR* = G (HRY ol

Since rthv[f],CT] = rle,vG, there exists T, € A |(If,+P)X(l+P) so that

T, € GLyyp(M |1,) 2nd [0,CT), T;1 = G,. Now it follows from (3.4) and Proposition 5.9 (i)
that VX is meromorphically (— AT, CT)—invariant.

Conversely, if V4 is meromorphically (- AT, CT)~invariant, then

(DI, + ATY(@) = U m + CT n for some ne M, meM:.
P »

Thus (3.3) yields
< (DI, - A(t))(w(t)), &(t) >=0 forall te R

whence (DI, ~ A(t))(%(2)) € V(t) for all t € IR. This completes the proof. a

For time-invariant systems (A4, B) € R™*(**+™) it is well-known (see e.g. Wonham (1985) p.
91) that the mazimal (A, B)—invariant subspace V* included in a subspace £ C IR" can be
determined as follows

Vo= L

Vi = LAY (imB4 VY, ieN
This sequence is decreasing, stops after at most k = dimf{ steps and VE = Y* It is not
clear how to generalize this algorithm to time-varying systems and subspaces. Instead one can
determine the smallest (C, A)—invariant family which contains a given family £ and use duality
to obtain the largest meromorphic (4, B)—invariant family which is included in a given family
LL. For Vi, V; € W, define

Vi<V it w) & vy

Definition 3.5 Suppose A € AZ*" , B € Ap*™ , C € AP*™. Then V.(L) € W, is called the
smallest (C, A)—invariant family which contains £ € W, if

o V(L) is (C,A)—invariant
e L<V(0)

o if WeW, is(C,A)- invariant and € < W, then V.(£) < w
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V%(L') € W, is called the largest meromorphically (A, B)—invariant family contained in
TeW,if

e V*(£') is meromorphically (A, B)-invariant

« V(L)< T

o if WeW, is meromorphically (A, B)— invariant and W < L', then W < V*(L').

To present an algorithm which determines V.(£) some notations are needed. Suppose

w@i) ¥ WHR!  for We Ap*? with p.c. ranck
ker C(t) ¥ C(R*  for C € A% with p.c. rank

Then by Lemma 1.5.3(ii) there exists R € A3*" so that
W2WR= lerma,(W,C)  for W € AZ*" with p.c. rank
Now by Proposition 5.10 (ii) for w € A} with
w(t) e W(t)NkerC(t) foraliteR
there exists ¢ € A7 such that
w(t) £ W(t)e(t) = W) R(t) g(t)
Thus it makes sense to define
(DI, — AY(WnkerC) := (DI, —~ AW R)R".
Proposition 3.6 Suppose A € A3*" ,C € AL and L € Wy is generated by L € A3*9. Then
the sequence

Wo
Wi

L
Wi+ (DI,. - A)(W,’-l n kerC), i€ Ny (35)

i

i

is increasing in the sense that
W; < Wiy forieNg

and there exists k£ < n so that

ViL) =Wy =Wy, foreveryle N

Proof:  Let R, € AX" such that

LRy = lem (L,0)

then

wWi(t) £ LR+ (DI, — AQ))(L(t)Ra(t))R™
Wl(t)lR‘H""
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where )
Wi :=[L,(L - AL)Ry)

Proceeding in this way one obtains

Wi(t) ¥ Wi(t)Retr H-tni
where . A

Wii= [Wiot, (Wiet ~ AWi)R], Wi Ri = lama (Wi, C)

Therefore W; < Wigy for i € INo and if for some k € o, rkp Wi = rk M Wiy then
W, = Wy for all £ € IN. By construction Wy, is (C, A)—invariant and £ < Wy. So it remains
to prove that if V is (C, A)—invariant and Z < V, then W < V. By assumption

(DI, - A)(VnkerC) E vV
and by induction on i one gets

Wi = Wi+ (DI,. - A)(W.‘_l n kerC)
< V+ (DI, - A)V)

This completes the proof. D

The duality between the smallest (C, A)— and largest meromorphically (A, B)~invariant family
is given as follows

Proposition 3.7 Suppose A € Ap*", C € AP*" . HL € W, and some £ € L is generated by
L € A%k then the following are equivalent

(i) V is smallest (C, A)—invariant family containing L.

(ii) VY is the largest meromorphically (~ AT, CT)—invariant family included in £Z.

Proof: (i) = (ii) : If W is a representative of the largest meromorphically (- AT, CT)—in-
variant family which is included in £ then

Vi) & wiy € ciq)
and thus . e

L(t) C W) C v()

Since V is the smallest (C, A)—invariant family it follows that W = V.
The reverse direction is proved analogously. o

Remark 3.8 For a real analytic system (A, B) € A"%(n+m) jt js demonstrated how to determine
V*(kerC(t)) : By Proposition 3.7 this problem is equivalent to determine V,, the smallest
(BT, — AT)—invariant family containing ker C(2))L.

Let

(kerC(1)* 2 L(YRY for some L € A™9 with rkg L(t) = q V€ R (3.6)
and
ker BT(t) S C(R*  for some & € A™* with rkg C(t) =sVte R 3.7
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Applying algorithm (3.5) yields
(kerC(t))t C LOR? C Wiei(t) C Wi(t) C V(H)R"*
for some
Ve ACM gith rkpV(t)=n—k forall t€Rand (V)R F),cp = W,.

Thus

kerC(t) D (LR > WL, > Wi(t) o V(RF
for V € A** such that (V(t)R**)L = V(t)IR* for all ¢ € RR. By Proposition 3.7 it follows
that V = V*(kerC(t)).

Example 3.9 V(kerC) will be calculated for a system (A, B,C) where A € A®*3 and B €
A3 are as in Example 1.11 and C(#) := {1,0,¢?]. Using the notation of Remark 3.8 one has

1 ) 1 1
Lt)=|0 ]|, C@t)=|0 t-2
4 20
which satisfy (3.6) and (3.7). For this situation the algorithm

We = LIR!
W; = Wi, + (DI, + AT)(Wi_s nCR?)

is as follows

1 1
Wi(t) = [ 0 ] -m+(D+AT(t))( [ 0 ] . m)
? t2
1 0
= 0 sint | -R?
2 0
Wa(t) = Wi()+ (D + AT)([1,0,7 - R)
= Wi(t) for all i > 1.
Therefore V, given by
10
Vut)=]0 1] -R?
20

is the smallest (BT, —~AT)—invariant family containing (ker C(t))* and thus V* is given by

Vi) = [-4,0,1)T - R

Now we are in a position to prove the main result of this section which is a summary of the
foregoing.
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Proposition 3.10 The set
Sc,a of(C, A) ~ invariant families of W,

is a lattice with respect to _ _
h A & Ny,
V, v YV, v*(vl + Vz)

where V,(V; + V;) denotes the smallest (C, A)—invariant family which contains V; ¥ V;.
Furthermore the set

1]

Sa,p of meromorphically (A4, B) — invariant families of W,

is a lattice with respect to __ .
Vi A W,

W V2 W(vang)
i VvV W

Vi +V,

where V*(V1NV;,) denotes the largest meromorphically (A, B)—invariant family which is included
iny;ny,.
The map

1]

¢:S8c4 — S—AT,CTv Vi VE
is a lattice anti-isomorphism, where "anti” means

sM) v ¢(Vy)
#(Vr) A $(V2)

VI AV)
HV1v V)

Compare Figure 3.1.
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SC.A S. AT, CT

n
14

V. %+ W) VE+VE=(hinm)t

VR (VL N VE) = VEH() + Va)*)

{0} [0

Figure 3.1.:

Proof: It is easily seen that the definition of the lattice operations does not depend on the
representatives. It remains to prove that ¢ is an anti-isomorphism. Using the fact that for finite
dimensional vector spaces (V;(2) N Va())+ = Vi(t)* + Va(1)* holds true, we obtain

HVIAVG) = $MAV)=(hnh)t =V +V;

V1) + $(V3) = ¢(V1) V ¢(Va)
This proves the first equation of the anti-isomorphism. To prove the second one use Proposition
3.7 to conclude

ViV = UiVi+W) = VEVi+Va)
= M +Wa)t) = VRVENVE) = ¢(W) A (V).
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3.4 Disturbance decoupling problem

In this section we consider a system (4,B,C) € ARX™ X Ap*™ x APX® with an additional
disturbance g(+) € C; entering the system via § e Ap%.

(1) A(t)z(t) + B(t)u(t) + S(t)a(t)

y(®) C(1)=(t) (4.1)

The disturbance decoupling problem ( DDP ) on (%o, 1)) is to find a state feedback matrix
F(-) € A™*" such that arbitrary g(-) has no influence on the output

t
o(1) = COBR(t,to)ao + [ Br(t,)S(s)ale)ds]  for all t € (to,11)
0
of the closed loop system

#(2)
¥(t)

Ap(t)z(t) + S)a(t)
C()z(t) (4.2)

where
Ar(t) := A(t) + BQ)F(t)

and ®p(-,-) denotes the transition matrix of #(t) = Ar(2)z(t). This notation will be used
throughout the remaining sections. The following definition is an extension of the time-invariant
case, see Wonham (1985).

Definition 4.1 The system (4.1) is called disturbance decoupled on (to,t,) if for some
F() € Apx®
1
u1)=C) [ #r(t,9)5(a(e)a =0 forall € (to,t)
to
and arbitrary ¢(-) € C; (4.3)

Using the controllability Gramian of the closed loop system (4.2)

Wr(lo,t) = L $5(10,2)5()ST(5) (1o, 5)ds

the DDP for piecewise analytic systems can be characterized as follows

Proposition 4.2 Let I = (to,1) and F(-) € A7*"*. R = U,¢zla,,6,41) denotes a partition
so that Ap(-) and S(-) are real analytic on (a,,a,41) N 1. Then the following are equivalent

(i) (4.1) is disturbance decoupied on I by F(-)

(ii) ®p(t,t0) im Wr(to,t) C ker C(t) forallt el

(i) #5(t,t0)iz0 im (DI ~ Ap(1))(S(ta)
TN, oo im (Dl - Ar(@,))/(5(6,)] C kerC(t) foralit €1
where 1o € [a0,a1), t € (an,8N41)-
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Proof:  Consider the map

Lgo'g M (CP). - IR™
9() — Ji Br(t,9)S(s)g(s)ds

By Knobloch and Kappel (1974) p. 103 it follows that

¢
im Ly, = im / & (1, 9)S(s)ST(1) &L (2, 8)ds
to
= Qp(i,to) im Wp(to,t)
This proves (i) < (ii). (ii) < (iii) is a consequence of Proposition 1.2.6. [s]

If the system (4.1) is analytic then by Proposition 1.2.6 we obtain the following simple result

Corollary 4.3 An analytic system (4.1) is disturbance decoupled on I by F(-) € A I'T""" iff

3 im (DI, - AF()Y(S®)) C kerC(t)  foralltel.
i>0

Due to the Identity-Theorem of analytic functions, for an analytic system (4.1) condition (4.3)
has to be checked only on an arbitrary small interval (%o, to + €). More precisely we have
Proposition 4.4 Suppose (4.1) is analytic and F(-) € A I’I-'""" where I = (to,t1), then the
following are equivalent:

(i) (4.1) is disturbance decoupled on I by F(-)

(i) (4.1) is disturbance decoupled on (tp, %o + £) by F(-) for arbitrary & € (0,t1 — to)

Proof: By Proposition 1.2.2, Definition 4.1 does not depend on whether we admit piecewise
continuous or analytic disturbance. Since the vector function

e o(t,q) = /': B (t, 3)S(s)q(s)ds

is real analytic on I for every q € A |} the Identity-Theorem of analytic functions yields

C(t)p(t,q)=0 foralltel

if and only if
C(t)p(t,g)=0 forallt€ (to,to+€), 0<e<ti—tp

This proves the proposition. =]
For an analytic system (4.1) the largest meromorphically (A, B)-invariant subspace Ve(ker C)
included in ker C(t) with generator V € A"** of constant rank k was constructed in Remark
3.8. By Proposition 1.10 one obtains

(DI, - Ap)(V) = VU, T-'W  where F = U, T W (VTV)v7 (4.4)
Thus the set of critical points for the feedback F is given by

P = {¢ € R| an entry of Up(-)T"}(-)W(-) has a pole at ¢}
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Let I C IR be an open interval. Then
F(-)is analyticon I ifPnI=0
and furthermore by Proposition 1.10
PnI=@ if rkg[V(1),B(t)] = const. forall teT]
Now for every I C R \ P the differential equation
2(t) = Ap(t)z(t) ,tel
is solvable on I . This sets us in a position to state the main result of this section which is a
generalization of the constant case (see Wonham (1985) Theorem 4.2).
Theorem 4.5 Suppose the system (4.1) is analyticand V € A™F with rkgV(t) = k forall t €
IR generates V*(ker C) constructed in Remark 3.8. Then for I = (to,¢;) we have:
(i) If the DDP is solvable on I by F(-) € A [3*", then
SMR* C V()R forallte ]

(i) ¥TC R\ P and
S(R* Cc V(t)R* forallte ]
then the DDP is solvable on I by F(-) € A I'T""" given in (4.4)

Proof: (i) : By Corollary 4.3

im S(t) C E im (DI, - Ap(t))(S(t)) Cker C(t) forall tel.
i20

By Remark 1.5.11 there exists ¥ € A |[}** with constant rank on I so that

V(1) := V()R = Y im (DI, — Ap(1))(5(t)) forall tel

i>0

Thus Theorem 1.5 yields that V is (A, B)-invariant on I . This together with V() C ker C(t)
for all t € IR gives

VR CV(R* ; foralltel
Since V(t) has constant rank on I one gets
S(R* C V(t)R* C V()R* forallte [
which proves (i).
(ii): Since S(t)R* C V(t)R* forallte I and (V(t)R*),cr is Ap—invariant one obtains

imS(@t) C Y im (DI - Ar(8))(5(1))
20

C Y im (DL - AF()(V(1)
i20

= V(t)R* C ker C(t) forallte I

Now (ii) follows from Corollary 4.3. o
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Remark 4.6 If the entries of the matrices of (4.1) belong to the ring IR[#] then it is com-
putationally not too expensive to check the assumptions of Theorem 4.5 (ii). The main tool
is to transform a matrix into an upper triangular form. This algorithm is described in detail
for instance in Wolovich (1979). It can be implemented via the algebraic programming system
Reduce (see Hearn (1985)).

Example 4.7 Consider a system of the form (4.1) specified by

ta  sint —t(t2+42) ~t2(t - 2)
A = | o) as(t)  as(t) |, B(t)= 2 ,
-1 0 t t-2
t3
c@) = [I,O,tzl, S(t) = 0
-t

By Example 3.9 V(1) = [-%,0,1] is a generator of V*(kerC). By Example 1.9 the set of
critical points is P = {0}. Since

im §(t) CV*(t) forallte R

Theorem 4.5 (ii) says that the disturbance decoupling problem is solvable on every open interval
ICR with 0¢T.

3.5 Controllability subspace families

In this section we will extend the concept of controllability subspaces (see Wonham (1985)) to
analytic time-varying system (A, B) € AnX(n+m),

Definition 5.1 A family of subspaces V € W, generated by V € A™** is called a
controllability subspace family (c.s.f.) of (A, B) € Anx(ntm) if
(i) Vis (A, B)~invariant

(i) for every zo € V(to) , z; € V(t1) ,to < t; , there exists a control u(-) € C;* such that the
forced trajectory of #(t) = A(t)z(t) + B(t)u(t) satisfies

z(t) € V(t) forall t € (to,t1) and (o) = zo,2(t)) = z,. (5.1)
In case of time-invariant systems (ii) implies (i) {see Wonham (1985) Section 5.1).

Example 5.2 The controllable family ® (see Section 1.5) of (A, B) € A**("+m) is 3 c.s.f. In
Example 1.9 it is shown that ® is A—invariant whence it is (A, B)—invariant. For z¢ € R(to)
and z1 € R(?)) a control u(-) € Cp* satisfying (5.1) can be constructed as folllows: Set

i1 = B(to,t1)z1 € R(to)
TA = To- € R(to)
Choose u(-) € C* such that
t
$ = B(4,to)za +/ (1, 5)B(s)u(s)ds
to
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fulfills £(t1) = 0 and £(t) € R(2) for ¢ € [to, ;). Thus

2(t) = B(t,to)ro + [ ®(t,s)B(s)u(s)ds
= () + 3 € R(t)

with zo(lo) = 2o and z(t)) = 2, .
Proposition 5.3 Suppose V(t) = V(t)IR* for some V € A™** with rkg V(t) = kfor all t € R.
Then Vis a c.s.f. of (4, B) € A**{"+m) if and only if

V()= Y im (DI, - Ap(t))'(BG(1)) forallte R (5.2)

>0

for some F € A™Xn G € AmXm,

Proof: Assume that (5.2) is valid. Then for given zo € V(%) , z; € V(t;) there exists by
Example 5.2 @ € CJ* such that

i) = Ap()s(t)+ BG()i (5.3)
z(t) € V() for t € [to, t}, z(to) = 20, z(t}) = 2,

Thus condition (ii) of Definition 5.1 is satisfied. V is (A, B)— invariant since it is the controllable
family of the system (5.3), see Remark 1.5.11.
To prove the converse let F € .A™*" such that for some N ¢ Amx=»

(DI, - AFXV)=V N
Then V is also a c.s.f. of the system
& = Ap(t)z(t) + B(t)u(t)
Choose by Lemma 1.5.1 G € A™*™ | [ € A¥*m gych that
BG=VL= tetm (B,V).

