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Zusammenfassung

Die Arbeit untersucht die exakte Vorhersage der Struktur von Proteinen in

dreidimensionalen, abstrakten Proteinmodellen; insbesondere wird ein ex-
akter Ansatz zur Strukturvorhersage in den HP-Modellen [LD89] des ku-

bischen und kubisch-flächenzentrierten Gitters entwickelt und diskutiert. Im

Gegensatz zu heuristischen Methoden, liefert unser exaktes Verfahren beweis-
bar korrekte Strukturen. HP-Modelle (Hydrophob, Polar) repräsentieren die

Rückgratkonformation eines Proteins durch Gitterpunkte und berücksichti-
gen ausschließlich die hydrophobe Wechselwirkung als treibende Kraft bei der

Ausbildung der Proteinstruktur. Wesentlich für die erfolgreiche Umsetzung
des vorgestellten Verfahrens ist die Verwendung von constraint-basierten

Techniken. Im Zentrum steht die Berechnung und Anwendung hydrophober
Kerne für die Strukturvorhersage.

Proteinstrukturvorhersage, d.h. das Problem aus einer gegebenen Sequenz
deren native Struktur – die Struktur mit minimaler Energie – vorauszusa-

gen1, gilt als eines der bedeutendsten ungelösten Probleme der Bioinformatik.
Proteinstrukturvorhersage erscheint aus zweierlei Gründen als Heiliger Gral

der Bioinformatik:

• Die Hauptmotivation für Strukturvorhersage lässt sich überspitzt als

Struktur = Funktion

formulieren. Gemeint ist damit, dass erst die Struktur eines Proteins
direkte Schlüsse auf dessen Funktion erlaubt. Die Aufklärung der Funk-

tion biologischer Makromoleküle muss als Hauptaufgabe der moleku-

larbiologischen Forschung angesehen werden. Die indirekte Aufklärung
der Funktion bisher unbekannter Proteine durch Homologien zu bereits

bekannten Molekülen stösst dabei zunehmend an ihre Grenzen; dies ist
vor allem eine Konsequenz aus dem nächsten Punkt.

1Es wird hier, wie in diesem Kontext üblich, vereinfachend angenommen, dass keine
anderen Faktoren als die Minimierung der freien Energie die native Struktur einer Sequenz
bestimmen.
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• Unser derzeitiges Wissen über biologische Makromoleküle, insbesonde-
re Proteine, ist stark auf das Wissen über die Sequenzen, d.h. die lineare

Abfolge der Bausteine dieser Heteropolymere fokussiert. Dieses Wis-

sen resultiert aus den immer besser beherrschten Techniken zur DNA-
Sequenzierung. Die drei-dimensionalen Strukturen dieser Moleküle sind

jedoch in sehr viel weniger Fällen bekannt. Experimentelle Methoden
zur Strukturaufklärung, d.h. Röntgenstrukturanalyse und NMR, sind

sehr zeitaufwendig und stoßen darüberhinaus vielfach an Grenzen ihrer
Anwendbarkeit.

Unser bisher geringes Vermögen zur Strukturvorhersage aus der Sequenz lässt

sich im Wesentlichen auf zwei Aspekte zurückführen.

• Schon in stark vereinfachte Varianten wurde Proteinstrukturvorhersa-

ge als ein NP-vollständiges Problem nachgewiesen [BL98, CGP+98].
Damit liegt der Schluss nahe, dass das Vorhersageproblem für reale

Proteine ebenfalls nicht effizient exakt gelöst werden kann.

• Dem gegenüber steht das als Levinthal-Paradox [Lev69] bekannte Phä-
nomen, dass natürliche Proteine trotz der astronomischen Menge mög-

licher Strukturen in verhältnismässig kurzer Zeit in ihre Struktur falten.
Vermutlich steht also unser ungenügendes Wissen über den Proteinfal-

tungsprozess, d.h. den Vorgang der Ausprägung der Proteinstruktur,
sowie die allgemeine Beziehung zwischen Sequenzen und Strukturen

einer effizienten Strukturvorhersage im Wege. Zum einen ist also denk-
bar, dass durch zusätzliches Wissen über den Faltungsprozess schnel-

le Verfahren zur Vorhersage gefunden werden können. Zum anderen
könnten die Sequenzen natürlich vorkommender Proteine einer Klas-

se von Sequenzen angehören, deren Strukturen einfacher vorhergesagt

werden können, als die von beliebigen Sequenzen. In letzterem Fall wer-
den Verfahren benötigt, die speziell auf diese Klasse zugeschnitten sind.

Constraint-basierte Methoden bilden eine adäquate Antwort auf derart
strukturierte NP-vollständige Probleme.

Beitrag der Arbeit Die Arbeit trägt in mehrerlei Hinsicht zur Lösung des
Proteinstrukturvorhersageproblems bei. Zum einen stellt die Arbeit eine ex-

akte und vollständige Lösung des Problems für zwei vereinfachte Modelle vor.
Im kubischen Gitter muss sich das Verfahren an CHCC [YD95] messen lassen,

der bisher einzigen konkurrierenden exakten Strukturvorhersagemethode für
das HP-Modell. Unser neues Verfahren arbeitet deutlich schneller als CHCC.
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CHCC erwies sich darüberhinaus als unvollständig. Für das flächenzentriert-
kubische Gitter stellen wir das erste exakte Verfahren überhaupt vor.

Die unterstützten Proteinmodelle, insbesondere das HP-Modell des flächen-

zentriert-kubischen Gitters, sind deutlich realistischer als zuvor rechnerisch
handhabbare Modelle. Vielfach wurden bisher für Untersuchungen entweder

zwei-dimensionale Proteinmodelle verwendet oder unrealistische Restriktio-
nen eingeführt, um den rechnerischen Aufwand zu begrenzen. Vorhersage im

flächenzentriert-kubischen Gitter ist darüberhinaus ein deutlicher Fortschritt
über das kubische Gitter, denn wie [PL95] zeigte, nähert das flächenzentriert-

kubische Gitter reale Proteinkonformationen an mit einer Abweichung (coor-
dinate root mean square deviation) von nur 1.78 Å im Vergleich zu 2.48 Å

des kubischen Gitters. Durch diese gute Approximation bietet sich Vorhersa-
ge im flächenzentriert-kubischen Gitter an als erster Schritt in hierarchischen

Ansätzen zur Strukturvorhersage realer Proteine.
Durch das vorgestellte Verfahren wird es erstmals möglich, umfangreiche Un-

tersuchungen mit realistischen Modellen durchzuführen. Die Arbeit zeigt die-
sen Weg anhand von zwei Beispielanwendungen auf. Durch die Anwendung

vereinfachter Modelle lässt sich Einsicht in die Sequenz-Struktur Beziehung

und den Faltungsprozess gewinnen.
Schließlich demonstriert die Arbeit den erfolgreichen Einsatz constraint-ba-

sierter Methoden für die Strukturvorhersage und weist damit einen möglichen
Weg für weitergehende algorithmische Arbeit in diesem Gebiet.

Aufbau der Arbeit In den Kapiteln 1,2 und 3 werden eine ausführliche

Einleitung und ein Überblick über das Verfahren zur Strukturvorhersage ge-
geben. Außerdem werden grundlegende Konzepte beschrieben, die im Über-

blick und vor allem in den folgenden Kapiteln benötigt werden. Kapitel 4,
5 und 6 gehen jeweils im Detail auf ein Teilproblem des Verfahrens ein.

Die Teilprobleme sind Berechnung von Energie-Abschätzungen, Konstrukti-
on kompakter hydrophober Kerne und Abbildung von Sequenzen auf hydro-

phobe Kerne. Das Kapitel 7 präsentiert schließlich Ergebnisse und Anwen-
dungen der Strukturvorhersage, wobei Anwendungsbeispiele zur Erforschung

protein-artiger Sequenzen der Modelle gegeben werden, sowie daraus resul-
tierende neue Ergebnisse.
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her, unseren Techniker Max Jakob, Jan Johannsen, Ralf Matthes, und unsere
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Chapter 1

Introduction

In this thesis, we discuss protein structure prediction in two three-dimensional,
abstract protein models. Structure prediction can promote the exploration of

proteins. Such research is crucial for our understanding of life, since proteins,
the nano-machines of life, perform and control the essential functions in liv-

ing organisms. In contrast to heuristic methods, the introduced approach is
exact, i.e. it yields provably correct predictions.

Protein structure prediction is the task to predict the native structure for

a given amino acid sequence. It is commonly regarded the holy grail of
bioinformatics for twofold reason:

• The main motivation for protein structure prediction is — slightly over-
simplifying — formulated as

structure = function.

This means that only the structure of a protein gives direct hints to its

function. Elucidating the function of proteins has to be considered a
main goal of molecular biological research. Indirect exploration of the

function of an unknown protein via homology to known proteins is in-
creasingly limited; mainly since knowledge about sequences is growing

much more rapidly than knowledge about protein function (cf. second
reason).

• Our current knowledge about biological macromolecules, especially pro-
teins, is strongly focused on sequences, i.e. the linear chain of monomers

in the hetero-polymers. Mainly, this knowledge results from our in-
creasing understanding of DNA-sequencing methods. The three-dimen-

sional structures of these molecules are known to an much less extent.
Experimental techniques for solving protein structures — like X-ray
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crystallography and NMR — are still very time consuming and not
applicable in all cases.

Our limited ability to predict native structures from the sequence information

alone can be ascribed to at least the following reasons.

• Already strongly simplified variants of protein structure prediction prob-
lem were shown to be NP-complete [BL98, CGP+98, HI97b]. This

suggests that there is no efficient and exact solution for the structure
prediction problem of real proteins.

• This is contrasted by the phenomenon that is well known as Levinthal

paradox [Lev69]. This paradox says that many proteins fold quickly
into their native structure, whereas the structure space is of astronom-

ical size. Presumably, our insufficient knowledge about protein folding
and the relationship of sequence and structure hinders the development

of efficient protein structure prediction. On the one hand, there is a
good chance that increased knowledge about protein folding can be used

for fast structure prediction. On the other hand, sequences of natural
proteins could belong to a class, where structures are much easier to

predict than for the majority of sequences. In the latter case, one needs

approaches that are tailored for sequences of this class. Constraint-
based methods are especially suited for NP-complete problems with

such a structure.

Contribution

The thesis contributes in several aspects to the solution of the protein struc-
ture problem. On the one hand, the work introduces an exact and complete

solution to the problem for two simplified, three-dimensional models. For

the cubic lattice, we have to compare our approach to CHCC, which is the
only second exact structure prediction method for HP-models. Our new ap-

proach is significantly faster than CHCC. Furthermore, CHCC turned out to
be incomplete, which will be discussed in more detail. For the face-centered

cubic lattice (FCC), we present the first exact method ever.

Both models, especially the HP-model of the FCC lattice, are much more real-

istic than all models that could be handled computationally before. In many
cases, studies used two-dimensional lattice models or introduced unrealistic

restrictions, just for computational tractability. Furthermore, prediction in
the FCC lattice is a major advance over the cubic lattice, as argued in more
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detail later. By the good approximation of off-lattice structures in the FCC,
prediction in the FCC suggests itself as a first step to structure prediction of

real proteins in hierarchical approaches.

Due to our approach, it is possible to perform large scale studies using re-
alistic protein models for the first time. Studies with simplified models can

provide insight into the relationship of sequence and structure and the pro-

tein folding process. By giving two example applications, we demonstrate
how our approach can be applied for such research.

Finally, the thesis demonstrates the successful use of constraint-based meth-

ods for structure prediction. By this, it shows a possible way for further
algorithmical research in this area.

Overview

In Chapters 1 and 2, we give a detailed introduction and overview of protein

structure prediction and our approach. In Chapter 3, we describe funda-

mental concepts, which are used in the overview and in particular in the
following three chapters. Chapters 4, 5, and 6 each describe in detail a

sub-problem of our approach, where Chapter 3 contains all the common
foundations for the three chapters. The three sub-problems are computation

of energy-bounds, construction of compact cores, and mapping of sequences
to hydrophobic cores. Finally, Chapter 7 presents results and applications

of structure prediction. In particular, we present applications for exploring
protein-like sequences and give new results.

1.1 Proteins

Viewed on the molecular level, proteins are chains that are composed of
building blocks, which share a common structure. More specifically, a protein

is a linear polymer formed by connecting monomers, which are called amino
acids. An amino acid is a molecule of the form shown in Figure 1.1. All amino

acids share the same general structure and differ only in the chemical group

R. The central carbon atom is called the α-carbon (short Cα), the left group
NH2 is called the amino group, and the right group COOH is called carboxy

group. In living organisms, there occur 20 different amino acids1, which have

1Commonly, only 20 different amino acids occur in organisms, whereas many more
amino acids can be synthesized. Recently, a 21st amino acid that occurs in organisms was
discovered.
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group
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H
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Figure 1.1: General structure of an amino acid.

different chemical properties. For example, residues can be hydrophobic or
hydrophilic, small or large, charged or uncharged.

In a protein, the amino acids are linearly arranged thereby forming a chain.
The order of amino acids in this chain is called sequence of the protein and

is specific for each protein. One observes that by simple combinatorics, this
allows for a huge variety of different proteins. For example, there are 20100 ≈
10130 different sequences of length 100.

In order to form a chain, two successive amino acids are connected via a
peptide bond, where the carboxy group of the first amino acid reacts with the

amino group of the second one. The result of connecting two amino acids is
a molecule as shown in Figure 1.2.

ω
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H
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H
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Figure 1.2: Two amino acids connected by a peptide bond.

The peptide bond itself, which is indicated with a grey rectangle in Figure 1.2,
is usually planar, which means that there is no free rotation around this
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bond.2 There is more flexibility for rotation around the N-Cα-bond (called
the φ-angle) and around the Cα–C bond (called the ψ-angle). But even

there, the allowed values of combinations of φ and ψ angles are restricted to

small regions in natural proteins.

Using this freedom of rotation, the protein can form a huge variety of differ-
ent three-dimensional structures. Due to thermodynamics, some of them are

energetically more favorable than others, i.e. these conformations have lower
energy and therefore are more stable than the other ones. As of yet, the de-

tails of this energy function are not completely clear and a matter of intensive
research. In the context of structure prediction, it is commonly assumed that

natural protein have a distinguished conformation that has minimal energy
and is uniquely determined by the sequence of amino acids. For this reason,

one speaks of the native structure of a protein denoting this distinguished
conformation. The term protein folding denotes the conformational search of

the protein, which culminates in finding the native conformation. This term

is distinguished from the term protein structure prediction, which denotes
the computation of the native structure from the sequence. In this thesis, we

deal with structure prediction and are not concerned with the protein folding
process.

Finally, the native structure and sequence determine the function of the

protein, due to the general mode of operation of proteins.

1.2 Structure Prediction

Computational structure prediction is especially valuable, since experimen-

tal structure determination — X-ray crystallography and nuclear magnetic
resonance (NMR) spectroscopy — is still difficult and time consuming. In

consequence, current biochemical methods have difficulties to keep pace with
the rapid growth of the number of known protein sequences.

Therefore, protein structure prediction is one of the most important problems

of computational biology, which is however still unsolved in general. We spec-
ify this problem in the following way. Given a protein by its sequence of amino

acids, what is its native structure? Since, as already discussed, the native
structure is the structure with minimal energy, protein structure prediction

is reasonably modeled as an optimization problem. The NP-completeness of

2There are two conformations for the peptide bond, namely trans (corresponding to
a rotation angle of 180◦), and cis (corresponding to a rotation angle of 0◦). The cis

conformation is rare and usually occurs only in combination with the amino acid Proline.
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this problem has been proven for many different formal, in general simplified
protein models including lattice and off-lattice models. [BL98, CGP+98]

These results strongly suggest that the protein folding problem for real pro-
teins is NP-hard. Therefore, it is unlikely that a general, efficient algorithm

for solving this problem can be given. In fact, one is not able to answer this
question definitively, since too little is known about the general principles of

protein folding.

Knowing these general principles not only would certainly improve our ca-
pabilities to predict the structure of a protein, but it is also of paramount

importance for rational drug design, where one faces the difficulty to design

proteins that have a unique and stable native structure.

1.3 Simplified Models of Proteins

Mainly, we will discuss the most important sub-class of simplified protein

models, although parts of this section apply to simplified models in general.
The models in this class are called lattice models. The simplifications that

are commonly used in this class of models are:

• each monomer is modeled by only one point,

• the positions of the monomers are restricted to lattice positions,

• all monomers have equal size,

• all bonds are of equal length, and

• a simplified energy function is used.

For the aim of structure prediction, gaining insight into the relationship be-

tween sequence and structure of proteins is of utmost importance. Simplified
protein models, also known as low-resolution or coarse-grained protein mod-

els, were proposed to study this relationship. Furthermore, they can be used
to tackle structure prediction directly.

For both areas of application, the following consideration motivates the use
of simplified models. Since simplified models describe only some aspects of

the structure and energy of a protein, it is often easier to compute optimal
structures for the proteins of the model than for real proteins. The same

applies for solving related problems like the design of sequences that fold to
a given structure (sequence design problem).
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For the application area of direct structure prediction, simplified models have
been successfully used by several groups in the international contest “Critical

Assessment of Techniques for Protein Structure Prediction” (CASP, see the

meeting review of CASP3 [KL99]). There, the models are used in hierarchi-
cal approaches for protein folding [XHLS00] (see also Figure 1.3). In general,

these approaches use simplified models in a filter step as follows. Given a
protein sequence, first a set of good structures in the simplified model is gen-

erated (e.g. 10 000 structures). In subsequent steps, these candidate struc-
tures are fine-tuned using more computationally involved methods. Usually,

these methods incorporate biological knowledge and simulation of protein
folding on full atomic detail (i.e. molecular dynamics simulation).

GPSQPTYPG

DDAPVEDLI

RFYDNLQQY

LNVVTRHRY

⇒ ⇒
10 000

⇒
100

search in low
resolution model

improvement:
biolog. knowledge,
molecular dynamics
more detailed model

Figure 1.3: Hierarchical approach to protein structure prediction

Apart from their use in structure prediction and regarding the relationship

of sequence and structure, lattice models have become a major tool for in-
vestigating general properties of protein folding. They constitute a genotype

(protein sequence) to phenotype (protein conformation) mapping that can
be handled using computational methods. An interesting application com-

ing out of this is their use to investigate evolutionary processes. An example

is [BBC99], where the arrangement of sequences in neutral nets is shown. In
these neutral nets, a prototype sequence is connected to related sequences,

which fold to the same structure, however with increasing hamming distance
in a less stable way. The assumed universality of this principle feeds the

hypothesis of super-funnels in the sequence space with direct implications to
protein design. Another exciting question in this context is, whether one can

switch between two different neutral nets using only a small number of amino
acid substitutions. If this is the case, then this suggests a way for producing
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the diversity of protein conformations that is found in nature by evolution.

In the literature, many different lattice models (i.e., lattices and energy func-

tions) have been used (see related work). Of course, the question arises which
lattices and energy functions have to be preferred. There are two (somewhat

conflicting) aspects that have to be evaluated when choosing a model:

• the accuracy of the lattice in approximating real protein conformations
and the ability of the energy function to discriminate native from non-

native conformations.

• the availability and quality of search algorithm for finding minimal (or

low) energy conformations.

While the first aspect is well-investigated in the literature (e.g., see [PL95,
DBY+95]), the second aspect is underrepresented. By and large, there are

mainly two different heuristic search approaches used in the literature. The
first approach is an ad hoc restriction of the search space to compact or quasi-

compact conformations. A good example is [SSK94], where the search space
is restricted to conformations forming a n×n×n-cube. The main drawback

here is that the restriction to a compact conformation is not biologically
motivated for a complete amino acid sequence (as done in these approaches),

but only for the hydrophobic amino acids. In consequence, the restriction

either has to be relaxed, and then leads to an inefficient algorithm, or is
chosen too strong and then may exclude minimal conformations. The second

approach is to use stochastic sampling as performed by Monte Carlo methods
with or without simulated annealing or genetic algorithms. Here, the degree

of optimality for the best conformations and the quality of the sampling
cannot be determined by state of the art methods.3

1.4 Constraint-based Structure Prediction

The thesis discusses protein structure prediction in an important class of

lattice models, which is known as the class of HP-models. As our main
contribution, we introduce a constraint-based approach that outperforms all

existing approaches in HP-model lattice protein folding.

Originally, the term HP-model has been introduced by Lau and Dill in [LD89]
to denote a two-dimensional square lattice model with an energy function,

3Despite there are mathematical treatments of Monte Carlo methods with simulated
annealing, the partition function of the ensemble (which is needed for a precise statement)
is in general unknown.
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a) H P

H -1 0

P 0 0

b)

Figure 1.4: Energy matrix and sample conformation for the HP-model

which is simplified as much as possible. In this model, the 20 letter alphabet
of amino acids is reduced to a two letter alphabet, consisting of H and P. The

symbol H represents hydrophobic amino acids, whereas P represents polar (

hydrophilic) amino acids. The energy function for the HP-model is given
by the matrix of Figure 1.4a. It simply states that the energy contribution

of a contact between two monomers is −1 if both are H-monomers, and 0
otherwise. Two monomers form a contact in some specific conformation if

the euclidian distance of their positions is 1 and they are not connected via a
bond.4 A conformation with minimal energy (also called optimal conforma-

tion) is just a conformation with the maximal number of contacts between
H-monomers. Just recently, NP-completeness of the structure prediction

problem has been shown even for the HP-model [BL98, CGP+98].
A sample conformation for the sequence PHPHPPHPPH in the two-dimensio-

nal square lattice with energy −2 is shown in Figure 1.4b. The white beads
represent P, the black ones H monomers. The two HH-contacts are indicated

via dashed lines.
In particular, we outperform prior approaches for structure prediction in

three important aspects, namely in terms of

• flexibility,

• completeness, and

• efficiency.

Concerning flexibility, our method is the only one that works for two different

important three-dimensional lattices. Here, we note again that originally the
HP-model was defined for the two-dimensional square lattice. However, the

extension to other lattices is straightforward. For example, a HP-model using

the face-centered cubic lattice is investigated in [ABD+97].

4Note that this second condition can be dropped without changing the optimization
problem, since it adds only a constant number of contacts. Actually, we will do this later.
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The treated lattices are the cubic lattice and the face-centered cubic lattice.
The cubic lattice is the most intensively studied three-dimensional lattice.

However, the ability of this lattice to approximate real protein conformations

is poor. Furthermore, as e.g. [ABD+97] pointed out, there is a parity problem
in the cubic lattice. This means that two monomers with chain positions of

the same parity cannot form a contact. Nevertheless, we support the cubic
lattice due to its wide-spread use in literature and for comparability of our

method to other structure prediction approaches.

The face-centered cubic lattice (FCC) overcomes the discussed drawbacks

of the cubic lattice. It lacks the parity problem and models real protein
conformations with good quality (see [PL95], where it was shown, that the

FCC lattice can model protein conformations with coordinate root mean
square deviation of 1.78 Å, whereas the cubic lattice achieves a deviation of

only 2.84 Å). Recently, [BJB02a, BJB02b] have shown that neighborship of

amino acids in proteins closely resembles a distorted FCC lattice and that
the FCC is best suited for modeling proteins. This is an immediate effect of

hydrophobic packing. Just recently, it was shown that the FCC is the lattice
allowing the densest packing of identical spheres, approximately 400 years

after the original conjecture by Kepler [Slo98, Cip98] (see Figure 1.5 for a
description of the FCC lattice).

a) b)

z

x
y

Figure 1.5: a) The unit cell of the FCC. b) A cut-out of two layers of the face-
centered cubic lattice (FCC). The layers can be seen as two square lattices,
which are shifted such that every position in the first layer has contacts to 4
positions in the second layer and vice versa (shown as dashed lines). Since
the FCC lattice is continued by stacking layers of the square lattice in this
way, every position of the FCC has twelve neighbors (four within the same
layer, four in the previous layer, and four in the next layer).
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Concerning completeness, our approach finds optimal structures that can
not be computed by all other comparable approaches. The fact that the

HP-model is degenerated5 allows for a direct comparison of completeness.

The degeneracy (i.e. the number of optimal structures) of a sequence can
be computed by enumerating all optimal conformations. Only for the cubic

lattice, there is one other method [YD95] that claims to completely enumerate
optimal conformations in a large class of conformations and to prove their

optimality. In [YD95], Yue and Dill give a lower bound for the number of
such conformations for some sequences, by enumerating as many structures

as their algorithm can find. For these sequences we can significantly improve
their lower bound, which shows that the CHCC algorithm is incomplete.

Note that an incomplete algorithm can not only miss optimal conformations,
but even fail to determine the optimal energy for structures of a sequence.

Concerning efficiency, we have successfully applied our algorithm to se-

quences up to length 200 in the face-centered cubic lattice (FCC). For several
sequences of length 200, we found a minimal energy conformation and proved

its optimality. For the FCC, there existed only heuristic algorithms up to
now (for an example of a genetic algorithm for arbitrary Bravais lattices

see [BWC00]). Usually, these algorithms are applied to sequences of length
of at most 80 (where they usually find only a low but not minimal energy

conformation). Since the search space for conformations in the cubic lat-
tice grows with approximately 4.5n (where n is the length of the sequence),

this implies that our method handles a search space that is at least by the
factor 4.5120 higher than the search space handled by other methods for the

face-centered cubic lattice.6

1.5 Related Work

Here, we distinguish two aspects in the relationship to prior work. On the

one hand, we discuss work that investigates biological macromolecules, i.e.
mainly proteins and also RNA, by using computationally tractable models.

This work studies structure, thermodynamical stability, folding kinetics and
evolution of proteins and RNA. On the other hand, we review algorithmical

5In a degenerated model there are usually many optimal conformations for one se-
quence, instead of only one (native) conformation as it is assumed for real proteins.

6The number 4.5n has been estimated for the cubic lattice [MS96]; for the FCC, we
are not aware of a good estimation of the number of conformations. However, due to the
increased degrees of freedom in the FCC lattice this number is certainly higher than the
number of conformations in the cubic lattice.
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work on structure prediction in lattice protein models.

For the first aspect, there is a large number of working groups that use

lattice protein models. The kinetics of protein folding is investigated by e.g.
[SD03, SR01, GSA+98, UM96, DSK96, AGS95, SSK94]. All groups perform

Monte-Carlo optimization in order to simulate the folding process. One of
their main observations is that sequences can be distinguished in fast and slow

folding ones. For example, [SSK94] claims that fast folders are characterized
by a large energy gap between the optimal conformation and the next best

one. Others [AGS95] claim that folding speed is increased if there are many
more non-local than local contacts in the ground state. In contrast, [UM96]

observe in a larger study that sequences with many strong local interactions
fold quickly and also argue against the energy gap hypothesis. [GSA+98]

discuss how folding time depends on the temperature.

A prerequisite for such work is to know the optimal structures of sequences.

Therefore, the authors choose protein models on the square lattice or cubic
lattice, where structures can be predicted by complete enumeration. There,

complete enumeration is only tractable due to the artificial restriction to
compact conformations, e.g. on a 3 × 3 × 3 cube for polymers of length

27 in three dimensions or on a 5 × 5 square for polymers of length 25 in
two dimensions. Most of this work uses energy functions based on pairwise

potentials of monomers in unit distance. [SD03] is an example for the use
of Go models7 in such studies, which circumvents the need for structure

prediction by the use of an artificial energy function that is tailored for the

target structure.

Other work studies protein evolution by the use of simple protein models; ex-
amples are [WBBC04, CWBBC02, TG00a, TG00b, AGS97, GG96, BBC99,

GG97]. Some of these papers use similar models with a restriction to compact
conformations as described for the papers on folding kinetics. For example,

[GG97] asks why some structures are more common than others, which is
investigated by using a cubic lattice model with the restriction to compact

conformations on a 3 × 3 × 3 cube. Others [WBBC04, BBC99, CWBBC02]
use sequences of length 18 in two-dimensional square lattice models. Be-

sides the HP-model, [WBBC04] investigates five other models with a binary

code. Their main finding is the occurrence of neutral nets and a super-funnel
topology of the sequence space in a variety of protein models, which suggests

a more general principle. Notably, the use of the HP-model and a limited
length allows an unrestricted enumeration of sequences and their structures.

7A Go model uses an energy function that favors the contacts that occur in the target
structure.
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Several papers [IT02, LTW02, HL96] especially address protein design, also
known as inverse protein folding, which is of great importance for evolu-

tionary questions. [IT02] enumerates designing sequences of length 25 in

the two-dimensional HP-model. [SSG+00] investigates designable structures
and tries to explain that formation of secondary structure and collapse to a

globule happens rapidly at the same time. [LTW02] compares HP-models
to models with an empirical potential, using the Miyazawa-Jernigan matrix

[MJ96] and finds a good agreement in the designable structures.

