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Abstract

Engineering charts or schematics are essential for system
design. They include not only graphical information
{coordinates and spatial location of points, lines and
curves), but also describe structural relationships between
represented objects.

Netlike schematics, such as electrical drawings, flow charts
and diagrams comprise in the main part information about the
structure of the device.

In this paper we try to answer the question of how to use
and represent structural information in a general system
for schematics engineering, a so-called Computer Aided
Schematics (CAS) System /1/.

From the schematics viewpoint we introduce a Schematic

Structure Description Language (SSDL) and the way to use it
in the CAS - System.
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INTRODUCTION

Graphical mesns are an essential part of human communication.
It is difficult to imagine the documentation of & complex
system without graphics. The design of large scale systems,

which are often electronic devices, demands a dreat deal
of graphical support. It is often not possible to
understand such a system without the help of charts, flow
graphs or diagrans.

A special class of graphical utilities is +this one of
netlike schematics. They are very useful for the
representation of compound objects and processes
Netlike schematics consist of symbols which are inter-
connected by lines (nets). The symbols represent elements
of the system and the nets illustrate relations between
the elements. In this way it is possible to describe both
structural and functional contents.

Metlike schematics differ from other “statistical™ 2D-
graphics such as business graphics (bar charts, pies, etc.)
and workshop drawings.

Some typical examples of netlike schematics are electrical
diagrams, technological layouts, Petri nets, grephs.

The Computer Aided Schematics (CAS) System is an
effective tool for design and implementation of netlike
schematics /1/. It is intended to provide at first, the
typical graphical support for & CAD-System, namely the
dgraphical representation of the object as well as additional
graphical facilities for automstic or interactive layout
such as partitioning, placement and routing techniques.

At second, the system should allow the generation,
modification and communication of structural information
ebout the object / process considered as well as
definition and realization of suitable interfaces.
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Our intention is to discuss the problems of structure
description and interfacing used in a CAS-System.

1. WHAT ARE NETLIKE SCHEMATICS ?

Let us have an example to illustrate what a netlike
schematic is.
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Fig. 1 : A netlike schematic representing the structure
of the logical exclusive-or (EXOR) element

rigure 1 depicts a simple electrical drawing of a logical
element which realizes the Boolean function exclusive-or
We have 5 items (symbols, components) on that chart. Each of
them is regarded as a Boolean function (process) or as a
part of an integrated circuif (object).

Every item 1is denoted by an identifier (symbol name
S1,..,55) and & type specification (symbol type : &7, ’1’).
Let us assume that we do not have information about the
internal structure of the components. That is to say
they have "elementary” types.

146

Relationships  between the symbols are shown by nets
(connections). HNets are treelike branched lines. Sometimes
they represent a special kind of relastion, namely directed
nets (for example in a directed graph).

A netlike schematic is said to be build up of symbols and
connections.

Every symbol has one or nore special points, the so-called
pins. Only at these points it is possible to connect a net
with a symbol. In the example on figure 1 the left-hand
pins of the symbols represent arguments and the right-hand
pins represent values of the functions. Because of this it
is reasonable to characterize these pins with  the
attributes Input and Output. It is also useful to have a
name or a number as identifier of the symbol pin.

There are some net parts (branches), such as i1, i2 and
ol in our example, which are not connected to a symbol pin.
They have a special meaning. Such net parts are called

“borderpins”, since they are located on the schematic
border. It is possible +o describe the realtionship
between & netlike schematic and its surroundings with

the help of borderpins. Tt is also possible to define
directions for borderpins.

By changing our viewpoint to the schematic the special
characteristic of the borderpins bescomes apparent. So far we
spoke only of the internal schematic view. In much the same
manner it must be possible to obtain a structure as a part
of sanother one. In this instance a new symbol (Fig. 2)
should be introduced. It is said that this symbol represents
the old structure from an external point of view. Then,
instead of old structure we speak of substructure
(subschematic) or symboltype. To describe relations inside
the new structure we identify the borderpins of  the
substructure with the symbolpins of the new symbol. In



this way it is possible to construct a hierarchy of
structures of the process / object described. That means
that every substructure represents a different level of
hierarchy.
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Fig. 2 : A symbolic representation of the logical
element EXOR