This proves * C “ in (5.2) . For the reverse inclusion let R(t) denote the controllable family of
(5.3). Clearly V(t) C R(t), and since R(t) can be presented by the right hand side of (5.2) (see
(1.(5.5)) the proof is complete. a]

The foregoing and the following proposition are generalizations of the constant case, see Wonham
(1985) p. 104.
Proposition 5.4 Suppose V € W,, is generated by V € A"X¥ with constant rank k. I{ Vis a
c.s.f. of (4, B) € AnX(*+m) and
imB(t)nV(t) = imBG(t) for some G € A™*"
then .
V() = Z im (DI, — Ar(1))(BG(1)) foralite R
>0

for any F € A™*" which satisfies

(DI, - Ap) V)=V N for some N € A*** (5.4)
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Proof: By Proposition 5.3 there exists an Fy € A™X™ 50 that
V(1) = Y im (DI, - AR, (1)) (BG(1))
20
Put ]
V(1) := Y im (DI - Ap(t)}(BG(2))
i>0
for some F which satisfies (5.4), then V'(t) C V(2). For the reverse inclusion it is sufficient to
show that V' is (A + BFp)—invariant. This is proved completely analogously to the constant
case, see Wonham (1985) p. 105. a

3.6 Noninteracting control

Consider a state space system with several outputs

(1)
zi(t)
where A(-) , B(-) , Ci(-) ate n X n, n X m , p; X n matrices, resp. defined over A. The restricted

decoupling problem ( RDP ) for (6.1) is to find an F € A™*" and c.s.f.'s Vi € W, , i € k, such
that the following conditions are satisfied forallte R ,i € k

A(t)z(t) + B(t)u(t)

Ci(t)=(t), ick (6.1)

o

Vi) = Taso im (DI, — Ap())NBGi(t)) (6.2)
where G; € A™*™ such that imBG;(t) = imB(t) N V(t) )
Ci(Vi(t) =0 fori#: (6.3)
Ci(t)Vi(t) = imCi(t) (6.4)
(6.3) is called the noninteraction condition and is equivalent to
Vi(t) € [ ker Cj(t) (6.5)
J#i
(6.4) is called the output controllability condition and is equivalent to
Vi(t) + ker Ci(t) = R (6.6)

(6.2) is referred to as the compatibility condition of the families V;.

Definition 6.1 Some families V; € W, with generator V; € A"X" (i € k) are called compatible
relative to (6.1) if there exist F € A™*” and N; € A7X"i | s0 that

(DI, — Ap)(V:)) = V; N; fori € k (6.7)
Lemma 6.2 Suppose Vy,V;, V1NV, € W, are generated by V; € A™X™ with rkrVi(t) = const.
for allt € R, ¢ € 3 resp. If there exist F; € A™%" and N; € A"X"i so that
(DI~ AR)(Vi) = Vi N; forie}

then V) and V, are compatible.
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Proof:  Let
B(t) : R — Vi(O)\Wi(@)nv() i=12
P3(l) : R - Vl(t)nv;(t)

denote the orthogonal projection on Vi(t) \ V1(t) N Va(t) , Vi(t) N Va(t), resp. Then by the
assumptions and Proposition 1.5.6 it follows that P; € A™*" for i € 3. Thus for

F:=F P+ F, P, + F3 P; € A™*"
(6.7) is satisfied. ]

Definition 6.3 Some families V; € W, , i € k, are called independent if

k
Vit)ny  vi={0} foralliek
J#i

Lemma 6.4 Let V; € W, be generated by ¥ € A™*" with rkrVi(t) = const. for all
t € R, i € k. If the families V; are independent and
(DI, - AR)(Vi)=V;N; foriek, forsome F,ec A™*" N,e A"*7

then V; are compatible.

Proof: Since V; are independent, there exists a Y € W, such that
R*=V(t)®...0 V() Y(?) forallz € R.
According to this decomposition we define

F(t) : R" - R"
Ty u®) +u()) = TE Rw()
Since V; have constant dimensions, F € A™*". Thus F satisfies (6.7). [u]
Using the previous lemmata we are now in a position to prove the main result of this section, i.e.

a characterization of the RDP which is a generalization of the constant case given in Wonham
(1985) Section 9.3.

Proposition 6.5 Suppose

&

N ker Cift) = {0}

i=1
Then the RDP is solvable iff there exists c.s.f.5 V; generated by V; € A" of constant ranks,
i € kresp., such that forallt¢ IR and i € k

Vi(t) € ) ker Cj(t) (6.8)
J#i
and
Vi + ker Ci(t) = R™. (6.9)

95



Proof:  The ’only if’ part is immediate from the definition. To prove the 'if’ part note that
by (A, B)~—invariance of V; there exist F; € A™*" , N; € A7%7i such that

(DI, - AR)V:) = Vi N; iEE
The families K; defined by

Ki(t) := [ ker C;(t) ek
J#i

are independent. This is proved analogously to the time-invariant case, see Wonham (1985)
p.225. Since Vi(t) C Ki(1), it follows that the Vi’s are also independent. By Lemma 6.4 they are
compatible. Application of Proposition 5.3 yields (6.2) and the proof is complete. a
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Chapter 4

Stability, Stabilizability, Robustness, and
Differential Riccati Equations

4.0 Introduction

In this chapter I study various problems concerning exponential stability of linear time-varying
systems of the form

&= A(t)z(t) ,i20 (0.1)

It is well-known that if, for each t > 0, all eigenvalues of A(t) are lying in the proper open
left half complex plane, then the system (0.1) is not necessarily exponentially stable (see e.g.
Wu (1974)). Exponential stability is secured if, additionally, the parameter variation of A(t)
is 7 slow enough” , see Rosenbrock (1963) and Coppel (1978). However, these are qualitative
results. In a joint paper with Owens and Prdtzel- Wolters (1987b) we derived quantitative results.
This means, upper bounds for the eigenvalues and for the rate of change of A(t) which ensure
exponential stability of (0.1) are determined. This is presented in Section 1.

Ikeda, Maeda and Kodoma (1972) and (1975) studied the problem to stabilize a system of the
form

#(t) = A)z(£) + B(t)u(t)

by some state feedback. In lichmann and Kern (1987) stabilizability of (0.2a) was characterized
under the additional assumption that (0.1) possesses an exponential dichotomy. Furthermore
ITkeda, Maeda and Kodoma (1975) gave a sufficient condition so that (0.2), i.e. (0.2a) and

y(8) = C(1)=(t) + E(t)u(t), (0.2)

is stabilizable by a deterministic state estimation feedback. In Section 2 these problems are
studied under the assumption that (0.1) possesses an exponential dichotomy.

In the remainder of this chapter I turn to the problem of robustness of stability of (0.1). For
time-invariant linear systems there exist two fundamental approaches concerning robutsness.
One is the successful H>—approach introduced by Zames (1981) and Francis and Zames (1983)
which is based on transform techniques, see Doyle and Stein (1981), Postlethwaite, Edmunds and
Mac Farlane (1981), Kwakernaak (1984). It is not clear how to extend these techniques to the
time-varying case. Recently Hinrichsen and Pritchard (1986 a,b) have proposed a state space
approach to robustness. Their problem is closely related to a well-known problem of perturbation
theory: Determine a bound for all perturbation materices A(-) such that exponential stability
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of (0.1) is preserved if the generator is additively disturbed by A(-):
&)= [A() + AW=(t) ¢ 20 (0.3)

See for instance Bohl (1913), Perron (1930), Hahn (1967), Daleckii and Krein (1974), Coppel
(1978). However these bounds are conservative. Hinrichsen and Pritchard (1986 a,b) - in the
constant case - were interested in a sharp upper bound, that is the (complex) stability radius

re(A) = inf{|| A liL.] (0.3) is not exponentially stable} (0.4)

or, if (0.1) is subjected to structured perturbations of the form A = B D C (B, C are known
scaling matrices), the structured (complex) stability radius

r¢(A; B,C) = inf{|| D llL,| D € €™* and (0.3) is not exponentially stable} (0.5)

Hinrichsen and Pritchard (1986 b) proved the one-to-one correspondence between r ¢(4; B, C),
the norm of the perturbation operator

L:u(-)~ / C €A B u(s)ds (0.6)
o
and the solvability of the parameterized algebraic Riccati equation
A*P+PA-pC*'C-PBB*P=0, pER (0.7)

These methods and results were partially generalized for time-varying systems by Hinrichsen,
Ilchmann and Pritchard (1987). This is presented here in Sections 3 to 8. We proceed as follows.

In Section 3 the group of Bohl transformations, containing Lyapunov transformations as a
subgroup, is introduced. A Bohl transformation applied to (0.1) as a similarity action does not
change the Bohl exponent.

In Section 4 the structural stability radius for time-varying systems is defined analogously to
(0.5). Its invariance properties are discussed.

A generalization of the perturbation operator (0.6)

Ly u() — /0 C()8(-,s)B(s)u(s)ds (0.8)

is studied in Section 5. Tts relationship to the structured stability radius is partly clarified.
However an open problem remains.

Instead of the algebraic Riccati equation (0.7), in the time-varying setting one has to study the
parametrized differential Riccati equation

P(t) + A*(1)P(1) + P(t)A(t) - pC*()C(1) - P(t)B(®)B"(1)P(1) =0, p€R (0.9)

In Section 6 a precise relationsship between the norm of the perturbation operator (0.8) and the
solvability of (0.9) is established. This result yields a complete generalization of the situation in
the time-invariant case.

In Section 7 the dependence of the maximal bounded Hermitian solution of (0.9) on the param-
eter p is analysed.

In Section 8 the robustness analysis is extended to nonlinear perturbations and a common Lya-
punov function for a class of perturbed systems (0.3) is determined.
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4.1 Sufficient conditions for exponential stability

Consider the homogeneous linear time-varying differential equation
8(1) = A®Da(t),  A() € PC(Ry, €% (1)

where PC(IR4, €**™) denotes the set of piecewise continuous complex n X n matrix functions
on IRy = [0,00).

Often we will assume that A(-) is bounded or more generally that A(-) is integrally bounded, i.e.
t41
sup [ [ A4(s) [ ds < o0
teRy Jt

Let < -,- > be the usual inner product on C* ,n > 1, || - || the associated norm and || B || the
induced operator norm for any linear operator B € £( €™, C").

Definition 1.1 The system (1.1) is said to be ezponentially stable if there exist M,w > 0 such
that

| @(2,t0) |< M emwlt=to) forallt> £ >0
( "for all £ >ty > 0” means "for all ¢ > #5 and all ¢, > 0”)

Due to the linearity of (1.1) exponential stability can be characterized as follows, cf. Willems
(1970) p. 101.

Proposition 1.2 The system (2.1) is exponentially stable if and only if it is uniformly asymp-
totically stable, i.e. there exists k independent of fg such that

| ®(t,to) IS & forallt > 1, >0 (1.2)

and
¢1h2, || ®(t,t0) ||= 0 uniformly in to € Ry (1.3)

If A(-) is a constant matrix it is well-known that (1.1) is exponentially stable iff the real parts
of the eigenvalues of A are lying in the open left half plane. For time-varying systems, even if
they are analytic and periodic, exponential stability does neither imply

Reo(A(t)) ¢ € ={se C|Res<0} forallt € Ry

nor does for some a > 0 the condition
Reo(A(t)) < —a forallte Ry

guarantee exponential stability.

Example 1.3 (i) Hoppenstaedt (1966), p. 3: Let
cost —sint -1 -5 cost sint
At = [sint cost] { 0 —-1] [ —sint cost]
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Then o(A(1)) = {-1} for all t € Ry and it can be easily verified that a fandamental matrix is
given by

X(t) = e'(cost + ksint), e3(cost ~ Lsint)
T | e(sint ~ fcost , e~3(sint + % cost
2 2

Thus #(t) = A(t)z(t) is not exponentially stable.
(ii) Wu (1974) : Let

—1 4 15 gin12t 12 cosl2t
= 2 V2 2
A®) [ 13 cos12 —0 - 15 sin12t

Then o(A(t)) = {2,-13} for all t € IR and a fundamental matrix is given by
X(@)=
le*(cos6t + 3 sin6t) + Le~1%(cos 62 — 3 sin6t) Le~*(cos6t + 3 sin6t) — Le~1%*(cos 6t — 3 sin 62)
Le=*(3 cos 6t — sin 6t) — 3e~1%(3 cos 6t + sin 6t) Le=*(3 cosbt — sin 61) + ge~1%(3 cos i + sin 6t)
Since &(-, ) satisfies (1.2) and (1.3) the system (1.1) is exponentially stable by Proposition 1.2.

The system presented in Example 1.3 (i) is in some sense "too fast” in order that condition
Ro(A(t)) < —1 implies exponential stability. Various assumptions on the parameter variation
of A(+) are known, such that if § > 0 is sufficiently small then anyone of the following conditions
guarantees exponential stability of (1.1):

|| A(t) ||< 6 for allt >0 (Rosenbrock (1963)) (1.4)
| A(t2) — A@D IS 6 ||t~ t1 || forall ¢1,t2 > 0 (Coppel (1978), p.5) (1.5)
sup | A(t+7) - A@)|I< 8 (1.6)

0<r<h

A(-) is continuous, || A(:}|| is uniformly bounded

and there exists T > 0 such that (1.7
ST JA@ )| dt < 8- T foralltg> 0.

As a consequence of the following Proposition 1.4 (iii), (1.6) implies exponential stability if § is
small enough. (1.6) is less restrictive than a similar condition in Kreisselmeier (1985), Lemma
3:

lim sup ||A(t+7)-A(t)||=0 forallh>0
t—=00 g<r<h
Furthermore (1.7) is less restrictive than the criterium in Krause and Kumar (1986) which is

there exists a Tp < oo such that

(1.8)
f'°+T ] A(i) |dt < 8T foralltg>0,T2>Tp
to = =
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Krause and Kumar (1986) present a very lengthy proof to show that (1.8) implies exponential
stability of (1.1) if 6 is sufficiently small and moreover A(-) satisfies:

Re 0(A(t)) < — a for some a >0, forallte Ry
Il A(-)|| and |} A(-){] are bounded (1.9)

A(+) is continuous

In Hlchmann, Owens and Prditzel- Wolters (1987b) we proved in a short way that if the weakened
Krause and Kumar condition (1.7) is assumed, then exponential stability can be derived by a
slightly modification of Rosenbrock’s (1963) proof.

The disadvantage of (1.4) - (1.7) is that they are qualitative conditions in the sense that § must
be small enough. We can improve the results and give quantitative bounds.

Proposition 1.4 Suppose A(:) € PC(IR,, C**") satisfies for some a, M > 0 and all t > 0
la@gl < M

a{ A(t)) E C*={se C|Res< -a}
Then the system
Z(t) = A(t)x(t), t>0 (1.10)
is exponentially stable if one of the following conditions holds true for all t > 0:
(i) -a<-4M
(ii) A(-) is piecewise differentiable and

2 a2
-1 2Mln -4

(iii) For some k > 0,7 € (0,1) and a > 2Mn + "T'llogr]

AN 6 < =

-1
sup || A(t+7)~ A() < 6 < 0" (a— 2Mn + T~ log )
0<r<k

(iv) a>n-1and for some 5€(0.1)

Alt+ h)

p |l A [I< 6 < 29" a~2Mn+ (n - 1)logn)

h>0
Proof:  We will use the following important inequality due to Coppel (1978):
| €4 1< (~—)"- el=2+)  for all 0,¢ > 0 and for all £ € (0,2M) (1.11)
For fixed to € IR4 (1.10) can be rewritten in the form

#(1) = A(to)z(1) + [A(t) - A(to)](t), 120

and for z(tp) = z¢ € R™ its solution is given by

]
a(t) = eAlo)i=to)zg | / A= A(s) - A(to)]z(s)ds
to
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Hence by (1.11)
lz@l < meelmerE=o) |20 |

3
+he [ e-ate)t=2) || A(s) — A(to) || [ 2(s) || ds  forallt>to
0

hy
where oM

Ke 1= (—E—)"_l

Multiplying this inequality by e(®~¢)* and applying Gronwall’s Lemma yields

D ele=0Ma(e) 1< me €@ [ 2o | -explme [ I ACs) = Alto | d]
o
Thus
[t 2(2) < &e ezpl(—a + )t — t0) + . /.: | A(s) — A(to) || ds] || zo || forall 2>t (1.12)
Now we prove the statements (i) - (iv).

(i): Since || A(s) — A(to) ||< 2M for all ,t5 > 0, (1.12) implies for ¢ € (0, 2M) and some h > 0:

2] € meelmetednaaMllizio) | z(z0) |
< Ke e[t+n.2M-4M—h](!—-!°) ” I(to) " .
The function

f : (0,2M] - R
£ — E+K2M—-4M - h

is continuous and f(2M) = —h. Thus there exists € € (0,2M] such that f(¢) < 0.
(ii): Consider
o0
R(t) = / AT(1AWMs g g (1.13)
o

which solves
R(ODA®) + AT(DR(t) = ~ 1,

and satisfies for some ¢;,¢2 > 0

0<el, <R(t)<epl, forallt>0.
The derivative of R(-) is given by

R(t) = /o * AT R(A() + AT R()]eAV*ds (1.14)
(cf. Brockett (1970) pp. 203 and 206) . Now we show that
V(z,t) := 2T R()z

is a Lyapunov function of &(t) = A(t)z(t). Its time derivative along any solution is:

%V(z(t),t) = T[T, + RO(D).

We have to show that
R(t)< I, foralli>0. (1.15)
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Applying Coppel’s inequality to (1.14) and (1.13) yields

I &® I

A

®© 2M \o(n— - ;
[T et ras g | Ry [ At |

IA

2[(%)20‘-1) /m e?(-u-{-z)ldslz .5
0

2M  4(n- 1
2(7)4( 1)(2.(___a+6))26

and thus (1.15) holds if for some ¢ € (0, )
(LY _ 2 .
b<2 (2M) (a - £)? =: g(¢).