A review of simplified protein models and their application is e.g. given

in [DBY+95] and [CBB02]. In particular, these reviews advocate the use of
strong simplifications as found in the HP-model.

Concerning the algorithmical aspects of the research above, most of this work

avoids more sophisticated algorithms for protein structure prediction by using
protein models, where complete enumeration is still possible. Therefore, one

has to introduce strong restrictions as the limitation to rather short chains
(e.g., length 18 in [WBBC04] and others) or the rather artificial restriction to

compact conformations (e.g. on a 6×6 square and 3×3×3 cube in [LTW02]

and others). However, there is research [IT02] that pushes the length lim-
itation to its limits by completely enumerating the designing sequences of

length 25 in the square lattice HP-model. Enumerating structures of lattice
proteins is similar to counting self-avoiding walks. [MJH+00] counts such

walks in the cubic lattice up to length 26. However, the applied method is
not transferable to the enumeration of protein structure, since there we need

to compute the energies of conformations.

Structure prediction for RNA was available much earlier than for proteins.

More precisely, in the case of RNA there are efficient algorithms for predict-
ing the secondary structure of minimal free energy from the sequence infor-

mation [ZS81]. For RNA, even complete sub-optimal folding can be done
efficiently [WFHS99]. The availability of an efficient sequence-structure map

for RNA motivated studies on RNA evolution like [SFSH94], RNA folding
kinetics [FFHS00], and general work on fitness landscapes, e.g. [FHSW02],

which develops a theory of barrier trees in degenerate fitness landscapes and
applies it to RNA and spin glass landscapes.

For our second major aspect, namely the algorithmical work on protein struc-
ture prediction, we distinguish heuristic and exact approaches. Here, heuris-

tic approaches are those which can not guarantee the optimality of the pre-
dicted optimal structure. In contrast, exact methods are able to prove that

computed structures are optimal or at least within a certain energy ratio of
the optimum.
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Work on heuristic methods for protein structure prediction ranges from
Monte-Carlo simulated annealing (e.g. [Gra04, LW01, BFG+98]) and genetic

algorithms (e.g. [JCSM03, UM93b, UM93a]) to methods like hydrophobic

zipper [DFC93] and the chain growth algorithm [BB97].
A heuristic approach of predicting structures using a FCC lattice-model and

also constraint-technology is the work of [DBF02]. There, secondary struc-
ture annotations, i.e. which amino-acids form α-helices and β-sheets, are

employed to restrict the search space. Despite some similarities to our ap-
proach (due to lattice and technology), the aim of their work is to find good,

but not necessarily optimal solutions in a protein model with empirical po-
tential. However, the method is slow and only applicable to short proteins,

although their method cannot guarantee the quality of found solutions.
In general, heuristic methods are unsatisfying for many applications of simple

protein models, including most of the ones that are mentioned above. In this
respect, the first improvement was the introduction of an exact algorithm

for finding minimal energy conformations in the cubic HP-Model [YD93,
YD95]. The algorithm is called CHCC for “Constraint Hydrophobic Core

Construction”. Note that albeit its name, the approach does not use con-

straint-based methods. In comparison to our work, CHCC is slow in pre-
dicting optimal structures. Furthermore, we found for several of available

example sequences that CHCC does not completely enumerate all optimal
structures. Reasons for the incompleteness of CHCC will be discussed later

on in Chapter 5. Finally, the CHCC method works only for the cubic lattice,
but not for the more complex face-centered cubic lattice.

The second improvement is the appearance of efficient approximation algo-
rithms [Heu03, ABD+97, HI96] for different lattice models. [HI96] guarantees

an approximation within 3/8 of the optimum in the square and cubic lattice
HP-models. [ABD+97] develop constant factor approximations for the HP-

models of the two-dimensional triangular lattice and the three-dimensional
face-centered cubic lattice. [Heu03] even includes side chains in its modi-

fied cubic lattice protein model. However, despite indisputable merits, the
approximation ratio of these algorithms is still too weak for practical use.



Chapter 2

Fundamental Concepts

This chapter describes the basic preliminaries and fundamental concepts of
the thesis. Here, we endeavor to give only those definitions and to explain

only those concepts that apply to more than a single chapter of the thesis.
Thus, we minimize redundancy and in the same time avoid unnecessary scat-

tering of definitions. In consequence, the Chapters 3,4,5, and 6 are formally
independent and each can be read on its own.

We note that it is unavoidable that some terms, like lattice and lattice protein
models, that were already mentioned in the introductory chapter, reoccur and

are redefined formally.

First, we will review lattices and lattice proteins. Second, we give some
background on constraint technology, in particular constraint satisfaction

and constraint optimization.

2.1 Lattices

The discussed models of proteins rely on a discretization of the two or three-
dimensional space by geometrical structures that are known as lattices.

Definition 2.1.1 (Lattice)

A lattice is a set L of lattice vectors (also called lattice points) such that

~0 ∈ L (2.1)

~u,~v ∈ L implies ~u+ ~v, ~u− ~v ∈ L, (2.2)

where + and − denote vector addition and subtraction and ~0 is the zero
vector.
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By this definition, a lattice forms an additive group with operator +, its
inverse operator −, and neutral element ~0. Note that the term lattice conflicts

with the term for ordered sets of lattice theory, which is a completely different

concept. Sometimes, the term point lattice is used in place of our term lattice
to avoid confusion.

For a lattice L, there exist n vectors ~v1, . . . , ~vn such that the lattice consists
of all the integral linear combinations of these vectors, i.e.

L = {
∑

ki~vi | k1, . . . , kn ∈ Z}. (2.3)

If n is minimal with the property (2.3), then ~v1, . . . , ~vn is a basis of L and n

is the dimension of L. Inversely, for vectors ~v1, . . . , ~vn, where Eq. (2.3) holds,
L is called generated by the vectors ~v1, . . . , ~vn. This allows that a lattice L is

generated by a set of vectors that is larger than its dimension. By definition,
each basis of a lattice L also generates L.

We define a neighborship relation between points of a lattice L by fixing a
set of neighbor vectors NV for L. Two lattice points ~p and ~p ′ are called

neighbors of each other if and only if ~p− ~p ′ ∈ NV .

The three-dimensional lattices that are used for protein models are naturally
embedded into Euclidian space R

3.1 In this embedding, their lattice points

are represented as

~p =
(

px
py
pz

)

.

Then, a natural choice for the set of neighbor vectors NV is the set of non-zero

vectors ~p which have minimal Euclidian length

√

p2
x + p2

y + p2
z

among all lattice vectors. We call these vectors minimal vectors. If we do
not explicitely define otherwise, we choose the minimal vectors as neighbor

vectors. In this case, the number of minimal vectors equals the number of
neighbors of a single lattice point. This number is an important property of

a lattice, it is called coordination number or in the context of sphere packings
kissing number.

It is useful to identify regular sub-sets of a lattice. For a three-dimensional
lattice L, we define the layer axx + ayy + azz = b of L as the set of points

{(

x
y
z

)

∈ L | axx + ayy + azz = b
}

,

1It goes without saying that the same applies to two-dimensional lattices analogously.
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where ax, ay, az, b ∈ R. For a layer, we require that this sub-set of the lattice
is non-empty. Special layers ξ = c, where ξ ∈ {x, y, z} and c ∈ R are denoted

ξ-layers.

2.1.1 The Cubic Lattice

The cubic lattice is probably the most prominent and the simplest three-

dimensional lattice. It is defined as the set of lattice points Z
3 and generated

by its basis

{
(

1
0
0

)

,
(

0
1
0

)

,
(

0
0
1

)

}.
The minimal length of a non-zero vector in the cubic lattice is 1 and the set
of minimal vectors is given by

{
(

±1
0
0

)

,
(

0
±1
0

)

,
(

0
0
±1

)

}.

Thus, the coordination number of the cubic lattice is six, i.e. each point has

six neighbors.

Figure 2.1 shows a cutout of the cubic lattice, where neighbored points are
connected. The connections form angles of 90◦ and multiples thereof.

Figure 2.1: The cubic lattice, where connections are drawn according to the
neighbor relation.

The cubic lattice can be partitioned into layers that form square lattices. For
each ξ ∈ {x, y, z} and c ∈ Z, there is a layer ξ = c of the cubic lattice. Each
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point of a layer ξ = c has four neighbors in the same layer, one neighbor in
the layer ξ = c− 1, and one in the layer ξ = c+ 1.

An interesting property of the cubic lattice is that its points are naturally

partitioned into two disjoint classes by the neighbor relation; namely, into
points with even sum

Z
3
|even =

{(

x
y
z

)

∈ Z
3 | x+ y + z is even

}

and points with odd sum

Z
3
|odd =

{(

x
y
z

)

∈ Z
3 | x + y + z is odd

}

.

Every point in one of the two classes has only neighbors in the other class,
since adding any neighbor vector to a point changes the parity of the sum of

its coordinates.

This property of the cubic lattice was used in approximate and exact struc-
ture prediction before [HI96, Bac98b]. The property is also known as the

parity problem of the cubic lattice, since it artificially restricts possible con-
tacts in the cubic lattice.

2.1.2 The Face-Centered Cubic Lattice

Since Kepler’s famous conjecture four centuries ago, the face-centered cubic
lattice (FCC) was believed to be a densest packing of spheres in three dimen-

sions. The conjecture became a theorem only recently, when it was proven
by Thomas C. Hales in 1998 (cf. [Cip98]).2

The FCC is defined as the set of points

D3 =
{(

x
y
z

)

∈ Z
3 | x+ y + z is even

}

.

The minimal distance between two lattice points, i.e. the length of the min-

imal vectors, is
√

2. There are twelve minimal vectors in the FCC, namely
the vectors of the form

(

±1
±1
0

)

,
(

±1
0
±1

)

, or
(

0
±1
±1

)

.

The Figures 2.2a and b show the unit cell of the face-centered cubic lattice.

It is constructed by placing points at the corners of a cube and at the centers
of its faces; this construction principle, which explains the origin of the name

2Remarkably, already in 1831 Gauss showed that the FCC lattice is the densest lattice

packing of spheres.
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of the lattice “face-centered cubic”, is best seen in Figure 2.2a. Figure 2.2b
shows the same lattice points but connects neighbors that have minimal

distance
√

2. Figure 2.3 shows a larger cutout of the face-centered cubic

lattice.

If we slice the lattice into layers that are parallel to the faces of the cube,

the lattice points in each layer form a square lattice. For each ξ ∈ {x, y, z}
and c ∈ Z, there is such a layer ξ = c of the FCC lattice. A point in such a
layer ξ = c has four neighbors in the same layer, four neighbors in the layer

ξ = c− 1, and four neighbors in ξ = c+ 1 (cf. cubic lattice).

There is a different way to partition the lattice points into layers such that
the points in each layer form a hexagonal lattice (also known as triangular

lattice), where the connections form angles of 60◦.3 There are four classes of
such layers, namely for each even c ∈ N, there is a layer x + y + z = c, a

layer −x + y + z = c, a layer x − y + z = c, and a layer x + y − z = c. A
point of such a layer has six neighbors in the same layer, three neighbors in

the preceeding layer, and three neighbors in the succeeding layer of the same
class.4

a) b)

Figure 2.2: Unit cell of the face-centered cubic lattice. a) cube with lattice
points at corners and centers of faces. b) edges between neighbors.

3It is well known that there are two equivalent representations of the FCC, namely the
D3 and the A3 representation. The A3 view of the FCC points out its relation to the
hexagonal lattice.

4For example, the preceeding (resp. succeeding) layer of layer x+y+z = c is x+y+z =
c − 2 (resp. x + y + z = c + 2).
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Figure 2.3: The face-centered cubic lattice.

2.1.3 Finite Sets of Lattice Points

Here, we discuss finite sub-sets P ⊂ L of a lattice L, in the following called

finite point sets, or more shortly point sets. We recall that |P | denotes the
cardinality of P .

First, we discuss some properties that are induced by the neighborship rela-

tion. Pairs of points ~p and ~p ′ in P that are neighbors form a contact. The
number of contacts in P is defined as

contacts(P ) = |{{~p, ~p ′} | ~p, ~p ′ ∈ P are neighbors}|.

A point set of size n that has maximally many contacts among all point sets
of size n shall be called optimal point set of size n.

According to the neighbor relation, a point set P is either connected or
consists of several connected components. P is called connected if and only

if every two points ~p and ~p ′ in P are related by the transitive closure of the
neighbor relation, i.e. for every ~p and ~p ′, there exist points

~p = ~p1, . . . , ~pn = ~p ′

such that for 1 ≤ i < n, the points ~pi and ~pi+1 are neighbors. Note that all
optimal point sets are connected.
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A further property of finite point sets is whether they contain cavities (see
Figure 2.4). A cavity in a point set P is a k-tuple of points (~p1, . . . , ~pk) such

that

∃~v ∈ NV ∀1 ≤ j < k : ((~pj+1 − ~pj) = ~v) ,

{~p1, ~pk} ∈ P,

and

∀1 < j < k : ~pj 6∈ P.

Point sets without cavities are called cavity-free.
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Figure 2.4: The figure shows a layer of the cubic (or FCC) lattice, which has
one cavity (grey oval).

Furthermore, we define the surface of a set of points P . A surface pair of P
is a pair of neighbors (~p, ~p ′), where ~p ∈ P , and ~p ′ 6∈ P . The surface of P ,

written surface(P ), is the number of surface pairs of P , i.e.

surface(P ) = |{(~p, ~p ′) surface pair of P}|.

There is a notable relation between the surface and the number of contacts
in a point set P in a lattice, namely

|NV | · |P | = 2 · contacts(P ) + surface(P ). (2.4)

This equation holds since each of the |NV | many neighbors of the |P | many

points in p ∈ P forms either a contact or a surface pair with p. Counting in

this way, contacts occur twice and surface pairs once.

The definition of layers and ξ-layers of lattices can be extended to layers and

ξ-layers of point sets straightforwardly by intersection with the point set.
The layers of a finite point set P are called finite layers of P .
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We will utilize ways to characterize a connected finite point set P in either
the cubic lattice or the FCC lattice. Therefore, we partition a point set into

its (non-empty) ξ-layers, for ξ ∈ {x, y, z}. Since P is connected, there is a

consecutive sequence of such (non-empty) layers, i.e. layer ξ = c + 1,. . . ,
layer ξ = c + k for some c, k ∈ Z (cf. properties of cubic lattice and FCC

lattice). We denote these layers of P by P1, . . . , Pk. P1, . . . , Pk is called the
ξ-layer decomposition of the point set P .

We call the sequence |P1|, . . . , |Pk| the number sequence of P in dimension
ξ. The size of a number sequence (n1, . . . , nk) is

size((n1, . . . , nk)) =

k
∑

i=1

ni.

For a finite ξ-layer of a point set P of either the cubic lattice or the FCC
lattice, we introduce the notions of frame and occupied lines. We recall that

in both lattices the ξ-layers form square lattices. The frame of a ξ-layer is

the minimal rectangle that surrounds all points in the layer and is oriented
in parallel to the connections of neighbors in the layer. For an x-layer in

the cubic lattice, these connections are paralell to the neighbor vectors
(

0
1
0

)

and
(

0
0
1

)

. Temporarily, we call these vectors layer vectors. For an x-layer

in the FCC lattice the layer vectors are
(

0
1
1

)

and
(

0
−1
1

)

. We define the

width (resp. height) of the frame as the number of lines along the first (resp.

second) layer vector that intersect with lattice points and intersect the frame.
Furthermore, the lines along a layer vector that intersect with the x-layer are

called occupied lines. For a finite x-layer Q of P , we define the function
occlines by occlines(Q) = (a, b), where a (resp. b) is the number of occupied

lines of Q along the first (resp. second) layer vector. Then, for the x-layer

decomposition P1, . . . , Pk of P , the sequence (|P1|, a1, b1), . . . , (|Pk|, ak, bk),
where (ai, bi) = occlines(Pi), is called the frame sequence of P in dimension

x. Analogously, one defines frame sequences in the dimensions y and z. The
size of a frame sequence ((n1, a1, b1), . . . , (nk, ak, bk)) is

size(((n1, a1, b1), . . . , (nk, ak, bk))) =
k

∑

i=1

ni.

The size of a frame sequence s should not be confused with its length |s|.
We note that width and height of the frame are always greater or equal
than the numbers of occupied lines. They are equal if and only if the frame
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contains no lines along layer vectors that intersect the lattice but do not
intersect the ξ-layer of P .

For a ξ-layer decomposition P1, . . . , Pk of a point set P , it is reasonable to
distinguish between contacts within one of the layers Pi and contacts between

points in successive layers. A contact between ~p and ~p ′ that are elements

of the same layer Pi (1 ≤ i ≤ k) is called layer contact. A contact between
points ~p and ~p ′ in successive layers, i.e. ~p ∈ Pi and ~p ′ ∈ Pi+1 (1 ≤ i < k), is

called interlayer contact.

2.2 The HP-Model

The HP-model is a protein model that abstracts from real proteins in two

important ways.

1. Instead of modeling the positions of all atoms of the protein, it models
only the backbone structure of the protein, i.e. one position for each

amino acid. Furthermore, these positions are constrained to points of
a lattice.

2. Only the hydrophobic interaction between the amino acids is modeled,

therefore the model distinguishes only two kinds of amino acids, namely

hydrophobic (H) and polar (P).

2.2.1 Definition

We will now define the HP-model for a fixed lattice L. An HP-sequence is
a protein sequence that is a word of the alphabet Σ = {H,P}. By seq i, we

denote the i-th element of the HP-sequence seq.

We define a structure str of a sequence seq as a tuple

str ∈ L|seq|

such that

∀1 ≤ i < |seq| : str i and str i+1 are neighbors, and (2.5)

∀i 6= j : str i 6= str j. (2.6)

In both, in a sequence and in a structure, we refer to the amino acids as

monomers. We distinguish H-monomers and P-monomers as specified by
the sequence.
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Condition (2.5) is known as the chain constraint and claims that monomers
that are successive in the chain are neighbored in the lattice. Condition (2.6)

is denoted self-avoiding constraint. It claims that no lattice position is occu-

pied twice by the structure. Thus, a structure is a self-avoiding walk on the
lattice L (cf. [MS96]).

Given a structure str of a sequence seq, the number of HH-contacts, i.e. the
number of contacts between H-monomers in str , is defined as

HH-contacts(seq, str) =

∣

∣

∣

∣

∣

∣







(i, j)
1 ≤ i < j ≤ |seq |,

seq i = H, seqj = H, and
str i and str j are neighbors







∣

∣

∣

∣

∣

∣

.

The HP energy function is a function that assigns an energy value in Z to

pairs (seq, str). This energy value, which is termed the HP-energy of seq and
str , is defined in terms of contacts as

HP-energy(seq, str) = −HH-contacts(seq, str) + HH-chain(seq), (2.7)

where HH-chain(seq) is the number of HH-contacts in an elongated chain of

seq. More formally, HH-chain(seq) is defined as the number of pairs (i, i+1),
for 1 ≤ i < |seq|, where seq i = H and seq i+1 = H.

For a sequence seq , a structure str is called native if and only if its HP-energy

is minimal among all structures of seq .
Formally, the HP-model for a lattice L, shortly called L-HP-model, is a triple

consisting of the set of HP-sequences, the set of structures for L, and the HP
energy function for L.

2.2.2 Properties

In the following, we fix a sequence seq. Then, the number HH-chain(seq) is

also fix.
Our first observation is that in HP-models minimizing the HP-energy is

equivalent to maximizing the number of HH-contacts due to Equation 2.7. In

consequence, we can choose either view of the optimization problem of struc-
ture prediction in HP. Almost exclusively, we adopt the view of maximizing

the number of HH-contacts for our discussions.
Furthermore, the number of HH-contacts in a structure str depends only on

the location of H-monomers in str and in particular not on their order given
by the sequence. This leads to the definition of a hydrophobic core.

The hydrophobic core of a structure str is defined as the set of positions
occupied by an H-monomer in str . The number of HH-contacts of seq and
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str is equal to the number of contacts in the hydrophobic core C of str , i.e.

HH-contacts(seq , str) = contacts(C).

The concept of a hydrophobic core is of interest, since all known efficient
algorithms for exact structure prediction in HP-models and HP-type models

base on this notion [YD93, YD95, Bac98b, BWBB99]. Hydrophobic cores
are also central for our approach.

2.3 Constraint Programming

Constraint programming (CP) means programming using constraints as a
language construct. Here, a constraint is a condition which is satisfied by

all solutions to our problem. That is, a constraint is a piece of syntax, more
precisely an atom as it is known from mathematical logic, with the semantics

of a relation between its variables. Some examples of constraints are x ≤ y,
x + y=̇z, or ~p and ~p ′ are neighbors.

CP consists of a set of techniques for modeling problems by constraints on

the solutions of the problem and for solving the modeled problems. Most no-
tably, using constraints allows to draw conclusions from only partially spec-

ified data. A main application area of constraint programming techniques
is solving NP-complete combinatorial problems. There, reasoning about in-

complete data can prune the search for solutions by detecting inconsistencies
of partial solutions and propagating partial information in order to gain (ex-

plicit) knowledge about the solutions.

2.3.1 Constraint Satisfaction Problems

In CP, problems are represented in the form of constraint satisfaction prob-
lems. A finite constraint satisfaction problem (CSP) P consists of

• a set of variables X = {X1, . . . , Xn},

• a set of finite domains D = {D1, . . . , Dn}, where Di is the set of possible

values (i.e., the domain) of the variable Xi.

• a set of constraints C defining relations between the variables X .

We write dom(X) to denote the domain in D which is associated to the
variable X ∈ X .
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Each constraint C is imposed on a tuple of variables in X . For the constraint
C, we denote this tuple by X(C). We may write C(X1, . . . , Xn) for denoting

that C is imposed on the variables X(C) = (X1, . . . , Xn). A constraint C,

where X(C) is a n-tuple, is called n-ary.

An assignment of the variables X is a function A : X → ⋃D, where A(X) ∈
dom(X). A constraint C on the tuple X(C) = (X1, . . . , Xn) of variables is
interpreted as a sub-set T(C) of the Cartesian product dom(X1) × · · · ×
dom(Xn). We call such a constraint C satisfied by an assignment A if and

only if (A(X1), . . . , A(Xn)) ∈ T(C). Note that, in consequence, a constraint
can be defined semantically by specifying its set of tuples T(C).

A solution S of a CSP is an assignment of the variables X that satisfies all
constraints in C.

Given a CSP, one asks two different kinds of questions. First, is there a

solution to the CSP and second, how many solutions are there. Usually these
questions are answered constructively and then are equivalent to asking for

one solution of the CSP or all solutions of the CSP, respectively.

There is always a naive algorithm for these problems, namely the brute force
approach, which enumerates all assignments of values to variables and checks

each for satisfaction of the constraints. This approach is known as generate-
and-test. Needless to say that this approach is inefficient and thus is in many

practical applications completely useless.

A much more promising strategy is known as the generate-and-constrain
approach. This method employs reasoning over constraints, where the basis

of such reasoning is consistency.

2.3.2 Consistency for Solving CSPs

In constraint programming, the common approach to solve a CSP is to com-

bine enumeration and making the CSP consistent. In general, a CSP is
consistent if and only if the domains of the variables do not conflict with

the constraints of the CSP. However, there are different kinds and levels of
consistency, which define the meaning of “conflict” in the previous sentence

in different ways. A complete discussion of consistency can not be the aim
of this work.

Making a CSP consistent means to transform a CSP P into a consistent

CSP P ′ that is equivalent, i.e. which has the same set of solutions. This
transformation is always monotonic. This means that the domain of each

variable in P ′ is a sub-set of the corresponding domain in P or equal to
it. The narrowing of the domains from P to P ′ is known as constraint



2.3 Constraint Programming 27

propagation.

In general, constraint propagation is a computational service of the constraint
solver, which forms a part of the run-time environment of a constraint pro-

gramming system. In our implementation system Oz/Mozart, this computa-
tional work is done by constraint propagators, which work as program threads

that access the constraint store. The constraint store consists of the domains

of the variables. Different propagators communicate only via the constraint
store.

We will only discuss one kind of consistency in more detail, which is usually
termed arc consistency or hyper-arc consistency. Therefore, we continue our

discussion of the CSP P from the previous sub-section.

Shortly, a tuple τ = τ1, . . . , τn is consistent with variables X1, . . . , Xn if and
only if τj ∈ dom(Xj) holds for all 1 ≤ j ≤ n.

For an n-ary constraint C(X1, . . . , Xn), we call a ∈ dom(X) consistent with

C, if and only if either X 6∈ X(C) or X is the ith variable of C, namely Xi,
and there exists a τ ∈ T(C) such that a = τi. Note that each τ ∈ T(C) is

consistent with X1, . . . , Xn already by the definition of T(C).

A constraint C is called hyper-arc consistent if and only if for all xi ∈ X(C),
dom(xi) 6= ∅ and for all a ∈ dom(xi) holds that a ∈ dom(xi) is consistent

with C. One uses the term arc consistent for denoting the special kind of
hyper-arc consistency of 2-ary constraints.

In general, a CSP is called consistent if and only if all its constraints are

consistent.

2.3.3 Constraint Optimization: Branch-and-Bound

Branch-and-bound is the standard method for optimization using constraints.
This method solves problems, known as constraint optimization problems. A

constraint optimization problem (COP) P is a tuple

P = (X = {x1, . . . , xn},D = {D1, . . . , Dn}, C, f)

consisting of a constraint satisfaction problem P ′ = (X ,D, C) and a weight

function f : D1 × · · · × Dn → Z, which evaluates solutions of P ′ (objective
function). A solution S of P is a solution of P ′ that has maximal weight

f(S(x1), . . . , S(xn)), written shortly f(S), of all solutions of P ′.

The branch-and-bound method works by solving a series of constraint satis-
faction problems. First, the CSP P0 = P ′ is solved. If P0 has no solution,

then there is no solution to the COP P . Otherwise we obtain the solution
S0. Starting with i = 0 we apply the following step. From the CSP Pi, a
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CSP Pi+1 is generated by adding the constraint f(x1, . . . , xn) > f(Si). In
consequence, when we now solve the CSP Pi+1, we get only solutions that

are better than Si with respect to f . This step is applied repeatedly until

for some k ≥ 1 the CSP Pk has no solution. Then, the solution to Pk−1 is
known to be a solution of the COP P .

The classical branch-and-bound method is not the only solving strategy for
a COP P (as given previously). The existence of a good upper bound w̄

on the weight of solutions of P ′ paves the way for an alternative approach.
There, we define a series of CSPs (Pw)w∈Z. A CSP Pw consists of the CSP

P ′ with the additional constraint f(Si) = w. Then, starting with w = w̄, we
iteratively investigate CSPs Pw, while decreasing w by one, until a solution

of Pw is found. Our approach uses the latter strategy.



Chapter 3

Overview of Constraint-Based

Structure Prediction

This chapter gives an overview on the constraint-based structure predic-
tion approach that is developed in this thesis. The Sections 3.2, 3.3, and

3.4 shortly introduce the objects and main results of the single steps of
constraint-based structure prediction. These sections correspond to Chap-

ters 4, 5, and 6, respectively. The corresponding chapters discuss the steps

and develop the results in detail. Each of the chapters can be read indepen-
dently from the overview in this chapter. However, the overview, helps to

integrate the single steps into the whole approach.

3.1 Constraint Models for Structure Predic-

tion in HP-Models

We start by describing a straightforward constraint model for the protein
structure prediction problem. Afterwards, we describe our improved con-

straint approach.

3.1.1 A First Constraint Model

The following approach is applicable to the HP-model in arbitrary lattices.

For simplicity, we introduce the formal model for the cubic lattice only. The
handling of other lattices, e.g. the face-centered cubic lattice, is analogous.

Note in particular that every lattice has an integral representation. This
allows to use the integer finite domain constraint system for any lattice.

We can encode the space of all possible conformations for a given sequence
as a constraint problem. When we give this encoding in the following, please
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note that all constraints can be encoded using the constraint system over
finite integer domains, Boolean constraints, and reified constraints. If φ

denotes an arbitrary constraint, then a reified constraint is a constraint x ↔ φ

with the semantic that the Boolean variable x is 1 if and only if φ holds, i.e.
x reifies the truth of φ. An example of a reified constraint is given later

by the constraint (3.1). Operationally, a reified constraint is propagated by
setting x to 1 if the constraint store entails φ, and to 0 if the constraint store

disentails φ. For a constraint φ to be entailed by the constraint store, φ must
be satisfied by every valuation that satisfies the constraint store. We use also

entailment constraints of the form φ → ψ, which are interpreted as follows.
If a constraint store entails φ, then ψ is added to the constraint store. The

constraint model can be directly implemented using the language Oz [Smo95],
since this programming system supports finite domain variables, Boolean

constraints, reified constraints, entailment and programmable, encapsulated
search.