Resuming, we can say that netlike schematics are defined by
symbols and relations between them which on their part
are represented by nets. Symbol pins and borderpins are the
only elements within a schematic to be connected. By using
a symbol for a netlike schematic and identifying borderpins
by symbolpins we can get an external view to the
schematic. Such an external view may be a symbol in another
schematic on a higher level. The symboltype refers to the
corresponding internal view (subschematic) of the symbol
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2. THE SCHEMATIC STRUCTURE DESCRIPTION LANGUAGE

2.1 DESCRIPTION

Following problems arise when netlike schematics are wused
for description of objects or processes:

1. How can be guaranteed that the schematic reflects the
particular process or object description?

2. Where does necessary information on schematic
construction come from?

3. How can be guaranteed that data in design process remain
consistent if structural, i.e. nongeometrical changes in
the schematic (resp. in the process) are performed ?

4. How rcan schematic information be wused for otner
processes ?

To answer these aquestions, we developed a language , the
Schematic Structure Description Language (SSDL) /6/, which
is able to represent structural information of netlike
schematics without regard to the particular geometrical
realization.

A prototype of the language was the freguently used in the
GDR NBS 84 s2/ . Important attributes of the SSDL are said
to be its description form variability and simplicity. To
fit these requirements, an appropriate description form for
each essential part of the netlike schematic was proposed.

Connections (nets), symbols (objects, processes) and types

{substructures) are described respectively in terms of net,
symbol and type blocks
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Nets are +to be declared in a net block. That means an
attribute such as Net (default), Input, Output or Unknown
can be assigned to each connection. The Bus - attribute
allows structuring of connections by colliecting nets of the
same type in a bus statement. Here, the analogy with busses
in electrical diagrams becomes apparent.

Nets, specified as Input, Output or Unknown play a certain
part in the structure description of netlike schematics:
they represent connections which have a special meaning
outside the particular structural level. Such nets are said
to have borderpins in the graphical representation. The
semantics demands that the enumeration of borderpins take
place along with the succession of net declarations

The symbol block is wused for the purpose of symbol

declaration. It consists of a sequence of statements
assigning  appropriate types to the symbols  which are
identified by their names. This is the way in which
schematics hierarchy is addressed. Net and symbol blocks

contain information about component relationships at the
actual level of resolution.

Type blocks set up another level of resolution. They serve
the description of substructures (subschematics) or
elementary symbols. Each type consists of one or more net
blocks and none or more symbol blocks. BStatements about
borderpins within a net block virtually “hook" the
substructure onto the higher level of representation. This
is how low-level references are accomodated to high-level
ones. In case that a type block describes an elementary
symbol (subschematic), it does not contain symbol and type
blocks. That means we can get only an external view of this
subschematic. A structural description of an object /
process presumes that all type structures (subschematics) be
reduced in elementary units at  some level of
representation.

The number of resolution levels which can be described
in this way is virtually unlimited.

15@

SSDL is & visual language /15/ - it was developed for the
handling of visual information.

According to the classification given by German and Lieber—
herr /7/ SSDL belongs to the pure structural class of
hardware description languages (HDLs), such as HISDL /8/

BDL /9/ eand HIDEL /10/. That is why only structural
specifications are allowed. Information about geometry,
functional behaviour and data control are mnot taken into
account.,

SSDL is a "non-executive” language. It supports neither
conditional nor executive statements (except for one),
nor parametrically defined classes of design objects.

By these features SSDL could be considered as a formal graph
representation language rather than as a typical HDL. It is
required, that the designer plainly "list” structure itens
along with their relations, namely SYmbols (uodes), NEts
(connections) and symbol TYpes (substructures) which
describe essentially in much the seme manner another
level of structural hierarchy. However, once a particular
description is completed, it cen be involved into
another one H the INclude-statement provides an
additional facility for extending the structural hierarchy
(nested descriptions).

SSDL might be considered as a 2D-network-representation
language which is related to a special class of endineering
charts, sketches, diasgrams, expression trees, flow graphs
and tables.

In the following section we shall discuss some
characteristic language aspects

151



2.2. A DESIGN EXAMPLE

Our objective was to design a comfortable well-structured
description language. Its modularity becomes apparent in
terms of itemized blocks eppearing in an arbitrary order. It
was our intent to enable the user to partition his or her
description as he or she likes. The only thing that should
not be forgotten is keeping track of completeness and
hierarchy references. That is why we emphasized on
semantics in SSDL

Let us consider the following net block description (Fig.3):

NE
iy By 16 = I j
© si#3, s2#t H
e s2#3 =0 ;
EN ;

It is essential, that object declarations be associated with
their attributes. In our case net declarations are followed
by optional symbol pin and net type assignments.