It is easily verified, that g(-) achieves its maximum on (0, ) at ¢o = ;{—la and

204n—2
7= @yt (n oy
(iii): By (1.12) we have for every £ € IN , k > 0 and ¢ € [to + Lk, to + (£ + 1)k}:

Nl = see=o=® | 2t + th) |

< ke @) g k| 2(tg 4 (€ 1)K) ||
= K2 0N | (g0 4 (0= 1)R) |
< R ) | (1) |

where y:= —a+e+k.-6.
Thus

I} 2(2) i< ke eoBed7t=t0) || o(g0) || .
and since (L —1t5) > £ -k

Il 2(2) Il we 400D | g(10) .
It remains to determine £ < 2M and k > 0 such that

log &,

k +7<0

which is equivalent to

log ke )
k

However, for every € € (0, a) there exists k > 0 such that

0<6<—1—(a—s—
Ke

log %,
T>0

and thus (1.10) is exponentially stable for every A(-) which satisfies

a—& -

sup | A(t+ 1)~ A(t) |< 6 < Lo~ e - [BKe,
0<r<ke Ke k

Now (iii) follows with 5 = 3%;.

103



(iv): Assume

| Al h’Z AW g

for every h > 0. Then by (1.12) we have

Nz € & e(—atelt—to)+ne F7 needn Il 2(t0) I
< Ke ele—atne S0-6)(t—to) I z(to) I -
and
Il 2(2) IS we €74 | 2(to) | for t € [to,to + 1]

where y=¢—a+}kd.
Htefto+lto+£+1], £€IN weconclude as in the proof of (iii)

Il 2(2) |I< we elosmed =) i 2(to) |

Now logx, +7 <0 if
5 <2gr) Name - log(2—g—l-)"'l)
and (iv) follows with 7 = 5% - [n]
Note that the proof of (iii) presents a short proof of Lemma 3 in Kreisselmeier (1985).
If additional information on the exponential decay of eA()” is known the bounds in Theorem

1.4 can be simplified as follows.

Proposition 1.5 Suppose A(-) € PC(R4, C**") satisfies for some M,K,w > 0andallt2>0

ramli < M
" eA(t)a ” < Ke
Then the system
(t) = A(t)z(1), t>0

is exponentially stable if one of the following conditions holds true for all ¢ > 0:
i)y M<ig.

(i) A(-) is piecewise differentiable and || A(2) [|< 6 < 2(%)?.

(iii) There exists b > 0 such that

_1logk
h K

w

K

sup |A(t+7)-AD]<b<
0<r<h
(iv)  suppyo [| AHHAE | < 6 <2 — 20K

Proof:  (i): Since || A(s) — A(to) |< 2M, (1.12) implies
I 2(0) 1< K ==K M) | g |

which proves the statement.
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(ii): Similarly to the proof of Proposition 1.4 (ii) one obtains

I RO

IA

JAR e R OTTRTOY
(]
91K? / ~ e wrggt . 5

0

K4
= 3%

IA

Since by assumption ¢ := %6 < 1 one concludes
V(z)= z'[AR+ RAls+2°Re = 2"~ + Rlz < (- D) ||z |?
This completes the proof.
(iii): For t € [to, to + h), (1.12) implies
Il 2(2) 1< K el=erkOE=t) || 2(t0) |
Hence for £ € IN and t € [to + £h, 1o + (£ + 1)h]
=@ 1

IN

K ettt} || g(10 + £h) ||
K et=0=th) L K v || 2(t + (£ - 1)h) ||
K% entt==U=DR) || o(1g + (¢ - 1)h) |

I IA

A vee

K41 7600 || 2(to) |
where 7= —w+ K§. Since (t —t) > {-h
=) i

< K el-lo;l\'+7(t—!q) “ (io) "
< K K 4 (1-to) I (to) i
This proves (iii).

(iv): If t € [to, to + 1] then (1.12) yields

t—tp
He@l < Kespl-o(t-t0)+K [ shan] | () |
< K etk | g(1) |
For t € [to+ £,to + (£ + 1)} , £ € IN we conclude as in (iii)

=)l

Kt e(—u+l\'§)(¢-to) 1| 2(to) |1

<
< K ellosKowt K0 || o(10) |

which proves (iv).

o

The previous propositions show that there is an interplay between the bound of the real parts
of the eigenvalues of A(t) and the parameter variation of A(-) . However, for these sufficient
condition the assumption that A(-) is bounded is essential. Only few results are known to have
sufficient conditions for exponential stability if A(-) is unbounded. In the remainder of this
section we will present some results where A(-) is not bounded but of the special structure

A(t) = A ~ k(t)D where k(-) is a scalar function.
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Proposition 1.8 Suppose A, D € €**" and k(-) € PC(IR4, R} ) is monctonically nondecreas-
ing with lim,o k() = 0o. Then the following statements are equivalent:

(i) o(D)c €4 ={se C|Res>0}
(ii) limg~o Re Xi(t) = —ooc fori€n
where X;(t) , i € n, denote the eigenvalues of A ~ k(t)D.
(iii} the system
#(t) = (A—k(t)D)z(t), t20 (1.16)

is arbitrary fast exponentially stable, i.e. for some w(-) € PC(IR4,IR+) monotonically
non decreasing with lim—., w(t) = 0o and some M > 0 the transition matrix of (1.16)
satisfies

[| 8(2,10) |< M e~«lodt=t}  forallt >t > 0.

Proof: (i) = (ii): Select k; > 0 and T € GL,( €) such that

A1 &
0
T(k,D)T"! = )
0 61:—1
An

and Re X; > 1,6; € {0,1} for i € n. The spectrum of A — k(t)D and
A+D):=TAT '+ (—%5:—))T kDT
coincide and by Gerschgorin’s Circle Theorem (see e.g. Noble and Daniel (1977)) we have
o(i+ D) |JCitt)

i=1

where

Cit) = {u(t) € €:| - ’“(’)A+a..—ut)|<2|a.]|+’°(”6}, ien

Since Re A; > 1 we conclude
,ll.I& Re p(t) = —x
for every u(t) € Ci(t), whence (ii) follows.
(i) = (i): Assume there is an eigenvalue X; of D with Re A; < 0. Then the real part of
the corresponding eigenvalue k(t)); of k(t)D either remains 0 or tends to —oo as t — oo.

Thus by Gerschgorin’s Theorem there exists t* > 0 such that at least for one A;(k(t)) we have
Re M\i(k(t)) > N > —oo for all t > t*. This contradicts (ii).

(i) = (iii): Let P = PT > 0 and @ = QT > 0 such that DTP + P D = 0. It is proved that
V(z(1)) := 2(t)T Pz(t) is a Lyapunov function for (1.16). Differentiation yields

V(2(1)

2()T[A’ = (k(t) = k(t)DIT Pz(t) + 2(t)T P[4’ ~ (k(t) - k(¢))D]=(2)
2(O)T[ATP + P A'Ja() - (k(t) ~ k(t")2(t)T Qz(t)
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where
A= A-K{)D.
Choose ¢’ sufficiently big such that for some p; > 0
zT[ATP+PAlz < -py || 2 |?.
Since q || z |[*< zTQz for some ¢; > 0 one obtains
V(@(®) < ~[P + (k(t) - k()i | 2(1) |* forall £ > ¢
This proves (iii).

(iii) = (i): Since limy_.co w(fo) = 0o one may assume that A(-) = 0, see a disturbance resuit
in Coppel (1978) p.2.

Now (i) follows since if some eigenvalue X of D satisfies Re A < 0 then z(t) = —k(t)Dz(t) is
unstable. o

If the conditions on A and D are relaxed the system (1.16) is, in general, not arbitrary fast

exponentially stable, however it is exponentially stable. To prove this result the following "in-
terconnections lemma” is needed.

Lemma 1.7 (Interconnections lemma)
Consider the interconnected system

i(t):[ﬁ;é:; i:gg]:(:), t>0 (1.17)

where A,, Az, A3, A4 are piecewise continuous complex £x£ , £x{n—£€) (n—€)x{ , (n—E)x(n~¢),
resp. matrix functions and

|| A2(t) |< a2, || Aa(t) ||< a3 for all t € Ry and some a3, a3 > 0.
Moreover we assume for the transition matrices generated by A; and A,

| 81, 8) | < My e e

[| ®4(t,s) || < Mye =2 fort>s>0
resp., for some My, My, A, e > 0. Then if A > ¢ +¢~!(M;Myaza3) the interconnected system is
exponentially stable with decay ~h = —¢ — (¢ ~ A)"}(M; M4a;a3).

Proof:  Let z)(t) € €, z(t) € €', then the following integral equations are equivalent to
(1.17)

ni(t) = ilt,to)nr(te) + fi 1(t,8)Az(s)za(s)ds

Ig(t)

Du(tyto)za(te) + [i Ba(t,5)As(s)z1(s)ds
Now

1
lza@) | < Myemett=to) || zy(t0) |f +/ My el ag[ My e~ 000
to

£ ]
Noa() 1+ [ M 0 | ay(r) | drlds
0
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and
MyasM. .
l eza(t) IS My e [ za(to) f| + .%[65“”\!0 — ey || z1(to) |l
t 2]
+ K / e / " || z2(7) || dr ds
t to

where § := ¢ — A < 0 by assumption, K := M, Myazas .

Integration by parts gives
3 8
/ e / P | z2(7) || d7 ds
to to

= 6 L) [ drl, — [, 87 e e |l aa(s) || ds
= 6T f S laar) lldr  — ff 67 et [lza(s) | ds
Applying this to the above inequality yields
MM K ¢ .,
Hetaa®) < el || 2a(t0) | =22 | mlt0) W= 5 [ € Nl zals) I o
0

and by Gronwall’s inequality one obtains

l22(t) | € [Ma || 22(to) | ~67 My Maas || z1(to) flle™(t=0) ¢~ Flt=to)
Setting K = maz {M,, —6~' My Mya3} and choosing the maximum norm we have

laa) [l < & e™) fa(to) | fort 2t
Consider now z;(t), the solution of
£1(t) = Ar(t)za () + Az(t)z2(2)
which satisfies
t .
IO 1S M e o) 4 [ My e ey fe M0 | 2(t) | d
to
Thus .
Mya:K | (5

eMaa(t) I < My e || aa(to) | + SEELHePP4M0 — o] | a(1) |

and

M
A

K Aieto) , MrasK —h(e-
2@ 1< (1l 2ato) I -2 1 2(to) [le™ ) 4 X2 | 2(t0) || e7he—r)

Finally A > h gives )
l21(t) fl< & €721 | 2(to) ||

for some K > 0 and this completes the proof.

Proposition 1.8 (High gain feedback)
Suppose A, D € C*™*" satisfy

(i) there exist k*,& > 0 such that

o(A—kD)C € forall k> k*
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(ii) if 0 € o(D) then 0 is semisimple, i.e. all corresponding blocks in the Jordan canonical form
are of size 1 x 1.
Then the system

&(t) = [A — k(t)D]z(1), t>0
is exponentially stable for every piecewise continuous k(-) : Ry — Ry with lime .o, E(t) = oo.

Proof:  The invariance of exponential stability with respect to constant coordinate transfor-
mations together with (ii) implies that we can assume D to be of the form

A1 &

D=[A 0]"““‘“‘3“ - i # 0,6 € {0,1)
0 0 . 5
-1
A

Then

[ A-knA 4
A-k(t)D_[ " A:]

and choose S € Gl,_¢( C) such that
Aty bean

Al :=54,5"= , 6;€{0,1}.

6n-l
An

For r > 0 and T = diag(agy1,...,0n) € GL,_¢(IR) one obtains

I, 0 I, 0 _ | AL—k(DA A(rST)?
£ tocsnal ][ 45

0 0 (rST)? rSTAs TA]T!
where .
Aerr by
TA]T = 8=l by
An

For r sufficiently small and a; suitable chosen Gerschgorin’s Theorem together with (i) implies
Re Ai(k(t)) » —o00 ast — o0, i€ ¢

and 3
Re)\.-<—zs fori=£€+1,...,n

Now the result follows by Proposition 1.6 and Lemma 1.7. 8]

The previous proposition was also proved by Mdrtensson (1986). However the proof given
here, resp. in Ilchmann, Owens and Pratzel-Wolters (1987a), was found independently and the
presentation is completely different.
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4.2 Stabilizability of systems with exponential dichotomy

In this section it is asumed that the linear differential equation
(1) = A(t)z(t) ,A(t) € PC(R4,IR™™") (2.1)

possesses an ezponential dichotomy , i.e. for some fundamental matrix X(-) of (2.1) there exist
K,L,a,3 > 0 such that

| X(t)Przo |} < Ke o= || X(s)Pyzo || fort>s
| X () Pazo || < Le P09 || X(s)Pazo|l fors>t (2.2)
I XOPAX | < M fort>0

where P, € C**" is a projection, i.e. P = Py, and P, := I,, — P;. The first and the second
inequality in (2.2) say that at each time the state space splits into the direct sum of two subspaces
such that the free trajectories starting in one subspace are exponentially decaying whereas the
trajectories starting in the other subspace are exponentially increasing. The third condition
in (2.2) means that the angular distance between the subspaces Vi(t) = X(t)PIR" and
V,(t) = X(t)P,IR* cannot become arbitrary small under a variation of . More precisely, there
exists some ¢ > 0 such that

inf {ll v1(t) = va(®) || | wit) € Vilt) || () |= 1,i= 1,2} > ¢ forallt >0

(This is proved in Daleckii and Krein (1974) p. 163)

Remark 2.1 The conditions (2.2) are equivalent to

I X(t)Pr X1 (s) |l

<
| X@)P X1 (s) || <

K'e=o(t=9) fort>s
L' e=Bls=8)  for s >t } (2.3)
for some K', L' > 0 (see Coppel (1978) p.11).

Using this fact it is immediate from Remark 1.3.2 that the adjoint system of (2.1) possesses an
exponential dichotomy of the form

| Xo()Pfzo || < Le ot |{ Xo(s)Pfzo| fort>s
| Xo(t)PTzo || < K e Pt=9) | Xo(s)Plao|| fors>t (2.4)
| Xe@)PF X' ()| < M fort >0

for some I,K > 0.

In the following we will use the notation of Section 1.2 and split the vector space X(:)R" of
free motions into

XCR™ =Wi() & Val)

and the projections associated with each subspace are given by
P{t)= X(PX"N(t) ,i=12
With respect to the control system

z(t) = A(t)z(t) + B(t)u(t) " (2.5)
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where A(-) € PC(R4,R"*") and B(:) € PC(IR4,R™"*™) we will analyse the following
Stabilization Problem : (2.6)

Under which (necessary and) sufficient conditions does exist a state feedback F(-) € PC(IR, R™*")
such that the closed loop system of (2.5)

z(t) = (A + BF)(t)z(t), t>0 (2.7)
is exponentially stable. If a feedback exists, how can it be constructed?

Two ideas are essential to answer these questions: There is a result by Coppel (1978) which says
that every system (2.1) of exponential dichotomy can be transformed by a Lyapunov transfor-
mation into a disconnected system

() = [ :‘(t) Az(t(; ] z(t), t>0

The second idea is the concept of controllability into resp. reconstructibility wrt subspaces
introduced in Sections 1.2 and 1.3.

Suppose (2.5) is uniformly completely controllable into Vy, i.e. there exist ¢,a,b > 0 such that
al, <Wy(t,t+0)<bl, on PT(t)R® forallte Ry (2.8)

In order to solve the problem we have to introduce

Wy(t,t+0) := X(t)P2/'t+a X~Y(s)B(s)BT (s)X 1" (s)e"2(t=2) 45 PT X T (1)

for some o' > @ .
Thus

ae ¥ < Wy(t,t+o) < be®'I,  on PI()R™ forall te R,
and (see Coppel (1971) p. 41)

b e[ < Wil(t,t4+0) < a '€ I, on Py(t)R® forall telR, (2.9)

Now we can state the main result

Proposition 2.2 Suppose {2.8) and for some ¢ > 0
Il P(t)BO)(Po()B)T |I< ¢ forall t € Ry (2.10)

Then the transition matrix ®p(-,-) of the closed loop system (2.7) with respect to the feedback

F(t) = -3 BT OW;' (0,14 0)Py(0)
satisfies for some K’ > 0

| @r(t,8) < K’ emott=2) forallt > s> 0.
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Proof:  Use a Lyapunov transformation, see Coppel (1978) Lecture 5, to transform the system

(2.5) by a similarity action into the form

i) | _ | Aue) O zy(t) By(t)
[ 20 ] = [ 0 A0 ] [ 22(0) ] + [ By(t) ]“(’)
with fundamental matrix

X(t) = [ Xi(t) o ]

0 Xat)
Then
~ _10 0
Wilt.+0) = [ 0 Vi(t,t+0) ] ’
where

t4o ,
Va(t,t+0) = / (1, 8)By(s) BT (1, 8)e2' (=) ds.
t
The feedback law becomes
ut)= F®a(t) = ~3 BIOV 0.t + 0)aal®)

and the closed loop system is of the form

(1)

Z(2)

An:(0) - 5 BUOBI WOV (1t + 0)a(t)

[43(t) - 5 Ba(OBT OV (1t + o)laa(t).

(2.11)

(2.12)

Ikeda, Maeda and Kodoma (1975), Theorem 3.1, proved that the free motions of (2.12) are

uniformly asymptotically bounded, more precisely:
I22(t) 1S 1 e [ z5(s) || fort2s20
for some ¢; > 0.
(2.12) is equivalent to
1 t
24(t) = ®4(2, 8)z1(8) — 3 / &1(t,7)By(r) BT (1) 1 (r, 7 + 0)zp(T)dr
s

Let ¢ := L K ca=lc; €22 and apply (2.2), (2.10), (2.9) and (2.13) to (2.14). Then

t
IS K e (o) 4oz [ K o0 fzgfo) | dr.
s
Because o’ > a we obtain

EATOR|

e L BT  EXOY|

e e[| zy(s) [| +(1 = el =) | z,(s) |1}
e3 ™) [[{zy(s) || + || zals) Il

where ¢3 := maz {K,-2-} . Finally, the result follows by (2.13) and (2.16).