For the actual constraint model, we introduce new variables Xi, Yi and Zi for
every monomer i, which denote the x-, y-, and z-coordinate of c(i). Since

we are using a cubic lattice, we know that these coordinates are all integers.

The domains are also finite, since we can restrict the possible values of these
variables to [ 1 .. 2|seq| ].1 This is expressed by introducing the constraints

Xi ∈ [ 1 .. 2|seq| ] ∧ Yi ∈ [ 1 .. 2|seq| ] ∧ Zi ∈ [ 1 .. 2|seq| ]

for every 1 ≤ i ≤ n. The excluded-volume constraint is just given for i 6= j

by
(Xi, Yi, Zi) 6= (Xj, Yj, Zj).

2

For expressing that two successive monomers have unit distance, we introduce

for every monomer i with 1 ≤ i < |seq | three finite domain variables Xnexti,

Ynexti, and Znexti. Then, we can express the unit-vector distance constraint
by

Xnexti = |Xi − Xi+1| Znexti = |Zi − Zi+1|
Ynexti = |Yi − Yi+1| Xnexti + Ynexti + Znexti = 1.

The constraints that are described above define the space of all possible

conformations. Every valuation of Xi, Yi, Zi that satisfies the above constraints

1We even could have used the domain [1..n]. However, the domain [ 1 .. 2|seq | ] is more
flexible since we can assign an arbitrary monomer the vector (n, n, n), and still have the
possibility to represent all possible conformations.

2This cannot be directly encoded in Oz [Smo95], but we reduce these constraints to
difference constraints on integers.
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is an admissible conformation for the sequence seq , i.e. a self-avoiding walk
of length |seq|.
The simplest way to search for conformations with maximal number of con-
tacts is to add constraints for counting this number. Then, one can directly

enumerate the variables Xi, Yi and Zi. For HP-type models, we have to count
contacts that are formed by two neighboring H-monomers. For this purpose,

one introduces a variable Contacti,j for 1 ≤ i < j ≤ |s| that is 1 if i and j
have a contact in every conformation that is compatible with the valuations

of Xi, Yi, Zi, and 0 otherwise. Then, for 1 ≤ i < j ≤ |s|, we introduce new
FD-variables Xdiffi,j, Ydiffi,j , and Zdiffi,j and constrain them by

Xdiffi,j = |Xi − Xj| Zdiffi,j = |Zi − Zj|
Ydiffi,j = |Yi − Yj| Contacti,j ∈ {0, 1}

Contacti,j ↔ (Xdiffi,j + Ydiffi,j + Zdiffi,j = 1). (3.1)

The variable HHContacts counts the number of contacts between H-monomers,

and is defined by

HHContacts =
∑

i<j
si=sj=H

Contacti,j. (3.2)

Now, we apply constraint-based branch-and-bound enumeration on the vari-
ables Xi, Yi, and Zi, thereby searching for a conformation with maximal num-

ber of contacts.

Figure 3.1 shows a flowchart of the structure prediction approach that uses

this constraint model.

3.1.2 Improved approach

When we use the previously described approach alone, the search space will

be restricted only poorly.3 We want to give some explanation for the unsat-
isfying performance. For this approach, an efficient constraint solver is too

weak in detecting whether a partial structure has the potential to achieve suf-
ficiently many contacts. For improving this ability, one needs to introduce

additional constraints to get bounds on the number of contacts. However, we

3Nevertheless, the above formulation is general enough to be used on arbitrary lattices
and to be extended for various energy functions. For example, it can be used for lattice
models with an extended alphabet like the HPNX-model [BWBB99], which models also
electrostatic contacts in addition to hydrophobicity.
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Begin

bJ− 0

str J− structure str ,
where HH-contacts(seq, str) > b

str exists? bJ− contacts(seq , str)

N

Y

SJ− {str | HH-contacts(seq, str) = b}

output S

End

Figure 3.1: Predicting all native structures of a HP-sequence seq by the first
constraint model (branch-and-bound). Output of the algorithm is the set of
optimal structures S of seq.

⇒
Step 1

bounds
on FS

⇒
Step 2

⇒
Step 3

Figure 3.2: The improved constraint-based structure prediction approach.
Step 1: bounding of frame sequences. Step 2: core construction. Step 3:
threading.
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do not see how to define good bounds using the previous approach. Further-
more, in order to apply branch-and-bound optimization, one needs a search

heuristic that prefers low-energy conformations. Again, it seems unlikely to

find such a heuristic.

Consequently, for strongly improving over the previous constraint model, we
can not simply extend this model. Instead, we develop a completely new

approach. We introduce a three step approach, which restricts the search

space by the use of strong bounds on the number of contacts. This comes at
the cost of developing lattice specific bounds on the number of contacts.

In two pre-computation steps, we restrict the set of all conformations to a

subset that provably contains all minimal energy conformations. For this

purpose, we apply a technique that has been employed first by the CHCC
algorithm [YD93, YD95]. There, one calculates the set of positions that is

occupied by H-monomers (hydrophobic core) first. The number of contacts
of a hydrophobic core C is defined for general point sets in Chapter 2.4

Since we cannot guarantee in advance that a given sequence fits to the most
compact hydrophobic cores, one has to consider also less compact hydropho-

bic cores in a systematic way (where generating the cores is a problem by
its own). Luckily, the number of cores that have to be investigated for a

sequence is usually feasible. Furthermore, the cores can be pre-calculated
independently of a specific sequence.

For each core, we search for a conformation of the considered sequence, where
the H-monomers form exactly this core. Consequently, such a conformation

has exactly as many HH-contacts as there are contacts of the core. This
process is called threading of the sequence to the core. We give an efficient

constraint formulation to solve the threading problem in Section 3.4.

In order to provably find a minimal energy conformation, we start by thread-

ing on maximally compact cores of proper size5, and then iteratively search
for solutions on the next best cores, until a solution is found.

The remaining problem is generating the hydrophobic cores. Without any
additional efforts, we would have a huge search space again, since nothing

is known about the exact shape of the hydrophobic core in advance. Hence,
one has to find again some restriction on the search space that allows us

to calculate bounds and to apply constraint-based optimization. The first
idea for restricting the hydrophobic core is to define the surrounding cuboid

that contains the hydrophobic core. If one has a very tight cuboid, then

4Throughout this chapter, we will use the term hydrophobic core also for (optimal)
point sets in general, due to their intended use.

5Obviously, the size of the core has to fit the number of H-monomers in the sequence.
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Figure 3.3: Threading of the HP-sequence ’HHPPPPHHHHPHHHPHHH-
PPHHPHHPPPHHHPH’ to a core in the FCC lattice. The figure shows
the core (on the left) and the resulting structure (on the right), where H-
monomers are shown as black beads and P-monomers as white ones. Note
that the core-size equals the number of H-monomers in the sequence, namely
20.

the hydrophobic core in this cuboid must be rather compact. This claim
obviously holds for the cubic lattice and is also of some use for the FCC.

However, this approach is not fine-grained enough for the FCC as well as for
sub-optimal hydrophobic cores in the cubic lattice. We introduce therefore

a more precise boundary for the hydrophobic core, which is obtained by
splitting the lattice into layers. We recall that an x-layer is just a plane that

is orthogonal to dimension x. For each such x-layer, we define the frame to
be the minimal rectangle around all positions of the core in this layer. The

corresponding frame sequence consists of the height and width of each frame

in each x-layer, together with the number of H-monomers in this layer (see
Figure 3.4). Please note that the exact position of the frames is not part of

the frame sequence. To each frame sequence, we associate a bound which is
an upper bound on the number of contacts in every hydrophobic core that

has this frame sequence.

For enumerating all hydrophobic cores of size n with c contacts, we perform a

constraint-based search, which is strongly restricted by the frame sequences
for n H-monomers with a bound of at least c contacts.

Figure 3.2 sketches the three steps of our improved approach. The flowchart
of Figure 3.5 describes our strategy for predicting all native structures of
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a) b)

Figure 3.4: Hydrophobic cores and frame sequences. a) a hydrophobic core
with frames. b) the corresponding frame sequence. ai is the width and bi is
the height of the frame in the i-th layer. And ni is the number of H-monomers
in this layer.

a given sequence (cf. Figure 3.1). The flowchart integrates the three steps

bounding, core construction, and threading.

The highly lattice-specific bounds on contacts will be overviewed in a sec-

tion of their own. After the description of the bounds, we will describe the

construction of the hydrophobic cores, and finally describe the threading
method. Note that the order of our description follows the structure of the

total prediction algorithm. Each of the following three sections corresponds
to one chapter of the thesis.

3.2 An Upper Bound for Frame Sequences

As prerequisite for the enumeration of hydrophobic cores, we investigate the

problem of generating the set of all frame sequences for a given number of
points with a bound of at least c contacts.

The first step is to define the upper bound on contacts for a given frame

sequence (a1, b1, n1) . . . (al, bl, nl), which is discussed separately for the cubic
lattice and the FCC lattice. We will start with the less complex case of the

cubic lattice. Note that for the cubic lattice, there exists a previous bound
on contacts by Yue and Dill [YD93, YD95]. However, we present our new

bound for several reasons. First, the bound of Yue and Dill is incomplete
as we will discuss in Chapter 4. Second, we can improve over their bound
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Begin

SJ−∅, nH J− number of Hs in seq

bJ− largest contacts bound for core-size nH

Cores J− cores of size nH with b contacts

Cores = ∅ bJ− b− 1
Y

N

CJ− any element of Cores

SJ−S ∪ all structures by threading seq to C

Cores J−Cores − {C}

Cores = ∅

Y

S = ∅
N

output S

End

N

Y

Figure 3.5: Predicting all native structures of a HP-sequence seq by the
improved approach. The set S collects the optimal structures of seq. b is
a bound on the contacts, which is finally the number of HH-contacts in the
optimal structures. Cores always denotes the set of the cores that are the
remaining candidates for structures of seq with b HH-contacts.
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a)

interlayer contacts

layer contacts

x=2x=1

b) Layer1 Layer2
a1 = 2 a2 = 2
b1 = 3 b2 = 2
n1 = 5 n2 = 4

Figure 3.6: a) Layer and interlayer contacts b) Corresponding frame se-
quence

by investigating the distribution of H-monomers to layers. Third, the bound
is instructive for understanding the more intricate case of the FCC lattice,

since both bounds share a similar structure.

3.2.1 Frame Sequences in the Cubic Lattice

In Figure 3.6a, a hydrophobic core for the cubic lattice is shown, where
we explicitly mark its two layers. Figure 3.6b gives the corresponding frame

sequence. In Chapter 2, we introduced the terms layer contact and interlayer
contact. An illustration of these terms, which describe two kinds of contacts,

is provided by Figure 3.6a. The upper bound on the number of contacts
in any core that satisfies the given frame sequence is defined as the sum of

separate bounds for the number of layer and interlayer contacts.

In order to bound the layer contacts in the cubic lattice, we employ the
concept of surface, which was used by [YD93, YD95] before. The surface of

a core is defined via surface pairs in Chapter 2.

Now, imagine a single layer x = k of the lattice that intersects the core. The

layer surface of a hydrophobic core C in layer x = k is the number of surface
pairs of C, where both positions are in the (infinite) layer x = k.

Assume that there are n core positions in this layer x = k and these positions

are contained in a minimal rectangle of size a× b, which was called the frame
of the layer. Then, since every core position has four neighbors in the same

layer that are either occupied by the core (then contributing to the number
of contacts) or not (then contributing to the surface), the surface and layer



38 Chapter 3: Overview of Constraint-Based Structure Prediction

contacts are related via the equation

4 · n = 2 · Contacts + Surface. (3.3)

Hence, minimizing the surface maximizes the number of contacts. Yue and

Dill [YD93, YD95] observed for the cubic lattice that it is easier to minimize
the surface instead of directly maximizing the number of layer contacts. In

particular, if there are no cavities in the core (cf. Figure 2.4 in Chapter 2),
then the layer surface is given by 2 · (a + b) (compare Figure 3.7). Thus,

2 · (a+ b) is a lower bound on the surface. Using this in Equation 3.3 yields
an upper bound on the number of contacts from a, b, and n.
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Figure 3.7: Horizontal and vertical surface. Every horizontal and vertical
line through the hydrophobic core produces at least two surface pairs (or
exactly two surface pairs, if there are no cavities in the core). The grey ovals
mark the pairs of surface points and corresponding core positions.

For the cubic lattice, there is a straightforward upper bound on the number

of interlayer contacts. Given two successive layers x = k and x = k + 1,
every position in layer x = k has exactly one neighbor position in x = k + 1

and vice versa. Hence, there can be at most nk and at most nk+1 interlayer
contacts between x = k and x = k+1. That is, for two successive layers with

nk and nk+1 core positions, there are at most min(ni, ni+1) many interlayer
contacts.
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3.2.2 Frame Sequences in the FCC Lattice

Our key to bounds for the FCC lattice is partitioning the face-centered cubic
lattice into layers that each form a square lattice (as in the cubic lattice).

In the FCC, these layers are arranged such that every point in one layer
has four neighbors in the next layer (cf. Figure 1.5). Note that due to the

partitioning, the definitions of layer sequences as well as layer and interlayer
contacts from the cubic lattice apply also for the FCC. Furthermore, we can

use the same bound for the layer contacts as in the case of the cubic lattice.

For the interlayer contacts in the face-centered cubic lattice, the situation is
more intricate as in case of the cubic lattice, since every position in a layer

can form a contact with up to 4 neighbors in the next layer.
The key problem for bounding the total number of interlayer contacts is the

bounding of interlayer contacts between two successive layers x = k and
x = k + 1. Obviously, it is infeasible to search through all possible pairs of

layers that satisfy the parameters ak, bk, nk and ak+1, bk+1, nk+1 in order to
obtain a tight bound.

However, imagine that we know the distribution of monomers in the layer
x = k. Then, we can count how many points in the layer x = k+1 form 1, 2, 3

and 4 contacts to the first layer. Formally, we define a position ~p in layer
x = k+1 to be an i-point for the core C in layer x = k (with i = 1, 2, 3 or 4)

if ~p has i neighbors that are contained in layer x = k and C (see Figure 3.8).
We get a bound on the number of interlayer contacts by distributing the nk+1

elements of the second layer to these i-points. There, we fill the positions

greedily, starting with 4-points and continuing with decreasing i.
In Chapter 4, we argue that there is a relation between the frame a × b,

the number of elements n, and the numbers of i-points of a layer. Only
three further parameters of the layer (mno, mnt, and mx) are sufficient to

determine the numbers of i-points exactly. mno denotes the number of pairs
of non overlapping succeeding lines, mnt is the number of pairs of not touching

succeeding lines, and mx gives the number of x-steps in the layer.
We will derive that the numbers of i-points, written #i for i = 1 . . . 4, are

determined as

#4 = n− 1

2
s+ 1 +mno

#3 = mx − 2(mno −mnt)

#2 = s− 4 − 2#3 − 3mno −mnt

#1 = #3 + 2mno + 2mnt + 4

This relation is then simplified further and is related to the number of inter-
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x=1 x=2

2−point

4−point

3−point

Figure 3.8: Definition of i-points

layer contacts. Finally, we can compute a bound on the number of interlayer
contacts by only enumerating the possible values of mno, instead of enumer-

ating the exponentially many possible layers.

3.2.3 Generating Frame Sequence Sets

Now, we discuss the generation of a set of frame sequences for cores with

given size n and a bound of at least c contacts. This generation is discussed
for both lattices uniformly.

We start by computing a bound BC(n, n1, a1, b1) on the number of contacts
in cores of size n and a first layer x = 1 that has n1 elements and the

frame a1 × b1. This can be done efficiently for all n up to some upper limit
and all n1, a1, b1 at the same time using a dynamic programming (DP) al-

gorithm. This algorithm fills a four-dimensional matrix for evaluating the
recursion of Equation (3.4). Figure 3.9 provides an illustration of this re-

cursion. We define two functions BLC and BILC, which denote the lattice
specific bounds as they are described above. The values BLC(n1, a1, b1) (resp.

BILC(n1, a1, b1;n2, a2, b2)) are the upper bound of the contacts on layer con-

tacts for layers with parameters n1, a1, b1 (resp. interlayer contacts between
the two layers with parameters n1, a1, b1 and n2, a2, b2).

BC(n, n1, a1, b1) = max
n2,a2,b2





BLC(n1, a1, b1)
+ BILC(n1, a1, b1;n2, a2, b2)
+ BC(n− n1, n2, a2, b2)



 (3.4)
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Figure 3.9: Illustration of Equation 3.4. Recursively, the equation reduces
the bound for cores with first layer x = 1 to a bound of cores with first layer
x = 2. The recursion equation abstracts from the continuation of the core in
layers x = 3, 4, . . . , which allows for efficient evaluation.

The frame sequence sets are generated by trace-back through the resulting
four-dimensional matrix. Since we are interested in the frame sequences with

at least a bound of c contacts, these sequences are not necessarily optimal.
Note that we also generate these sub-optimal frame sequences from the DP-

matrix, which is done by tolerating a limited deviation from the optimal
path, when computing the trace-back.

3.3 Constructing the Hydrophobic Cores

In order to construct the hydrophobic cores of size n with at least c con-

tacts, we use the corresponding complete set of frame sequences to restrict a
constraint-based search.

Given the set of frame sequences, we know that each core must have one of

these frame sequences. Otherwise, it could not form the required number of
contacts c, due to our bound of the previous chapter. For the cubic lattice,

it is furthermore straightforward that each core must have one of the frame

sequences in every possible layer decomposition, i.e. either a decomposition
along the x-axis into x-layers, one into y-layers, or one into z-layers. Now, for

gaining the maximal information from the sequences also for FCC, one has
to understand how the x-, y-, and z-layers are oriented to each other in the

FCC-lattice. Figure 3.10 illustrates that the layers of different dimensions
x, y, or z are orthogonal to each other as in the cubic lattice. However,

in contrast to the cubic lattice, they can be imagined as being rotated by
45◦. Due to this arrangement, we can apply the same constraint as for the
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Figure 3.10: Two representations of a single hydrophobic core in the FCC lat-
tice. The cores are embedded in a cubic structure to emphasize the building
principle of this lattice as face-centered cubic. We have marked the x-layers
(resp. y-layers) by showing their layer contacts. The use of light and dark
ink emphasizes the layer structure.

cubic lattice. That is, one of the frame sequences must be satisfied in either
dimension, also for the FCC lattice.

In order to enumerate the cores, we start by fixing the length of the frame se-
quence in every dimension. Since we search for connected cores, the lengthes

immediately tell us the dimensions of a minimal surrounding cuboid that
contains all points of the core and furthermore contains no empty layers.6

Note that not all combinations of frame sequence lengthes can be satisfied,
which is however hard to detect at this stage of the search. Therefore, in

case of the FCC lattice, we simply perform a complete enumeration of frame
sequence lengthes. For the cubic lattice, we can restrict the enumeration of

frame sequences further. The CHCC algorithm of [YD93, YD95] provides
means to restrict the dimensions of the cuboid by an upper bound on the

number of contacts. However, the original CHCC is incomplete for computing
sub-optimal cores and we need to develop a new algorithm, which is based

on CHCC.

As soon as the surrounding cuboid is fixed, we introduce boolean variables
CorePos~p for every lattice point in the cuboid, which tell if the point belongs

to the core. The variables CorePos~p are constrained to the (still partially
known) frame dimensions and elements in each layer. Furthermore, the vari-

ables are constrained to the number of contacts in each layer and in total.
For this aim, for each pair of points ~p, ~q, a boolean variable Contact~p,~q is

6Note that we construct only connected cores; unconnected cores can still be composed
from connected ones.
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introduced. For example, the constraint for the total number of contacts is
then easily expressed as

∑

Contact~p,~q ≥ c.

Before enumerating the boolean variables directly, it is advantageous to intro-
duce boolean variables for each line along the lattice vectors that intersects

the cuboid and tells whether the points of the line are occupied. Then, these
variables are enumerated first. Finally, constraints counting the overlapping

and touching of lines as well as constraints relating the surface of layers and
the whole core improve the constraint propagation during the search. Details

of this approach are given in Chapter 5, which discusses the core construction
problem for the FCC lattice.

3.4 Threading sequences to cores

The final problem is the threading of a given sequence to a hydrophobic core
(see Figure 3.3), which yields the structures, where the H-monomers build

the given hydrophobic core. This is discussed independently of the actual
lattice. We define a self-avoiding walk as a sequence of lattice positions,

where successive positions are lattice neighbors and no position occurs twice.
Shortly, the threading problem asks for a self-avoiding walk, where all H-

monomers are placed on core positions.

When given an HP-sequence seq of length n and a core C, we model the

problem as CSP using the finite domain constraint system. We start by
introducing finite domain variables X1 . . . Xn. The values of these variables are

the positions of the corresponding monomers in the FCC lattice. Therefore, a

valuation can encode a protein structure in our model. First, note that these
variables have indeed finite domains. This is a consequence of the positions of

H-monomers being in the finite core C and the P-monomers being connected
to the H-monomers. Regarding the implementation, note that we can still

use a standard finite domain constraint system with integer domains if we
assign a unique number to each position.

The restriction of the H-monomers to core positions is now simply expressed
by unary constraints

Xi ∈ C for 1 ≤ i ≤ n, seq i = H (3.5)

The self-avoiding property of a structure means that all positions of monomers
have to be different, which is directly expressed by an all-different constraint
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on X1 . . . Xn. Hence, we introduce

AllDiff(X1, . . . , Xn). (3.6)

Technically, we use the constraint of difference a la Régin [Reg94] for the H-

monomers, which ensures hyper-arc-consistency, and a weaker propagating
constraint for the P-monomers. Thus, we use the computationally expensive,

complete all-different constraint only where it propagates most efficiently.
The walk property claims that successive monomers must occupy neigh-

boring positions. For ensuring this property, we introduce the constraint
Walk(X1, . . . , Xn). We investigate now how we can guarantee hyper-arc con-

sistency for this constraint. By a general result of Freuder [Fre82], arc con-
sistency amounts to global consistency in a tree-structured network of binary

constraints. We will use an instance of this result. Namely, that the n-ary
walk constraint is hyper-arc consistent if and only if all 2-ary walk constraints

Walk(Xi, Xi+1) are arc consistent.
We observed that the propagation is still rather weak if self-avoiding walks

are modeled using the constraints AllDiff(X1, . . . , Xn) and Walk(X1, . . . , Xn),
which communicate only over the domains of the variables. To improve the

propagation, we discuss the combined constraint

SAWalk(X1, . . . , Xn) = AllDiff(X1, . . . , Xn) ∧ Walk(X1, . . . , Xn).

Figure 3.11: A walk that is not self-avoiding but 4-avoiding. Encircled is a
sub-walk of length 4. Every sub-walk of length 4 is self-avoiding.

Since (very likely) there is no efficient propagator for the combined con-

straint, we investigate in Chapter 6 a relaxation of the self-avoiding walk con-
straint that provides better propagation but is still tractable. For variables
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X1, . . . , Xn, the constraint SAWalk(X1, . . . , Xn) introduces the all-different con-
straint on all variables, which makes constraint propagation hard. Obviously,

we can reduce the complexity if we enforce the all-different condition only

for smaller subsets of the variables. It turned out that a reasonable choice
is to guarantee the self-avoiding property only for each set of k successive

variables. In order to formalize this, we introduce the concept of k-avoiding
walks, which are walks that are locally self-avoiding for every sub-walk of

length k (but not necessarily for the complete walk). Figure 3.11 shows a
walk that is 4-avoiding, but neither 5-avoiding nor self-avoiding. The con-

straint Walk[k](X1, . . . , Xn) is defined as constraining the variables X1, . . . , Xn

to form a k-avoiding walk.
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Chapter 4

Bounds on Contacts

In this chapter, we discuss the computation of upper bounds on the number

of contacts in detail. As already discussed in Chapter 3, these bounds are

used for the construction of compact hydrophobic cores.

A first section discusses bounds for the cubic lattice. We review the fun-

damental part of the CHCC-method of Yue and Dill [YD93, YD95]. Then,
we investigate an improvement, which handles sub-optimally compact cores

correctly. The bound on the number of contacts for the cubic lattice will
not be discussed in more detail since this bound was already explained in

sufficient detail in Chapter 3.

In the following sections, we deal with the much more intricate case of the
FCC lattice. The bounds for the FCC are based on a decomposition of point

sets into their x-layers. We give an upper bound of the number of contacts
in a point set by its number sequence and one by its frame sequences. Please

recall the terms number sequence and frame sequence from Chapter 2.

Section 4.3 reviews an upper bound for the number of contacts in the FCC
lattice, which was originally developed in [Bac00b] and reviewed in more de-

tail in [Bac04]. It defines a function Bnum such that any point set with the
number sequence n1, . . . , nk has less or equal Bnum(n1, . . . , nk) many contacts.

The main contribution is a bound on the number of contacts between two
succeeding layers (called interlayer contacts), where each of the two layers

is connected. During the review of the number sequence bound, we intro-
duce some definitions, which are fundamental for the number and the frame

sequence bounds.

In the succeeding three sections, we develop a similar bound, which bounds
point sets by their frame sequence, i.e. it defines a function Bfr such that

any point set with frame sequence (n1, a1, b1), . . . , (nk, ak, bk) has less or equal
than Bfr((n1, a1, b1), . . . , (nk, ak, bk)) many contacts. Since arbitrary frames
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(a, b) are allowed for the layers, a new bound on interlayer contacts has to
be developed, where layers can be unconnected.

A last section of its own deals with the computation of

• the maximal number of contacts cmax(n) in any point set of size n, for
a size n and

• the set of frame sequences FS, where Bfr(FS) ≥ c, for a given size n

and a number of contacts c ≤ cmax(n).

The computations are done efficiently using dynamic programming. The
implementation technique of lazy dynamic programming helps to improve

run-time and space-consumption, and in the same time keeps the imple-
mentation clear and well structured. Most notably, this technique supports

employing the bound on number sequences to help in computing frame se-

quences; thereby, we gain significant speed-up.

4.1 Constraint Hydrophobic Core Construc-

tion a la Yue and Dill

Yue and Dill [YD93, YD95] developed a structure prediction algorithm for the
cubic HP-model, which is known as constraint hydrophobic core construction

(CHCC). A sub-problem of their work can be appropriately extended to
constrain core construction in case of the cubic lattice.

In the cubic lattice, a cuboid is a set C = [x0 . . . x1]× [y0 . . . y1]× [z0 . . . z1] ⊂
Z

3. The dimensions, i.e., the length, width, and height of the cuboid are
l = x1 − x0 + 1, w = y1 − y0 + 1, and h = z1 − z0 + 1, respectively. The

frame of a point set P with the smallest cuboid C ⊇ P is the sorted list of
the dimensions of the cuboid. By defining the frame as a sorted list instead

of a tuple, two point sets with symmetrical smallest cuboid supersets have
the same frame, which breaks the geometrical symmetries.

Using these terms, Yue and Dill calculate the frames of all optimal point sets
of a given size, i.e. they compute for a size n ∈ N the set

Frames(c, n) = {frame of P |P connected point set, |P | = n,

contacts(P ) ≥ c},

where c ∈ N is the maximal number of contacts in a point set of size n.

After describing the method of Yue and Dill, we will extend their approach
for computing Frames(c, n) for arbitrary values of c ∈ N.
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4.1.1 The CHCC Bound for Frames

The CHCC algorithm is based on a fundamental claim, namely that con-
nected point sets of the cubic lattice with maximally many contacts can be

reconfigured into connected point sets of a special form, while preserving the
size, the number of contacts, and the frame.

h

w
1

h

w

b

b

l−1

Figure 4.1: Special form for optimal point sets. The attached layer (light
shade) need not fill the rectangle hb × wb completely.

A point set P is in this special form if and only if it is composed of a cuboid

with dimensions (l−1)×w×h, where the frame of P is the sorted list of l,w,
and h, and a single layer orthogonal to the x-axis.1 The width and height

of this layer are its dimensions perpendicular to the x-axis, they are denoted
by wb and hb, respectively.

For a point set in this special form the number of contacts is calculated from
the parameters l, w, h, wb, and hb via its relation to the surface as

contacts(l, w, h, wb, hb) =
6n− S

2
,

where

S = 2[(l − 1)(w + h) + wh+ wb + hb].