Existing descriptions may be extended within the current or
any other itemized block at the same structural level just
by adding new statements

For that reason information about data objects collected by

the early phase of the Structure Description (SD) Conmpiler
(Fig. 5) is continuously verified and updated.
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Fig. 3 : A Network Example

In our example net ’d’ has the default type Net (if not
otherwise specified) and connects pin #3 of symbol ‘sl
with pin #1 of symbol ’s2’. ’e’ is specified as an output
net connected to pin #3 of symbol ’s2’.

In order to complete our net description three additional
specifications, namely for the nets ’a’, ’'b’ and ‘c’,
are required. Which node are they linked to ? The user has
the choice between following two options

1. a : sl#l ; ( within the current or any
b @ si#2 ; other net block at the
c : s2#2 ; same structural level J

and
2. sl : a~- b -d = type_1; { within a symbol block
s2 :d - e - e = type_2; at the same structural
level )
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The net sequence 1in a single symbol statement (choice 2)
denotes the implicite assignments to the symbel pins

net ‘a’ --> symbol si, pin #1
net ’b’ —--> symbol sl, pin #2
net ’d’ --> symbol s1, pin #3 ete

This sequence may be omitted in case that equivalent
assignments within a net block already exist.

Note, that some information redundancy is not excluded : in
choice 2. net ’d’ is defined for the second time. A skilled
designer would replace ’d’ with an asteriks, indicating by
this that the actual net has been described somewhere else,
namely in the previous net block. However, multiple
definitions should not cause any troubles, wunless they are
ambiguous. This consideration is reflected also in the SSDL
semantics.

Our structure is completely described, provided that there
are no hierarchy references (compound TYPEs) within the
symbol block.

Here is the entire structure description consistent with the
exapple in Fig. 3
MS : example_v2
SY

s1 : a - b - % = exor ;
§2 : ¥ - ¢ - e = exor

EN ;
NE
a, b, c =1;
d © s1#3, s2#1 H
: =0
EN ;

EN.
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Let us assume now that
specifies a substructure
type block describing the internal structure of the “exor”
element (Fig.l). UHere is
block according to figure 1

TN

EN

sltil-vl
82:12-v2

ihe symbol type identifier “exour”
Then, we are supposed to provide a

the contents of the required type

{ COMMENT : description located
{ in external file "exor.dat”

=neg;
=neg;

s3:v1-i2-v3=and;
s4:11-v2 vd=and;
s§:v3~vd-ol=or;

out:=0 EN;

NE inl,in2:=1;out:=0 EN;

NE inl, in2:=I;o0ut:=0 EN;

EN;
TY: neg;
RE in:=1;
EN;
TY: and;
EN;
TY: or;
EN;
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At this level of representation elementary types are

"neg”, “and" and "or". As we can see, these types belong to
the last level of structural resolution : they do not

include symbol and type blocks

A type block may be tacked on to the actuar level of
representation or saved in an external file, provided that
an INclude-statement is placed somewhere within that level.

3. THE SSDL PLACE WITHIN THE CAS - SYSTEM

The SSD-Language was developed as a user—-friendly
interface. Its primary purpose was to afford the opportunity
of describing network contents by means of a general
abstraction formalism at the logical design stage without
constraints both on scale (single level representation)
and depth (hierarchy). A SSDL ~ description can be
generated for example by a simulation / verification
program or by the designer himself

With a formal §SDL-description of an object / process
being provided, an appropriate schematic can be denerated by
filling in the graphical data which are required.

For this reason, the description mentioned should be
converted into CASI-DS, the Computer Aided Schematic
Interchange Data Structure. This is realized by a
geometrical-structural interface in the CAS-System, the
CASI-File.

The CASI-File form represents a copy of the data structure
used in the CASI-DS. It is a LISP-like list of network
items along with their attributes. Every level of structural
hierarchy in the CASI-F form is represented by a sequence of
statements enclosed in paranthesis.
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The CAS-philosophy presumes that the CASI Data Structure
set up the communication kernel of the system intended
to conduct the data flow between the separate internal
processes and the outer world. A CASI schematics
description is both input and target representation

That is why CASI-DS combines pure structural description and
geometrical information /6/

Both CASI-File and SSDL are entry points of the CAS-system
(Fig. 4).