Tal-a

IA

Kemot=9 || z)(s) || +

IA IA

(2.13)

(2.14)

(2.15)

(2.16)

]

For a bounded system (2.5) it can be shown that uniform complete controllability into V is also

necessary for stabilizability.
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Proposition 2.3 Suppose (2.5) is bounded, i.e. A(-) and B(-) are uniformly bounded in ¢ .
Then there exists a bounded F(-) such that the closed loop system (2.7) is exponentially stable
if and only if (2.5) is uniformly completely controllable into V;.

Proof: Clearly the feedback given in Proposition 2.2 is bounded if (2.5) is bounded and
uniformly completely controllable into V. To prove the converse note that the boundedness of
(2.5) implies the upper bounded in (2.8), see Remark 1.2.9(i). The lower bound is proved in the
same way as in Ikeda, Maeda and Kodoma (1972), the necessity part of Theorem 3. o

The opposite problem of (2.6) is treated in the following
' Anti - stabilization problem : (2.17)

Under which (necessary and) sufficient conditions does exists a state feedback F(-) € PC(IR4, IR™*")
such that (2.7) is completely ezponentially unstable, i.e.

| ®#(t,s) ||< L' e P~ for all s > ¢ and some L',8 > 0,

where ®5(-,-) denotes the transition matrix of (2.7). This means every solution of the closed
loop system is bounded from below by an exponentially growing function.

Definition 2.4 The system (2.5) is said to be uniformly completely reachable from V;, if there
exist a,a’,b' > 0 such that

dL<Yi(t-o,t)<¥I, on PT()R", forall t>o (2.18)
Using the matrix
~ t J
Yi(t—o,t):= X()P, / X~Ys)B(s)BT (s)e™ 2" t= X1 (5)ds PTXT(t) fort> o
t—o

and some 8’ > § one obtains the following result.

Proposition 2.5 Suppose (2.18) and for some ¢ > 0
I P2()BEY( P ()BT ||I< ¢ forallt> o (2.19)

Then every fundamental matrix X(-) of the closed loop system (2.7) with respect to the feed-
back

F(t) = 3 BTO¥(t - 0,0 Ri(D)

satisfies for some L' >0

| Xp(t)zo IS L' €6 || Xp(s)zo || forall s>t>a, zo€ R" (2.20)

Proof:  Suppose (2.5) is of the form (2.11). Then

Rit-0,0)= [’7‘5') g]

where .
V() = / (1, 5)B1(s) BT ()87 (1, 5)e= "= ds
t—o
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Application of the feedback

T r -
F(t) = %[B‘(‘) ["1 o 0] = BT, 0]

Ba(t) 0 0
yields
a0 = (A0 + 3 BOBT O Ola)
da(t) = Ag(t)zg(t)+%Bz(t)BlT(t)Yl‘l(t)zl(t) (2.21)

Ikeda, Maeda and Kodoma (1975) Theorem 3.3 have proved that
z18) | € Ly e | zy(s)|| forall s>t>0 (2.22)
and some L; > 0. (2.21) yields

t 1 -
z2(t) = a(t,2)za() + [ @alt,r)3 Ba(r) BT ()T (D (e
Taking norms and applying (2.2b), (2.19) and (2.22) gives for some L; > 0
¢ - ;
lz2(t) | < La e | zg(s) || +/ L, e'ﬂ(’_')%c I ¥ () Il Ly e C=dr || 24(s) |
L]
(2.18) yields ¥;71(2) < L €**7". Since ' — B > 0, we conclude

t
Hoa®) ] < L2 e ag(a) | +1 [ eAHmHT0dr | 2y |

= Lpe 0 | zy(s) || +,@:L ﬂ[e""("") e ENON
< Ly ePO7 | zy(s) || (2.23)
for all s > ¢t > 0. Now by (2.22) and (2.23) the result follows for L’ := maz {Ly, L,}. u]

Similar as in Proposition 2.3, for bounded systems one can prove that uniform complete reach-
ability from V, is necessary and sufficient for anti-stabilization by a bounded feedback.

Proposition 2.6 Suppose the system (2.5) is bounded. Then there exists a bounded F(-)
such that every fundamental solution of the closed loop system (2.7) satisfies (2.20) iff (2.5) is
uniformly completely reachable from V,.

Proof: Sufficiency follows from Proposition 2.5. To prove the necessity part note that
boundedness of A(-) and B(-) implies a uniform upper bound for Y; (¢ — o,t). This can be shown
similar to Remark 1.2.9(i). The lower bound for Y1(t — o,1) is proved analogously to Ikeda,
Maeda and Kodoma (1972) Theorem 3.4. o

As an application of the previous results, in the remainder of this section we will treat the prob-
lem of stabilization by feedback of determinsitic state estimation. This problem was analysed
for time-varying systems by Ikeda, Maeda and Kodoma (1975).

Here we will show how controllability and observability assumptions can be relaxed if systems
of exponential dichotomy are considered.

114



Consider the system
#(2) A()z(t) + B(t)u(t) }
¥(t) = C(1)=(t) + D(t)u(?)
and assume that @(t) = A(t)z(t) possesses an exponential dichotomy as in (2.2) and B(-) €
PC(R4,R™™) , C(-) € PC(R4,RP*"), D(:) € PC(Ry,RP*™) .
Following Johnson (1969) the n-dimensional deterministic state estimation should be of the form

(2.24)

#(t) = (A - HC)(t)z(t) + (B — HD)(t)u(t) + H(t)y(t) (2.25)
where the design parameter H(-) € PC(IR,,IR**?) has to stabilize the homogeneous equation
é(t) = (A- HC)(t)e(t) , e(t):=z(t)~ 2(t) (2.26)

Applying the statements of Remark 2.1 and Proposition 1.3.7 concerning the adjoint system to

Proposition 2.5 yields the following corollary.

Corollary 2.7 Suppose the system (2.24) is uniformly completely reconstructible wrt V§ and
f PT@) ST CT@)T IS¢ forallt 2o

and some ¢ > 0. Then there exists a compensator H(-) € PC({g,00),R**P) such that the
transition matrix ®x(-,-) of (2.26) satisfies

[ @a(t,8) |l LePt-2)  forall t>s>0 andsome L>0.

The state estimate z(-) given by (2.25) will now be substituted for the real state z(-) into the
control law

u(t) = F(t)z(t) + o(t)
After a straightforward calculation one gets for the closed loop system

[f(t) - [ At) B(t)F(t) Hzm +[B<t)]"(,)
(1) HC(E) A(t) - HOC(H) + BOFQ) | | 2(2) B(t)
) = [cm,u(:)F(m[jfg + D(R)e(t) (227)

Using the previous results, sufficient conditions can be derived to ensure exponential stability
of the homogeneous part of (2.27).

Proposition 2.8 Suppose the system (2.24) is uniformly completely controllable into Vy and
uniformly completely reconstructible wrt V§ with controllability and reconstructibility intervals
of length o > 0. Moreover the following inequalities

I| P(8)B(t) (P2(t)B()T || < ¢ forallt >0
I PFOCTOPFOCT@W)T | < ¢ forallt20
hold for some ¢ > 0.

Then there exist a feedback F(-) € PC(IR4+,IR™*") and an estimator gain H(-) € PC(IR,,IR"*?)
such that for some M > 0

z(t) z(t0) _—w(t-to)
(1) <M z(to)e o fort>t >0

where w := min {a,8}.
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Proof: By Proposition 2.2 and Corollary 2.7 there exist F(-) and H(-) such that
(1)
&)
are exponentially stable with decay rate o resp. 3. Now we are in a position to mirror completely

the proof of Ikeda, Maeda and Kodoma (1975) pp. 323-325 for our situation. This goes through
without difficulties, we therefore omit it.

(A~ BF)(t)=(1)
(A- HCOYv)e(t)

It

4.3 Bohl exponent and Bohl transformations

Consider a differential equation of the form
#(t) = A(t)z(t), t>0 3.1

where A(:) € PC(IR4, C**"). For a characterization of the stability behaviour of (3.1) the
following definition due to Bohl (1913) is useful.

Definition 3.1 (Bohl exponent)
The (upper) Bohl ezponent kp(A) of the system (3.1) is given by
Ep(A) =inf{~w e R | I M, >0:¢ 2> to > 0 = &(t,10) [|< M, e~(t~0)}
It is possible that kg(A) = +oo. If (3.1) is time-invariant, i.e. A(-)= A€ C€**", then
kp(A) = max Re Ai(4)
t€n

where A;(A),i € n, are the eigenvalues of A.

The following properties of the Bohl exponent can be found in Daleckii and Krein (1974) pp.
119 - 121.

Proposition 8.2 (i) The Bohl exponent of the system (3.1) is finite if and only if

sup || (2,5) ||< 00 (3.2)
ose-sl<t

In particular kg(A) is finite if A(-) is integrally bounded (cf. Section 1).

(ii) If kB(A) < oo it can be determined via

kn(A) < limsup 2812 (3.3)

a,t—8—00 t—-s
For later use we need the following more restrictive definition

Definition 3.3 ( Strict Bohl exponent)
The Bohl exponent of the system (3.1) is said to be strict if it is finite and

ko(d) = lim BRG]

.v! n—»oo t—3s
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Lemma 3.4 Suppose a(-) € PC(IR,, C) has a strict finite Bohl exponent and
A(’) € PC(R4, €*"), then

(i) kp(—a)=—kp(a)
(ii) kp(al, + A) = kp(a) + kp(A) (shift property).

Proof: (i) follows from

t
a(r)dr t ()
iy, - a0 togiels 47 Liemar

kB(a) = =2 = lim,¢ 400 =2
= im0 kp(a).

In order to prove (ii) note that the transition matrix of (t) = [A(t) + a(2)I.]2(t) is given by

t
¥(t,3) = B(L, ) exp( / a(r)dr).

Thus by Definition 3.1
kp(4) < kg(A +al,) - kB(a)v (3.4)
which proves (ii). o

In the literatur the (upper) Lyapunov ezponent is better known
kr(A)=inf{-~weR | IM, >0:t>0 =| &(,0) ||< M, e~“}.
For time-invariant systems the Bohl and Lyapunov exponents coincide whereas in general
kL(A) < kp(A4).

The following example due to Perron (1930) illustrates that these exponents may be different
even for scalar systems.

Example 3.5 (Perron equation)
Consider the scalar system

#t) = a(t)z(t), t2>0, (3.5)
where a(-) € PC(IR4, C) is given by
a(t) = sinlogt + coslogt

The transition matrix is
Q(t 3) = gttinlogt~ssinlogs
,8) =

and since a(-) is integrally bounded, we have
kp(a) = 'lim sup sinlogt = 1.
The Bohl exponent, however, can be shown to be /2 (see Daleckii and Krein (1974)
p- 123). a

Remark 3.8 For the system (3.1) one has ky,(A) < 0if and only if (3.1) is asymptotically stable,
i.e. (1.2) holds true but k may depend on ¢, and the convergence in (1.3) need not be uniform.

117



The following characterizations of exponential stability are proved in Daleckii and Krein (1974)
p. 129 and p. 130.

Theorem 3.7 Suppose A(-) is integrally bounded and p € (0, 00), then the following statements
are equivalent:

(i) (3.1) is exponentially stable
(i) kp(4)<0

(iii) there exists a constant c,, such that
oo
[iscmipasce foraino

(iv) For every bounded f(-) € P C(IR, C*), the solution of the initial value problem
3(t) = A(z(t) + f(2), t20, z(0)=0

is bounded.
Under the weaker assumption kg(A) < oo, conditions (i) - (iii) are equivalent.
We now analyse the effect of time-varying linear coordinate transformations z(t) = T'(t)~'z(t)
on the system (3.1); where T(-) € PC1(R4, GL,( C)) (the piecewise continuously differentiable
n x n functions on IRy which have nonsingular values), cf. Section 1.1.
The group of Lyapunov transformations preserves the properties of stability, instability and

asymptotic stability. The property of exponential stability is invariant with respect to a larger
group of transformations.

Definition 3.8 (Bohl transformation)
T(-) € PCY(R4,GLy( C)) is said to be a Bohl transformation if

inflee R | AIM, > 0:) Tty |- T(s) < M e2l W1, s > 0} = 0.
In the following example scalar Bohl transformations are characterized.

Example 3.9 Suppose 6(-) € PC}(R4, C°) , and let a(-) = 6(-)8(-)~" so that
6(t) = a(t)f(t) and (8(t)7'Y = —a(2)0(2) .
The fundamental solutions of these differential equations are
@ltito) = 6(1)6(to)™" and  G(t,to) = 6(t)"0(to)-

By Definition 3.8 8(-) is a Bohl transformation if and only if for every ¢ > 0 there exists M, > 0
such that

M7lemt=9 < o(t,s) < M, et~? forall 2520
and this condition holds if and only if a(-) has strict Bohl exponent 0 .

The following proposition implies, in particular, that Bohl transformations preserve exponential
stability (but not necessarily stability and asymptotic stability).
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Proposition 3.10

(i) The set of Bohl transformations forms a group with respect to (pointwise) multiplication.

(ii) The Boh! exponent is invariant with respect to Bohl transformations.

Proof: (i) is an immediate consequence of Definition 3.8. To prove (ii), let £(t) = A()z(t) be
similar to (3.1) via the Bohl transformation T'(-). Since the transition matrix of £(t) = A(t)z(t)

is given by &(t,s) = T(t)~2&(t, s)T(s) by Definition 3.8 one obtains
kp(4) < kp(A).
By (i), it follows that kg(A4) = kg(A).

Example 3.11 Consider a periodic scalar system
z(t) = a(t)z(t), t2>0,

where a(-) € PC(IR4, C) is of period u > 0. Set

(3

= ll‘ / a(r)dr and a(t) = ao + d(1).

o

Then | f§ d(7)dr | is bounded in t > 0 and so
a(t) := cfo‘ d(r)dr
defines a Bohl transformation. Hence by Proposition 3.10
kp(a) = kp(a — 07'9) = aq.

Thus (3.6) is exponentially stable if and only if

L [* a(ryr <0
;/Oa(r)r<.

Proposition 3.12 Every scalar system

Z(t) = a(t)z(t), t>0

(3.6)

for which a(-) has strict, finite Boh! exponent a(-) € PC(IR4, C) can be transformed via the

Bohl transformation .
o) = exp( [ (a(r) - ka())dr)
into the time-invariant linear system

(1) = kpla)z(t), t>0.

Proof: Lemma 3.4 yields

kp(a - kp(a)) = kp(a) ~ kp(a) = 0.
Thus by Example 3.11 the 6(-) which solves

6(t) = (a(t) - ka(a))0(r), 6(0) =1
defines a Bohl-transformation. Setting z(t) = 6-1()z(t) yields

#(t) = [a(t) - 071 ()B())2(1) = ks(a) - 2(2).

119



Remark 3.13 The Perron equation in Example 3.5 together with the previous proposition
implies that, in general, a Bohl transformation does not preserve the Lyapunov exponent.

This section is concluded by stating some known perturbation results concerning the Bohl ex-
ponent for the system

#(8) = [A(t) + A@)e(t), t20 (3.7)
where A(-) € PC(R4, €**7).

Proposition 3.14 For any € > 0 there exists § > 0, such that

t
limsup —— / I A() || dr < 6
st—s—c0 L — 8 Js
implies
kp(A+A) < kp(4) + <.

The proof is straightforward and can be found in Daleckii and Krein (1974) p. 125.

Corollary 3.15

(i) Suppose A € P C(IRy, €"X™) satisfies
t
lim sup L || A(T) || dr = 0.
st-s—00 L~ 8 Js
Then
kB(A + A) = kB(A)-
(ii) If systems of the form (3.1) are identified with the corresponding matrix functions A(4),

then the set of exponentially stable systems (3.1) is open in PC(IR4, C**") with respect to the
L, —topology.

Systems (3.1), (3.7) are called asymptotically equivalent (resp. integrally equivalent) if
o0
Jm 1A@ =0 (esp. [~ A@)11dt < o0).

The above corollary shows that asymptotically or integrally equivalent systems have the same
Bohl exponent.

4.4 The structured stability radius

In this section it is assumed that the nominal system (3.1) is subjected to perturbations of the
form A(t) = B(t)D(t)C(t), so that the perturbed system is
£(t) = [A(1) + B)D()C(D)]=(t), t20 (4.

where D(-) is an unknown, bounded, time-varying disturbance matrix (D(-) € PCy(IR,, cnxry)
and B(-) and C(-) are known time-varying scaling matrices defining the structure of the per-
turbation. Throughout this section we assume the tripel = = (A, B,C) consists of matrix
functions

A() € PC(R4, €*™), B(-) € PC(Ry, €**™), C(-) € PC(R4, O°%™). (4.2)
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Consider for instance the time-varying oscillator

(1) + a1 (1)§(t) + az(1)y(t) = 0.

This can be written in the form of (3.1) with

0 1
Al = [ —ag(t) —a(t) ] '

If the parameters a1, a, are uncertain we can model this by setting the scaling matrices B =

0 0] ,C = [1,0].

1 ,C = I, whereas if only a; is uncertain we set B = 1

By Corollary 3.15 (ii) the set of exponentially stable systems is open in PC(R4, €**") with
respect to the Lo, —norm. ! Its complement which is closed will be denotes by U,(R4, €). We
will call the elements of U,(IR,, C) unstable (not exponentially stable). Note, however, that
with respect to this shorthand terminology an unstable system may in fact be asymptotically
stable. The following definition extends the concept of stability radius introduced in Hinrichsen
and Pritchard (1986a,b) to time-varying systems.