There is a point set in the special form for every tuple of parameters l, w, h, wb,
and hb, where

• the n points fit into a l × w × h cuboid, i.e. lwh ≥ n,

1Yue and Dill call this layer a barnacle layer



50 Chapter 4: Bounds on Contacts

• the perimeter of the last layer is not too large, i.e. wb + wh ≤ w + h,
and

• the perimeter of the last layer 2(wb + wh) is minimal for a perimeter

around the n− (l − 1)wh many points of the last layer.

Due to these considerations it is sufficient to maximize the number of con-
tacts subjected to those constraints in order to find the maximal number of

contacts cmax of n points. Furthermore, by enumerating all l, w, h, wb, and
hb that satisfy the constraints and where contacts(l, w, h, wb, hb) = cmax, we

get all frames in Frames(cmax, n).

4.1.2 Extension of CHCC

For generating the frames of sub-optimal point sets, i.e. Frames(c, n), where
c < cmax, we need to reconfigure sub-optimal connected point sets again while

preserving the frame, the number of elements and not decreasing the number
of contacts.

Only optimal point sets can be reconfigured as in the fundamental claim of

CHCC. In consequence, the CHCC method cannot be applied directly for
enumerating frame sequences. A counter-example is shown in Figure 4.2.

There, the frame 2, 2, 3 cannot be filled in the special form at all since what-
ever frame dimension is chosen as l, w and h, there are too few elements in

P . For example, for l = 3, w = 2, and h = 2, we cannot fill two layers of
dimensions 2 × 2 completely. If we choose l = 2, w = 3, h = 2 and fill the

2x3x1 cuboid, then we do not have elements left to attach one layer, which

is necessary to fill the frame.

(a) (b) (c)

Figure 4.2: a) A sub-optimal point set that cannot be reconfigured to the
special form, while preserving the frame. b) and c) Possible special forms.

As a remedy we redefine the special form such that arbitrary many minimally

filled layers, i.e. layers of size 1, can be attached to the original form. The
idea is that any connected point set can be reconfigured into this form, while
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preserving the frame, number of elements and not decreasing the number of
contacts. The extended special form is shown in Figure 4.3. This serves as a

basis to construct the sets Frames(c, n) in analogy to the original CHCC.

The extended special form is specified by parameters l,h, and w for the
surrounding cuboid, lc, hc, and wc specifying the dimensions of the completely

filled cuboid as lc − 1, hc, and wc and the dimensions of the attached layer
wb and wh. For these parameters, there is a coloring in this form with the

number of contacts

contacts(l, w, h, lc, wc, hc, wb, hb) =
6n− S

2
,

where

S = 2[(lc − 1)(wc + hc) + wchc + wb + hb] + 4[l − lc + w − wc + h− hc].

To construct the frame set it suffices to enumerate2 all such parameters sub-
ject to the constraints

1. contacts(l, w, h, lc, wc, hc, wb, hb) = c,

2. lwh ≥ n,

3. lc ≤ l, wc ≤ w, hc ≤ h,

4. wb ≤ wc, hb ≤ hc and

5. 2(wb + hb) is the minimal perimeter of any layer with n− (l − 1)wh−
(l + w + h− lc − wc − hc) elements.

4.2 Preliminaries

Representation of FCC. Throughout this chapter, we use a representa-

tion of the FCC lattice that rotates D3 by φ = 45◦ along the x-axis. This
rotation is illustrated in Figure 4.4. In order to get distance 1 between succes-

sive x-layers, and distance 1 between neighbors in one x-layer, we additionally
scale the y- and z-axis, but leave the x-axis as it is.

We define the FCC-isomorphic lattice D′
3 as the lattice that consists of the

following sets of points:

D′
3 = {

(

x
y
z

)

|
(

x
y
z

)

∈ Z
3 and x even} ] {

( x
y+0.5
z+0.5

)

|
(

x
y
z

)

∈ Z
3 and x odd}.

2A good choice is using constraint search for this enumeration.
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1
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Figure 4.3: Special form for sub-optimal point sets. Again the light cuboid
is not necessarily filled completely; each small white cube represents exactly
one point.

y

z

x

a)

(0,1,−1)

b)

(0,  2 ,0)

Figure 4.4: In figure a), we have shown two x-layers (where the x-axis is
shown as the third dimension). The red circles are the lattice points in the
first x-layer, where the red lines are the nearest neighbor connections. The
blue circles are the points in the second x-layers. The green lines indicate
the nearest neighbor connections between the first and the second x-layer.
The figure b) shows FCC after rotation by 45◦
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The first set consist of the points in even x-layers, the second of the points
in odd x-layers. The set ND′

3
of neighbor vectors connecting neighbors in D′

3

is given by

ND′

3
=

{(

0
±1
0

)

,
(

0
0
±1

)}

]
{(

±1
±0.5
±0.5

)}

.

The vectors in the second set are the vectors connecting neighbors in two

successive x-layers. Recall that two points ~p and ~p′ in D′
3 are neighbors if

~p− ~p′ ∈ ND′

3
.

The set D′
3 with the neighbor relation defined by ND′

3
is isomorphic to the

earlier representation of the FCC, namely the point set D3 with neighborship

by its minimal vectors.

Colorings. A coloring is a function f : D′
3 → {0, 1}, where f−1(1) 6= ∅.

We will identify a coloring f with its corresponding (non-empty) point set

{~p | f(~p) = 1}.

The term coloring is thus almost a synonym of the term point set. We intro-

duce the term coloring, for providing a functional view on point sets. This
term was used before in related work [Bac98a, Bac00b, Bac01], and [Bac04].

Colorings inherit all properties and notations from point sets, for example the
number of contacts of a coloring is the number of contacts of its corresponding

point set and is denoted contacts(f). In particular, we use standard set
notation for element relation ~p ∈ f1, size |f1|, union f1 ∪ f2, disjoint union

f1 ] f2, and intersection f1 ∩ f2, where f1 and f2 are colorings and ~p is a

point.

A coloring f is called a coloring of the plane x = c if f(x, y, z) = 1 implies

x = c. We say that f is a plane coloring if there is a c such that f is a
coloring of plane x = c.

With min-x(f) we denote the integer

min{~px | ~p ∈ f}.

max-x(f), min-y(f), max-y(f), min-z(f) and max-z(f) are defined analo-

gously.

We use a special notation for sub-colorings of a plane coloring f , which is in
particular used to split a coloring into disjoint sub-colorings at a row. For a

row min-z(f) ≤ z ≤ max-z(f), we define

fθz = {(c, y, z′) ∈ f | z′θz},
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where θ is one of the operators ≤, <,>,≥, or =. Note that when using
this notation, we have to take care that the sub-colorings are defined. For

example, f>z does not denote a valid coloring for z = max-z(f), since

{(c, y, z′) ∈ f | z′ > max-z(f)}

is empty.

We define Surfpl(f) to be the plane surface of f , i.e.

Surfpl(f) = |{(~p, ~p′) | (~p− ~p′) ∈ ND′

3
∧ f(~p) ∧ ¬f(~p′) ∧ ~p′x = c}.

The frame of a plane coloring f is defined as frame(f) = (a, b) by

a = max-y(f) − min-y(f) + 1 and

b = max-z(f) − min-z(f) + 1.

For connected plane colorings the plane surface is determined by the frame.

In general, the number of rows and the number of columns that are occupied

by f determine the plane surface. For a plane coloring f of x = c define

occ-z(f, z) = ∃y : f(c, y, z) and occ-y(f, y) = ∃z : f(c, y, z).

Furthermore, we define

occlines-y(f) =
∣

∣

{

y occ-y(f, y)
}∣

∣ and

occlines-z(f) =
∣

∣

{

z occ-z(f, z)
}∣

∣.

For notational convenience denote the occupied lines of a plane coloring f by

occlines(f) = (occlines-y(f), occlines-z(f)).

For a plane coloring f , we call rows z, where occ-z(f, z) holds, and columns

y, where occ-y(f, y), occupied, and unoccupied otherwise.

For bounding the number of contacts in a plane coloring, we define

BLC(n, a, b) = max

{

contacts(c)
f is a plane coloring, f has

occupied lines (a, b), and |f | = n

}

.

For computing this (tight) bound, we specialize the general relation of surface
and contacts in a point set.
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Proposition 4.2.1

For every cavity-free plane coloring f with occlines(f) = (a, b), we get

BLC(n, a, b) = 2n− 1

2
Surfpl(f)

and

Surfpl(f) = 2(a+ b).

Proof
Let f be a cavity-free coloring of plane x = c, (a, b) = occlines(f). We

show that Surfpl(f) = 2(a+ b). We need to show that for every y satisfying

occ-y(f, y), there are exactly two pairs of points (p, p′) with py = p′y = y and
px = p′x = c such that

(p− p′) ∈ ND′

3
∧ f(p) ∧ ¬f(p′).

Such a pair (p, p′) is called a surface pair. Together with the analogous claim

for every z, where occ-z(f, z), which (due to symmetry) would be shown
strictly analogously, the proposition is implied.

For the left-to-right direction of the equivalence, choose a y such that there
exists a z with f(c, y, z). For

z− = min{z|f(c, y, z)} and z+ = max{z|f(c, y, z)},

the pairs
(( c

y
z−

)

,
( c

y
z−−1

))

and
(( c

y
z+

)

,
( c

y
z++1

))

are surface pairs. Assume there is a further surface pair (p, p′) with py =

p′y = y. Then, necessarily z− < pz < z+. By the cavity-freeness of f , p′ has
to be colored. The reverse direction is trivial. �

4.3 A Bound on Number Sequences

Here, we review an upper bound for the number of contacts of a coloring f
in the FCC lattice, given the number of elements in f in each layer x = c.

Our aim is defining a function Bnum, where for any coloring f with x-layer
decomposition f1, . . . , fk, the number of contacts contacts(f) is at most

Bnum(|f1|, . . . , |nk|).
For this purpose, we develop an upper bound on the number of interlayer

contacts between two connected and cavity-free plane colorings, given their
number of elements.
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4.3.1 Number of Points with 1,2,3, and 4 Contacts

We start with introducing the notion of an i-point (i = 1, 2, 3, 4). An i-point

of a coloring fc of the plane x = c is a point of the layer x = c+1, which has

i-many neighbors in the coloring fc (cf. Figure 3.8). We make the definition
from Chapter 3 more precise.

Definition 4.3.1 (i-point)
For a coloring f of plane x = c, a point ~p of layer x = c + 1 is called an

i-point of f if and only if there are exactly i many neighbors p′ ∈ f of ~p.
For i = 1, 2, 3, or 4, #i(f) denotes the number of i-points of f in the layer

x = c+ 1.

Note that due to symmetry, one could equivalently define i-points in the layer
x = c− 1 for a plane coloring of x = c. Due to the structure of the FCC we

would count exactly the same numbers of i-points in the layer x = c− 1 and
in the layer x = c+ 1.

If we know only the number of i-points of a coloring f and the number of

elements n′ in the successive plane coloring f ′, it is easy to compute an upper
bound on the number of interlayer contacts between the two plane colorings.

For this aim, we distribute the |f ′| many points greedily to the i-points of f
(with decreasing order) and sum up the contacts.

Hence, our strategy is to bound the number of i-points given only the size

of the coloring. If we bound those numbers independently of each other, the
resulting bound will be rather weak. However, one observes a dependency

between the number of i-points of a plane coloring, when given the number
of elements, the plane surface of the coloring. A further parameter is the

number of x-steps, which is defined as follows.

Definition 4.3.2 (x-step)
An x-step for a plane coloring f is a triple (~p1, ~p2, ~p3) such that f(~p1) = 0,

f(~p2) = 1 = f(~p3), ~p1 − ~p2 = ±
(

0
1
0

)

and ~p1 − ~p3 = ±
(

0
0
1

)

. With x-steps(f)

we denote the number of x-steps of f .

Now, we give the dependency of the numbers of i-points.
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Lemma 4.3.3

Let f be a connected, cavity-free plane coloring.

#4(f) = n+ 1 − 1

2
Surfpl(f) (4.1)

#3(f) = x-steps(f) (4.2)

#2(f) = Surfpl(f) − 4 − 2#3(f) (4.3)

#1(f) = #3(f) + 4 (4.4)

(4.5)

With this lemma we cite Lemma 1 of [Bac00b]. Note that there, the number
of two-points was equivalently claimed to be

#2(f) = 2n− 2#4(f) − 2#3(f) − 2.

This equivalence is shown by rewriting:

2n− 2#4(f) − 2#3(f) − 2

= 2n− 2(n− 1

2
Surfpl(f) + 1) − 2#3(f) − 2

= Surfpl(f) − 4 − 2#3(f).

Here, we will give only a proof sketch for Lemma 4.3.3.

Proof (Sketch)
Let f be a connected, cavity-free plane coloring with (a, b) = frame(f),

n = |f |. We show the claims by induction on the number of rows b.

Case b = 1. Up to translation the points of f are completely determined,
since f is connected. It holds a = n and Surfpl(f) = 2(n+1). The number of

4-points is 0 = n + 1 − 1
2
Surfpl(f), there are no x-steps and no 3-points, the

number of 2-points is 2(n− 1) = Surfpl(f)− 4− 2#3(f). Finally the number
of 1-points is 4 = #3(f) + 4.

Case b > 1. Due to induction hypothesis the claims hold for the plane

coloring f ′ = f<z, where z = max-z(f). The coloring f extends f ′, by the
attached row f=z. All i-points, which do not have contacts to points in the

row f=z, are unchanged for f ′ and f .

The rows f=z−1 and f=z overlap. Since the rows are cavity-free, the points

in each row are connected. The only degree of freedom for the configuration
of the last two rows is to shift them against each other. Let r denote the
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number of pairs ~p ∈ f=z−1 and ~p′ ∈ f=z, where py = p′y. We get immediately,
that

#4(f) =#4(f ′) + (r − 1)

and Surfpl(f) =Surfpl(f
′) + 2(|f=z| − r) + 2.

This proves (4.1), due to

#4(f ′) + (r − 1)

(ind.hyp.)
= |f ′| + 1 − 1

2
Surfpl(f

′) + (r − 1)

= n− |f=z| + 1 − 1

2
Surfpl(f

′) + r − 1

= n + 1 − 1

2
(Surfpl(f

′) + 2|f=z| − 2r + 2)

= n + 1 − 1

2
Surfpl(f).

By case distinction on the arrangement of the last two lines, we can show
the sub-claims (4.2) and (4.3) using the induction hypothesis for f<z.

The last equation follows due to the relation

4
∑

i=1

i · #i(f) = 4 · n.

�

Thus, when given the surface and number of elements, the number of 4-points
is fixed. However, the number of 1,2, and 3-points can still vary. As we will

see, we can maximize the number of 3-points for getting an upper bound on
the number of contacts.

4.3.2 Bound for 3-Points

For bounding the number of 3-points, we investigate the number of x-steps
in a connected plane coloring. First, we introduce the notion of a detailed

frame.
The detailed frame of a coloring f is the tuple (a, b, ilb, ilu, irb, iru), where (a, b)

is the frame of f and ilb is the number of diagonals that can be drawn from
the left-bottom corner. ilu, irb, iru are defined analogously. For a coloring f

with detailed frame (a, b, ilb, ilu, irb, iru), we call~i = (ilb, ilu, irb, iru) the indent
vector of f .
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fex:

Figure 4.5: Detailed Frame

The number of x-steps depends on the detailed frame and the number of
diagonal cavities.

Definition 4.3.4 (Diagonal Cavity)
A diagonal cavity in f is a k-tuple of points (~p1, . . . , ~pk) of D′

3 with k ≥ 3

such that

• f(~p1) = 1 = f(~pk),

• ∀1 < j < k : f(~pj) = 0,

• ∀1 ≤ j < k : ~pj+1 = ~pj +
(

0
1
1

)

or ∀1 ≤ j < k : ~pj+1 = ~pj +
(

0
1
−1

)

.

The number of diagonal cavities in f is denoted diagcav(f).

For example, consider the plane coloring fex as given in Figure 4.3.2. Then
the detailed frame of fex is (6, 9, 3, 2, 1, 2). The number of 3-points (indicated

by crosses ×) for fex is 8 = 3 + 2 + 1 + 2. Furthermore, fex does not contain
diagonal cavities.

We cite Lemma 2 of [Bac00b] for the bound on the number of x-steps.

Lemma 4.3.5

For any coloring f with index vector (ilb, ilu, irb, iru), holds

x-steps(f) = ilb + ilu + irb + iru − diagcav(f).
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A proof of this lemma is given in [Bac00b] by induction on the number of
columns.

Corollary 4.3.6

Let f be a connected, caveat-free plane coloring with frame (a,b), then

x-steps(f) ≤ 2(min(a, b) − 1).

In the case of connected plane colorings, we search for a given number of
points n and a frame (a, b) the maximal number of x-steps. For this purpose,

we define for some indent vector ~i = (i1, i2, i3, i4),

vol(a, b,~i) = ab−
∑

1≤j≤4

ij(ij + 1)

2
.

vol(a, b,~i) is the maximal number of points that can be colored by any f that
has indent vector ~i and frame (a, b). ~i = (i1, i2, i3, i4) is called maximal for

(a, b) if and only if
∑

1≤j≤4

ij = 2(min(a, b) − 1).

For example, if b ≤ a, then the indent vector ~i is maximal for (a, b) if every
coloring with frame (a, b) and indent vector ~i has exactly one colored point

in the first and last column.
vol(a, b,~i) can now be used to calculate the maximal number of x-steps that

can be achieved given n colored points and frame (a, b). The maximal number
of x-steps is achieved if we make the indents as uniform as possible. For this

purpose, define

edge(n, a, b) = max{k ∈ N | vol(a, b, (k, k, k, k))}.
k = edge(n, a, b) defines the maximal possible uniform indent. Then

r = ext(n, a, b) = bab− 4k(k+1)
2

− n

k + 1
c

defines the number of times r we can extend the uniform indent by 1.

Definition 4.3.7 (Normal)
n is called normal for (a, b) if either

4k + r < 2(a− 1),

or

4k + r = 2(a− 1) and ab− 4
k(k + 1)

2
− r(k + 1) = n.
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Now, there are two upper bounds that can be given for the number of x-steps,
given n colored points and frame (a, b). The first is given by the indent vector.

The second by the fact, that in cavity-free and connected plane colorings,

there may be at most two x-steps between every two successive lines, which
yields at most 2 min(a, b) − 1. Thus, we define

Bx-steps(n, a, b) = min

{

4 edge(n, a, b) + ext(n, a, b)
2 min(a, b) − 1

}

.

Then, we get

Lemma 4.3.8 (Bound on x-steps)
For any connected, cavity-free plane coloring f ,

x-steps(f) ≤ Bx-steps(|f |, a, b),

where (a, b) = frame(f).

4.3.3 Upper Bound for Interlayer Contacts

First, we bound the number of interlayer contacts between two plane color-

ings. We introduce a notation for the number of such interlayer contacts.

Definition 4.3.9 (Interlayer Contacts)

For two plane colorings f and f ′ of different planes, we define

ICf ′

f = |{(~p, ~p′) | ~p, ~p′ neighbors, ~p ∈ f, ~p′ ∈ f ′}|.

Due to Lemma 4.3.3, we can compute the number of i-points in a connected

plane coloring f if we know n = |f |, (a, b) = frame(f), and ` = x-steps(f) as
#i(f) = #i(n, a, b, `), where we define

#4(n, a, b, `) = n + 1 − (a + b)

#3(n, a, b, `) = `

#2(n, a, b, `) = −2` + 2(a+ b) − 4

#1(n, a, b, `) = `+ 4.

Due to this, we derive a bound on the interlayer contacts ICf ′

f , given these

parameters and the size n′ of f ′, namely ICf ′

f ≤ Bc
ILC(n, a, b, `;n′) for

Bc
ILC(n, a, b, `;n′) =

4
∑

i=1

i · min(#i(n, a, b, `), ri),
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where we use some auxiliary variables

r4 = n′ and

for i = 3, 2, 1, ri = max(0, ri+1 −#(i + 1)(n, a, b, `)).

One can show, that Bc
ILC(n, a, b, `;n′) is maximized for fixed n, a, b, and n′ if

we maximize `.

Proposition 4.3.10

For a, b, `, n, n′ ∈ N,

Bc
ILC(n, a, b, `+ 1;n′) ≥ Bc

ILC(n, a, b, `;n′).

The proposition holds, since increasing the number of 3-points by one, trades

two 2-points into one 3-point and one 1-point.

Thus, replacing ` with its upper bound Bx-steps(n, a, b) yields an upper bound

on the interlayer contacts. Hence, we define

Bc
ILC(n, a, b;n′) = Bc

ILC(n, a, b,Bx-steps(n, a, b);n
′). (4.6)

and get the following theorem.

Theorem 4.3.11
For two connected plane colorings f and f ′ of different planes holds

ICf ′

f ≤ Bc
ILC(n, a, b;n′),

where n = |f |, (a, b) = frame(f), and n′ = |f ′|.

4.3.4 Contact Bound by Number Sequence

Finally, the bound shall be used for defining Bnum. As a last preparation, we

need to circumvent the restriction to connected plane colorings in the bound
Bc

ILC(n, a, b;n′).

Since we are only interested in bounding the contacts between colorings, given
the number of elements in both plane colorings, we can use the following

proposition.

Proposition 4.3.12
For each plane coloring f with frame (a, b) and n elements, there exists a

connected plane coloring f ′ with frame (a′, b′) and n′ elements with n′ = n,
a′ ≤ a, and b′ ≤ b that has at least as many contacts.
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Due to this proposition, it suffices to enumerate only frames, where a con-
nected coloring for n elements exists in order to bound the number of contacts

of two plane colorings with given size. [Bac00b] goes beyond this considera-

tion and shows that enumerating only normal and almost normal frames is
sufficient for this purpose. This improvement can then be used to speed up

the computation in practice.

Definition 4.3.13 (Number Sequence Bound)
For a number sequence (n1, . . . , nk) define

Bnum(n1, . . . , nk) =

k−1
∑

i=1

max
n-frame (a,b)

(BLC(ni, a, b) + Bc
ILC(ni, a, b;ni+1))

+ BLC(nk, a
m, bm),

where

am = d√nke,
bm = dnk/a

me,

and (a, b) is an n-frame if and only if ab ≥ n and a+ b− 1 ≤ n.

Theorem 4.3.14

For any point set f with number sequence (n1, . . . , nk) holds

contacts(f) ≤ Bnum(n1, . . . , nk).

4.4 Properties of Connected and Unconnec-

ted Plane Colorings

Let f be a coloring of plane x = c. A horizontal cavity in f is a k-tuple of

points (~p1, . . . , ~pk) such that

∀1 ≤ j < k : (( ~pj+1 − ~pj)y = 1) , {~p1, ~pk} ∈ f

and ∀1 < j < k : ~pj 6∈ f.

A vertical cavity in f is defined analogously satisfying instead

∀1 ≤ j < k : (( ~pj+1 − ~pj)z = 1) .
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a)

Distance 1

b)

Distance > 1

Figure 4.6: a) Non-overlapping vs. b) non-touching

We say that f contains a cavity if there is at least one horizontal or vertical

cavity in f . f is called cavity-free if it does not contain a cavity. For devel-
oping an upper bound on the number of contacts, it is sufficient to handle

only cavity-free colorings.

We introduce further parameters of a plane coloring f that allow us to bound
the interlayer contacts. These parameters are the number of non-touching

and non-overlapping rows.
Let f be a coloring of plane x = c. We define

overlaps(f, z) = ∃y : (f(c, y, z) ∧ f(c, y, z + 1)),

and

#non-overlaps(f) =
∣

∣

{

z < max-z(f) occ-z(f, z) ∧ ¬ overlaps(f, z)
}∣

∣.

We call an occupied row z < max-z(f) in f overlapping if overlaps(f, z) and
otherwise non-overlapping. Non-touching rows are non-overlapping rows z,

where the y-distance of the points in z and z+1 exceeds 1. An occupied row
z < max-z(f) of f is called touching if and only if touching(f, z), where

touching(f, z) = ∃y, y′ : f(c, y, z) ∧ f(c, y′, z + 1) ∧ |y − y′| ≤ 1.

It is called non-touching otherwise. The number of non-touching rows is

#non-touchs(f) =
∣

∣

{

z < max-z(f) occ-z(f, z) ∧ ¬ touching(f, z)
}∣

∣.

We call a coloring f with #non-overlaps(f) = 0, an overlapping (otherwise

non-overlapping) coloring. A coloring with #non-touchs(f) = 0, is called a
touching (otherwise non-touching) coloring.

For illustrating the terms, Figure 4.6a shows a non-overlapping, but still
touching coloring fa (#non-overlaps(fa) = 1 and #non-touchs(fa) = 0),

whereas the coloring fb in Figure 4.6b is non-overlapping and non-touching
(#non-overlaps(fb) = 1 and #non-touchs(fb) = 1).
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Note that for any coloring f , the row max-z(f) satisfies occ-z(f,max-z(f)),
¬ overlaps(f,max-z(f)) and ¬ touching(f,max-z(f)), since by definition of

max-z(f) there hold occ-z(f,max-z(f)) and ¬ occ-z(f,max-z(f) + 1). How-

ever, by definition the last row is neither overlapping (touching) nor non-
overlapping (non-touching), respectively.

One can show that a plane coloring is overlapping if and only if it is connected.
Hence, the terms overlapping and connected are synonymous.

Proposition 4.4.1
A cavity-free plane coloring f is overlapping if and only if it is connected.

Proof
Let f be a cavity-free and connected coloring of plane x = c. Assume there

is a z < max-z(f) such that occ-z(f, z) and ¬ overlaps(f, z). Since f is
connected, which implies that there is a path from a point in the first occupied

line to a point in the last occupied line, there is a y, such that f(c, y, z) and
f(c, y, z + 1). This is a contradiction to the definition of overlaps(f, z).

For the opposite direction, let f be cavity-free and overlapping. Then, f is

connected, since

1. all points ~p, ~p′ ∈ f in the same line z, i.e. where pz = p′z = z, are
connected, otherwise f would have a horizontal cavity.

2. for z < max-z(f), where occ-z(f, z), there are neighbored points ~p, ~p′ ∈
f , where pz = z and p′z = z + 1, and in particular occ-z(f, z + 1).

By 1 and 2, any point in f is connected to all points in the succeeding line
of f . Then, by induction all points in f are connected to each other. �

We introduce a technical lemma, which will be employed for inductive ar-

guments. A cavity-free coloring can be split at non-overlapping rows into
sub-colorings with the nice property that the parameters of the coloring can

be calculated from the sub-colorings in a simple way.

Lemma 4.4.2 (Split)

Let f be a cavity-free coloring of the plane x = c with #non-overlaps(f) ≥ 1,

and let min-z(f) ≤ zs < max-z(f) be a non-overlapping row. Then,

1.

f = f≤zs
] f>zs

and the sub-colorings f≤zs
and f>zs

are cavity-free.
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2.

occlines(f) = ( occlines-y(f≤zs
) + occlines-y(f>zs

),

occlines-z(f≤zs
) + occlines-z(f>zs

))

3.

#non-overlaps(f) = #non-overlaps(f≤zs
) + #non-overlaps(f>zs

) + 1.

The split lemma 4.4.2 allows us to decompose a coloring at an non-overlapping

row. Notably, the parameters of the two generated sub-colorings can easily
be added up.

Proof of Lemma 4.4.2
We proof the three claims of the lemma separately. Let f , zs, f≤zs

and f>zs

given as defined in the lemma.

1. For the existence of the sub-colorings it suffices to show that the sub-
colorings are non-empty. f≤zs

is non-empty, since occ-z(f, zs), and

f>zs
is non-empty, since the row max-z(f) is occupied in f and zs <

max-z(f). The sub-claim that f≤zs
and f>zs

are disjoint follows directly

from the definition.

Assume that there is a cavity (p1, . . . , pn) in f≤zs
. By the definition of

a cavity, f≤zs
(p1) and f≤zs

(pn) hold, which implies again by definition

that all points of the cavity have z-values less or equal than zs. Hence,
the points p2, . . . , pn−1, which are uncolored in f≤zs

are also uncolored

in f . Finally, this implies that (p1, . . . , pn) is a cavity in f , which is a
contradiction. The case f>zs

is analogous.

2. The sub-claim

occlines-z(f) = occlines-z(f≤zs
) + occlines-z(f>zs

)

is almost obvious. Recall that

occlines-z(f) = |{z | occ-z(f, z)}|.