An  important feature of the CASI-File is that the data
acquisition for the schematic description cen be performed
at any time during the schematic processing. Depending on
design level the missing geometrical information is
gradually completed or modified. This can be done
automatically or interactively

Finally, a complete geometrical and structural description
of the schematics is available. It can be visualized by
the graphical components integrated into the CAS-System.

On the other hand, if structural chandes are performed by
the user of the CAS-System, they should be reflected in the
corresponding new versions of the CASI-DS and CASI-F forms.
These structural medifications must supply a new version
of the SSDL-description of the object / process.

Hereby arises the necessity to develop a compiler /
decompiler able to translate structural descriptions in both
directions, namely SSDL -> CASI-F and CASI-F -> SSDL.

In this way the consistency between structural description
of an object / process and its graphical representation as a
netlike schematic can be guaranteed. The use of structural
information with a view of other applications is also
possible.
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Fig. 4 : The SSDL - CASI functional organisation

8DC, the Structural Description Compiler, takes as input an
8SDL-description and provides as output an equivalent CASI-
File, which is the base for the CASI-DS.

The SD-Decompiler extracts the structural informaticn from a
CASI-File and generates its S5DL formal description

Aud now let us pay some attention to the compiler structure

4. THE SD-COMPILER

The network contents is supplied to the CAS-system in the
form of an 3SDL-description. An equivalent ’spread out’
CASI-File is to be generated by the SD-Compiler. Fig. &
shows the single phases of the compilation process.
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L intermediate code  PHASE 1
SSD]

—~—»{Lex. Anal. »{ PARSER [<—1->»{semantic
source [ }__ {ﬁ 2 } t checkerJ

[ sYMBOL TABLE } i

ST - INTERPRETER
(CoDé | SEwERATOR)  PUASE 2

CASI-F output
description

Fig. 5 : Structure of the SD-Compiler/Decompiler

1t is composed of two phases © first, every single
$SDL-statement within a block structure is evaluated and
booked down as one or more entries into the symbol table
every time a new identifier or new information about an
existing name is encountered, and second, the symbol table
contents is interpreted into a CASI-File

Two features are distinctive for the SD-Compiler @ the
Symbol Table, set up as a network of pointer-referenced
linear lists and binary trees keeping the actual information
about the names in the source description {Fig. 86}, and
the ST-interpreter which scans the symbol table structural
representation into a CASI-F description.

The SD-Compiler/Decompiler is writtem in C /13/ using a
PC-implementation of the standard UNIX tools LEX /11/ and
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5. SYSTEM OQUTLOOKS

It seems quite appropriate to integrate a lexical and syntax
enrrector module into the SD-compiler structure in Fig. 5
An equivalent EDIF-representation /4/, /5/ for the purpose
of communication with other independent CAD-system
components might be also created during the second phase of
compilation.

Another suggestion is to generate a graphical representation
of the SSDL-description in order to verify what has been
entered into the system /14/.

& further extension or even redefinition of the SSD-
Language in view of gaining a more comprehensive notation of
the scheme topology is not excluded.

Following features should be taken intc consideration :

~ explicite description of borderpins
( the implicite one using special net types does not

seem to be notably expedient)

- convention about notation of symbols and connections
within symbol types (substructures) when used by other
symbols

- an appropriate notation for simplified description of

regular (resp. repetitive) structures

A further developmeni of the SSDL as an object-oriented
language seems to be quite reasonable /167
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6. SUMMARY

The CAS-System and the SSD-Languade are appropriate tools
for the design of complex systems which can be represented
by netlike schematics. They allow a detailed structure
description of the process / object to design. This
structure description mey be considered from different
points of view to the object. It can be used for the
purpose of documentation, or , as we discuss in this
issue, as a design utility. In this instance a new
interpretation of the objects described, namely symbols and
nets, is needed.

A typical application is the structure description of an
electronic device. During the design process, an SSDL~
description comprising the necessary basic information about
the circuit structure or other important features (e.g. for
the purpose of simulation) is built up.

In this sense the use of the SSDL guarantees the consistency
of the design data and increases the effectivity of
interaction.
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