Definition 4.1 (Stability radius)
Given ¥ = (4, B,C), the (complez) stability radius r ¢(A; B,C) is defined by
r¢(A; B,C) = inf{|| D |jo; D € PC(R4, €"*?),A+ B D C € Ur(IRy, C)}. (4.3)
The unstructured stability radius of (3.1) is defined by
re(A) = r (A Iny In).
Note that r ¢(A; B,C) = inf@ = oo if there does not exist a perturbation matrix
D € PCy(IRy, C™*P) such that A+ B D C € Up(Ry, €).
Remark 4.2

(i) The unstructed stability radius r ¢{ A) measures the distance of A(-) from the set Up(IR4, €)
of unstable matrices with respect to the L —norm.

(ii) If 3= = (A, B,C) consits of real matrix functions the real stability radius rr(4; B,C) is
defined in an analogous fashion. Unfortunately, this stability radius - although more important
for applications - is much more difficult to analyse and so we concentrate on the complex stability
radius.

(iii) In the time-invariant case it is shown in Hinrichsen and Pritchard (1986 b) that

1

reldi B ) = e TG

where G(iw) = C(iw — A)~!B (in particular r ¢(4; B,C) = o0 if G =0).

The unstructed stability radius has the following properties

LThis expression is used although || - ||, is only a pseudo-norm on PC(RR4, €**").
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Lemma 4.3
(i) re{d)=0 & A€U(Ry, C)
(ii) rc(ad)=arg(A) foralla>0
(iii) A+~ 7 ¢(A) is continuous on PC(R4, €***)
(iv) rc(A+A)>re(d)-| AC) ||Lm(0’w; oy for any A € PCy(R4, C™)
(v) 0<rg(A) < —kp(A) if A(")is exponentially stable.
Proof: (i) - (iv) follow directly from the definition. (i) yields the first inequality in (v) and
the second is a consequence of A — kp(A)f. € Up(Ry, C€) (since kp(4 — kp(4)) = 0 by
Lemma 3.4 (ii)). a]
Remark 4.4 Suppase ¥ = (4, B,C) and kp(A) < 0, then it is easily verified that
7 ¢(A) <l BO)jftows) oo * | C(itor00) Lo -7 6( A B,C)  for all 1o 2 0.

(where we define 000 = 00).

Now several important invariance properties of r ¢(A; B, C') are derived

Proposition 4.5 (Asymptotical or integral equivalence)

Suppose the system (4.1) is asymptotically or integrally equivalent to &(t) = A(t)z(t), then

r¢(4;B,C) = r ¢(4; B,C).

Proof: By Corollary 3.15(i}
kp(A+BDC)=kg(A+BDC)

for arbitrary D € PCy(IRy, C™*P). Thus the class of destabilizing D’s is the same for A+BDC
and A+ BDC. a

Corollary 4.6 Suppose B,C are constant and #(t) = A(t)z(t) is asymptotically or integrally
equivalent to a constant exponentially stable system £(t) = Aoz(t) , Ao € C**", then

1

r¢(4;B,C) = maxn TGOl = A B ||

In contrast with the Bohl exponent the unstructed stability radius is not invariant with respect
to Bohl transformations. In fact any exponentially stable time-invariant system &(t) = Az(2)
can be brought arbitrary close to an unstable system by constant similarity transformations.
The following example illustrates that there exists sequences of time-invariant systems such
that kg(Ax) = —o0 , r ¢(Ak) > 0 as k — oo.

kKB 0 0
A""[o k]’D"_[—k"‘ 0]
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then o(Ax) = {—k} , o(Ax + Di) = {0,-2k}. Since || Dy |- 0 as k — oo , r ¢(Ax) — 0 as
k — o0, but
kp(Ag) = max Re Mi(Ap) = -k — —0  ask — oo.
=1,

For scalar Bohl transformations one obtains

Proposition 4.8 Suppose 3 = (4, B,C) and 6(-) € PC'(R4, C) is a Bohl tranformation,
then

re(A—0710I,;B,C) = r ¢(4;B,C).
Proof: By Proposition 3.10 (ii)
kp(A—87'6I, + BDC)=kg(A+BDC)
for every D(-) € PCy(R4, €™*P). The result follows just as in the proof of Proposition 4.5. O

The stability radius r ¢(A; B, C) is invariant with respect to general Bohl transformations if the
scaling matrices B(-) , C(-) are transformed as well as the nominal system matrix A(-).

Proposition 4.9 Suppose 3~ = (4, B,C) and T(-) € PC'(IRy,GLy( C)) defines a Bohl trans-
formation, then

re(T~YAT - T™'T;T7'B,CT) = r ¢(4; B,C).
Proof: By Proposition 3.10 (ii)
kp(T"'AT -T T+ T 'BDCT)=kg(A+BDC)
for every D(-) € PCy(RRy, C"*P). o
For exponentially stable scalar systems we have the nice result that the unstructured stability
radius coincides with the negative of the Bohl exponent. This is a direct consequence of the

previous proposition and Proposition 3.12 for the case where the scalar system has a strict finite
Bohl exponent. However the same result holds without this assumption.

Proposition 4.10 Suppose a(-) € PC(R4, C) and the scalar system #(2) = a(t)z(t) ,t > 0is
exponentially stable, then

r c(a) = —kg(a). (4.4)
We omit the proof which is straightforward.

Note that the proof of Lemma 4.3 shows that for time-varying scalar systems the constant
disturbance d(-) = r ¢(A) destabilizes the nominal system.

4.5 The perturbation operator

In the time-invariant case ( see Hinrichsen and Pritchard (1986b)), the stability radius can be
characterized via the convolution operator
Lo : Ly(0,00; C™) — Ly(0,00; )

u() = (te fECeAl=9) Bu(s)ds). (.1)
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where Lg(to,00; €™) denotes the set of functions h : [to,00) = €™ such that 2 | h(s) ||
ds<oo,tpeR, ¢g>0.

Proposition 5.1 Let 3~ = (4, B,C) be a tripel of constant matrices and #(t) = Az(t) be
exponentially stable, then

1
Tc(A;B,C): m

where || Lo || is the induced norm of the operator Lo defined in (5.1).

In order to explore the possibility of obtaining similar results for time-varying systems we assume,
throughout this section,

A(-) € PC(R,4, C*),  B(-) € PCy(Ry, C*™)
(5.2)
C() € PCy(Ry, ©°%"), kg(A)<0

With any such tripel 3~ = (A, B, C) we associate a parametrized family of perturbation operators
(L% )t,er, defined by

L:‘:o : La(te,00; C™) —  Ly(tg,00; CP) 020 (5.3)
u(-) m (e [ C(1)%(1,5)B(s)u(s)ds) ’

In the following proposition we will show that these maps are well defined. Note that in the
time-invariant case || L ||=|| Lo || for all t; > 0.

Proposition 5.2 Suppose (5.2) and let 3~ = (4, B,C). Then
(i) LE is a bounded operator.
(i) to~|| LE || is monotonically decreasing on R..
(i) )| LE I7'< r ¢(A; B,C) for all 1 > 0.
(iv) H A, B,C are periodic with some common positive period, then
WZEN=NLE | forall to,t) € Ry
(v) In the unstructured case, i.e. B(-) = C(-) = I, if
I 8(t,s) |< M e™#t=*) forall t>s>0 and some M,w >0
then w T -1 f £ -1
T SNIEIT' < Jim IR 7 < ro(d) < —ka(4). (5.4
Proof:  We write as short hand notations L, instead of
L}, and Ly(to,r) instead of Ly{tg,00; €),q,7 > 1.
(i) Let u(-) € La(to, m) then by changing variables and using the inequality
Nixvle, < W flls Nl for fely, vely
Vowvlbn = [ 1 COB9BusIs It
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o0 t
< UGNl Bl M7 [T [ e | u(s) | s
0 0
oo T
= UCHlBlizw MP [T 1 [ e | u(o + to) | do | ar
€ 0C o 1B e M €™ 1, 0 11+ ) o
< 1 o1 B oo MY/ 0 1 -

This shows that L, is bounded and the first inequality holds in (5.4).
(ii) Suppose 0 < 1y < t; and u(-) € Ly(ty,m), || u(-) ||= 1. Extending u(-) to @(-) by u(t) = 0
for t € [to, t1) yields u(-) € La(to, m) with || T(-) ||= 1. Now
00 t
Mool = [ 1 [ CR(ts)B@us)ds | d
1 1
00 t
/ I / C(1)®(1, 5)B(aYa(s)ds ||? dt
to to

I L Tl 00,09 -

From which (ii) follows.
(iii) Let D(-) € PCy(to,00; €C™*P) be such that

1D llse< Lol (5.5)
then we have to show that the perturbed system
&(t) = [A()) + BODWOCO(1), > to, (56)

is exponentially stable. By Theorem 3.7 and Proposition 3.2 it is sufficient to prove that the
solutions «(-) = z(-; g, zo) of (5.6) (with t§ > to ) satisfy for some k > 0

sup || z(-; tp, zo) ||L2(,6'") < k|lzgl] forallzpe C* (5.7)

th>t

sup || z(t;t5,z0) [| € ki 2o || for all zo € €. (5.8)
0<fe—t41<1

Now by variations of constants, for ¢t > t}
t
z(t; 15, o) = ®(1,15)20 +/ ®(t, 3)B(s)D(s)C(s)z(s;ty, z0)ds (5.9)
t

and hence for y(t) := C(t)z(t) , wo(t) := C(1)B(¢,th)z0 € La(th, p)
¥(®) = yo(t) + (L Dy)(®).

By the contradiction principle and (5.5) equation (5.9) has a unique solution in Lj(t,p) and

Ny lwn < 1T =L DY | o iy 5
< (1=HLZgDID7 1l 9o Hractym)
< A=l Ly WD M %o Neageyp) -

So the norm is uniformly bounded in #§ > to.
Replacing C(s)x(s; th, zo) by y(s) in (5.9) yields

z(t;tp, 7o) = (2, )20 + /"t (1, 3)B(s)D(s)y(s)ds.
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Similar estimates to these used in (i) show that the input to state map

My Ly(tg,m) —  Lo(th,n)

u(-) = (te fi B(t,5)B(s)u(s)ds) (5.10)°

is uniformly bounded in t§ > to. Hence (5.7) is satisfied and a similar estimate as in (i) applied
to (5.9) yields (5.8).

{iv) Let y2 > 0 be the common period of A, B, C. The right shift S,

Su i La(te,r) — La(te+p,r)
u(t) - ot - p)

is an isometry. Now &(t + p,s + p) = $(¢, ), hence

t—p
SuoLout) = [ C(t-we(t - w,9)B(s)u(s)ds

/ T CWB(, s + p)B(s)u(s)ds
to

/'+ C(t)®(t,7)B(r — p)u(r — p)dr
totn

/' C()8(t,r)B(r)S,u(r)dr
totn

= (Lig4g 0 Suu)(t).
Hence the following diagram
Ly,
La(to, m) La(to, p)
Su Su
La(te + y,m) Ly(to + #,p)
A
Figure 5.1.
commutes. This proves || Ly, |{=|| Lty+, || and the result follows since fo —|| Ly, || is decreasing.
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(v) The second and third inequalities in (5.4) follow from (ii) and (jii) and the last is a conse-
quence of Lemma 4.3 (v). =]

Throughout the remainder of this paper we use the notation
. = 1 £ -1
{A;B,C):= Jn_rpw [WLg . (5.12)

As a consequence of (iii) we obtain the following roboustness result:

Corollary 5.3 Suppose ¥~ = (4, B,C) and (5.2). If D(-) € P Cy(0, 00; C™*P) satisfies
Jim 1| DC) loepllz < €45 B,C) (5.13)

then the perturbed system (5.6) is exponentially stable.

In the unstructed case it is known that perturbations D € PCy(R+, €™*?)of norm || D() [[r, <
%7 (w, M as in Proposition 5.2 (v)) do not destroy the exponential stability of the system (see
Coppel (1978) Proposition 1.1). In view of (5.4), condition (5.13) is less conservative.

In contrast with time-invariant systems the following example shows that the inequality inequal-
ity
{A;B,C) £ re(A;B,C) (5.14)

is in general strict.

Example 5.4 Consider the scalar system
Z(t) = a(t)z(t), t>0

where a(t) = ~1 4+ ke(t) , k € R, af-) € PC(R,4, C)is periodic with period 3T, T = ¢n2, given
by
0 te[3T,@3i+ 1)T)

aty={ 1 te[Bi+1)T,(3i+2T) , ieNo

-1 te[Bi+2)T,3(i+1)T)
Let 3~ = (a,1,1) then in view of Example 3.11, Proposition 4.10 and Proposition 5.2 (iv), we
have
—kp(a) =rc(e) =1 and £(A;1,1)=| LT ||*.
We will show that || LE |[~!< 1.
Let B(t):=k f§o(r)dr and u(t) = #)-2 A straightforward calculation shows

I E§wl® = 1wl

/ *a / " eml- B~ Ble)=28 4y (2 _ 30()—4t) 4y
(] (1}
/ m(e"’(‘)[e"‘ - et 24ty gy

0

T oo
/ (1 - 2e~Y)dt + /T HBO-2(] _ 9¢=t)q,
(1]

Since 1—2¢~* >0 fort > T one can choose k so that the right hand side is positive.
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Equality holds in (5.14) if the system ¥~ is asymptotically or integrally equivalent to a time-
invariant system. To prove this we need the following proposition

Proposition 5.6 Suppose that ° = (4, B, C) satisfies (5.2) and let 3(t) = A(2)z(t) be asymp-
totically or integrally equivalent to #(t) = A(t)z(t). Then for 5" = (4, B,C)

Jim | LE - =0 (5.15)

In particular

£(A; B,C) = ¢(4; B,C). (5.16)

Proof:  If A(-) generates ®(-,-) and A(-) generates &(-,-), there exist M,w > 0 such that
| 82, 8) < Me(t=2), || §(t,8) ||< Me~“¢~*), forall t>s>0
(since kp(A) = kp(A)) . Set A(t) = A(t) - A(2), then
N t N
8(1,9) = B(t,5) + / 8(1,7)A(r)d(r, s)dr, forall t>s>0

and so

A

N 1
Né(ts) -8t )| < [ Memelt=n | A || Memtr=ar

It

t
Mie=) [y AGr) | dr.

Now let u(-) € La(to,m) , || u||=1 then

1]

B -l = [0 [ colec.s- s olpeueds I d

NN B [ 1 et [ a0 ar fu(e) f dsar.
In the case of integral equivalence this yields for f(t) := e~*
K[ 18 1 [T e o+ o) I et
:
< KO 1A 11 ol # Fgom
< U8 1 1 om

In the case of asymptotic equivalence, we have for g(t) := te~“*

IA

IA

I (EE - LE)u

NEE-Z8u I < K supla@) P [T1f e - o) fulto + ) I e
T2t 0 0

< K sup | A PN g I, 00y 1l 2 1o eom)
2%
< 2 swp A I v 2
= Wt o, L2(to,m)
and this time the result follows since sup,,, | A(7) ||>— 0 as to — oo. o

Proposition 4.5 and 5.5 show that asymptotically or integrally equivalent systems have the same
stability radius and the same limit £(A; B, C). Hence Propositions 5.1 and 5.5 imply
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Corollary 5.8 Suppose 3. = (4, B, C) satisfies (5.2) and B, C are constant matrices. If £(¢) =
A(t)z(t) is asymptotically or integrally equivalent to a time-invariant £(t) = Agz(t), then

* (4 B,C) = {(4; B,C) = r ¢(4o; B,C) = [max || Cliwl - Ao)'B |)".

It is clear from the definition of Lﬁ that this operator is invariant with respect to Bohl trans-
formations if the transformation is applied not only to A(-) but also to B(-) and C(-):
L= LT, 1920 for L= (TAT™' - 7T}, TB,CT™").

However contrary to the Bohl exponent and the stability radius, ¢(A; B, C) is not invariant when
scalar Bohl transformations are applied to A(:) alone. In fact applying Proposition 3.12 this is
demonstrated by Example 5.4.

In order to fill the gap between £(A; B,C) and r ¢(A; B, C) one might try to use scalar Bohl trans-
formation § and consider 3"y = (4 — 6-181,, B,C). Then r ¢(4; B,C) = r ¢(A — 8-19I,; B,C)
and it is easy to see that LE)' = 4! L}io. Unfortunately we have not been able to prove or
disprove the following
Conjecture 5.7 Suppose (5.2) and 3~ = (A, B,C), then

r¢(A; B,C) = sup{t(A - 67'6I,; B,C);8 a scalar Bohl transformation }
By Proposition 3.12 the conjecture holds true for scalar systems.

This section is concluded with an alternative interpretation of the perturbation operator. From
a control theoretic viewpoint L,ED may be thought of as the inpui-output operator of the system

#(t)
¥(t)

since y(t) = (LEu)(t). Formally (4.1) may be interpreted as a closed loop system obtained by
applying the time-varying feedback u(t) = D(t)y(t) to (5.17).

A(t)z(t) + B(t)u(t) , z(t)=0
C(t)z(t) ,» t2 10

ih

(5.17)

If the triple 3~ = (A, B, C) is such that kp(A4) < 0 (internal stability) then by Proposition 5.2(i)
the input-output operator La is bounded (ezternal stability).

Several authors, for example Anderson (1972), Anderson and Moore (1969), Brockett (1970),
Megan (1976a), Silverman and Anderson (1968), have investigated the relationship between
internal and external stability. Clearly one cannot expect external stability to imply internal
stability without additional assumptions concerning the interaction between the input u(-),
output y(-) and state z(-) in (5.17). One has to impose uniform controllability (see Definition
1.2.8) and the following definition.