Now,

occlines-z(f) = |{z | occ-z(f, z)}|
= |{z | z ≤ zs ∧ occ-z(f, z)} ] {z | z > zs ∧ occ-z(f, z)}|
= |{z | occ-z(f≤zs

, z)}| + |{z | occ-z(f>zs
, z)}|

= occlines-z(f≤zs
) + occlines-z(f>zs

).
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For

occlines-y(f) = occlines-y(f≤zs
) + occlines-y(f>zs

),

we show that

for all y: not exist z ≤ zs, z
′ > zs: f(c, y, z) and f(c, y, z′) (4.7)

Assume there are for a y, z ≤ zs and z′ > zs, such that f(c, y, z) and
f(c, y, z′). Then, since f is cavity-free, for all z ≤ z′′ ≤ z′ there holds,

f(c, y, z′′). In particular, f(c, y, zs) and f(c, y, zs+1), which contradicts,
¬ overlaps(f, zs). The claim is a consequence of (4.7), since

occlines-y(f) = |{y | ∃z : f(c, y, z)}|
= |{y | ∃z ≤ zs : f(c, y, z)} ∪ {y | ∃z > zs : f(c, y, z)}|
=(4.7) |{y | ∃z ≤ zs : f(c, y, z)}|

+ |{y | ∃z > zs : f(c, y, z)}|
= occlines-y(f≤zs

) + occlines-y(f>zs
).

3. By definition, holds

for z < zs : occ-z(f, z) ∧ ¬ overlaps(f, z)

⇐⇒ occ-z(f, z) ∧ ¬ overlaps(f≤zs
, z)

and

for z > zs : occ-z(f, z) ∧ ¬ overlaps(f, z)

⇐⇒ occ-z(f, z) ∧ ¬ overlaps(f>zs
, z).

Additionally we know, that zs < max-z(f) and

occ-z(f, zs) ∧ ¬ overlaps(f, zs).

Thus,
{

z < max-z(f) occ-z(f, z) ∧ ¬ overlaps(f, z)
}

is disjointly decomposed into

•
{

z < zs occ-z(f, z) ∧ ¬ overlaps(f, z)
}

,

• {zs}, and

•
{

zs < z < max-z(f) occ-z(f, z) ∧ ¬ overlaps(f, z)
}

.
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Now, Claim 3 follows by calculation

#non-overlaps(f)

=
∣

∣

{

z < max-z(f) occ-z(f, z) ∧ ¬ overlaps(f, z)
}∣

∣

=
∣

∣

{

z < zs occ-z(f, z) ∧ ¬ overlaps(f, z)
}∣

∣

+ 1 +
∣

∣

{

zs < zs < max-z(f) occ-z(f, z) ∧ ¬ overlaps(f, z)
}∣

∣

=
∣

∣

{

z < max-z(f≤zs
) occ-z(f≤zs

, z) ∧ ¬ overlaps(f≤zs
, z)

}∣

∣

+ 1 +
∣

∣

{

zs < max-z(f>zs
) occ-z(f>zs

, z) ∧ ¬ overlaps(f>zs
, z)

}∣

∣

=#non-overlaps(f≤zs
) + #non-overlaps(f>zs

) + 1.

�

In the rest of this section, we give tight bounds on the number of colored

points, given the parameters of the plane coloring. We will first state some
properties of colorings with respect to occlines(f), #non-overlaps(f) and

#non-touchs(f).

The occupied lines yield a first, simple restriction on the minimal number of
elements in any cavity-free coloring. The maximal number of non-overlapping

rows is bounded by the number of occupied lines in both dimensions.

Proposition 4.4.3
For every cavity-free coloring f,

|f | ≥ max(occlines(f)).

Proof
Let f be a cavity-free coloring, the definition of occlines(f) = (a, b) postulates

the existence of at least a and at least b colored points in f . �

Since by definition the maximal occupied row z can not be non-overlapping
we immediately get that #non-overlaps(f) is less than occlines-y(f). The

next lemma states in addition that #non-overlaps(f) is less than occlines-z(f).
Intuitively, this is a consequence of the (non-trivial) fact that every non-

overlapping row produces exactly one non-overlapping column.

Lemma 4.4.4
For a cavity-free coloring f , we get

#non-overlaps(f) < min(occlines(f)).
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Proof
By induction over #non-overlaps(f). For the base case, let f be a plane

coloring with #non-overlaps(f) = 0. Since f is non-empty, the claim holds

trivially.
For the induction step, let f be a plane coloring with #non-overlaps(f) > 0.

Let f≤zm
and f>zm

be the colorings generating by split f at row zm, where zm

is the minimal row with occ-z(f, zm)∧¬ overlaps(f, zm). Since zm < max-z(f)

by minimality, we know by Lemma 4.4.2 that

occlines-y(f) = occlines-y(f≤zm
) + occlines-y(f>zm

)

occlines-z(f) = occlines-z(f≤zm
) + occlines-z(f>zm

)

and

#non-overlaps(f) − 1 = #non-overlaps(f≤zm
) + #non-overlaps(f>zm

)

By the induction hypotheses, we get

occlines-y(f) = occlines-y(f≤zm
) + occlines-y(f>zm

)

≥ #non-overlaps(f≤zm
) + 1 + #non-overlaps(f>zm

) + 1

= #non-overlaps(f) + 1

and

occlines-z(f) = occlines-z(f≤zm
) + occlines-z(f>zm

)

≥ #non-overlaps(f≤zm
) + 1 + #non-overlaps(f>zm

) + 1

= #non-overlaps(f) + 1

�

There are two different measures that characterize the shape of a plane col-
oring f . One is frame(f), the other occlines(f). We will show that both

notions coincide for touching plane colorings.

Proposition 4.4.5 (Overlapping Colorings)

Let f be a cavity-free coloring of plane x = c with #non-touchs(f) = 0.
Then

∀min-y(f) ≤ y ≤ max-y(f) : occ-y(f, y) (4.8)

∀min-z(f) ≤ z ≤ max-z(f) : occ-z(f, z). (4.9)

Furthermore, occlines(f) = frame(f).



70 Chapter 4: Bounds on Contacts

Proof
Let f be a cavity-free coloring of plane x = c with #non-touchs(f) = 0.

Then, for Claim (4.9), assume that there is a z, where min-z(f) ≤ z ≤
max-z(f) and ¬ occ-z(f, z). Choose z0 to be the maximal value z0 < z, such

that occ-z(f, z0). Such a z0 exists, since z > min-z(f). Since ¬ occ-z(f, z0+1),
there holds ¬ touching(f, z0).

For Claim (4.9), assume that there is a y, where min-y(f) ≤ y ≤ max-y(f)
and ¬ occ-y(f, y). Immediately, min-y(f) < y < max-y(f). We show that in

f are either only points ~p with py < y (on the left of the column y) or only
points with py > y (on the right of the column y), which is a contradiction.

In each row there are either only points on the left or only points on the
right of column y. Otherwise, there is a cavity in f , since the column y is

unoccupied. By induction on the number of rows, either all point in the
coloring are on the left or all points are on right of y. For only one row this is

already shown. For more than one row, the claim holds for all rows but the
row z0 = minz f by induction. Since touching(f, z0), all points in the row z0

are on the same side of column y as the points in row z0 + 1 and the whole
plane coloring. �

m

m

no

no

no−overlaps

b

a

Figure 4.7: Coloring with maximal number of elements.

In a cavity-free plane coloring f , with given number of occupied lines in y and
z direction and number of elements, only some numbers of non-overlapping

rows #non-overlaps(f) can occur. In the following, we investigate this de-
pendency of the number of non-overlapping rows mno, the occupied lines

(a, b) and the size n in a cavity-freeplane coloring f . We define

nmax(a, b,mno) = mno + (a−mno)(b−mno)
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and
nmin(a, b,mno) = a + b− 1 −mno.

The idea of the definition of nmax(a, b,mno) is that the number of elements is
maximized if we have one large overlapping region and waste as little space

as possible for the non-overlapping region. Hence, in this maximal coloring,
all of the non-overlapping rows contain exactly one point. Such a coloring is

shown in Figure 4.7.

Lemma 4.4.6
All cavity-free colorings f satisfy

|f | ≤ nmax(a, b,mno),

where mno = #non-overlaps(f) and (a, b) = occlines(f).

Proof

We proof the proposition by induction on mno > 0.

Case mno = 0. The maximal number of elements in an overlapping coloring
with occupied lines (a, b) is clearly ab, thus the base case holds.

Case mno > 0. Let f be an arbitrary cavity-free coloring with occlines(f) =
(a, b) and #non-overlaps(f) = mno. Furthermore, let zs be minimal such that

¬ overlaps(f, zs) holds. Then, due to Lemma 4.4.2, we can split f at the row
zs into f≤zs

and f>zs
such that

• f = f≤zs
] f>zs

• occlines(f≤zs
) = (a′, b′) and occlines(f>zs

) = (a− a′, b− b′).

• #non-overlaps(f≤zs
) = 0 and #non-overlaps(f>zs

) = mno − 1.

By Lemma 4.4.4, we know that

occlines-y(f>zs
) ≥ mno and occlines-z(f>zs

) ≥ mno.

Since occlines(f>zs
) = (a− a′, b− b′), this implies

a−mno ≥ a′ and b−mno ≥ b′.

By induction hypothesis for f≤zs
and f>zs

,

|f | = |f≤zs
| + |f>zs

|
≤ nmax(a

′, b′, 0) + nmax(a− a′, b− b′, mno − 1). (4.10)
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We temporarily introduce the function g, by

g(a′, b′) := nmax(a
′, b′, 0) + nmax(a− a′, b− b′, mno − 1).

Given this, we need only to show that for any 1 ≤ a′ ≤ a−mno and 1 ≤ b′ ≤
b−mno,

g(a′, b′) ≤ nmax(a, b,mno).

We will determine the maximum of the function g, for

1 ≤ a′ ≤ a−mno and 1 ≤ b′ ≤ b−mno.

The explicit form of g is

g(a′, b′) =a′b′ +mno − 1 + (a− a′ − (mno − 1))(b− b′ − (mno − 1))

=a′b′ +mno − 1 + (a′ − a +mno − 1)(b′ − b+mno − 1).

g(a′, b′) is linear in a′ and b′. Hence, the optima of the function must be at
the border of the domains for a′ and b′. In other words, g(a′, b′) is maximized

within our restricted domain for at least one pair

(a′, b′) ∈ {(1, 1), (a−mno, 1), (1, b−mno), (a−mno, b−mno)}.

By simple calculation,

g(1, 1) = 1 +mno − 1 + (a− 1 − (mno − 1))(b− 1 − (mno − 1))

= mno + (a−mno)(b−mno) = g(a−mno, b−mno)

and

g(a−mno, 1) = a−mno +mno − 1 + b−mno

= a + b− (mno + 1) = g(1, b−mno).

It remains to be shown that

mno + (a−mno)(b−mno) ≥ a+ b− (mno + 1).

This holds since

mno + (a−mno)(b−mno) − (a+ b− (mno + 1))

= 2mno + ab− amno − bmno +mno
2 − a− b + 1

= ab− a(mno + 1) − b(mno + 1) + (mno2 + 2mno + 1)

= ab− a(mno + 1) − b(mno + 1) + (mno + 1)2

= (a− (mno + 1))(b− (mno + 1))
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and
(a− (mno + 1))(b− (mno + 1)) ≥ 0,

due to a, b ≥ mno + 1 by Lemma 4.4.4. �

Lemma 4.4.7

For all cavity-free colorings f holds nmin(a, b,mno) ≤ |f |, where (a, b) =
occlines(f) and mno = #non-overlaps(f).

Proof

We proof the claim by induction on the number of non-overlapping rows mno.

Case mno = 0. We show by induction on the number of columns a, that
any overlapping coloring f with occlines(f) = (a, b) satisfies

|f | ≥ a + b− 1.

For the base case a = 1, obviously for any overlapping f with occlines(f) =
(1, b), |f | = b = a + b− 1.

For the induction case a > 1, we choose f as an overlapping coloring with
occlines(f) = (a, b). We split f into the colorings

f ′ = {~p | py < max-y(f)} and f ′′ = {~p | py = max-y(f)}.

Both sub-colorings exist, i.e. the sets f ′ and f ′′ are non-empty, by definition
of max-y(f) and a > 1. f ′ has to be overlapping, since f is overlapping.

Obviously, occlines-y(f ′) = a− 1 holds. We have to give an lower bound for
|f ′′|, which is occlines-z(f ′′). Since f is cavity-free, we get

b = occlines-z(f)

= occlines-z(f ′) + occlines-z(f ′′) − #overlap points,

where

#overlap points = |{z | f(c,max-y(f) − 1, z) ∧ f(c,max-y(f), z)}.

Note that #overlap points ≥ 1 since f has to be overlapping. Hence,

|f ′′| = occlines-z(f ′′) = b− occlines-z(f ′) + #overlap points

≥ b− occlines-z(f ′) + 1

Hence, by induction hypothesis for f ′

|f | = |f ′|+|f ′′| ≥ (a−1)+occlines-z(f ′)−1 + b−occlines-z(f ′)+1 = a+b−1.
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Case mno > 0. For the main induction case, let zs be the minimal row with
occ-z(f, zs)∧¬ overlaps(f, zs). By Lemma 4.4.2, we know that f≤zs

and f>zs

is a decomposition of f into two disjoint cavity-free sub-colorings such that

1. #non-overlaps(f≤zs
) = 0 and #non-overlaps(f>zs

) = mno − 1, and

2. occlines(f>zs
) = (a− a′, b− b′), where (a′, b′) = occlines(f≤zs

).

By induction hypothesis for f≤zs
and f>zs

, we get

|f | = |f≤zs
| + |f>zs

| ≥ nmin(a
′, b′, 0) + nmin(a− a′, b− b′, mno − 1)

= a′ + b′ − 1 + (a− a′) + (b− b′) − 1 − (mno − 1)

= a + b− 1 −mno.

�

For convenience, we define the following bounds on the number of non-

overlapping rows:

nomin(n, a, b) = min{mno | 0 ≤ mno ≤ min(a, b) − 1 ∧ n ≥ nmin(a, b,mno)}
nomax(n, a, b) = max{mno | 0 ≤ mno ≤ min(a, b) − 1 ∧ n ≤ nmax(a, b,mno)}

Proposition 4.4.8

For any cavity-free coloring f with occlines(f) = (a, b) and |f | = n holds

nomin(n, a, b) ≤ #non-overlaps(f) ≤ nomax(n, a, b).

Proof

Let f be any cavity-free coloring f with occlines(f) = (a, b) and |f | = n.

First, show that nomin(n, a, b) ≤ #non-overlaps(f) = mno. Since for f holds
n ≤ nmax(a, b,mno) and 0 ≤ mno ≤ min(a, b)−1 by Lemmata 4.4.4 and 4.4.7,

the claim follows by the minimality of nomin(n, a, b). The second claim, i.e.

nomax(n, a, b) ≥ #non-overlaps(f), holds by an analogous argument. �

4.5 Number of i-Points for Cavity-Free Col-

orings

In the next two sections, we provide a bound on interlayer contacts. As in
the case of connected plane colorings, we calculate for a coloring f of plane

c the numbers of points having 4,3,2, and 1 contacts to f . These points were
called i-points, please recall the definition of i-points from Section 4.3.
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As we will show later (Theorem 4.7.2) we can bound the maximal number
of interlayer contacts between x = c and x = c + 1 if we fill the 4-points

first, then (if points are left) the 3-points and so on. Before, we need some

definitions and auxiliary lemmata.
In the following, let f be a plane coloring of plane x = c and f ′ a plane

coloring of plane x = c′, where c 6= c′. The number of interlayer contacts of
f and f ′ is denoted ICf ′

f . We define

max-IC(f ;n) = max

{

ICf ′

f

f ′ is a plane coloring of x = c+ 1
with |f ′| = n

}

.

We will show that for an arbitrary plane coloring the number of i-points

(i ∈ {1, 2, 3, 4}) depends only on the number of non-overlapping rows, the

number of non-touching rows, and the number of x-steps.
We introduce the functions which compute the number of i-points, depending

on n = |f |, s = Surfpl(f), mnx = x-steps(f), mno = #non-overlaps(f) and
mnt = #non-touchs(f):

#4(n, s,mno, mnt, mnx) = n− 1

2
s+ 1 +mno

#2(n, s,mno, mnt, mnx) = s− 4 − 2#3(n, s,mno, mnt, mnx) − 3mno −mnt

#3(n, s,mno, mnt, mnx) = mnx − 2(mno −mnt)

#1(n, s,mno, mnt, mnx) = #3(n, s,mno, mnt, mnx) + 2mno + 2mnt + 4

The aim of this subsection is to show, that these functions really yield the

numbers of i-points of any f , which satisfies the parameters.
For the moment, note that the total number of contacts of any coloring

to its succeeding layer is always 4n and of course, the given numbers of i-
points have to be consistent with this fact. We demonstrate this by simple

calculation. Let f be a coloring as postulated.

4#4(f) + 3#3(f) + 2#2(f) + 1#1(f)

= 4(n− 1

2
s+ 1 +mno) + 3#2(n, s,mno, mnt, mnx)

+ 2(s− 4 − 2#3(f) − 3mno −mnt) + (#3(f) + 2mno + 2mnt + 4)

= 4n− 2s+ 2s+ 4 − 8 + 4 + 4mno − 6mno + 2mno − 2mnt + 2mnt

+ 3#3(f) − 4#3(f) − #3(f)

= 4n.

As preparation for the main result of the sub-section, we state two lemmas

that investigate how to calculate the i-points of f from the two sub-colorings
generated by splitting f at a non-overlapping or non-touching row.
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Lemma 4.5.1 (Split 3-Points)

Let f be a cavity-free coloring of plane x = c with #non-overlaps(f) ≥ 1,
and let zs be a non-overlapping row. Then, #3(f) = #3(f≤zs

) + #3(f>zs
).

Proof

We can show that neither f≤zs
, nor f>zs

, nor f has a 3-point that lies between

rows zs and zs + 1. This will imply that every 3-point for f lies either below
zs and is therefore also a 3-point for f≤zs

, or above zs + 1 and is therefore

also a 3-point for f>zs
.

Let f , zs, f≤zs
and f>zs

given as defined. Let p be a 3-point for f≤zs
(resp.

f>zs
) in plane x = c+ 1. Then, there are exactly three points out of

Np =
{( c

py+0.5
pz+0.5

)

,
( c

py+0.5
pz−0.5

)

,
( c

py−0.5
pz+0.5

)

,
( c

py−0.5
pz−0.5

)

,
}

that are contained in f≤zs
(resp. f>zs

). Hence, pz +0.5 ≤ zs (resp. pz −0.5 >
zs) holds. This implies that these 3 points are colored in f , and that the

fourth point cannot be colored in f , which implies that p is a 3-point for f .
For the reverse direction, let p be a 3-point for f . Assume p is not a 3-

point in f≤zs
or f>zs

. The only case that is not immediately contradicting is
pz = zs +0.5. Since three of the points in Np are colored by f , we know that

either
( c

py+0.5
pz+0.5

)

and
( c

py+0.5
pz−0.5

)

or

( c
py−0.5
pz+0.5

)

and
( c

py−0.5
pz−0.5

)

are colored by f . This is an immediate contradiction to ¬ overlaps(f, zs). �

Lemma 4.5.2 (Split at minimal non-touching row)

Let f be a cavity-free coloring of plane x = c with #non-touchs(f) ≥ 1, and
let zs be the minimal non-touching row. Then,

#non-touchs(f≤zs
) = 0, (4.11)

#non-touchs(f>zs
) = #non-touchs(f) − 1 (4.12)

x-steps(f≤zs
) + x-steps(f>zs

) = x-steps(f), (4.13)

and

∀i ∈ {1, 2, 3, 4} : #i(f≤zs
) + #i(f>zs

) = #i(f). (4.14)
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Proof
Let f and zs be given as in the lemma.

Eq (4.11): This holds by the minimality of zs.

Eq (4.12): Consider the z where

∃y : f(c, y, z) ∧ ¬ touching(f, z),

here called the non-touching rows in f . Obviously, all non-touching

rows in f>zs
are non-touching rows in f . zs is the minimal non-touching

row in f . Since zs < min-z(f>zs
), we know that zs is not an non-

touching row in f>zs
. It remains to show that all non-touching rows

z > zs in f are non-touching rows in f>zs
. This holds, since

∀c, y, z : z > zs ∧ f(c, y, z) ⇐⇒ f>zs
(c, y, z)

by definition of f>zs
.

Eq (4.13): We show that whenever a triple of points defines an x-step in f ,

either all of its points have z-values less or equal than zs or all points
have z-values greater than zs. We consider all possible violations of

this sub-claim. Assume there is an x-step (~p1, ~p2, ~p3) of f , where

~pi = (px
i , p

y
i , p

z
i ) (i = 1, 2, 3),

such that pz
1 = pz

2 = zs and pz
3 = zs + 1. Since |py

2 − py
3| = 1 this

contradicts ¬ touching(f, zs). The case pz
1 = pz

2 = zs + 1 and pz
3 = zs

is analogously contradicting. This implies that every x-step in f is a

x-step of either f≤zs
or f>zs

.

Finally, every x-step in f≤zs
or f>zs

has to be an x-step in f , since in
any x-step (~p1, ~p2, ~p3) the uncolored p1 and the colored p2 have equal

z-values by definition. This implies for a x-step of f≤zs
that pz

2 ≤ zs

and analogously for f>zs
. Hence, in any case of a x-step (~p1, ~p2, ~p3) the

uncolored ~p1 is also uncolored in f .

Eq (4.14): We will show that for every i = 1, . . . , 4, and for every i-point ~p
the neighbors ~p1, . . . , ~pi of p in f are either all in coloring f≤zs

or all in

coloring f>zs
. For i = 1, this is trivial.

For i ≥ 2, assume that there are two points ~p and ~p′ of the points
~p1, . . . , ~pi, where one is in row z = zs and one is in row z = zs + 1. By

definition of i-points, we know that py − p′y is either 0 or 1, which is
an immediate contradiction to ¬ touching(f, zs).
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�

Before giving the numbers of i-points of general, cavity-free plane colorings,
we study the numbers for touching colorings as a preparation. The following

lemma was already given in [Bac04].

Lemma 4.5.3

Let f be a cavity-free, touching coloring, where s = Surfpl(f), n = |f |,
mno = #non-overlaps(f), and mnx = x-steps(f). Then,

#4(f) =n− 1

2
s+ 1 +mno

#3(f) =mnx − 2mno

#2(f) =s− 4 − 2#3(f) − 3mno

#1(f) =#3(f) + 4 + 2mno.

We proof this lemma using Lemma 4.3.3, which handles i-points in the case

of connected, i.e. overlapping colorings.

Proof
We show the claims by induction over the number of non-overlapping rows.

Let f be a touching, cavity-free coloring, where s = Surfpl(f), n = |f |,
mno = #non-overlaps(f), and mnx = x-steps(f).

Case mno = 0. The claims hold by Lemma 4.3.3.

Case mno > 0. We choose zs minimal, such that the row zs in f is non-
overlapping, i.e. occ-z(f, zs) and ¬ overlaps(f, zs). Then, we split f at the

row zs into colorings f≤zs
and f>zs

. Note that Lemma 4.4.2 is applicable in
this case.

It is easy to see that for all points ~p = (px, py, pz), where pz ≤ zs (pz > zs),
~p is an i-points of f if and only if it is an i-point of f≤zs

(f>zs
), respectively.

Since the row zs of f is non-overlapping, but touching, there are exactly two

points ~p0 ∈ f=zs
and ~p1 ∈ f=zs+1, where py

0 − py
1 = 1 and the two rows f=zs

and f=zs+1 have the arrangement shown in Figure 4.8 (or the symmetrical

one).

The point (c+1, 1
2
(py

0 + py
1), zs +0.5) is a 2-point in f and an 1-point in both

colorings f≤zs
and f>zs

. All other points (c + 1, y, zs + 0.5) are and i-point
of either f≤zs

or f>zs
if and only if they are an i-point of f . Furthermore,

the coloring f has exactly two x-steps that do not occur in any of the sub-
colorings f≤zs

and f>zs
.
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z + 0.5s

Figure 4.8: Arrangement of the rows f=zs
and f=zs+1. The white point is

a two-point of the joint coloring f , but is a one-point in each of the sub-
colorings f≤zs

and f>zs
.

Concluding, we get

#1(f) = #1(f≤zs
) + #1(f>zs

) − 2,

#2(f) = #2(f≤zs
) + #2(f>zs

) + 1,

#3(f) = #3(f≤zs
) + #3(f>zs

), and

#4(f) = #4(f≤zs
) + #4(f>zs

).

Using the induction hypothesis for f≤zs
and f>zs

we show the claims by
rewriting the formulae. Note that due to Lemma 4.4.2 and Proposition 4.2.1,

Surfpl(f≤zs
) + Surfpl(f>zs

) = Surfpl(f).

#1(f≤zs
) + #1(f>zs

) − 2
(ind.hyp.)

= #1(f≤zs
) + 4 + #1(f>zs

) + 4 + 2(mno − 1) − 2

= #3(f) + 4 + 2mno.

#2(f≤zs
) + #2(f>zs

) + 1
(ind.hyp.)

= Surfpl(f≤zs
) − 7 − 2#2(f≤zs

)

+ Surfpl(f>zs
) − 2#2(f>zs

) − 3(mno − 1)

= Surfpl(f) − 4 − 2#3(f) − 3mno

#3(f≤zs
) + #3(f>zs

)
(ind.hyp.)

= mnx + 2 − 2(mno − 1)

= mnx − 2mno.
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#4(f≤zs
) + #4(f>zs

)

(ind.hyp.)
= |f≤zs

| − 1

2
Surfpl(f≤zs

) + 1 + 0

+ |f≤zs
| − 1

2
Surfpl(f>zs

) + 1 + (mno − 1)

= n− 1

2
s + 1 +mno

�

Lemma 4.5.4
Let f be a cavity-free coloring. Then

∀i ∈ {1, 2, 3, 4} : #i(f) = #i(n, s,mno, mnt, mnx),

where n = |f |, s = Surfpl(f), mnx = x-steps(f), mno = #non-overlaps(f)

and mnt = #non-touchs(f)

Recall, that in a more more explicit form, the lemma claims that

#4(f) = n− 1

2
s+ 1 +mno #3(f) = mnx − 2(mno −mnt)

#2(f) = s− 4 − 2#3(f) − 3mno −mnt #1(f) = #3(f) + 2mno + 2mnt + 4.

Proof

We prove the claims by induction on #non-touchs(f).

Case #non-touchs(f) = 0. This holds, due to Lemma 4.5.3.

Case #non-touchs(f) > 0. There is at least one non-touching row (which
is also a non-overlapping row by definition). Let min-z(f) ≤ zs < max-z(f)

be minimal, such that occ-z(f, zs) and ¬ touching(f, zs).

Using Lemmata 4.4.2, 4.5.1 and 4.5.2 and the induction hypothesis for f≤zs

and f>zs
, we show that the claims for i ∈ {1, 2, 3, 4} hold for f .

By Lemma 4.4.2 and Proposition 4.2.1, we get immediately Surfpl(f≤zs
) +

Surfpl(f>zs
) = Surfpl(f).
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Claim for i = 4.

#4(f≤zs
) + #4(f>zs

)

(ind.hyp.)
= |f≤zs

| − 1

2
Surfpl(f≤zs

) + 1 + #non-overlaps(f≤zs
)

+ |f>zs
| − 1

2
Surfpl(f>zs

) + 1 + #non-overlaps(f>zs
)

= |f | − 1

2
Surfpl(f) + 2 + #non-overlaps(f) − 1.

Claim for i = 3.

#3(f≤zs
) + #3(f>zs

)
(ind.hyp.)

= x-steps(f≤zs
) − 2(#non-overlaps(f≤zs

) − #non-touchs(f≤zs
))

+ x-steps(f>zs
) − 2(#non-overlaps(f>zs

) − #non-touchs(f>zs
))

= x-steps(f) − 2(#non-overlaps(f) − 1 − (#non-touchs(f) − 1))

= x-steps(f) − 2(#non-overlaps(f) − #non-touchs(f)).

Claim for i = 2.

#2(f≤zs
) + #2(f>zs

)
(ind.hyp.)

= Surfpl(f≤zs
) − 4 − 2#3(f≤zs

)

− 3#non-overlaps(f≤zs
) − #non-touchs(f≤zs

)

+ Surfpl(f>zs
) − 4 − 2#3(f>zs

)

− 3#non-overlaps(f>zs
) − #non-touchs(f>zs

)

= Surfpl(f) − 8 − 2#3(f)

− 3(#non-overlaps(f) − 1) − (#non-touchs(f) − 1)

= Surfpl(f) − 4 − 2#3(f) − 3#non-overlaps(f) − #non-touchs(f).

Claim for i = 1.

#1(f≤zs
) + #1(f>zs

)
(ind.hyp.)

= #3(f≤zs
) + 2#non-overlaps(f≤zs

) + 2 #non-touchs(f≤zs
) + 4

+ #3(f>zs
) + 2#non-overlaps(f>zs

) + 2 #non-touchs(f>zs
) + 4

= #3(f) + 2(#non-overlaps(f) − 1) + 2(#non-touchs(f) − 1) + 8

= #3(f) + 2#non-overlaps(f) + 2 #non-touchs(f) + 4.

�
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4.6 Maximal Number of 3-Points

Due to the last lemma, if we consider colorings with given n, a, b,mno, and

mnt, then increasing the number of x-steps mnx does not affect the number of
4-points, but increases the number of 3-points and 1-points, while decreasing

the number of 2-points. The increase of 3- and 1-points is 1 per x-step, the
decrease of 2-points is 2 per 3-point. This pattern, which already occurred

in the bound for connected plane colorings (cf. Section 4.3), grants that we
maximize the possible number of interlayer contacts to a second plane with a

given number of elements if we maximize the number of 3-points in the first
plane.

For this purpose, we first show that we do not need to distinguish between
non-touching and non-overlapping rows for determining the maximal number

of 3-points. The reason is that number of 3-points does not change if one

transforms a non-overlapping row into into a non-touching row. Consider as
an example the two colorings in Figure 4.9. Then both f and f ′ have one

x−step 1

x−step 2
f: f’:

Figure 4.9: Change in the number of x-steps, when transforming an non-
overlapping, but touching coloring into a non-touching one.

3-point (indicated in grey). By transforming the non-overlapping row in f

into a non-touching row, f ′ looses two x-steps. Thus, for the number of 3-
points, the effects of increasing #non-touchs(·) by 1 are completely balanced

by decreasing x-steps(·) by 2.

Note that such a bound for the interlayer contacts using a bound for 3-
points that does not distinguish between non-overlapping and non-touching

rows slightly overestimates, since we assume the best case for the number of
2- and 1-points (note that in contrast to the number of 3-points, the number

of 2- and 1-points depend on the exact number of non-touching rows).
We will now develop an upper bound on the number of 3-points of general

plane colorings. For overlapping plane colorings f , we use the upper bound

Bx-steps(|f |, occlines-y(f), occlines-z(f)) ≥ x-steps(f)

on the number of x-steps in f that was already given before (cf. Lemma 4.3.8).
We improve this bound in the case of quadratic frames (a, a) and n is not
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normal for (a, a). Here, we show that we have an upper bound of 2a − 3
instead of 2a − 2 if there is no maximal indent ~i with n = vol(a, a,~i). We

show in this case, that there must be a diagonal cavity.

Lemma 4.6.1

For every overlapping cavity-free coloring f we get

#3(f) ≤ B#3(|f |, a, b),

where (a, b) = frame(f) and

B#3(n, a, b) =































Bx-steps(n, a, b) n is normal for frame (a, b)

2 min(a, b) − 2 else if a 6= b

2a− 2 else if ∃~i : ~i are maximal indents

for (a, a) ∧ n = vol(a, a,~i)

2a− 3 otherwise

Proof

Let f be an overlapping cavity-free coloring with frame (a, b). As previously
argued, Bx-steps(n, a, b) and thus 2 min(a, b) − 2 are bounds for #3(f).

For the case a = b, B#3(|f |, a, b) even improves the bound 2 min(a, b) − 2.
Let f be a coloring with frame (a, a) and indents ~i = (i1, i2, i3, i4). We have

two cases:

~i is not maximal. Then i1 + i2 + i3 + i4 ≤ 2 min(a, b) − 3, which implies

by Lemma 4.3.5 that

#3(f) ≤ i1 + i2 + i3 + i4 ≤ 2 min(a, b) − 3.

~i is maximal. Then i1 + i2 + i3 + i4 = 2 min(a, b)− 2. First, we show that

n 6= vol(a, a,~i) ⇐⇒ f contains diagonal cavity. (4.15)

For the claim (4.15), first note that i1 + i2 + i3 + i4 = 2 min(a, b) − 2 is
equivalent to i1 + i2 + i3 + i4 = 2a− 2, since a = b. Let (a, a, iflb, i

f
lu, i

f
rb, i

f
ru)

be the detailed frame of f (where ~i is iflb, i
f
lu, i

f
rb, i

f
ru ordered by size). We will

first show that in the first and last row of f , there is exactly one colored

point. For the first row, the equation

a = iflb + ifrb + ub + cb
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holds, where cb are the number of colored points in the first row, and ub are
the uncolored points which are not already excluded by the indents iflb and

ifrb. Similarly, we get

a = iflu + ifru + uu + cu

for the last row. Now

2a = iflb + ifrb + ub + cb + iflu + ifru + uu + cu.

Since iflb + ifrb + iflu + ifru = 2a− 2 by our assumption, we get

uu + cu + ub + cb = 2.

Since the first and last row must contain a colored point to justify the frame,

we get cu ≥ 1 and cb ≥ 1. This immediately implies cu = 1 and cb = 1, i.e.,
the first and last row contains exactly one colored point.

Analogously, we get that the first and last column of f contains exactly one
point. Hence, f has the form as described by Figure 4.10. If all points on

lines ~p1—~p2, ~p1—~p3, ~p2—~p4, and ~p3—~p4 are colored by f , then all points in

the region surrounded by these lines must be colored by f due to the cavity-
freeness of f . But this implies that |f | = vol(a, a,~i). Otherwise, if not all the

points on these lines are colored, we have at least one diagonal cavity and
|f | < vol(a, a,~i). This concludes the proof of (4.15).

Now, by Equation (4.15), n = vol(a, a,~i) implies that f does not contain a
diagonal cavity, which implies by Lemma 4.3.5 that

#3(f) = i1 + i2 + i3 + i4 = 2 min(a, b) − 2.

On the other hand, n 6= vol(a, a,~i) implies that f contains at least 1 diagonal
cavity. Since

#3(f) = i1 + i2 + i3 + i4 − diagcav(f)

by 4.3.5, we can immediately conclude that

#3(f) ≤ i1 + i2 + i3 + i4 − 1 = 2 min(a, b) − 3.

�

The given bound for overlapping colorings is now extended to arbitrary,
cavity-free colorings. We define the predicate valid(n, a, b,mno) by

valid(n, a, b,mno) = mno < min(a, b) ∧ nmin(a, b,mno) ≤ n ≤ nmax(a, b,mno).
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p
1

p

p

p
2

3

4

Figure 4.10: Coloring with maximal indents and frame (a, a).

Proposition 4.6.2

For any a, b, n,mno, the existence of a coloring f with |f | = n, occlines(f) =
(a, b), and #non-overlaps(f) = mno implies that valid(n, a, b,mno) holds.

Proof

The claim is an immediate consequence of Lemmata 4.4.6, 4.4.7, and 4.4.4.
�

Definition 4.6.3 (Bound on number of 3-points (general case))

B#3(n, a, b,mno) =

{

F valid(n, a, b,mno)

−∞ otherwise

F =



















B#3(n, a, b) mno = 0

max











B#3(n
′, a′, b′, 0)

+ B#3(n− n′, a− a′,

b− b′, mno − 1)

1 ≤ n′ ≤ n− 1,

1 ≤ a′ ≤ a− 1,

1 ≤ b′ ≤ b− 1,











otherwise

Lemma 4.6.4

For every cavity-free coloring f , holds

#3(f) ≤ B#3(n, a, b,mno),

where

n = |f |, (a, b) = occlines(f), and mno = #non-overlaps(f).

Proof
We proof the claim by induction on mno.
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Case mno = 0. Here, the claim is satisfied by Lemma 4.6.1.

Case mno > 0. Either there is no coloring for n, a, b,mno, then nothing is to

show, or there is at least one such coloring. In this case, let f be a cavity-free
coloring with |f | = n, occlines(f) = (a, b), and #non-overlaps(f) = mno. We

have to show, that there is a triple (n′, a′, b′), where

1 ≤ n′ ≤ n− 1, 1 ≤ a′ ≤ a− 1, and 1 ≤ b′ ≤ b− 1,

such that

B#3(n
′, a′, b′, 0) + B#3(n− n′, a− a′, b− b′, mno − 1) ≥ #3(f).

Split the coloring f into two colorings f≤zs
and f>zs

at the minimal line zs

with occ-z(f, zs) and ¬ overlaps(f, zs). Let

n′ = |f≤zs
| and (a′, b′) = occlines(f≤zs

).

Then, by Lemma 4.4.2, this implies that

n− n′ = |f>zs
| and (a− a′, b− b′) = occlines(f>zs

).

Since f≤zs
and f>zs

are cavity-free colorings, valid(f≤zs
) and valid(f<) hold.

Now, we get from the induction hypothesis for f≤zs
and f>zs

that

B#3(n
′, a′, b′, 0) + B#3(n− n′, a− a′, b− b′, mno − 1)

≥
#3(f≤zs

) + #3(f>zs
).

By Lemma 4.5.1, #3(f≤zs
) + #3(f>zs

) = #3(f). �

4.7 Bound on Interlayer Contacts

The bound on the number of 3-points can now be used to derive a bound on
the number of interlayer contacts for arbitrary colorings, which is defined as

follows.

First, we define a bound in the case of known number of non-overlapping
rows and afterwards, apply this bound to get a general bound.
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Definition 4.7.1 (General Interlayer Contacts Bound)

BILC(n1, a1, b1;n2)(mno1) = 4 min(n2,#4)

+3 min(#3,max(n2 − #4), 0)

+2 min(#2,max(n2 − #4 − #3, 0))

+1 min(#1,max(n2 − #4 − #3 − #2, 0))

where

#4 = n− a1 − b1 + 1 +mno1

#3 = B#3(n1, a1, b1, mno1)

#2 = 2(a1 + b1) − 4 − 2#3 − 3mno1

#1 = #3 + 2mno1 + 4

BILC(n1, a1, b1;n2) = max







BILC(n1, a1, b1;n2)(mno1)
nomin(n1, a1, b1)

≤ mno1 ≤
nomax(n1, a1, b1)







Theorem 4.7.2

Let f1 and f2 be coloring of planes x = c and x = c+ 1, respectively. Let

n1 = |f1|, occlines(f1) = (a1, b1), |f2| = n2 and occlines(f2) = (a2, b2).

Then

ICf2

f1
≤ min(BILC(n1, a1, b1;n2),BILC(n2, a2, b2;n1)).

For convenience, we define

BILC(n1, a1, b1;n2, a2, b2) = min(BILC(n1, a1, b1;n2),BILC(n2, a2, b2;n1)).

Proof
Let f1 and f2 be colorings with n1 = |f1|, (a1, b1) = occlines(f1), (a2, b2) =

occlines(f2) and n2 = |f2|. Let mno1 = #non-overlaps(f1) and mnt1 =
#non-touchs(f1). We will first show that

ICf2

f1
≤ BILC(n1, a1, b1;n2).

Once this is shown, the claim follows immediately since ICf2

f1
= ICf1

f2
.
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Since f1 is cavity-free, we know by Proposition 4.2.1 that the surface of f1 is
2(a1 + b1). Define

max-IC(n1, a1, b1,#3, mno1, mnt1;n2) =

4 min(n2,#4)

+3 min(#3,max(n2 − #4), 0)

+2 min(#2,max(n2 − #4 − #3, 0))

+1 min(#1,max(n2 − #4 − #3 − #2, 0))

where

#4 = n1 − a1 − b1 + 1 +mno1

#2 = 2(a1 + b1) − 4 − 2#3 − 3mno1 −mnt1

#1 = #3 + 2mno1 + 2mnt1 + 4.

By Lemma 4.5.4,

ICf2

f1
≤ max-IC(f1;n2)

= max-IC(n1, a1, b1,#3(f1), mno1, mnt1;n2).

Now, if we relax the constraints on the parameters of f1 by #3 ≤ B#3(f1)

and mnt1 > 0, the term

max-IC(n1, a1, b1,#3, mno1, mnt1;n2)

is maximized for #3 = B#3(f1) and mnt1 = 0. Hence,

max-IC(f1;n2) ≤ max-IC(n1, a1, b1,B#3(f1), mno1, 0;n2)

= BILC(n1, a1, b1;n2)(mno1).

Finally, this implies the claim of the theorem, since we maximize over mno1

in the definition of BILC(n1, a1, b1;n2). �

The bound on interlayer contacts is now used (together with the tight bound
on layer contacts) for bounding the number of contacts in colorings with a

given frame sequence.

Definition 4.7.3
Let ((n1, a1, b1), . . . , (nk, ak, bk)) be a frame sequence. Then,

Bfr((n1, a1, b1), . . . , (nk, ak, bk)) =

k
∑

i=1

(

BLC(ni, ai, bi) + BILC(ni, ai, bi;ni+1, ai+1, bi+1)
)

+ BLC(nk, ak, bk).
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Theorem 4.7.4

Let f be a finite point set of the face-centered cubic lattice with frame se-
quence ((a1, b1, n1), . . . , (ak, bk, nk)). Then,

contacts(f) ≤ Bfr((a1, b1, n1), . . . , (ak, bk, nk)).

4.8 Generating Frame Sequences

In this section, we will develop an efficient method to compute the set of all

frame sequences of a given size n, where the bound Bfr is greater or equal
than a given number of contacts c.

In the section, we will overload the function Bfr twice, which was previoulsy
defined for frame sequences. In all its forms, the function yields an upper

bound on the number of contacts for a class of point sets, where the bound is
based on frame sequences. Analogously, we will overload the function Bnum,

which denotes bounds based on number sequences.

Definition 4.8.1 (Frame Sequence Set)

For n, c ∈ N, we define

FrameSeqs(n, c) =
{

sfr frame sequence size(sfr) = n and Bfr(sfr) ≥ c
}

.

FrameSeqs(n, c) contains all possible frame sequences for point sets of size n
with at least c contacts.

Proposition 4.8.2
For n, c ∈ N,

FrameSeqs(n, c) ⊇
{

sfr frame sequence
of connected point set P

|P | = n
and contacts(P ) ≥ c

}

.

Notably, there is a naive method for constructing FrameSeqs(n, c), namely

enumerating all frame sequences of size n and check their bound. Due to the
following proposition, this method works, however is infeasible.

Proposition 4.8.3

The set of number sequences (frame sequences) of size n is finite. The size
of the set is exponential in n.

Proof

Recall that number sequences and frame sequences are only defined for con-
nected point sets. Hence, for a number sequence (n1, . . . , nk) as well as for
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a frame sequence ((n1, a1, b1), . . . , (nk, ak, bk)), every ni, for 1 ≤ i ≤ k, is at
least 1. There are

n
∑

k=1

(

n− 1
k − 1

)

= 2n−1

many number sequences of size n, which is easily verified by induction over
n. In a frame sequence ((n1, a1, b1), . . . , (nk, ak, bk)), for every ni there are

finitely many pairs (ai, bi), since 0 < ai, bi < n. �

First, we focus on computing FrameSeqs(n, c), where c is the maximal num-
ber of contacts such that a frame sequence of size n with the bound c exists.

Denote this number Bfr(n), it is formally defined as

Bfr(n) = argmax
c

(FrameSeqs(n, c) 6= ∅).

Later, we extend the method to compute FrameSeqs(n, c) for values of c that

are less than maximal.
The reasons for concentrating on maximal and near-maximal contacts bounds

are twofold. On the one hand, this is the common case, when we finally want
to construct hydrophobic cores for protein structure prediction. On the other

hand, only in this case, there are much less frame sequences with a bound of

at least c than there are frame sequences in total. Hence, for c much smaller
than Bfr(n), the naive approach cannot be improved significantly, due to the

raw number of frame sequences.
The very first step is computing Bfr(n), which is an upper bound for the

number of contacts in a point set of size n. Therefore we develop a recursive
formula, which is then efficiently evaluated by materializing intermediary

results, i.e. dynamic programming.
The bound on frame sequence (cf. Definition 4.7.3) can be rewritten using

recursion as

Bfr((n1, a1, b1)) =BLC(n1, a1, b1)

Bfr((n1, a1, b1), (n2, a2, b2), . . . , (nk, ak, bk)) =BLC(n1, a1, b1)

+BILC(n1, a1, b1;n2, a2, b2)

+Bfr((n2, a2, b2), . . . , (nk, ak, bk)).
(4.16)

From this equation, we derive the recursive formula for computing Bfr(n) as

kind of a maximization variant.

Bfr(n) = max
n1,a1,b1

Bfr(n;n1, a1, b1) (4.17)
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where we define

Bfr(n;n1, a1, b1) =BLC(n1, a1, b1), if n = n1

and otherwise

Bfr(n;n1, a1, b1) = max
n2,a2,b2





BLC(n1, a1, b1)
+ BILC(n1, a1, b1;n2, a2, b2)
+ Bfr(n− n1;n2, a2, b2)



 .

Implicitly, for the maximization only reasonable values n1, a1, b1 (n2, a2, b2, re-
spectively) are considered. Which triples n1, a1, b1 are reasonable was broadly

discussed in Sub-section 4.4. Note how we reduce the rest of the sequence
(n2, a2, b2), . . . , (nk, ak, bk) to the length n of the sequence, while we replace

the bound on a concrete frame sequence by the maximal bound of all frame
sequences with a given size. This recursion equation was already sketched in

Chapter 3, where Figure 3.9 served as illustration.
Interestingly, our presentation of Bfr hides some complexity. Namely, the

evaluation of BILC(n1, a1, b1;n2, a2, b2) requires to evaluate a further recursion

equation for the maximal number of 3-points. This equation is handled rather
similar as the main recursion and is otherwise not mentioned further.

Similar things can be done using the bound on number sequences. We define
Bnum(n) for number sequences in analogy to Bfr(n) for frame sequences, then

Bnum(n) = max
n1

Bnum(n;n1) (4.18)

where Bnum(n;n1) is defined for n = n1 as

Bnum(n;n1) =BLC(n1, a, b), where am = d√nke, bm = dnk/a
me

and otherwise

Bnum(n;n1) = max
a1,b1,n2





BLC(n1, a1, b1)
+ Bc

ILC(n1, a1, b1;n2)
+ Bnum(n− n1;n2)



 .

Notably, Bnum yields an upper bound on Bfr, namely for all reasonable

n1, a1, b1 that describe a layer and n ≥ n1,

Bnum(n;n1) ≥ Bfr(n;n1, a1, b1).
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4.8.1 Lazy Dynamic Programming

We implement Bfr by lazy dynamic programming. Here, we assume some

familiarity with the technique of dynamic programming. Our method differs
from classical dynamic programming in two important aspects, namely

• we compute Bfr(n;n1, a1, b1) lazily, i.e. only on demand, and

• we use a dynamic data structure for storing the intermediary results

Bfr(n;n1, a1, b1). For implementing this structure, we suggest the use
of a hash, which is indexed by tuples (n, n1, a1, b1).

By the first aspect, we do not need to impose a certain order in which in-
termediary results are computed. However, in the same time we guarantee

that only those values are computed that really contribute to the final result.

This is achieved as follows. First, we ask for the final result. Then, each time
an actual value of the function is requested, we look up in the data structure

if the value is already known. Only if it is unknown, the value is computed.
If for this computation further values of the function are needed, then these

requests are evaluated following the same strategy. Finally, when a function
value gets known, it is materialized in the data structure.

By the second aspect, we control the space requirements of the algorithm.
By using a dynamic data structure, we allocate exactly the space that is re-

quired for storing intermediary values. Nothing has to be known about these
requirements and the distribution of necessary function values in advance.

These benefits come at the comparably small cost of using a hash instead of
an array as data structure.

Note that in this way, the dynamic programming algorithm is very close

to the original recursion equation. The evaluation order and organization
of the storage is derived automatically during the run-time of the program.

Thus, we totally avoid an important source of errors and possible reason for
inefficiency with respect to time and space.

4.8.2 Bounded Dynamic Programming

The technique of lazy dynamic programming gets especially valuable, when

we speed up the computation by bounding Bfr with Bnum. Now, this is
achieved by extending the previous computation scheme. Whenever a value

Bfr(n;n1, a1, b1) is needed, this occurs always in a maximization. During such
a maximization, it is possible to calculate a bound c such that whenever
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Bfr(n;n1, a1, b1) ≤ c, the actual value of Bfr(n;n1, a1, b1) does not contribute
to the maximum. In many cases, where

Bfr(n;n1, a1, b1) ≤ c

we can already derive this from

Bnum(n;n1) ≤ c.

Then, we can completely omit the computation of Bfr(n;n1, a1, b1) due to our

lazy implementation technique. Since Bnum(n;n1) is computed much more
efficiently than Bfr(n;n1, a1, b1) this reduces time and space requirements

significantly.

4.8.3 Sub-Optimal Trace-Back

The set of frame sequences sfr of size n, where the bound is maximal, are

derived by trace-back using the dynamic data structure, which stores the
intermediary results. Note that values that are not already present in the

data structure can be computed lazily as described above.
Assume that the maximal bound cmax = Bfr(n) is already computed. We

start with all tuples (n, n1, a1, b1), where Bfr(n;n1, a1, b1) = cmax. These
tuples are part of frame sequences in FrameSeqs(n, cmax).

For every tuple (n, n1, a1, b1), there are tuples (n − n1, n2, a2, b2), which are

used for computing the value Bfr(n;n1, a1, b1). All tuples (n− n1, n2, a2, b2),
where

Bfr(n;n1, a1, b1)

= BLC(n1, a1, b1) + BILC(n1, a1, b1;n2, a2, b2) + Bfr(n− n1;n2, a2, b2)

extend frame sequences in FrameSeqs(n, cmax). With these tuples, we proceed
in a recursive manner.

However, our final aim is the computation of sets FrameSeqs(n, cmax − s),
where s is a (usually small) number 0 ≤ s ≤ cmax. In extension to the previ-

ous method, we start with all tuples (n, n1, a1, b1), where Bfr(n;n1, a1, b1) ≥
cmax − s and decrease s by the difference of Bfr(n;n1, a1, b1) and cmax.

For every tuple (n, n1, a1, b1), we extend the frame sequences by all tuples

(n− n1, n2, a2, b2), where

Bfr(n;n1, a1, b1)

≥ BLC(n1, a1, b1) + BILC(n1, a1, b1;n2, a2, b2) + Bfr(n− n1;n2, a2, b2) − s.
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With these tuples, we proceed in a recursive manner, where we now decrease
s by the difference of

BLC(n1, a1, b1) + BILC(n1, a1, b1;n2, a2, b2) + Bfr(n− n1;n2, a2, b2)

and Bfr(n;n1, a1, b1).
By and large, our sub-optimal trace-back strategy distributes the deviation

from the maximal bound over the trace-back steps such that the total devi-
ation does not exceed the initial value of s.

4.8.4 Results

We have implemented the dynamic programming algorithm for generating

frame sequences in C++. By this implementation, all optimal frame se-
quences up to size 200 were computed in less than 12 hours on standard

hardware (Pentium 4 at 2.4Ghz). In the same time, we computed the bounds
Bfr(n), for n = 1, . . . , 200. More results for the computation of optimal and

sub-optimal frame sequences are given in Tables 4.2 and 4.1. In [BW01b], we
still reported a computation time of 10 days for all (optimal) frame sequences

up to 100. The huge speed up in comparison to this older implementation
is due to the reported bounding of the computation by the number sequence

bound.

size run-time
50 4s
100 5min
150 100min
200 12h

Table 4.1: Some run-times for the computation of optimal frame sequences.

The plots of Figure 4.11 show the frame sequence bound and the number
of optimal frame sequences in relation to the core size. The plots of the

figure show the linear dependency of size and frame sequence bound (for
larger sizes) and the weak dependency of size and number of optimal frame

sequences.
The implementation is equiped for incremental computation. Before termi-

nating, the program stores all materialized values Bfr(n;n1, a1, b1) in a file.
The values are read from this file, when the program is started again. Due

to this, in later runs of the program all computed values can be reused for
computing further frame sequences. Note that such incremental computation

is made easy due to the use of lazy dynamic programming.
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# contacts # frame sequences run-time
244 1 0.5s
243 7 0.5s
242 107 0.6s
241 638 1.3s
240 4,102 4.7s
239 20,436 90s

Table 4.2: Sub-optimal frame sequences of size 60. The table gives for a
number of contacts the number of frame sequences and the run-time for
their computation.
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Figure 4.11: Frame sequence size against a) contacts in optimal sequences
(frame sequence bound) and b) number of optimal frame sequences.
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Chapter 5

Core Construction

This chapter discusses the construction of all connected point sets of the FCC

lattice that have a given size n and at least a given number of contacts c.
For efficiency of this construction, we employ the set FrameSeqs(n, c), which

is computed efficiently due to the previous chapter.

In particular, we are interested in constructing point sets with maximally

many contacts or almost maximally many contacts for the given size. Re-
ferring to their use as hydrophobic cores for structure prediction, such point

sets are often called cores. Cores with maximally many contacts are called
optimal cores.

Notably, we will only deal with connected cores in this chapter. In general,
optimal cores are always connected. Hence, for enumerating optimal cores

there is no need to handle unconnected cores. However, optimal structures
can have sub-optimal and unconnected cores. As we discuss in Chapter 6,

we can nevertheless avoid precomputing unconnected cores for structure pre-
diction.

In this chapter, we only describe the method for point sets of the FCC
explicitly and do not handle cores of the cubic lattice in more detail. The

approach for the cubic lattice shares many similarities with the one for the
FCC lattice and is otherwise more straightforward. As its main difference to

the FCC appraoch, we employ the extension of CHCC, which was discussed
in Section 4.1 of the previous chapter.

In the following, we describe the core construction problem in more detail
and define it precisely. Then, after introducing some formal notation, the

constraint algorithm for core construction is described. Finally, we give some
results. The chapter is partially based on [Wil02].
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5.1 Problem Specification

We define the core construction problem for the FCC as follows. Given a size

n and a number of contacts c, construct the set

Cores(n, c) =
{

C ⊂ D3 |C| = n, C connected, contacts(C) ≥ c
}

.

Note that this set is infinite, due to translation symmetry. Therefore, we

will only virtually construct the set Cores(n, c). The actual problem is to

construct this set modulo geometrical symmetries. That is, we ask for only
one representative of every equivalence class with respect to translations,

rotations and reflections in Cores(n, c). The core construction problem is
a hard combinatorial problem. Therefore, we do not tackle this problem

directly without the help of further knowledge.

Instead, we use results from the previous chapter to reformulate the problem.
There is a related and more general problem, which is easier to solve directly.

This problem is called the core construction problem using frame sequences
and asks for the set of all cores C with at least c contacts that have a frame

sequence out of a given set S in each dimension (x,y, or z), i.e.

Cores(S, c) =















C ⊂ D3

contacts(C) ≥ c and
the frame sequence of C
in dimension ξ is in S,

for all ξ ∈ {x, y, z}















,

where we overload the function Cores. Again, we actually ask for the set of
cores modulo geometrical symmetries.

Since by the previous chapter

FrameSeqs(n, c) ⊇
{

sfr frame sequence of C C ∈ Cores(n, c)
}

,

the set Cores(n, c) is equal to the set Cores(FrameSeqs(n, c), c).

In our reformulation of the core construction problem, we ask for Cores(S, c),

given S = FrameSeqs(n, c), instead of directly asking for Cores(n, c). We
recall that FrameSeqs(n, c) is efficiently computable, due to the last chapter.

Maximal number of contacts. Besides the core construction problem,

we are also interested in the maximal number of contacts in any core of size
n, i.e.

cmax(n) = argmax
c

(Cores(n, c) 6= ∅)
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The maximal value for a given size n, where FrameSeqs(n, c) is not empty,
was denoted Bfr(n). Bfr(n) is computed efficiently due to the last chapter.

However, note that in general only

cmax(n) ≤ Bfr(n),

i.e. Bfr(n) and cmax(n) are not necessarily equal for arbitrary n > 0. However,

a solution to the core construction problem allows finding cmax(n). Since,
then we can determine cmax(n) by iteratively computing for descending c ≤
Bfr(n), whether Cores(n, c) is (not) empty.

5.2 Preliminaries

As set of neighbor vectorsNV of the FCC lattice, we choose the set of minimal

vectors of the FCC, i.e. as we recall from Chapter 2,

NV = {
(

±1
±1
0

)

,
(

±1
0
±1

)

,
(

0
±1
±1

)

}.