Definition 5.8 The system (5.17) is said to be uniformly observable if for some By, 81,0 > 0
Boln < /,i, 8%(s,t — )C*(5)C(s)8(s,t ~ o)ds < I, forallt> o

(here < denotes the order relation between Hermitian matrices.)

The following proposition can be deduced from a result of Anderson (1972)
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Proposition 5.9 Suppose the system 3~ = (4, B,C) with B,C bounded is uniformly control-
lable and uniformly observable. Then the following are equivalent

(i) £ = A(t)z(t) is exponentially stable

(ii) LE : Ly(to,m) — La(to, p) is bounded independent of 2o > 0.

Using a result of Megan (1976a) the characterization in Proposition 5.9 can be extended.
Proposition 5.10 Let ¢ € {2, ] and T~ = (A4, B, C) satisfy the conditions of Proposition 5.9.
Then kp(A) < 0 if and only if the operator

Lg.q : Lv(tOvm) —  Ly(to,p)
u() = (te fo C(O)(t,5)B(s)u(s)ds)

is bounded uniformly in 2, > 0.
Proof:  Necessity follows as in Proposition 5.2(i). To prove sufficiency note that in Megan
(1976a) Corollary 5.3 it is shown that boundedness of the input-state operator

Mto : L2(t07m) —  L(to,m)
u(:) - (tv—»f“o ®(t,3)B(s)u(s)ds)

implies kg(A) < 0. Therefore it remains to prove

Ir

i, is bounded = M, is bounded .

Suppose M, is not bounded. Then for N > 0 there exist u(-) € La(to, m) with || u(-) ||z,= 1
and t — o > t such that || (My,u)(t - o) || = || 2(t - o) || > N, where z(-) solves

1) = A(Wz()+ B(i(t), =(to)=0,t20

and i(s) = {g(s) : :i[tto_,to—a]

Uniform observability yields

t
No < lalt-0) 6o < [ NC6)8(s,t-)alt—0) | ds
t~0o
t
= [ P ds < 19O Mo = 1 D) e
< NG
Thus L& is not bounded and the proof is complete. a]

4.6 The associated parametrized differential Riccati equation
In this section we examine the parametrized differential Riccati equation (DRE),

P(t) + A*(t)P(t) + P(t)A(t) - pC*(1)C(t) - P()B(t)B*(1)P(t) =0, t>1t0, pER
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associated with the system

#(t)
¥(t)

Throughout this section we assume (5.2).

For time-invariant 3 = (A4, B,C) it has been shown in Hinrichsen and Pritchard (1986b) that
the algebraic Riccati equation (ARE),

A(®)z(t) + B(t)u(t), z(to)=20€ C (6.1)
C(t)z(t) )

A*P 4+ PA~pC*C - PBB*P=0

admits a Hermitian solution P if and only if p < r ¢(4; B,C). Guided by this result we wish
to determine the maximal p for which there exist bounded Hermitian solutions of (DRE), on
[to, ). Kalman (1960) and Reghis and Megan (1977), among others, have studied differential
Riccati equations, however their results cannot be applied to (DRE), if p > 0.

We will proceed via the following optimal control probl

(ocp), Minimize the cost functional

Iizoliont)y w)) = [[01u(e) P = I w(e) Pl

for u(-) € Ly(to,t;; C™) subject to (6.1)

where 0 < tg < t; < 00,29 € C* and p € IR. We begin by examining the finite time problem
where t; < 00. Since the optimal control is expected to be feedback we start with some lemmata
on the cost of feedback controls u(t) = — F(t)z(t). To describe these costs we need the following
well-known lemma about differential Lyapunov equations.

Lemma 6.1 Let A(-), R(-}) € PC([to,0); C**) , &(-,-) be the transition matrix of £(t) =
A(t)z(1).

(i) The unique solution of the differential Lyapunov equation
P(t) + A*(1)P(t) + POA(Z)+ R(t) =0, t€ [to,ta] (6.2)
with final value P(t,) = 0, is given by
P(t) = /‘ " be(s,)R(s)B(s,0)ds, 1€ [tortr).
(ii) If &(t) = A(t)z(t) is exponentially stable and R(-) is bounded, then
P(t) = /‘ & (s, )R(s)B(s, t)ds
is the unique bounded solution of (6.2) on [to,00).
Lemma 8.2 Suppose F(-) € PC(fto,t1]; C*™) , t1 < oo , Ap(t) = A(t) — B(t)F(t) with
transition matrix ®5(-,-) and let

up(t) = —F(t)z(t), t€[to,t1]
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where z(-) satisfies
i(t) = Ar(t)z(t), t€ [to,la}, 2(to) = Zo-
Then
Jo(2os [to, 1), ur (")) = < o, Pr(to)zo > (6.3)

where 4

Pr(t) = /: B3 (s, )[F*(s)F(s) = pC™(s)C(s)|®r(s, t)ds, 1€ [to, 11} (6.4)
is the solution of the differential Lyapunov equation, (DLE),

P(t) + Ap()P(t) + P()Ar(t) — pC*(1)C(2) + F*()F(t) =0, 1€ [to,t1]

with final value P(t;) = 0.

Proof: By (6.4) and the definition of J, we obtain

< Zg, PF(to)Io >

It

S0 F@)®p(e, )20 I 1l Cle)orta o) Pl

S0 e 1 = ) vete) P
Jp(z()y [to, tl)v "F('))'

That Pr solves (DLE), follows from Lemma 6.1(i) by setting A(t) = Ap(t) and R(t) =
—pC*(1)C(t) + F*(1)F (). o

Note the following relationsship between the differential Riccati equation (DRE), and the dif-
ferential Lyapunov equation (DLE),.

1

Remark 8.3 P(-) is a solution of (DRE), on [to, %] if and only if P(:) is a solution of (DLE),
on [to, 1} with F(t) = B*(t)P(t).

Our construction procedure for solutions of (DRE), (cf. proof of Theorem 6.7) is based on this
simple observation.

Lemma 6.4 Let F(-) € PC([to,t1], €*"}, T(-) € La(to, t1; C™) , up(t) = ~F(t)z(t) , t €
[to, t1], where now

(1) A(t)z(t) + B()(up(t) + (1)), 1€ lto,2]

Ar()z(t) + B(t)u(t), z(to) = Zo-

If u(t) = up(t) + T(t), t € [to, 11, then

(65)

i

Jo(zos[to, 1), u()) = < 2o, Pr(to)zo >
+ 8 u(s) + B*(s)Pr(s)z(s) |I* ds

~ fut W [F(s) = B*(s)Pr(s)]a(s) |I* ds
where Pp(-) is defined by (6.4).
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Proof:  Differentiation of V(t) :=< z(t), Pr(t)z(t) >, t € [to,t1], along the solution z{-) of
(6.5) gives (we leave out the argument ¢ )

14

< Az + B, Prz > + < z,Prz > + < z, Pr(Arz + B%) >

< Bu,Prz > + < 2,PpBu > + < z,(pC*C — F*F)z >

—lurli? +p || Cz || +2 Re < w, B*Ppz >

~H=IP-llel® -2Re <Hu>+p|| Cz |I* +2 Re < %,(B*Pr - F)z >
~lel?+olCz |* + || v+ B*Ppz ||* — || (B P - F)z ||?

Integrating on {to, ;] and using Pp(t;) = 0 yields
= < 2o, Pr(tozo >= — Jy(z0,{to,11), u(")) +/: il u(s) + B*(s)Pr(s)x(s) |I* ds
S VB Pe(6) - F(@la(e) I ds
from which the result follows. a
Ifp>0and 0< ¢y < 1) <ty < oo, then

R
Jo(20,{to, t2), u()) (6.6)

[\

uEL:(to t, ™)

whereas the converse inequalities hold if p < 0. These inequalities show that the minimal costs
are finite over an arbitrary interval if they are finite over [0, 00).

Lemma 6.5
() infuery(tom) Jo(0[tor00),u(1)) =0 & p < LE 12
(here by definition || LE ||=%= oo if || LE ||=0).
(ii) Forevery p € (~oo,|| L ||~2) there exists a constant ¢, > 0 such that

iy Joze[t0),u()) 2~ |l zo0 I? forallt>to,20€ R" (6.7)

Proof: (i)

s o0 lto,00) u() =0 & [fulf-p | LEu |20 forall ue La(to,m)

which proves the equivalence in (i).
(ii) We need only consider the case p € (0, || LE ||~?). Since

2Re<ab><alfal|?+at||b|? forall a> 0,a,b€ Ly(to,p),

we have

Jo(z0, [to, ), u(-))

I u() P =2 1 (LEB)() + CCIE(- to)zo |I?
u() 12 =p | C()B( to)zo I ~2 p Re < (LEu)(-), C()&(+t0)z0 >
I oC) I =p(1 + @) | (LEw)C) I =p(1+ @) || CC)B(:, to)zo |I? -

v
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For sufficciently small o
Jo(@o, [ta, 00), u()) 2 —p(1 + &™) || C()(-, to)zo |I* -
Since Z(t) = A(t)z(t) is exponentially stable, there exists ¢ > 0 such that
FC(B(-to)zo I < e || zo ||* for all £ > 0.

So we may take ¢, = p(1 + a~1)c to ensure (6.7) for to. The result for any ¢ > t, follows since
HLE <l LE Il o

Lemma 6.8 Suppose Ax(-) € PC(to,t1; €**) , k € IN , t; < oo converges pointwise to
A(") € PC(tg,t1; €*™) on [to, 1], i.e.

klim I Ax(t) = A1) |=0 for all ¢ € [to, t;]

and || Ax(t) [{< ¢ for all t € [to,t1] , k € IN. If Ax(-) generates ®,(-,-) and A(-) generates &(:,-),
then for every ¢ > 0, there exists ko € IN, such that

|| ®x(t,s) -~ B(t,8)[][<e forallk>ko, to<s<t<ty. (6.8)

Proof: The proof is similar to the one of Lemma 2.2 in Reghis and Megan (1977). Put
Ax(t,8) =|| x(t,s) — &(t,3) || . Since

t . t -
<I>k(t,s)=1,.+/ Au(r)®y(r,s)dr and <I>(t,s)=1,.+/ A(r)d(r, s)dr

one obtains for o := max{|| &(r,s)|| |[to <s< 7T <1}

Autis) = | [ Ar)ulrs) = A, )i |
< 1 [ (A = AR )i+ [ 1 A | dalr e
ai ) . s
< a/ || Ae(r) = A() || d7 - c/ Ag(T, s)dr.

Since || Ak(t) — A() ||~ 0 for all ¢ € [to,?1] by Lebesgue’s dominated convergence theorem for
every € > 0 there exists ko € IN such that

t -
/' I Ak(r) = A fldr < Semta=0)  forall & > ko.
to

Hence .
Ax(t,s) < e=cltto) -5+c/ Ax(r,s)dr  forall k> ko

and by Gronwall’s inequality
Ax(t,s) < emclh=t)g =) < ¢ forall k > ke.
This proves the lemma. o

We are now in a position to solve the optimal control problem (OC P), on finite intervals.
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Theorem 8.7 Suppose p <|| LE ||7?, 0 < to < #; < co. Then:

(i) There exists a (unique) Hermitian solution P1(-) € C(to,#;; C**") of (DRE), with
Ph (t1)=0.

(i) Ifp> 0 (resp. p < 0) then P':(2)is nonpositive (resp. nonnegative) for all ¢ € [to, t1].
(iii) The minimal cost of (OCP), is

inf Jo(zo,{tas t1), u(+)) = < zo, P!’(ig)xo >. (6.9)
u€La(to,ty; C™)

(iv) The optimal control is given by
u*(t) = ~B*(1) P11 (1)z(t).

Proof: Starting with Po(-) = 0 we recursively define a sequence Pi(-) € Cl(to, t;; €C**") ,
k € IN by the following sequence of differential Lyapunov equations

P(t) + AP+ P(®)Ara(t) - pCH(C(D)

+ P ()B()B*(1)Pey(t) =0,  tE€ [to,t1), (6.10)

P(ty) = 0

where
Ak_l(t) = A(t) - B(t)B‘(t)Pk_l(t), te [to,h], k>1.

We will show:
(2) P4(t) = limg o Pi(t) exists for all t € [to, ;)

(b) P"(-) is the unique Hermitian solution of (DRE), on [to, ;] with Pt1(t;) = 0.
After establishing (a), (b) we have by Lemma 6.2 and Remark 6.3

J,,(Io, [io,tl), —B‘(-)I(')) =< Io,P"(to)tEo >

and applying Lemma 6.4 with F(t) = B*(t)Pt1(t) yields
t
Jp(%as [to,11), u(*)) = < zo, P (t0)z0 > +_/, Il u(s) — w(s) I* ds.
0

This shows (iii) and (iv) so it remains to prove (a), (b) and (ii). Note that by (6.10), Pi(2) =
Pr(t) where F(t) = B*(t)Pe_1(t). Set

ug(t) = —B* () Pe(t)z(t), W(t) = melt) — upa(t), t€fto,t1], k> 1

where z(-) solves Zx(t) = Ap(t)az(t) , zk(th) = zo and ty € [to, )] is arbitrary. By Lemma 6.2
and Lemma 6.4
< 2oy Pepr(th)zo > — < o, Pi(th)zo > Jo(z0, [15, 1), uk(+)) ~ < zo, Pi(tp)zo >

= [ N B @) Pucs(5) = B*(o)Putollea(o) I do < 0

i

1]

for all k < 1,1, € [to, ;). But by Lemma 6.5(ii)

< 2o, Pi(ty)z0 > 2 )J,,(J:o, [to:t1),u(-)) 2 —¢ || 7o ”2 .

inf
ueLy(thtyym
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So (Pi(t))k>1 is a decreasing sequence uniformly bounded from below and the limit
Jim Pu(th) = P (th) = (P4 (th))"
exists for every 4 € [to,1,]. This proves (a). Moreover
kli.IEo Ax(t) = A(t) - B(t)B*(t)P"'(t)  for all t € [to, t1] (6.11)
and since Pi(t), k > 1is monotonically decreasing and bounded from below we see that I A(t) ||
is uniformly bounded on [tp,#;]. Thus by Lemma 6.6 ®4(-,-) converges uniformly on [tg,?,] to

®*1(-,) the evolution operator generated by A(-) — B(-)B*(-)Pt(.). Next we apply Lebesgue’s
dominated convergence theorem to the sequence

P(t) = - /: 515, )[PC™(s)C(5) — Pro1(8)B(8)B*(8) Pr1(8)]@x-1(s, t)ds
to obtain
Py =~ [ " 81, (5, )[pCT(5)C(5) = P (5)B(s)B~(5) PP (8)]ey s, )ds
Thus P4(.) satisfies (DRE), on [to, ;] and P!(t;) = 0. The uniqueness of the solation P! ()

of (DRE), with P'(¢;) = 0 follows from general theorems. This proves (a) and (b).
Applying Lemma 6.2 and Remark 6.3 to the above equation yields

Ph(t) = —/tt’ B(s,1)[pC*(s)C(5) + P11 (s)B(s)B"(s) P"(5)]8(s, 1)ds

from which (ii) is obvious. (Note that Pi‘ﬂ(t) > P{*(t) holds for k > 1 and not for k = 0, if
p < 0.) This shows (ii) and completes the proof. o

Corollary 8.8 Suppose p <|| LE ||=2,0 < 25 < t; < t; < 00. Then
P2ty < P(t) forallt€[to,] ifp2>0
P(1) > PU(t) forallt€to,ty] if p<0.
Proof:  Follows from Theorem 6.7 and (6.6). o

We now proceed to examine solutions of (DRE), on infinite intervals and relate them to the
infinite time optimal control problem (OCP),, t; = oc. The following lemma plays a key role.

Lemma 8.9 Suppose o > 0,p € R , u(-) € La(to, m) and Q(-) € C}(to, 00; €**") is a bounded
Hermitian solution of (DRE),. If 2(-) solves

#(1) = A()z(2) + B)u(t), 2 to,2(to) = 7o (6.12)
Then
Jo(0, [t0,50), u(-)) = /: Il u(s) + B*(5)Q(s)a(s) | ds + < 20, Q(to)z0 > . (6.13)
In particular,

<z0,Q(to)zo > < inf )Jp(lo,[toyoo),“(‘)% zo € C. (6.14)

i
u€Ly(to,m
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Proof:  Since kp(A) < 0 we have z(-) € La(tg,n) and we show that z(t) — 0 as t — oo.
Given £ > 0, choose t; > to such that || u(-) IL,(; m)< €, then

t
= < I8t tate) |+ [ 8t BNl | ds, 12 1.
1
Hence by the Schwarz inequality
2@l € Me =) |[o(ty) || + M || B llLo (2)°% ||t lliyesm) -

Now
$<2(0,Qz(> = pl|CHZE) | + || B (0)Q(1)z(2) |2
+2 Re < B(t)u(t), Q(#)x(t) >
= pllCz() [P + || u(2) + B(6)Q(1)=(1) [|?
e
Integrating over [to,#;] and taking limits as #; — oo yields (6.13).
Since (6.13) holds for all u(-) € La(tg,00), (6.14) follows. n]

The above lemma yields immediately the following necessary condition for the existence of
bounded Hermitian solutions of (DRE),.

Proposition 6.10 Suppose (5.2) and to > 0. If Q(-) € C!(to, 00; €**") is a bounded Hermitian
solution of (DRE), on [ty, 00) then

Pl LE N (6.15)

Proof: By (6.14), 0 < J,(0,[to,00),u(:)) for all u € Lz(to,m). This implies (6.15) by
Lemma 6.5 (i). o

The following converse result is the main theorem of this section.