We define a notation for lines in R
3. For vectors ~a, ~u ∈ Z

3, let Line(~a, ~u)

denote the set
{~p ∈ R

3 | ∃λ ∈ R : ~p = ~a + λ~u}.
For ~a ∈ D3, we are interested in lattice lines

Line(~a, ~u), where ~u ∈ NV ,

and further non-lattice lines

Line(~a, ~u), where ~u ∈ Z
3 has length 2.

Recall the definition of ξ-layers from Chapter 2. We redefine the function
occlines for the FCC lattice using terms of this chapter.

Definition 5.2.1
For an x-layer f of the plane x = d ,

occlines(f) = (a, b),

where

a =
∣

∣

∣

{

l ∃~a ∈ D3 : l = Line(~a,
(

0
1
1

)

) ∧ l ∩ f 6= ∅
}∣

∣

∣

and analogously

b =
∣

∣

∣

{

l ∃~a ∈ D3 : l = Line(~a,
(

0
−1
1

)

) ∧ l ∩ f 6= ∅
}∣

∣

∣
.

Define occlines(f) analogously for y-layers and z-layers f .

Note that this redefinition is in accordance with the previous definitions of
Chapter 2 and Chapter 4.
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5.3 Constraint Model

5.3.1 Description of the Algorithm

Here, we discuss an algorithm for the core construction problem using frame
sequences, i.e. for computing the sets Cores(S, c) given a set of frame se-

quences S of size n and a number of contacts c.

Our algorithm follows the constrain-and-generate principle, which is com-
monly used in constraint programming (cf. Chapter 2). For applying this

principle, we need to model the problem by variables and constraints between
the variables.

Introducing variables for points and constraining them is almost sufficient
for defining solutions of the problem. However, this does not suffice for an

efficient constraint program. Since we want to exploit the knowledge from
the frame sequences, we model layers and lattice lines of the layers to ex-

press the constraints by the parameters a and b from the frame sequences.
Furthermore, it is crucial to employ the dependencies between layers of differ-

ent dimensions. To express those dependencies, we have to model non-lattice
lines of the layers. The number of contacts c yields further constraints, which

are non-redundant to the former ones since not every core satisfying the layer
sequences has necessarily at least c contacts.

When giving the constraint model for the problem, we take care to make it
completely symmetric, i.e. no geometrical symmetries, except translations,

are broken. On the one hand this permits constraining the layers by the
frame sequence sets in each of the three dimensions. On the other hand, this

is crucial for the use of symmetry breaking as described in [BW99]. This
symmetry breaking mechanism, which in our case breaks all symmetries by

rotations and reflections, requires that either the symmetries are not broken
by the constraint model or that the mechanism is told exactly which symme-

tries are broken. Otherwise, the search will be incomplete due to interference
with the symmetry breaking.

5.3.2 Variables

All variables that are introduced in the following are finite domain variables
(FD-variables), which means that their values are restricted to values of

finite integer domains. We formulate our model thinking of these variables
as describing one actual core C ∈ Cores(S, c). Another (more accurate)

view is that each assignment of the variables describes one of the cores in
Cores(S, c) if and only if it satisfies the model constraints, which will be
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a)

(0,0,0)

(1,0,0)

b)

(0,0,0)

(1,0,0)

Figure 5.1: For a fixed surrounding cuboid, changing the parity of the mini-
mal point in the cuboid excludes solutions or breaks symmetry. The points
of the cuboid are marked by color. a) For a 3×2×1 cuboid, fixing the parity
breaks symmetry. b) For a 3 × 3 × 1 cuboid (all dimensions are odd), fixing
the parity even excludes possible cores.
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y

z

x

1

1

1

Figure 5.2: The cuboid for M.x = 2, M.y = 5, M.z = 3 and
Min.x+ Min.y+ Min.z even. The contacts within each x-layer are shown by
dotted lines and the interlayer contacts between the two x-layers by dashed
lines. The circles give an example core within the cuboid.

introduced later.

Denote the number of non-empty layers in the dimension ξ ∈ {x, y, z} by
M.ξ. All points of the core will be placed in a M.x× M.y× M.z surrounding

cuboid. When equating the dimensions of the surrounding cuboid and the
numbers of non-empty layers, we employ that our cores are connected. From

this fact, we can conclude that all non-empty layers are successive, which is
easily shown by contradiction.

We can nearly fix the absolute coordinates of this cuboid for breaking trans-
lation symmetries. However, since D3 contains only points of Z

3 with even

coordinate sum, the cuboid can only be fixed up to the minimal x, y, and
z coordinate being one of {0, 1}. Otherwise, we would exclude solutions or

at least break geometrical symmetries. (cf. Figure 5.1). We discussed the
necessity of a symmetric model before in Sub-section 5.3.1.

We store these coordinates in FD-variables Min.x, Min.y, and Min.z, respec-
tively. The surrounding cuboid consists of the points

Cuboid =





{Min.x, . . . , Min.x+ M.x−1}
× {Min.y, . . . , Min.y+ M.y−1}
× {Min.z, . . . , Min.z+ M.z−1}



 ∩D3.

Please see Figure 5.2 for an illustration.

For every point ~p ∈ Cuboid , we maintain a boolean FD-variable

Point[~p].occ ∈ {0, 1}
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that has value 1 if and only if the point ~p is element of the core C. Such a
point ~p, where Point[~p].occ = 1 is called a core point or point of the core C.

Let ξ ∈ {x, y, z}. For every layer ξ = d , where

Min.ξ ≤ d ≤ Min.ξ+ M.ξ−1,

we introduce FD-variables

Layer[ξ, d ].n, Layer[ξ, d ].a, and Layer[ξ, d ].b

for the layer parameters.

Note that we use a special notation for the variables with intentional similar-
ity to notation found in programming languages. In this notation, we write

indices of the variables in square brackets, like in Layer[ξ, d ], and we make
use of named features, e.g. found in Min.x, where we select the feature x of

the tuple Min. Our notation gives a hint, how the variables may be organized
in an implementation.

Furthermore, we use variables for all lattice and non-lattice lines within layers
that intersect the cuboid. For ~v in

NV ∪
{(

±2
0
0

)

,
(

0
±2
0

)

,
(

0
0
±2

)}

,

there are FD-variables Line[~a,~v].n, for every set Line(~a,~v) that has a non-

empty intersection with Cuboid . We identify two variables Line[~a,~v].n and
Line[~a′, ~v].n, if and only if

Line(~a,~v) = Line(~a′, ~v).

That is, there is only one variable for each line, which may be referenced in
different ways for reasons of presentation.

Line[~a,~v].n is the number of core points in Line(~a,~v) ∩D3, i.e.

|Line(~a,~v) ∩ C|.

Finally, we introduce one variable Contact[~p, ~q] ∈ {0, 1} for each pair of
neighbored points ~p and ~q ∈ Cuboid , which signals, whether the points con-

tribute a contact, i.e. whether ~p and ~q are core points.

5.3.3 Basic Constraints

Before formulating the constraints, we introduce a notation to express reified
constraints, which reflect the entailment status of a constraint in a boolean
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FD-variable (cf. the description of reified constraints in Chapter 3). Let c

be a constraint, fix a mapping δ, δ(c) ∈ {0, 1}, such that

δ(c) = 1 if and only if c.

The FD-variables are subject to the following constraints. First of all, we get

∑

~p∈Cuboid

Point[~p].occ = n

and

∑

~p,~q∈Cuboid
~p−~q∈NV

Contact[~p, ~q] ≤ c.

In each dimension ξ ∈ {x, y, z}, a core C must have one of the frame se-

quences in S. Therefore, we want to introduce a constraint

∨

sfr∈S

sfr is frame sequence of C in dimension ξ.

On the finite domain variables of our model, this is expressed by the disjunc-

tion over all frame sequences sfr = (ni, ai, bi)1≤i≤|sfr| in S of

for all 1 ≤ i ≤ |sfr| :





Layer[ξ, Min.ξ+i− 1].n = ni,
Layer[ξ, Min.ξ+i− 1].a = ai,
Layer[ξ, Min.ξ+i− 1].b = bi



 .

Notably, this disjunction is made constructive, i.e. we propagate information

out of the disjunction. In general, constructive disjunction is inefficient.
However, in this special case we improve the propagation by introducing

element constraints.1 To prepare this, we index the frame sequences in the
set S in an arbitrary order by numbers 1, . . . , |S|. We introduce finite domain

variables FSeqIndex[ξ], which encode the index of the frame sequence in
dimension ξ. When for ξ ∈ {x, y, z} the variables Min.ξ and M.ξ are fixed, we

can compile lists for each variable Layer[ξ, Min.ξ+i−1].n, Layer[ξ, Min.ξ+i−
1].a, and Layer[ξ, Min.ξ+i − 1].b, such that these variables have to be the

FSeqIndex[ξ]-th elements of their corresponding list.

1In general, the element constraint constrains x to be the i-th element of a list, where x

and i are FD-variables and the list is ground. In our implementation language Oz [Smo95],
the element constraint is available and it is propagated efficiently.
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It remains to constrain relations between the variables to get the basic con-
straint formulation for our problem. First, we relate lines to points by

Line[~a,~v].n =
∑

~p∈Line(~a,~v)∩Cuboid

Point[~p].occ

for all line variables. Then, we relate layer parameters to their layers by

∑

~p in layer ξ = d
of Cuboid

Point[~p].occ = Layer[ξ, d ].n

for all ξ ∈ {x, y, z} and Min.ξ ≤ d < Min.ξ+ M.ξ and furthermore, for x-layers

and lattice lines in direction
(

0
1
1

)

introduce the constraints

∑

Line(

„

d
r
0

«

,

„

0
1
1

«

)∩Cuboid 6=∅

r∈Z

δ(Line[
(

d
r
0

)

,
(

0
1
1

)

].n > 0) = Layer[x, d ].a

and the analogous constraints for Layer[x, d ].b, the y-layers, and z-layers.

Now, we relate contacts to points and to the total number of contacts. For

any contact variable Contact[~p, ~q], we introduce

Contact[~p, ~q] = δ(Point[~p].occ = 1 ∧ Point[~q].occ = 1).

Finally, we state
∑

Contact[~p, ~q] = c.

For completely constraining the problem, it remains to introduce a constraint
for ensuring connectivity of the core. However, we are not aware of an efficient

constraint propagator for this purpose. Therefore, we test whether a core is
connected only after all FD-variables are completely determined. For better

propagation, we introduce constraints that are implied by connectivity. Such
a constraint is that each point ~p0 of the core has at least one neighbor ~p1 in

the core, if there are at least two core points (|C| ≥ 2). This is expressed by
introducing for every ~p0 in the cuboid,

∑

~p1 neighbor of ~p0

Point[~p1].occ ≥ Point[~p0].occ .

The previous constraints define the problem non-redundantly. For improving

constraint propagation, we introduce redundant constraints like the following
ones.
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• The surrounding cuboid has to be large enough to include the core.
Therefore, we introduce the constraints

dM.x · M.y · M.z
2

e ≥ n

if the sum Min.x+ Min.y+ Min.z is even and

bM.x · M.y · M.z
2

c ≥ n

otherwise.

• The line variables are connected to the layer parameter n by constraints
∑

Line(

„

d
r
0

«

,

„

0
1
1

«

)∩Cuboid 6=∅

r∈Z

Line[
(

d
r
0

)

,
(

0
1
1

)

].n = Layer[x, d ].n

and analogous ones.

Cavities in the core deserve a special discussion. Strong constraints can be

introduced, whenever we know that there are no cavities in the core or in
a certain layer. This knowledge may have two origins. Either, we choose

to enumerate only cavity-free cores, or we allow cavities but the absence of
cavities is derived.2

For example, for a line without cavities, we constrain that its core points are
consecutive. Assume that the points in the intersection of the line and the

cuboid are labeled ~p1, . . . ~pk, such that ~pi and ~pi+1 are neighbors (1 ≤ i < k).
Then, if the line is not empty, this constraint is expressed by

Point[~p1].occ+(

k−1
∑

i=1

δ(Point[~pi].occ 6= Point[~pi+1].occ))+Point[~pk].occ = 2,

which states that there are exactly two transitions 0 ↔ 1 in the sequence

(0, Point[~p1].occ, . . . , Point[~pk].occ, 0).

5.3.4 Using Local Upper Bounds on the Number of

Contacts

The number of contacts within each layer is bound by the parameters of the
layer n, a, and b that are given by the frame sequence (cf. Chapter 4.) Note

2In particular, this can be derived from upper bounds on the contacts as it is discussed
in the next subsection.
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Figure 5.3: The thick dashed lines are drawn between non-overlapping pairs
of lines. In both layers, we count one non-overlapping pair. In the right layer,
we count one non-touching pair. (In the left layer, the lines are touching,
which is indicated by the double arrow.)

that the exact number of contacts is determined by the parameters and the
number of cavities in the layer. Thus, we can constrain the number of these

(intra)layer contacts, which is represented by variables Layer[ξ, d ].con.

Furthermore, we introduce redundant constraints that employ the upper

bounds on the number of contacts between successive layers, called interlayer
contacts. From Chapter 4 we know non-trivial upper bounds on the num-

ber of layer and interlayer contacts given parameters of the layers, namely
the layer size, the previously defined occlines(f) and the number of non-

touching rows and non-overlapping rows. Please, recall the definition of the
latter terms from Chapter 4. For an additional illustration, we provide the

Figure 5.3.

Furthermore, for

Min.ξ ≤ d1, d2 < Min.ξ+ M.ξ

and d2 = d1 ±1, we introduce FD-variables Interlayer[ξ, d1, d2].con to hold

the number of interlayer contacts between layers ξ = d1 and ξ = d2. This
variable is constrained to the sum of the corresponding contact variables and

the total number of contacts is constrained to the sum of the layer contacts
and the interlayer contacts. The bound is strengthened and recomputed

during the enumeration as more and more information, e.g. which lines
intersect the core (see Figure 5.4), becomes known. Therefore, variables to

hold the additional parameters, the number of non-overlapping rows and non-
touching rows, are introduced for each layer and corresponding constraints
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Figure 5.4: Represents an example situation in the search. The thick lines are
already known to intersect the core, i.e. their corresponding line variables
Line[~a,~v].n are greater or equal 1. Assume in each layer there are 5 core
points, the beads mark remaining potential positions. The line constraints
restrict the number of contacts, hence this additional knowledge is exploitable
for the contacts bound.

are stated. Then, we introduce FD-variables Interlayer[ξ, d1, d2].i to hold

the number of core points in ξ = d2 with at least i = 1, 2, 3, or 4 contacts
to core points in ξ = d1. Such points were called i-points (cf. Chapter 4).

Finally we can bind Interlayer[ξ, d1, d2].con to the sum

∑

1≤i≤4

i · Interlayer[ξ, d1, d2].i.

5.3.5 Search strategy

We start the search by enumerating the variables M.x, M.y, M.z, Min.x, Min.y,
and Min.z. This fixes the surrounding cuboid and allows in an implementa-
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n # contacts # search-nodes depth time
40 152 167 17 17.2 s
60 243 182 72 4.6 s
82 349 220 37 14.2 s
102 447 54 20 8.2 s

Table 5.1: Search for all optimal cores of size n, given the layer sequences.
We list the number of contacts, the number of nodes and depth of the search
tree, and time of the constraint search for every core size n.

tion to construct all data structures. Then, we start by enumerating polar

lines of the core. Polar lines are lattice lines through points of the surrounding

cuboid that do not contain points of the core. Afterwards, we distribute over
the point variables in order to fix the core completely. To break rotation and

reflection symmetries, we employ symmetry breaking search [BW99]. This
search is a special form of constrained search, which only finds solutions

modulo given symmetries and employs this to prune the search tree.

5.4 Results

The presented constraint model was implemented in the constraint language
Oz [Smo95]. Usually, the set of all optimally compact cores of a given size

is found within a few seconds to minutes by our search program. Some
results are shown in Table 5.1. The search program implements most of the

presented ideas as well as additional redundant constraints.
We present some of the optimal cores for n = 60 and n = 100 elements in

Figures 5.5 and 5.6. The cores are shown in plane sequence representation.
This representation shows a coloring by the sequence of its occupied x-layers

in the lattice D′
3 (cf. preliminaries of Chapter 4, D′

3 is mainly a transformed
version of D3). For each x-layer x = d1 the lower left corner of the grid has

coordinates (d1, 0, 0). The grid-lines have distance 1. The core points in each
x-layer are shown as filled circles. There is a noteworthy difference between

layers x = d1, where d1 is even and those where it is odd. In the latter ones

the points have non-integer y and z coordinates. For illustrating the relation
of plane sequence representation to a three-dimensional representation, we

provide an additional view of one of the given example cores, in Figure 5.5b.
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a)

x=1 x=6x=5x=4x=3x=2

x=1 x=6x=5x=4x=3x=2

b)

Figure 5.5: Cores of size 60. a) Two optimal cores in plane sequence repre-
sentation. b) Three-dimensional view of the first core from (a).

x=3 x=6 x=8x=1 x=5x=4x=2 x=7

x=3 x=6x=1 x=5x=4x=2 x=7

x=3 x=6 x=8x=1 x=5x=4x=2 x=7

Figure 5.6: Plane sequence representations of three optimal cores of size 100.



Chapter 6

Threading to Cores

This chapter describes the last step of our structure prediction approach,

where we finally compute the native structures of sequences in the HP-models
of the cubic and face-centered cubic lattice.

In Section 2.2 from Chapter 2, we described the HP-model and discussed

its properties. As a main property of the model, given a sequence seq, the
HP-energy of a structure str is determined by the number of contacts in its

hydrophobic core C. As we recall from Chapter 2, the HP-energy is given by

− contacts(C) + HH-chain(seq).

In consequence, a structure for a sequence seq is native, if and only if its
hydrophobic core has maximally many contacts among all hydrophobic cores

of structures of seq.

Due to the last two chapters, we can already compute cores with maximally
many contacts as well as cores with a given number of contacts, for the cubic

and the face-centered cubic lattice. This allows for a systematic enumeration

strategy for predicting the minimal energy and the native structures of a
sequence.

The remaining technical challenge of this chapter is mapping a HP-sequence

to a core, such that the core forms a hydrophobic core of the resulting struc-
ture. We call this process threading. The threading problem is to find such a

structure for a given sequence and a given core. We describe our threading
approach for arbitrary lattices — actually, most of the theory of the chapter

is even developed for arbitrary graphs. For the rest of the chapter, we fix a
lattice L.
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Structure Prediction by Threading

Before going into technical details of the threading algorithm, we recall
shortly how threading is used for structure prediction. Given a sequence

seq, structure prediction should answer two main questions.

• What is the minimal energy of structures of seq?

• What are the structures of seq that have minimal energy?

The first question is answered constructively by finding one minimal energy

structure of seq. Therefore, initialize c by the maximal number of contacts
in cores of size nH, where nH denotes the number of H-monomers in sequence

seq. Then, we thread the sequence to the cores in Cores(nH, c) modulo sym-
metry. Since threading does not necessarily succeed, we have two cases. Ei-

ther, we find a structure of seq, where its hydrophobic core is in Cores(nH, c).
Then, the minimal energy is known by c and we can stop immediately. Or,

there is no such structure. In this case, we decrease the number of contacts
c by one and iterate the threading to cores in Cores(nH, c).

The iteration is guaranteed to terminate with a successful threading. Thus,
after this procedure we know the minimal energy and the maximal number

of HH-contacts of any structure of seq .
For the second question, we will first determine the maximal number of

contacts c in any hydrophobic core of seq , i.e. we start by answering the first
question. Then, the sequence is threaded to each core in Cores(nH, c).

Predicting Structures with Unconnected Cores

The above strategy finds all structures with connected cores, since the sets

Cores(nH, c) contain only connected cores. The restriction to connected cores
was introduced during core construction. The main technical reason was that

as soon as there is one unconnected point set for a given size and number of
contacts, there are infinitely many unconnected point sets of the same size

and number of contacts. Of course, this is a consequence of our definition of

a point set, where each of its points has a fixed position. In our threading
procedure we can only use a single point set of this kind as the hydrophobic

core.
However, we can overcome the restriction to connected cores in the thread-

ing step. For threading the sequence seq to all (connected and unconnected)
cores of size nH with at least c contacts, we start by threading the sequence

to the connected cores in Cores(nH, c). We will then systematically enumer-
ate structures with unconnected hydrophobic cores. Such cores consist of
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connected components, which are already precomputed in sets Cores(n′
H, c

′)
for n′

H < nH and c ′ ≤ c.

First, we can calculate which (if any) compositions from connected compo-
nents can yield c or more contacts. Among all unconnected point sets of

size n, the most contacts are formed by sets which consist of one connected
component of size n − 1 and one isolated point. Then, the next best cores

consist of a component of size (n− 2) and a component of size 2 and so on.

For enumerating optimal and almost optimal structures on arbitrary cores,

it suffices to handle cores that consist of one large component and one or few
small components.

We sketch the generation of all requested structures of seq with a hydrophobic
core with only one isolated point. The presented idea can then be generalized

for handling other strongly asymmetric decompositions of the core into its
connected components.

For enumerating all structures with only one isolated point H-monomer, we
will successively replace one H-monomer by a P-monomer in the sequence seq

and thread the mutated sequence to the connected cores in Cores(nH − 1, c).
As effect of the substitution, only the remaining H-monomers have to form

cores in Cores(nH − 1, c) and the substituted monomer is unconstrained.
Only H-monomers that are isolated from other H-monomers in the chain

are replaced, since only such a monomer can be positioned in isolation from
the large connected component of the hydrophobic core. Finally, we ensure

isolation of the replaced monomer in the resulting structures. Technically,

we could filter the results for this aim. More efficiently, we can easily add a
constraint to the later developed constraint model.

Usually structures with unconnected hydrophobic cores are not an impor-

tant issue for structure prediction, since the most compact cores are always

connected and the optimal structures are usually found on compact cores.
Having in mind the discussed strategy for the treatment of structures with

unconnected hydrophobic cores and in the same time their low practical sig-
nificance, we will not discuss this issue further. For our examples in Chap-

ter 7, we will only predict structures with connected hydrophobic cores.

Chapter Overview

In the rest of the chapter, we develop a constraint-based algorithm for thread-
ing a sequence to a core. Section 6.1 recalls the threading problem and gives

a constraint model for its solution. The constraint model of this section
abstracts from a low-level formulation of the constraints and their actual
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propagation. Most notably, we introduce a new global constraint, namely
the walk constraint. The subsequent section describes this new constraint

and develops a propagator, which makes the constraint hyper-arc consistent.

In our constraint model, the walk constraint is used in conjunction with
the all-different constraint. Section 6.3 discusses the combination of the two

global constraints. A combination of both constraints allows for much more
powerful propagation. However, there is no efficient propagator for the com-

bined constraint, which computes hyper-arc consistency. For still improving
the propagation, we identify and investigate a class of relaxations of the com-

bined constraint, which can be propagated efficiently. Finally, we discuss the
implementation of an efficient propagator and give some results.

Parts of this chapter base upon [BW01a].

6.1 A Constraint Model

The input of the threading problem consists of a HP-sequence seq and a core

C, where its size |C| equals the number of H-monomers in the sequence. It
asks for the structures of seq that have the hydrophobic core C.

We tackle the threading problem by a constraint based approach. The struc-
ture of a protein is modeled by a set of finite domain variables X1, . . . , X|seq |,

whose domains consist of points of the lattice L.
The problem is now to find a solution, i.e. an assignment of the monomers

to points, subject to the constraints

1. the points Xi, where seq i = H and 1 ≤ i ≤ |seq|, are elements of C,

2. all the Xi are different, where 1 ≤ i ≤ |seq|, and

3. the points X1, . . . , X|seq | form a walk (walk constraint).

Obviously, the variables which represent H-monomers have finite domains,
due to the first constraint. For the P-monomers, note that, the first two

constraints imply that P monomers are not in the core, since there are as

many H-monomers as core positions. However, due to the finite chain length
and the third constraint, the domains for the variables that represent P-

monomers are also finite. The second constraint tells that a protein structure
is self-avoiding. Finally, the third constraint tells that chain bonds between

monomers are preserved in a protein structure, i.e. the monomer positions
form a walk through the lattice, where the points Xi and Xi+1 are neighbored

(1 ≤ i < |seq|). The walk constraint corresponds to the chain constraint,
which was formulated for HP-model structures in Chapter 2.
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Some attention has to be paid, since many constraint systems do only support
integer finite domain variables, whereas in our formulation domains consist

of lattice points. As a remedy, we assign unique integers to the points in

the domains. There are several straightforward ways for constructing such a
mapping from points to integers. For example, due to the walk constraint, we

can easily arrange that all points in the domains of variables have coordinates
between 0 and m − 1, where m is large enough (depending on the sequence

length n). A suitable mapping is then

~p↔ m2px +mpy + pz.

6.2 Walk Constraints

For entailing the first constraint, it suffices to get node-consistency of the
constraints

• Xi ∈ C for H-monomers i and

• Xi 6∈ C for P-monomers i,

which is technically done by assigning (finite) domains to the variables.
Both of the remaining constraints can be propagated globally. The global

treatment of the all-different constraint is well described in [Reg94]. Thus,
we focus on the walk constraint. We will later discuss how one gets further

propagation by combining the two constraints.

For generality, we discuss the constraints on arbitrary finite graphs. After-
wards, we can specialize the results for the cubic lattice and the FCC lattice

straightforwardly. For the lattices, the set of graph nodes is a subset of the
lattice nodes and the edges are all pairs of graph nodes in minimal lattice

distance.
In the following, we fix a graph G = (V,E). A walk of length n is a tuple

p = (p1, . . . , pn) of length n of elements of V , such that

∀1 ≤ i ≤ n− 1 : (pi, pi+1) ∈ E.

Usually, we write a walk (p1, . . . , pn) more conveniently as p1 . . . pn.

Denote the set of walks of length n by walks(n). Note that intentionally
walks are allowed to contain cycles, i.e. are not necessarily self-avoiding.

We define a walk constraint that states that the nodes assigned to the ar-
gument variables form a walk. Specializing a notion of Chapter 2, we call a

walk p ∈ walks(n) consistent with variables X1, . . . , Xn, if and only if

∀1 ≤ i ≤ n : pi ∈ dom(Xi).
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Definition 6.2.1 (Walk Constraint)

Let X1, . . . , Xn be variables. Then, the walk constraint

C = Walk(X1, . . . , Xn)

is interpreted by the set of tuples

T(C) = {p ∈ walks(n)|p is consistent with X1, . . . , Xn}.

Already in Chapter 2, we discussed that a constraint C is defined semantically

by its set of tuples T(C). This set T(C) consists of all combinations of values
for variables of C that satisfy C.

Hyper-arc consistency (cf. Chapter 2) of the walk constraint is a local prop-
erty. Due to the following theorem, the hyper-arc consistency of the n-ary

walk constraint is reduced to the arc consistency of the set of all 2-ary walk
constraints.

Theorem 6.2.2

Let X1, . . . , Xn be variables, where n ≥ 2. Then, Walk(X1, . . . , Xn) is hyper-arc
consistent, if and only if for 1 ≤ i ≤ n− 1 all constraints Walk(Xi, Xi+1) are

arc consistent.

The theorem is actually a corollary to a more general result of Freuder [Fre82].

By this result, hyper-arc consistency amounts to global consistency in a tree-
structured network of binary constraints. Nevertheless, we present a direct

proof of Theorem 6.2.2 for better understanding.
Proof of Theorem 6.2.2

The global to local direction is trivial. Let Walk(Xi, Xi+1) be arc consistent
with all 1 ≤ i ≤ n − 1. We have to show that C = Walk(X1, . . . , Xn) is

hyper-arc consistent.
We proof the claim by induction on the constraint arity n. The base case

n = 2, is obviously valid.
For the induction case n > 2, let 1 ≤ i ≤ n and a ∈ dom(Xi). We show

that there is a walk p that is consistent with X1, . . . , Xn, such that pi = a.
For the sub-case, where 1 < i < n, the constraints Walk(X1, . . . , Xi) and

Walk(Xi, . . . , Xn) are arc consistent by induction hypothesis. In consequence,

for pi = a there exists a sub-walk p1 . . . pi that is consistent with X1, . . . , Xi

and a sub-walk pi . . . pn that is consistent with Xi, . . . , Xn. Thus, there is

the required walk by composition of the two sub-walks. For proving the
induction step, we need to prove the remaining sub-cases i = 1 and i = n.