Theorem 6.11 Suppose (5.2), 3= = (4, B,C) and p <|| LE |72, to > 0. Then we have
(i) There exists a unique stabilizing bounded Hermitian solution
P*(:) € CY(to,00; €**") of (DRE), on [tg, 00).
(ii) P+ is maximal in the sense that, for any bounded Hermitian solution Q(-) € C(t}, 00; €**™)
on [tg,00) , th > tg,

Q1)< PH(t) forallt >t
(iii) The minimal costs are

inf  J,(20,[ta,00),u(-)) = < zg, P*(to)z0 > (6.16)
u€La(to,m)

and the optimal control is given by

u(t) = —B*()PH(t)z(t), t>1t (6.17)
where z(-) solves
z(t) = (A(t)- B(t)B*(t)P())z(t), t>to, z(to) = Zo. (6.18)
(iv) I the system ¥ is uniformly observable and p > 0 (resp. p < 0) then
P*(t)< —v 1, (resp. P*(t)> 7 I,) (6.19)

for some 4 > 0 and all ¢ > .
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Proof:  First, let p > 0. By Lemma 6.5 and Theorem 6.7 there exists ¢, > 0 such that for all
h > to,t € [to, 1)

—ellzol? < inf Jy(o,[t,00), ()

uella(t,m)
< Jo(zo, [t,t1), u(-)) (6.20)

inf
u€La(t,ty; ™)
< z9, P (t)zg > .

It

Thus P"1(t) is bounded below and since by Corollary 6.8 it is monotonically decreasing we have
that

Pt} = lim P4(t), (6.21)
ty—oo
exists for all ¢ € [tg, 00).
Similarly, if p < 0, exponential stability implies that for every t; >ty , t € [toyta]

0 < zg, Pt’(t)z’o >
inf J, Sty t), ul:
ueL;(ltI.lh:c"‘) o(20, [t t1), u(-))

inf t,00), u(-
et Jo(zo, [t,00), ("))

Jo(0,[t,0),0) < oo.

i IA

IA

IA

Since (P*1(t)) is monotonically increasing in t;, the limit (6.21) exists for all ¢ € [t;,00) in the
case p < 0 as well.

In both cases, P*(-) satisfies

PU(t) = PY(t5) — /;t[A'(s)P“(s) + PU(s)A(s) - pC*(s)C(s)
—  PY(8)B(s)B*(s)P"(s)]ds.
Taking limits (as t; — 0o ), yields
POy = PHto) - [[AOPH() + PH(s)A(s) - pC7(C(0)

~  P*(s)B(s)B*(s)P*(s)}ds

and differentiation shows that P*(-) € C(tp,00; €**") is a bounded Hermitian solution of
(DRE), on [tg,00).

Before showing that P+(-) is stabilizing we prove (iii).

If Q(-) € Cl(2o, 00; €**")is a bounded Hermitian solution of (DRE), and A(-)- B(-)B*()Q(-)
is the generator of $¢(-,-), then

B 1)Q(0)8(s,0)] = F(s,)pC(5)C(s)
~QU)B()B(5)Q()] (s, o).

Hence

< 20,Qto)ro > = < Bg(t,t0)zo, Q(1)®o(t, to)zo > +/;t < ®g(s,t0)z0,
[Q(s)B(8)B*(s)Q(s) — pC™(s)C(s)]q(s, to)zo > ds (6.22)
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First we consider the case p < 0 for which P¥(¢) > 0, t > . The above equality with
Q() = P*(-) yields
< 2o, P*(t0)z0 > 2 J,(20,[to, ), - B*(-)P*(-)®ps (-, t0)zo).

In particular @(-) 1= —B*(-)P*(-)®p+(-,t0)z0 € La(to, m) and applying (6.13) with Q(-) = P+(-)
we find

inf  Jy(2o,[to, 20),u(:)) = J,(z0,[to,00), #(-)) =< zo, P*(to)zo > .
u€Ly(ta,m)

The case p > 0 is more difficult. To do this we extend the finite time optimal control by 0 to
[to,00) and define uy, (-) € La(to, m) by:

_ | -B*@®)Phzy (1) for h<t<t
uy (1) = { 0 ' for i<t

where z,(-) solves
2(t) = A(t)z(t) + B(thuy(t), 2 to, z(to) = Zo.
Then by Theorem 6.7

Jo(2o[to, 00}, u () = [2ua() 2 = pl|C(s)ae,(s) |IPlds
- ft‘:op Il C(s)zll(s) "2 ds (6.23)
= <z, PU(tozo > - p [T || C(s)zyy(s) ||* ds
By applying (6.14) to P*(-)
Jp(’f'()y [to, OO), u()) > < g, P+(to)Io > for all u € Lg(lo,m) (6.24)
and so
limy oo [i° || C(8)24,(8) |2 ds = 0,
(6.25)
limgl_.oo J,,(zo, [to, 00), u¢1(~)) = < g, P+(to)zo >.

Now from (6.23) we have for every a > 0

0 < 2o, P! (to)zo >

'Iﬂ(zov [to, °°)7 "11('))

L W) 1P =2 1 G006, to)za + (15 ws,) 1Pl (6.26)
i

(L= p(1+ ) | LE P I ey (E, um) —P(L + 07) [ COIB(rt0)20 I 40

by the same estimate as that used in establishing Lemma 6.5. Choosing a > 0 small enough we
see there exists a constant K independent of tg, so that for all tp > 0

vV v

]

v

o I aom) S K llzoll?. (6:27)

Hence {uy,,% > to} is bounded in L,(to,m), so there exists a sequence (g JkeNsts = ©
which converges weakly to some (-} € Ly(to, m). By (6.24) and (6.25), (uy,) is a mininmizing
sequence. It is easy to see that J, is strictly convex. Moreover it follows from the last inequality
in (6.26) - which holds for arbitrary u € La(fo, m) instead of uy, - that u Jo(Zo, [to, 00), u(+))
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is coercive. Hence (Ekeland and Temam (1976) p.35), @(-) is the unique optimal contro} and the
minimum cost is

Jo(%0.{to, 50), #(*)) = < 2o, P*(to)z0 >
Lemma 6.9 implies for Q(+) = P+(-)

Sz fto,00), i) = [T i) + B@)PH)a(o) P ds
+ < 20, P (to)zo >
and so
i(t) = =B (t)P*(Dz(t), t>to. (6.28)
To prove the uniqueness and maximality, assume that Q(-) is a bounded Hermitian solution of

(DRE), on [t§,o0). Using Lemma 6.9 and (6.16) we obtain

< 20,Q(t)zo> < inf _Jy(zo,[t,0),u(+)) = < ¢, P (t)zo >
u€Lz(t,m)

for all t > tj and all zg € €. Hence the maximality of P+(-). Now assume that Q(.) is

stabilizing, then for every {; > t} the feedback control u(t) = —B*(1)Q(t)z(t), t > fo isin

Ly(fp, 00; C*) and so by Lemma 6.9

Jo{zo, [fo, ), u()) = < 20,Q(fo)z0 > < < zo, P¥(f0)20 > .

Hence by (6.16) uniqueness holds.
To prove the feedback system(6.18) is exponentially stable we note that by (6.16) when p < 0
and via (6.27) and the weak convergence when p > 0, we have

&l om S K Nl 2o 17

for some constant &". Then it is easy to show, that the solution z(-) of (6.18) satisfies
Il =(+) ||L('°,")< K || zo ||, with K independent of t5. The exponential stabilization then follows
from Theorem 3.7.

It only remains to prove (iv). Suppose that ¥~ is uniformly observable and p > 0, then

< Zo, P+(l)1‘o >

= ue]{:\(f;‘m)J,,(Io»[tO»oo)v"('))

(o]
< Jo(30,[to,0),0) = —p [ | C(s)®(s, )z |I* ds
< —phollzal®.

The proof for the case p < 0 is more difficult. Using (6.22) with @(-) = P*(-), t = oo, yields
00
< 2o, PH(to)z0 > = / < ®pi(s,t0)zo, [PH(s)B(s)B*(s)P*(s)
io
~pC*(8)C(3)]®p+(s,t0)x0 > ds (6.29)
where ®p.4(-,-) is generated by A(-) -~ B(-)B*(-)P*(-) and hence
t
bpy(t,8) = B(t,s) ~ / &(t,0)B(0)B*(0)P*(0)®p4 (0, s)do. (6.30)

Given ¢ > 0, suppose there exist t,zg such that < zq, P*(t)zo > < € || 2o [|?, then from (6.29)
with ¢ = t, since p < 0, we have

SN B*(s)P*(s)®p+ (s, t)z0 [P ds < || 2o |I?

SN C(s)ps(s,thao P ds < G llzol®-
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Let M,w > 0 be such that || ®(z,s) ||< Me™“{t=9) for all t > s > 0. Then the first inequality
and (6.30) imply

M || B(O) Il

[ @p+(-,t)z0 — B(-,)z0 |1}, (1m) < Q0 zo |f?.

But then

A

COeC D20, m < 2N CENERL) = @ps ()20 1,09
+ 1 C(Y®p+ ()20 |1} 1em)]

2
27 1 CO) Mhall BO) e+ 20 12

IA

For ¢ sufficiently small this contradicts the assumption that ¥ is uniformly observable and this
completes the proof. u]

Proposition 6.10 and Theorem 6.11, together, imply the following characterization of || L || in
terms of the solvability of (DRE),:

| LE < || = sup{p € R;(DRE), has a bounded Hermitian solution on [to, 00)}. (6.31)

More precisely, if p <|| L {2, then (DRE), possesses a bounded Hermitian solution on [to, %)
whereas for p >{| LE ||=2 there does not exist such a solution. However, there may exist solutions
on some smaller interval [t§, 00) , t§ > to. The following corollary shows that £(A; B,C) is a tight
upper bound for those p € IR for which there is a bounded Hermitian solution of (DRE), on
some interval unbounded to the right.

Corollary 6.12 Suppose (5.2). If p < £(A;B,C)? then there exists a bounded Hermitian
solutions of (DRE), on some interval [tg, ) , to > 0.

Remark 6.13 The above results are not applicable to the limiting parameters value

p* =|| LE |72 (vesp. p* = £(A; B,C)?). In the time-invariant case it is known that (ARE), has
a Hermitian solution for p* =|| Lo ||~2 but the corresponding closed loop system is no longer
exponentially stable and there may not exist a solution of the corresponding optimal control
problem (OC P),. (see Hinrichsen and Pritchard (1986b)). So the differential Riccati equation
(DRE), and the optimal control problem (OCP), are decoupled at the parameter value
pr=l LollI* .

In the remainder of this section we show that if }~ is uniformly controllable, under the conditions
of Theorem 6.11, there exists a solution P~(-) of (DRE), on [tg + o,00) such that the closed
loop system #(t) = [A(t) —~ B(t)B*(t)P~(t)]z(t) is completely unstable (i.e. the adjoint system
#(t) = —[A(t) — B(t)B*(t)P~(t)]*z(t) is exponentially stable).

Proposition 6.14 Suppose (5.2), 3 = (4,B,C), p <|| LE |2 , to > 0 and ¥ is uniformly
controllable with controllability interval of length o. Set

Y(to,1) = / ®,(1o,5)B(s)B"()®%(to, s)ds for t > 1> 0

where &, (-, -) denotes the evolution operator generated by A4(-) = A(-)~ B(-)B*(-)P*(-). Then
P=(t)= P*(t) - Y " Yto,t) fort>to+o
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is a bounded Hermitian solution of the (DRE), on [t, + 0,) and the system
ity = A_(t)z(t), A-_(t):= A@t)- B()B"(1)P~(t), t>2to+ o
is completely exponentially unstable.
Proof: By Lemma 3 in Silverman and Anderson (1968) it is clear that (A, B,C) is also

uniformly completely controllable with the same length of the controllability interval o. Thus,
see Coppel (1978), there exist 8o, 6; > 0 such that

—boln € =Y Ytp,t) <8I, forallt>ty+o0.

This proves that P~(-) is bounded. Next we show that it solves the (DRE), . By differentiation
of Y(tq,-) we see

Y (to,t) — AL(2)Y (to,t) — Y(to,1)A4(t) — B(s)B*(s) =0 fort > to (6.32)
Since Y(to,t) is invertible for ¢ > ¢ + o it follows that —Y ~1(t,1) = P~(t) — P*(t) solves
X(t)+ ALOX () + X()AL() - XWBO)B(1)X(t) =0  fort > tg + 0.
Thus (leaving out the argument ¢ ):
P~ + AP~ + P~A- P BB*P~ = P*4 A"P* 4 P*A- P*BB"P*.

But P* solves the (DRE), on [tp,00) and so the left hand side is equal to pC*(-)C(-). Therefore
P~ is a solution of the (DRE), on [ty + 0, 00).
Using (6.32) it is easy to see that Y (to, 1) solves the following Lyapunov equations for t > to + o

Y

(- BB*(P~+ Y)Y +Y[A~ BB"(P" +Y ™) + BB
—(-AL)'Y - Y(-A*)-BB". (6.33)

fl

It now follows by applying Theorem 5.2 in Megan(1976a) to (6.33) that the system
#(1t) = -AL()(t), t2t+0o
is exponentially stable. Hence the proof is complete. [u]

The following example will show that, in contrast to the time-invariant case, P~(-) will not in
general be a minimal solution of (DRE), on [t + 0, 00).

Example 8.15 Consider

#t) = -—z(t)+u(t)
y(t) = =(t)
and the associated (DRE),
B(t) - 2p(t) — p — p(1)* = 0.
Then || L, ||=1 and

ke (1+a)— (1 -a)

p(l) = T ot )

keER,a’=1-p
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whence

ptt) = -(1-a), k=0

y(0,t) = /0' e2dds = l_‘;_;ﬁ

() = -(1-a)- 1_2:_10,1 = _(1‘0):::‘:1(1—“)' k=1
Now

p(t)>2p (1) fork>1lork<0,t>0
but for t large
p(1)<p~ (1) forG<k<l.

4.7 Dependence of the solution P(t) on the parameter p

In this section we examine properties of the maps

PH(@) (=00, LE IT?) - € 21
p = PHD)

and analyze how the norm of the perturbation operator LE," of the closed loop system }°, =
(A,, B,C) changes with p ,

A (t) = A(t) - BYB*()PH(1), t2>to.
Let ®,(-,-) denote the evolution operator generated by A,(-).

Proposition 7.1 Assume (4.2).

(i) The map p— P;f(t) is differentiable on (—oo, || L ||=2) for every t > 5 and

%Pj(t) = —/w ®5(3,1)C*(s)C(8)P,(3, t)ds.
t
(i) If pp<pa<|| LE |2 then
PYX()> Ph(t) forallt >t

(iii} If py < p < || LE |2, then P}(-)— P}(-) is the maximal bounded Hermitian solution of
the differential Riccati equation

X()+ 45, (X (1) + X ()4, (1) ~ (o~ p)C*(C(1) - XBOB* (X () =0 (7.1)
on [tg, 00).

(iv) Ifp <|{ LE [|-2, then .
0Ly 7%= L3 172 -p-
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Proof:  Subtracting (DRE),, form (DRE),, yields

d . . .

75— B+ A (P} ~ PR+ (P} = PY)A, —(p—p1)C*C =~ (Po~ P, )BB*(P, - P,,) = 0.
Hence by Lemma 6.1 (ii)

ARS8

1]

- [ el picrecs)
H(PY = PY)OB@B (B = P)ON@n(s,)ds (1.2
<0 ifp>p.

Hence (ji) is proved. To prove (i) note that for p # p; (7.2) is equivalent to
(1) - (P‘Pl)/t 20.(5:1)  Ap(9)B(8)B*(8)A,(5)®), (s, t)ds

= / " @, (5,)C(5)C ()8, (s, t)ds (13)
t

where
PHY) ~ PA(Y)
=M
Now assume p < p; <|| LE || ™2 . Since kp(A,,) < 0 the right hand term in (7.3) is uniformly
bounded in ¢ and then by (ii) and (7.3)

2,0 = -

0<Ap(t)<al,, t>1ty for some real constant a > 0.

Hence

lim ~A(t) = — / % 5, (5,)C"(5)C ()8, (5, 1)ds.
p=py i

s<p1

Since this limit is continuous in p; it follows from Kato (1976) p. 494, that

PO e = [ 8,00 ()04 (5,5,
To prove (iii) note that since
5(1) = [4,,(1) - BOB* ()P - PHOk(t) = [AQ) - BB (0B} (1)a(t)

is exponentially stable, Theorem 6.11 applied to (7.1) yields that (P} — P})(:) is its maximal
bounded Hermitian solution.

It remains to show (iv). Now since (P} — P})(-) solves (7.1) on [to,0), it follows from
Proposition 6.10 that

z - -
p=pr <L, II7* forall p€py, |l LE |72

Hence s
HLE N2 <UL 172 +pn
Now suppose that

NLE ™2 +e = | Li"‘ |I*2 4p1  for somee > 0.
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Then by Theorem 6.11 there exists a bounded Hermitian solution P(-) € C!(to, 00; €**") of the
differential Riccati equation

P+ AL P+PA, —(|LE|? -, + )c-c PBB*P =0 (7.4)

with the property that #(t) = [4,,(t) - B(t)B‘(t)P(t)]z(t) is exponentially stable. Adding (7.4)
to the (DRE),, shows that (P,, + P)(-) € C}(to,00; C**") is a bounded Hermitian solution of

X+AX+XA-(I L 0% 45 )C‘C PBB*P =0
on [tp, 00) with the property that
#(t) = [A(t) - B()B*(1)(Py, + PY(B)]2(t)
[4,,(t) = B(t) B~ (1) P(1)}=(?)
is exponentially stable. This is a contradiction by Proposition 6.10. u]

4.8 Nonlinear perturbations and robust Lyapunov functions

In this section we extend our robustness analysis to nonlinear perturbations of the form
A(t) = B()N(C(t)z(t),t) so that the perturbed system is

i(t) = A(Ya(t) + BONC(D=(1),0),  t2to, 2(to) = 2o 8.1)

where (A, B,C) satisfies (5.2) and N : R”? x IRy — IR™ is continuously differentiable. We
assume N(0,2) = 0 so that 0 is an equilibrium state of (8.1). Our aim is to determine conditions
on the "norm” of the nonlinear perturbation such that exponential stability of (8.1) is preserved.
To this end we need the following lemmata.

Lemma 8.1 Set ¥°° = (A + ¢ I, B,C). Then for all € € [0,60) , €0 < —kp(A), there exists
independent of ¢ such that

ILE ~ L% lle(tatom)iatios) S & €- (82)

Proof:  Let A(-) + I, generate &.(-,-), then &.(t,s) = e(*"*)(t, ) and hence
| ®e(tto) — B(t,to) || < |1 —emR) |- [ B(t,t0) || -
Since there exist M and w € (g0, —kB(A)) such that || &(2,t0) | < Me~«(=t), t > 1o, we obtain
il ®e(t,t0) — B(t,t0) |} M| 1 - esltmto) | gmult—to)
N ¢ e~ {w—e)t-t0)
N g e (t=t)

IA A A

for w' 1= w — €o and some N > 0. Then for f(t):= e~“'* and every u(-) € Ly(to,00; C*)
NEE = IEO) Booms o
L7 [ Cate,s) - #t,)Bls)us I e
to to
OO BN BC I Mo [~ (w0t
1O Il BO) W 5% €2 1 ) W00 om)

A

IA
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which proves the lemma. =]

By P; we denote the maximal bounded Hermitian solution of the Riccati equation

P(t) + [A(t) + € L]"P(t) + P()[A(t) + € I,] - pC*()C(2) — P(t)B(1)B*(1)P(1) = 0. (8.3)

Lemma 8.2 Suppose 0 < p <|| LE ||=2 . Then there exists £o > 0 such that for all £ < ¢¢

P;(-) exists on [tg, o) (8.4)
P(t) S P(t) < P(t) forallt>1g (8.5)
|| Pi(to) — Py(to) |< ke for some « independent of ¢. (8.6)

Proof:  For ¢ sufficiently small 6 <|| LE" ||=? by Lemma 8.1, hence (8.4) follows from

Theorem 6.11. If P := Pz(-) — P,(-), then

P+[A+el,— BB*P)F+PlA+cl, - BB"P,)+ 2P, - PBB"P = 0.

Since kp(A+¢el, - BB*P,) < 0 for all ¢ < €9 and ¢, sufficiently small, we obtain by Lemma
6.1

P(t) = / ®31(s,1)[2e P,(s) — P(s)B(3)B*(s)P(s)}®c(s,t)ds (8.7)

t
where [A + ¢ I, — BB*F,)(-) generates ®.(-,-). Now P,(s) < 0 for s > # and thus P(t) < 0 for
t > to. This proves the right inequality in (8.5). The left inequality is established in a similar

way.
By

Po) < 2 [T [ @s,0) PN BuGo)  ds (58)

and since P,(-) is bounded it remains to show the existence of some &’ > 0 such that
o0
/ | @c(s,0) 1P ds < &' for all t 3 to, ¢ < co. (8.9)
t

If &(-,) is generated by [A — BB*P,)(-) and || &(s,¢) ||< Me~¥6-") for some M,& > 0 then
Variation-of-Constants yields

- - s - -
N, 1) < 8 =9+ [ 4 =50t | @(r,1) | dr.
t
Multiplying this inequality by e* and applying Gronwall’s Lemma gives
e @e(s, 1) ll< M e M=),
Thus (8.8) holds for ¢g sufficiently small and the proof is complete. [u]

If a global bound for the nonlinear perturbation is known we obtain the following result.

Theorem 8.3 Suppose (5.2), I~ = (4, B,C), to > 0 and for some 7y <|| L |17t
IN@Ol<y Iyl forallt2t0,5€ C. (8.10)

Then the origin is globally exponentially stable for the system (8.1).
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Proof:  Choose p € (v2,]| LE ||2) and € > 0 sufficiently small such that P(-) exists on
[to, o0). (Note that, by assumption (8.10), the right hand side of (8.1) is linearly bounded and
so the solutions of (8.1) exist on [ty, 00) . Consider the functional

Vit,g)= - <z, P(t)z>, t>to,z€ C.
Its derivative along any solution z(-) of (8.1) is

V(t,(1)) = 2eV(t,2(t)) - p | C(Dz(1) ||* = || B*()Pe(t)z(2) |2
~ 2 Re < PE(1)2(t), BYN(C(t)z(2), 1) >

= - 2eV(t,2(t))- || B*(1)P5(t)2(t) + N(C(D)z(t),1) |I*
= [Pl COH=@ P = | N(C(B)(2), 1) |IP).

Hence
V(t,2(t) S ~2eV(t,2(0) - 6 | COW 2, t2 1o

where § = p — v2. Integrating yields

V(t,a{))e = Vto,alta)e™ < =6 [ e[| C0(t) I

o
for all ¢} > tp and since V(t;,2(t;)) > 0
/t°° e2t10) || C(1)2(t) [P dt < —671 < zo, Po(to)zo > - (8.11)
o

Now if A(-) generates &(-,-)

12O < 118t tolzo )+ || | 800, BONC(s)a(s), ) d.

But there exists M,w > 0 such that || ®(t,s) ||< Me(t=*)t > 5. Hence
A EOY

IA

Me—(w=e)(t-to) Ii zo ||
t

4y [ M B 0o | Cla)a(s) || ds
0

Me—(w=e)(t=to) Il zo il

t 1
1M B o, [ [ e2oma-aglhy [ 2emi0) | Cl)a(s) P doft.
to to

v

So, by (8.10), there exists a constant K > 0 such that
z(®) || € Ke=*t=%) || z(tg) || forallt>1,>0

This concludes the proof. s}

If condition (8.9) is required only locally then the following local version of Theorem 8.3 is
available. However, one needs to know P,(t) for all ¢ > #.

Theorem 8.4 Suppose (5.2) , I~ = (4,B,C) , to > 0 and 0 < p <|| LE ||~2 . If there exist
d > 0 and § > 0, such that

-<a P> <d 5 [NCOz)I*S (o= CM=I?, 121 (8.12)

then {zo € €* | — < 2o, P5(to)zo > < d} is a region of exponential stability at 2o, for all ¢
sufficiently small.
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Proof:  Suppose that — < z(t), P(t)z(t) > < d then by Lemma 8.2 for ¢ sufficiently small
— < z(t), P,(t)z(t) > < d. Now the proof follows in exactly the same way as in Theorem 8.3.
a

The dependency on ¢ of the region of exponential stability in the above theorem is not very
satisfactory. However as a consequence of Lemma 8.2 we have the following corollary.

Corollary 8.5 Every bounded set in {20 € C€* | — < =z, P)(to)z0 > < d} is a region of
exponential stability at 5. This follows from Lemma 8.3 since for all zo € C* and ¢ < ¢o

-< Io,P:(to)z'o > 4+ < zgy Pp(lo)zo > < Keg ” To ||2

The proof of Theorem 8.3 shows that V{(f,z) =< z, Pi(t)z > is a joint Lyapunov function for
all the systems (8.1) satisfying (8.9) with ¥ <|| L ||=? . In the linear case one has

Proposition 8.6 Suppose (5.2), L = (4, B,C) and p <|| L, ||=2 for some to > 0. Then
Vit,z) = - <z, P(t)z >, t>ty,z€ C°
is a common Lyapunov function guaranteeing the exponential stability of all the systems
D &(t) = [A(t) + BODOIC@)]e(t),  t 2 to, 2(to) = 2o

with D(-) € PC(to,00; €™*) and || D() I3 1 co; mn)< -

Proof:  Suppose that D € PC(tp,00; C™*P) and 7 :=|| D ||z < p¥ . V(t,z) is non-negative
and its derivative V(t,2) along the trajectories of 3 p is non-positive by the previous proof
Hence V is a Lyapunov function for 3°p,. Moreover, applying (8.4) with e = 0,6 = p — 72 we
obtain

[ ncws ) e < 67V(th,n0)

for all t§ < to and trajectories z(-) = zp(-;th, 7o) of S p- Thus, for any o € C", we have for
some K > 0

sup || C()en{:; tos o) llLaqeg, vy < K 1l 7o |
21 :
and this implies the exponential stability of "1, (see proof of Proposition 5.2 (iii)). o

A Lyapunov function could be called of mazimal robusiness with respect to perturbations of the
structure A(t) = B(t)D(t)C(1) if it guarantees the exponential stability of all the perturbed
systems }_p with || D || ,< r¢(A; B,C). In the time-invariant case a Lyapunov function
of ma.)uma,l robustness can in fact be constructed using the maximal solution of the (ARE),

with pz = r ¢(A; B,C), see Hinrichsen and Pritchard (1986b). The time-varying case is more
complicated since || LY ||-! does not equal r ¢(4; B,C) in general. In fact one can lmprove

the result of Proposition 8.6 by using scalar Bohl transformations. If || D [} < p and oF <
supg f(A— I,., B, (), then the perturbed system ¥ will be exponentially stable. We will now

construct a joint Lyapunov function for all these perturbed systems. Let 35 = (4 — %I,., B,C)
and consider the differential Riccati equation

P()+[A(t) — 8ty 8(t)L]"P(t) + P(A(t) - 8(t) " 6(t)I,]
— pCHC(t) — P(1)B(t)B*(t)P(t) = 0.
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Suppose p% < (A - gI“;B,C). If P®(-) is the maximal bounded Hermitian solution, then
differentiation of

Ve(t,z)= - < z,P(t)z >
along any solution of 3", yields
Vitz(t) = ~ || B (0)PP(1)2(1) + D(OYC(D)a(t) |f?
= (=1 DO I CO@) | .

Now in a similar manner to Proposition 8.6 it follows that ¥~ is exponentially stable and since
6(-) is a Bohl transformation 3", is exponentially stable as well.
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Bezout

- equation 36

- ring 25

Bohl

- exponent (strict) 116
- transformation 118

(C, A)-invariance 82
canonical form 24

column (row) rank 60
compatible families of subspaces 94
compatibility condition 94
controllable

- family 30

- into a subspace 8

- space 15

- subspace family (c.s.f) 92
- uniformly completely 15
controllability

- indices 20

- matrix 20

- of a system matrix 54
completely

- exponentially unstable 113
- unstable 141

coordinate transformation 5
coprime relation 7

critical points 90

differential

- Lyapunov equation (DLE) 132
- Riccati equation (DRE) 130
disturbance

- decoupled on (1o, ;) 89

- decoupling problem (DDP) 89
dual system 17

dynamical indices 66

equal almost everywhere 25
equivalent

- matrices 39

- system matrices 51
exponential dichotomy 110
exponentially stable systems 99
external stability 129

formal transfer matrix 58
full w.r.t. F 35,40

geometric indices 21
greatest common left divisor 25,43

independent families of subspaces 95
induced

- controllability Gramian 9

- observability Gramian 18

- reachability Gramian 19

- reconstructibility Gramian 17
input module 64

input-output

- map 57

- operator 129

input-state operator 130
integrally

- bounded 99

- equivalent systems 120
internal stability 129

kinematically similar 6

largest meromorphically (A, B)-invariant fam-
ily 84

least common right multiple 25

left-skew field of fractions 57

Lyapunov

- exponent 117

- transformation 6

meromorphic A- resp. (A, B)-invariance 74,82
minimal basis 61

minimal indices 66

multiplication rule 6

noninteraction condition 94
non-singular matrices 40
normed upper triangular form 41

observable w.r.t. V 18
observability of a system matrix 55
optimal control problem (OCP) 131
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order of P(D) 40
output controllability condition 94

perturbation operator 124
piecewise analytic (p.a.) family 28
piecewise real analytic function 5
piecewise constant (p.c.) rank 29
positive definite on PIR™ 9

rank of a module 60

reachable from V 19

reconstructible w.r.t. V 17

restricted decoupling problem (RDP) 94
right coprime 43

semisimple eigenvalue 109
similar

- polynomials 37

- systems 5,48

simple ring 7

skew polynomial ring 6
smallest (C, A)-invariant family 83
solution

- homomorphism 47

- space 46

stability radius 121
subspace of free motions 46
system

- equivalence 48

- homomorphism 47

- matrix 46

time-varying subspaces 24
transition matrix 5

uniformly asymptotically stable system 99
uniformly completely reachable from V 113
unreconstructible subspace 31

unstable system 121

unstructered stability radius 121
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Symbol Index

A

A" = A\ {0}
Ar

Alr

A, .
(A,B),(A,B,C)
Ar = A+ BF

A,=A-BB*P}
A(D]

B(t)
c
ct
e
C—ﬂ

Cy

ck
(DI, - A){(B)

(DI, - YW nkerC) . . .

deg v(D)
endr(M)
F=Aor M
G

G
GLA(R)

Gi(to,t1)
gedrp)(p, 9)
geld(P, Q)
geld, (P, Q)

H
Hi(t_;,t0)

1m0

Jo(zo, [to, 1), u())
k={1,...,k}
K(A, B)

Ki(A, B)
kp(A), kL(A)

set of real analytic functions

set of functions real analytic on the interval I C R
set of real analytic functions restricted to the
interval I C R

set of piecewise analytic functions

state space systems

skew polynomial ring with indeterminate D and
coefficients in A

unreconstructibility subspace

set of complex numbers

{s€ C|Res>0}

{s€ C|Res<0}

{s€ C{Res< ~a}

set of piecewise continuous functions

set of k-times differentiable functions

degree of v(D) € M[D}J"
ring of IR-endomorphisms of M

input-output map

formal transfer matrix

group of invertible n X n matrices with coefficients in
the ring R

induced observability Gramian

greatest common divisor of p,q € R[D] over R[D)
greatest common left divisor of matrices P,Q

defined over A or M([D]

greatest common left divisor of matrices P,Q

defined over A,

induced reconstructibility Gramian
image of the operator G

cost functional

controllability matrix

Bohl resp, Lyapunov exponent
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84
61

35

57
58

18
36
25,43
27

20
17

131

20
19
116,117



Kap

ker{P, Q)

kerx, P(D)

ker4 P x {0}

Lo, I

Lo(to,0; C™) = Lo(to,m)

I(4; B,C)

lempp(?, 9)
lerm(P, Q)

lerm 4, (P, Q)

M
M,
My

M(D]

M(D)
M(P,Q)
M+(Pv Q)

PC(R,, C*™)

PCy(R,, C*)
PC(R,,GL,( C))

Pr(), P()

P*(t)

R

R,

R(to)

R
r¢(A), 7 ¢(4; B,C)
um

un(m-h C)

{f € F1| P(D)f = 0}

vector space of free motions

perturbation operators

set of all functions h : [tg,00) — €™ such that
. | h(s) [|* ds exists

limig oo || LE |71

least common multiple of p, ¢ € IR[D}] over R{D)

least common right multiple of matrices P, D

defined over A or M[D}

least common right multiple of matrices P,Q

defined over A,,

set of real meromorphic functions

set of piecewise real meromorphic functions

set of functions real meromorphic on the interval

ICR

skew polynomial ring with indeterminate D and

coefficients in M

left skew field of functions of M[D]

solution vector space

vector space of forced motions starting from zero
{u € M[D]™ | Gu € M[D]F}

input state operator

set of natural numbers

N U {0}

order of P(D) € M[D]*x»

system matrix

system matrix associated with a state space system
system equivalence

critical points

set of piecewise continuous complex

n X m matrix functions on R4

{Ae PC(Ry, €*™)[|3c20:Vt 2 0=] A(t) ||< ¢}
piecewise continuously differentiable n x n functions
on IR which have nonsingular complex values
maximal resp. minimal solutions of the differential
Riccati equation

maximal solution of DRE, as a function of p

set of real numbers

{reR|r>0}

controllable subspace

controllability family

stability- resp. structured stability radius

set of C* functions with values in R™

and support bounded to the left

set of unstable systems associated with

A€ PC(Ry4, C**%)
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64
35
46
123,124

127
36
25,43

27

57

46
66
130

40
45

48
47
90

137,141
143

30
30
121
45
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V=(V(t)er
ve(e), V4(z)

v.L
v
Vl(t) 2 V2(t)
<
ACERN0)
V1 < Va
V(L)
V(L)
V(D)L
W = V(D) - M[D}*
Wy
W,
Wn = {VI Ve Wn}
W(to, 1), Wi(to, t1)
X(2), X°(t), X*(t)

Y.‘(t._l.to)

l‘[Pv *Q]
(¢, t0), B2(t, 1), (2, 20)

®r(t,t0)

®,(¢,t0)

time-varying subspace

time-varying subspace associated with the adjoint
resp. dual system

(Vi )eer

equivalence class of time-varying subspaces

equal almost everywhere

included almost everywhere

inclusion of equivalence classes

smallest (C, A)-invariant family which contains £
largest meromorphically (A, B)-invariant family
contained in £’

leading coefficient matrix

M(D}- right module generated by V(D) € M[D]"x*
{o(D) € W | deg o(D) < d}

set of time-varying subspaces V = (V(t)icr

where V(t) is a subspace of IR" for every t € IR
equivalence class of W,

controllability resp. induced controllability Gramian
fundamental matrix of the nominal, adjoint resp. dual
system

induced reachability Gramian

input module

transition matrix of the nominal, adjoint resp. dual
system

transition matrix associated with the feedback system
i=[A+ BF|z

transition matrix associated with the generator

A,= A~ BB*P}
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