For the sub-case i = 1, there is a walk p1p2 that is consistent with X1, X2 with
p1 = a due to the arc consistency of Walk(X1, X2). Furthermore, by induction
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hypothesis, i.e. by the arc consistency of Walk(X2, . . . , Xn), there is a walk
p′2 . . . p

′
n that is consistent with X2, . . . , Xn, where p′2 = p2. The remaining

sub-case i = n is shown analogously. �

6.3 Combining Walk and All-Different

The combination of the walk constraint with the all-different constraint yields

a new constraint, which allows only self-avoiding walks.

Definition 6.3.1 (All-different constraint)

For variables X1, . . . , Xn, we define the all-different constraint

C = AllDiff(X1, . . . , Xn)

by

T(C) =

{

(τ1, . . . , τn)
∈ dom(X1) × · · · × dom(Xn)

∀1 ≤ i < j ≤ n :
τi 6= τj

}

.

Definition 6.3.2 (Self-avoiding walk constraint)
We define the self-avoiding walk constraint SAWalk(X1, . . . , Xn) by

T(SAWalk(X1, . . . , Xn)) = T(AllDiff(X1, . . . , Xn)) ∩ T(Walk(X1, . . . , Xn)).

We are not aware of any efficient arc consistency algorithm for this combined

constraint in the literature. Furthermore, it is unlikely that there exists
one. It is well known that many problems involving self-avoiding walks,

especially counting of such walks, are intrinsically hard and there are no
efficient algorithms to solve them [MS96].

However, the treatment of self-avoiding walks is desirable since it promises
much better propagation in practice. Therefore, we propose a relaxation of

the intractable self-avoiding walk constraints.
One relaxation of the self-avoiding constraint is constraining the walks to

be non-reversing. Non-reversing walks are walks which do not turn back

immediately. Hence, a non-reversing walk is (only) locally avoiding itself,
but more distant parts of the walk can overlap.

In principle, we follow the idea of locally self-avoiding walks. However, we
develop the idea in more generality than found in non-reversing walks. For

this purpose, we define the following sets of walks.

Definition 6.3.3 (Locally self-avoiding walks)

Let 1 ≤ k ≤ n. A k-avoiding walk p = p1 . . . pn of length n is a walk
p ∈ walks(n), where for all 1 ≤ i ≤ n− k+ 1, the nodes pi, . . . , pi+k−1 are all
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different to each other. We define that for k > n, k-avoiding is equivalent to
n-avoiding. Denote the set of k-avoiding walks of length n by walks[k](n).

We call k-avoiding walks also locally self-avoiding walks.

Note that general walks (resp. self-avoiding walks) of length n are special

cases of k-avoiding walks namely 1-avoiding walks (resp. n-avoiding walks)

of length n. For graphs with symmetric and non-reflexive edges, the prop-
erty non-reversing is equivalent to 3-avoiding. Furthermore, note that by

definition,

walks[k](n) ⊇ walks[k′](n)

holds for all 1 ≤ k ≤ k′ ≤ n.

Definition 6.3.4 (Locally self-avoiding walk constraints)

Let X1, . . . , Xn denote variables. Then, we define the set of k-avoiding walks

that are consistent with X1, . . . , Xn as

cwalks[k](X1, . . . , Xn).

The corresponding constraints constrain their variables to form k-avoiding

walks. Therefore, we define the k-avoiding walk constraint Walk[k](X1, . . . , Xn)
by

T(Walk[k](X1, . . . , Xn)) = cwalks[k](X1, . . . , Xn).

Such a constraint is also called locally self-avoiding walk constraint.

The interplay of Walk[k](X1, . . . , Xn) and AllDiff(X1, . . . , Xn) provides much

better propagation than the one of the two constraints Walk(X1, . . . , Xn) and
AllDiff(X1, . . . , Xn). This is demonstrated by the following example. The

HP-model of the cubic lattice has a special property, which restricts the

placing of certain monomers. Therefore, we look at a HPH sub-sequence
and the corresponding sub-structure. Then, the P-monomer cannot be po-

sitioned outside of the minimal cuboid that surrounds all H-monomers (see
Figure 6.1). This property is detect via propagation of the 3-avoiding con-

straint without actually placing the three monomers. It cannot be detected,
if we use only separate propagation of the constraints AllDiff(X1, . . . , Xn) and

Walk(X1, . . . , Xn), since an arbitrary walk can place the two H-monomers on
the same position and the P-monomer arbitrarily in their neighborhood.
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Figure 6.1: All possible sub-structures formed by a HPH sub-sequence in the
cubic lattice. The P must be placed in the minimal cuboid that surrounds
the two H-monomers and thus in the minimal cuboid surrounding all H-
monomers.

6.4 Propagating Locally Self-Avoiding Walk

Constraints

In the last section, we developed the notion of locally self-avoiding walk

constraints. Here, we discuss a strategy for propagating such constraints
efficiently. We develop a efficient approach to the propagation of locally

self-avoiding walk constraints, which makes use of dynamic programming.

6.4.1 Computing Hyper-Arc-Consistency

The key to our algorithm is the counting of walks. For the hyper-arc con-
sistency of a k-avoiding walk constraint, we need to know for each variable,

whether a value v in its domain supported by a k-avoiding walk or not. For

checking this support, we will count the walks, where the i-th monomer is
placed on node v, for all monomer indices i and nodes v. Then, in order to

get consistency, we remove all unsupported domain values.
Counting the total number of consistent k-avoiding walks is a good starting

point. In the following, we denote the cardinality of a set S by #S. For
computing the number of consistent walks # cwalks[k](X1, . . . , Xn), we will

first define walks with given suffixes. For our purpose, the suffixes for com-
puting (k+ 1)-avoiding walks always have a length of k. Exactly this length

is required and sufficient for checking (k + 1)-avoiding.

Definition 6.4.1 (Consistent suffix walks)
We define the set of (k + 1)-avoiding walks that are consistent with x =

X1, . . . , Xn with suffix q = q1 . . . qk for k + 1 ≤ n as

csuffwalks[k + 1](x)[q] =
{

p ∈ cwalks[k + 1](x) ∀1 ≤ i ≤ k : pn−k+i = qi
}
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In the following lemma, we make use of a recursively defined helper func-
tion #csw[k + 1](x)[q]. As we will show later, #csw[k + 1](x)[q] is equal to

# csuffwalks[k + 1](x)[q] for all values, where q is a self-avoiding walk that

is consistent with the variables Xn−k+1, . . . , Xn. Otherwise, #csw[k + 1](x)[q]
remains undefined. By this definition, we resemble an efficient implementa-

tion more closely. Due to the use of the helper function, we can avoid to
check whether q is a consistent self-avoiding walk in each recursion step.

Lemma 6.4.2

Let x = X1, . . . , Xn be variables, 0 < k ≤ n.

First, the number # cwalks[k + 1](x) is equal to the sum

∑

q∈walks(k)

# csuffwalks[k + 1](x)[q].

Second, for q = q1 . . . qk ∈ walks(k), the number of consistent (k+1)-avoiding
walks with suffix q can be computed recursively due to the following recursion

equation.

# csuffwalks[k + 1](x)[q]=

{

#csw[k + 1](x)[q] q∈cwalks[k](Xn−k+1, . . . , Xn)

0 otherwise,

where we define for q ∈ cwalks[k](Xn−k+1, . . . , Xn),

#csw[k + 1](x)[q]=



























1 n = k
∑

(q0,q1)∈E,
q0 6∈{q1,...,qk},
q0∈dom(Xn−k)

#csw[k + 1](X1, . . . , Xn−1)[q0 . . . qk−1] n > k.

Proof of Lemma 6.4.2

Let x = X1, . . . , Xn be variables, 0 < k ≤ n. The first claim is satisfied, since
clearly

cwalks[k + 1](x) =
⊎

q∈walks(k)

csuffwalks[q](k + 1)[x],

where
⊎

denotes disjoint union.

For the second claim, let

q = q1 . . . qk ∈ walks(k).



6.4 Propagating Locally Self-Avoiding Walk Constraints 121

We will show that under the condition

q ∈ cwalks[k](Xn−k+1, . . .Xn),

# csuffwalks[k + 1](x)[q] = #csw[k + 1](x)[q]. (6.1)

If otherwise q is not self-avoiding or q is not consistent with x̄ = Xn−k+1, . . . Xn,

then the set csuffwalks[k + 1](x)[q] is empty by definition.
Now, let q ∈ cwalks[k](x̄). Then, we show (6.1) by induction on k ≤ n. For

the base case n = k, note that x̄ = x. Clearly, q is the single element of
csuffwalks[k + 1](x)[q].

The induction case is n > k. For any q0 such that

(q0, q1) ∈ E, q0 6∈ {q1, . . . , qk}, q0 ∈ dom(Xn−k)

there is satisfied

#csw[k + 1](x′)[q′q0
] = # csuffwalks[k + 1](x′)[q′q0

],

where q′q0
= q0 . . . qk−1 and x′ = X1, . . . , Xn−1. Note that q′q0

depends on q0,

which is introduced for technical convenience. Consequently, it suffices to
show that

# csuffwalks[k + 1](x)[q] =

∣

∣

∣

∣

∣

∣

⊎

cq0

csuffwalks[k + 1](x′)[q′q0
]

∣

∣

∣

∣

∣

∣

,

where we define cq0 as the condition (q0, q1) ∈ E ∧ q0 6∈ {q1, . . . , qk} ∧ q0 ∈
dom(Xn−k) in dependency of the node q0.
First note that the sets csuffwalks[k + 1](x′)[q′q0

], where cq0 holds, are disjoint,

for different q0. For the equation we have to show both inclusions.

≤. Let p ∈ csuffwalks[k + 1](x)[q]. q0 = pn−k satisfies cq0, and for p′ =

p1 . . . pn−1 holds p′ ∈ csuffwalks[k + 1](x′)[q′q0
].

≥. Let q0 such cq0 holds. Let

p ∈ csuffwalks[k + 1](x′)[q′q0
].

Then, we get that

p′ ∈ csuffwalks[k + 1](x)[q]

holds for p′ = p1 . . . pn−1qk .
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�

Since the recursion equation furnishes a dynamic programming algorithm,

the numbers of walks with suffixes can be computed efficiently.
This algorithm to compute the numbers of k-avoiding walks of maximal

length n, where 2 ≤ k ≤ n, has a polynomial complexity in n and the
maximal number of nodes in the domains of the variables.

Note that the lemma handles only the case of k-avoiding walks, where k ≥ 2.
The reason is that for the walk property itself we have to remember a history

of minimal length 1. Hence, the number of 1-avoiding walks can not be com-

puted more efficiently than the number of 2-avoiding walks. Obviously the
lemma could be slightly modified (by dropping the condition q0 6∈ {q1, . . . , qk}
in the sum of the recursion step) to compute the number of 1-avoiding, i.e.
general walks.

Analogously to walks with suffixes, we can treat walks with prefixes. Hence,
define the set of k-avoiding walks with prefix q = q1 . . . qm that are consistent

with x = X1, . . . , Xn as

cprefwalks[k][q](x) =
{

p ∈ cwalks[k](x) ∀1 ≤ i ≤ min(m,n) : pi = qi
}

.

Due to symmetry of the definitions, the walks with prefixes can be treated

analogously to walks with suffixes.
We can now express the number of k-avoiding walks that are consistent with

x = X1, . . . , Xn, where the i-th monomer occupies the position v, in terms of
suffix and prefix walk numbers.

For preparation, define the set of these walks as cwalks[k](x|i 7→ v). In the
case of general walks, the number of walks that map Xi to position v is the

number of prefixes of length i that end in v times the number of suffixes
of length n − i starting in v. For k-avoiding walks, this does not suffice,

since the composition of a k-avoiding prefix and suffix will not generate a
k-avoiding walk in general. To guarantee this, the prefix and suffix has to

overlap at least by k− 1 positions. Note that the i can be located arbitrarily

in this overlapping region. These considerations are summarized by the next
lemma.

Lemma 6.4.3

Let x = X1, . . . , Xn be variables, 1 ≤ i ≤ n, and v ∈ V . We choose values k

and j such that 1 ≤ k + 1 ≤ n, 1 ≤ j ≤ i ≤ j + k − 1 ≤ n.

# cwalks[k + 1](x|i 7→ v) =
∑

q∈walks[k](k)
qi−j+1=v

(

# csuffwalks[k + 1](X1, . . . , Xj+k−1)[q]
· # cprefwalks[k + 1][q](Xj, . . . , Xn)

)

.
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Proof
Let k, x, i, j, and v be as in the lemma. It suffices to show that the sets

A = cwalks[k + 1](x|i 7→ v) and

B =
⊎

q∈walks[k](k)
qi−j+1=v

(

csuffwalks[k + 1](X1, . . . , Xj+k−1)[q]
× cprefwalks[k + 1][q](Xj, . . . , Xn)

)

have equal cardinality. Note that the union is disjoint, since the suffixes

and prefixes partition the sets of all consistent k + 1-avoiding walks. Define
f : A→ B by f(p) = (p1 . . . pj+k−1, pj . . . pn).

≤ . Let p ∈ cwalks[k + 1](x|i 7→ v). f(p) ∈ B, since for q = pj . . . pj +k−1,
q is in cwalks[k](k), where qi−j+1 = pi = k, and

p ∈ csuffwalks[k + 1](X1, . . . , Xj+k−1)[q]× cprefwalks[k + 1][q](Xj, . . . , Xn)

holds. f is obviously injective.

≥ . We have to show f is surjective. Let (p′, p′′) ∈ B. This implies by
definition

q = p′|p′|−k+1 . . . p
′
|p′| = p′′1 . . . p

′′
k ∈ walks[k](k).

Let
p = p′1 . . . p

′
|p′|p

′′
k . . . p

′′
|p′′|.

Then, by construction f(p) = (p′, p′′). Due to the length k overlapping
of p′ and p′′, p is a walk and p is k+ 1-avoiding. Further p is obviously

consistent with x. Finally

pi = qj−i+1 = k,

thus p ∈ A.

�

Based on the computation of these numbers we develop an hyper-arc consis-
tency algorithm for the k-avoiding walk constraints.

Theorem 6.4.4
Let x = X1, . . . , Xn be variables with non-empty domains. The constraint

C = Walk[k](x) is hyper-arc consistent, if and only if for every 1 ≤ i ≤ n
and v ∈ V , where # cwalks[k](x|i 7→ v) = 0, it holds that v 6∈ dom(Xi).
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Proof
Let x and C be defined as in the theorem.

First, let C be hyper-arc consistent. Let 1 ≤ i ≤ n and v ∈ V , such that

the set cwalks[k](x|i 7→ v) is empty. Then, there is no walk p ∈ cwalks[k](x),
where pi = v. Hence there is no such walk in T(C). We get v 6∈ dom(Xi),

due to the hyper-arc consistency of C.

Second, let C be not hyper-arc consistent. Then, we show that there is a

1 ≤ i ≤ n and v ∈ V such that v ∈ dom(Xi) and

# cwalks[k](x|i 7→ v) = 0.

The hyper-arc consistency of C has to be violated by at least one pair 1 ≤
i ≤ n and v ∈ V , where v ∈ dom(Xi). Choose such i and v. Since there is
no walk p in T(C), where pi = k, there is no such walk in cwalks[k](x). This

implies

cwalks[k](x|i 7→ v) = ∅.
�

6.4.2 A Global Propagator

Based on the considerations of the previous sections, we sketch an implemen-
tation of the k-avoiding walk constraint propagator.

Let x = X1, . . . , Xn be finite domain variables. The general strategy of the

propagator for Walk[k](x) is as follows

1. For all

q ∈ walks[k](k) and indices i, where k ≤ i ≤ n,

compute

# csuffwalks[k](X1, . . . , Xi)[q] and # cprefwalks[k][q](Xn−i+1, . . . , Xn).

2. Compute from this the numbers

# cwalks[k](x|i 7→ v)

for all 1 ≤ i ≤ n and v ∈ V . Whenever such a value equals 0, remove

v from the domain of Xi.

3. If at least one domain of the X1, . . . , Xn changes repeat from step 1.
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Even since we have presented efficient algorithms to compute the above num-
bers and thus get hyper-arc consistency of the walk constraint, there remain

some details. Most demanding are incremental computation and the saving

of copying time.

At the first invocation, the computation of the walk numbers can be done by

dynamic programming algorithms. If domains are narrowed, the previously
computed walk numbers can be updated. For this aim, one can devise an

efficient update algorithm, which works destructively on the data structures.
However, then the incremental computation comes at the price of copying

the data structures, whenever the tree branches.

6.4.3 Further Propagation

The global handling of the locally self-avoiding walk constraint, enables fur-
ther propagation, when the constraint is used in the context of an all-different

constraint.

Assume that the variables in a set X are constrained as all different. Then,

whenever we derive that in every solution one of the variables in Y ⊆ X is
assigned to a node v, we can introduce the basic constraints v 6∈ dom(x) for

all x ∈ X − Y . The following theorem tells how to derive this.

Theorem 6.4.5
Let x = X1, . . . , Xn be variables, 1 ≤ k ≤ n, and τ ∈ T(Walk[k](x)). Further-

more, S ⊆ {1, . . . , n} such that maxS − min S ≤ k,1 and v ∈ V .

Then,
∑

j∈S

# cwalks[k](x|j 7→ v) = # cwalks[k](x)

implies that τj = v for exactly one j ∈ S.

Proof
Let n, x, k, τ , S, and v be defined as in the theorem.

Let j ∈ S and p ∈ cwalks[k](y|j 7→ v). Since maxS − minS ≤ k, we
know that pj′ = v if and only if j = j ′ for all j ′ ∈ S. Hence, the sets

cwalks[k](y|j 7→ v) are disjoint for j ∈ S. Thus,

∑

j∈S

# cwalks[k](y|j 7→ v) = # cwalks[k](y)

1max S (min S) denotes the largest (smallest) element in S due to the canonical ordering
of natural numbers, respectively.
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implies
⊎

j∈S

cwalks[k](y|j 7→ v) = cwalks[k](y),

i.e., for every walk p ∈ cwalks[k](y), pj = v for exactly one j ∈ S.

Finally, since

τr . . . τr+m−1 ∈ cwalks[k](y),

we get τj = v for exactly one j ∈ S. �

Since for our purpose, the k-avoiding walk propagator always works in pres-
ence of an all-different constraints, the k-avoiding walk propagator could

handle further propagation due to the combination with this constraint. The
justification to do this is given by Theorem 6.4.5.

For tractability one can restrict the subsets S, e.g. to all subsets of successive

numbers up to size k.

6.4.4 Employing Distances

Here, we discuss a possible reduction of the value k of a k-avoiding walk

constraint in cases, where the beginning and end point is (at least partially)
known.

Definition 6.4.6 (Distance)
For s, t ∈ V , we define a walk from s to t as a walk p = p1 . . . pn, where

p1 = s and pn = t. Furthermore, we define a distance on nodes by

dist(s, t) = min
{

n > 0 p ∈ walks(n), s = p1, pn = t
}

.

Since V is finite, the defined distance can be computed by Dijkstra’s shortest
path algorithm. Note that dist(s, t) is neither a metric nor total.

Depending on the distance of first and last nodes of a walk, self-avoidingness

can be already guaranteed by k-avoidingness.

Theorem 6.4.7

Let s, t ∈ V such that d = dist(s, t) is defined. Let n > 0 and 1 ≤ k ≤ n

such that

d+ k ≥ n.

Then, a walk p of length n from s to t is k-avoiding if and only if it is
self-avoiding.
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Proof
We fix s, t ∈ V such that there exists at least on walk from s to t. Then,

d = dist(s, t) is defined. We choose 1 ≤ k ≤ n, where d+ k ≥ n.

First, let p ∈ walks[k](n) be a walk from s to t. Assume that p is not self-
avoiding. Then, exist 1 ≤ i ≤ j ≤ n, where j − i > k and pi = pj. Then,

p1 . . . pipj + 1 . . . pn is a walk of length n − (j − i) from s to t. Now, by the

minimality of d, d ≤ n − (j − i) holds, i.e. d < n − k, which contradicts
d+ k ≥ n.

The second direction is obvious, since each self-avoiding walk is k-avoiding.
�

In a constraint search, Theorem 6.4.7 allows to replace k′-avoiding walk con-

straints by more efficiently computed, but semantically equivalent k-avoiding

walk constraints, where k < k′, whenever k-avoiding implies self-avoiding,
due to the theorem. Inversely, if we derive that k-avoiding walks are self-

avoiding this allows stronger propagation due to theorem 6.4.5.

Analogously, in a constraint search, one can simplify a k′-avoiding walk prop-
agator by a more efficient k-avoiding one, in situation described by Theo-

rem 6.4.7, while preserving semantical equivalence.

6.4.5 Improving Propagation by Short Self-Avoiding

Walk Constraints

In the absence of a k-avoiding walk propagator, the propagation may be
improved by adding a number of short self-avoiding walk constraints. For

example, one can introduce n−k+1 many constraints SAWalk(Xi, . . . , Xi+k−1)
for all 1 ≤ i ≤ n− k + 1, i.e. a k-avoiding walk constraint for each run of k

variables.

However, note that the hyper-arc consistency of these self-avoiding walk con-
straints of length k can not guarantee the hyper-arc consistency of a global

k-avoiding walk constraint. A contradictory example is provided by Fig-
ure 6.2.

Notably, in the special case k = 3, the consistency of the 3-ary constraints

SAWalk(Xi, Xi+1, Xi+2) is computed in only time O(2b · d), where d is the
domain size of the variable Xi+1 and b is the constant number of neighbors

of each lattice point, namely b = 6 for the cubic lattice and b = 12 for the
face-centered cubic lattice.
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1 2 3 2

53 64

X XX X1 32 4

Figure 6.2: A CSP with 4 variables, where dom(X1) = {1, 3}, dom(X2) =
{2, 4}, dom(X3) = {3, 5}, and dom(X4) = {2, 6}. The neighborship
of the points 1,. . . ,6 is indicated by connecting lines. The constraints
SAWalk(X1, X2, X3) and SAWalk(X2, X3, X4) are hyper-arc consistent. However,
the constraint Walk[3](X1, X2, X3, X4) is not hyper-arc consistent. Its hyper-arc
consistency is violated by 3 ∈ dom(X3).

6.5 Results

In the following, we report results of a threading study on the face-centered

cubic lattice, which was originally done for [BW01a]. We implemented two
threading algorithms. For the first algorithm, we implemented a propagator

that handles general walks by reduction to binary walk constraint propaga-

tors. For the second algorithm, an experimental, non-optimized version of a
propagator for 3-avoiding walks is implemented. The constraint-propagators

are implemented as extension to Mozart (Oz 3.0) [Smo95]. For this pur-
pose, Mozart provides a convenient interface for extending the language by

propagators written in C++ [MW96].

For benchmarking of the two threading algorithms, the following experiment
was performed. Random HP-sequences were threaded to cores of sizes n =25,

50, and 75. Therefore, for each core 50 sequences were randomly generated
with n H-monomers and 0.8 · n P-monomers. Additionally, we threaded 50

random sequences of length 160 to a core of size 100. We also threaded some
randomly generated sequences of length 180 to this core. For each sequence,

the threading is performed by both algorithms.

Both algorithms thread the very majority of the test sequences successfully.

The results show that the combination of the walk constraint with the all-
different constraint yields significantly better propagation even for the strong

relaxation of only 3-avoiding walks. Both algorithms successfully threaded
all of the 50 sequences to the core of size 25 (which means a sequence length
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of 45). For longer sequences, the second algorithm succeeds for significantly
more sequences than the first one. Furthermore, it often finds a solution

in less search nodes (in our study, up to a factor of 303). The results are

summarized in Table 6.1.

input size algorithm 1 algorithm 2
core size seq. length fails avg. nodes fails avg. nodes

25 45 0% 36 0% 36
50 90 12% 970 2% 103
75 135 20% 586 8% 513
100 160 60% 1468 50% 598

Table 6.1: Threading of random sequences to cores of four different sizes.
The table shows size of the core, the length of the sequences, the percentage
of sequences which could not be threaded successfully within the given time
limit by the two algorithms, and the average number of nodes in successfull
runs by both algorithms. We choose a time limit of 5 minutes for the first
algorithm. The second algorithm is given a longer time limit of 15 minutes,
since the walk propagator is experimental and non-optimized.

For additional demonstration, we applied our approach to predict optimal

structures for some sequences of length 200. Table 6.2 gives the run-times
for threading these sequences.

Sequence length runtime
PPPHPHHPHHPPPHPHPPPPHPHHPPHPHHHHHPPHHPPHHHHHHPPHPP

HHPPHPHPHHHHHPHHPHHHPPPHHHPHHPPHPHPPHPPPHPPHPPHPPH

HHPHHHPHPPHPHHPHHHHPHPHHHPHHHPPPPPPHHHHHHPPPPPPPPH

HHPPHPHPPPHPHPHPHHPPHHPPPPHHHHHHPPPHHPPPPPHPPPHHPP

200 6.1 s

HPHHPPHPPPPPHHPHPHPHHPPHPPPPHHHHHHPPPHPPHHHPPHPPPP

HHPPHHHPHPHHHPPHPHHPPHPHHPPPPHHPPHPPHHHHPPPPPHHHPP

PPHPPPPPPHPPHHPHHHHPHHHHHHHHPPHHPPPHPHHHPHHHHHPHHP

HHHPHPHHPPPPHPHHPHHHPHPPPPHPPPPPPHPHHHHHPHHPPPHPPH

200 52.6 s

HPHHHPHHPHPHPPPHHHHHPHPHPHHHHPPPHHPPPPPPHHPPPPHPHH

HPPPPHPPPHHPHHPPPHPPHPPPHHHHPHHPHPPPPHHPPPHHPPHPPP

HPPHHHPHHHPHPPHPHHHHPPHHPPPPHHHPHHPPHPPHHHHPPHPHPP

HPHPPPPPHPHPHHHHHHHPHPHHHHHHPHHPPPPHPPPPHPPPHHHPHH

200 17.6 s

Table 6.2: Example runtimes for the threading of 3 random sequences of
length 200 onto a hydrophobic core of size 100 in the FCC lattice (on a
Pentium 4 at 2.4Ghz).

Finally, we give some examples of native structures for sequences with 100
H-monomers in Figure 6.3, which are obtained by threading the sequences to
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cores of size 100 with maximally many contacts. Figure 6.5 shows a three-
dimensional view of the given native structure for sequence S4 in Figure 6.3.
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Figure 6.3: Example sequences with 100 H-monomers together with absolute
walks of one optimal conformation in the FCC for each sequence. There, the
steps of the walk are given by points of the compass. The + and − indices
indicate an additional 45◦ walk out of the plane.
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Figure 6.4: An optimal structure for sequence S4 in the FCC. The H-
monomers are colored, whereas P-monomers are light grey.
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Chapter 7

Applications and Results

In this thesis, we developed the theoretical background for predicting struc-
tures in the HP-models of the cubic lattice and the cubic face-centered lattice.

This chapter discusses practical applications of the resulting approach CPSP
(Constraint-based Protein Structure Prediction).

The chapter targets at the following questions:

• How does the approach compare to related methods?

• What is the application range of CPSP?

• Which kind of biological question can be investigated using HP-models?

In particular the third question is topic of ongoing research. Here, the chapter

will mainly contribute by giving examples.

Before, we will compare CPSP to existing structure prediction methods by

some key characteristics. Then, we will discuss and recall the available im-
plementations of CPSP. For assessing the application range of CPSP in its

current implementation, we perform a series of CPSP runs on random se-
quences. The results will show

1. the run-time behaviour of our implementation in dependency of the
degeneracy of the input sequence, i.e. the number of its optimal struc-

tures, and

2. the distribution of degeneracy in the three-dimensional HP-models,
which is quantified in this thesis for the first time.

We shortly discuss implications and strategies for the further application of
CPSP.
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Finally, we give two application examples of CPSP that explore protein-like
sequences in the cubic HP-model.

Naturally occuring proteins usually have a stable native structure. However,

it is a well-known problem in sequence design that artificially synthesized
chains of amino acids commonly do not fold into a single native state. The

situation is rather similar in the HP-model. There, most sequences in the
HP-model behave like artificially designed sequences, since they do not have

a unique ground state. Therefore, only HP-sequences with a single optimal
structure are considered protein-like.

7.1 Comparison to Related Work

In Table 7.1, we give a comparison to other structure prediction approaches
in simplified protein models. Usually, there are no search times reported in

the literature. For that reason, we have listed the maximal sequence length
that is handled according to the references. Beside the HP model on the two-

dimensional square lattice, three-dimensional cubic lattice, and FCC lattice,

there are models that distinguish a larger number of amino acids and thus
more types of interactions than just the hydrophobic/hydrophobic interac-

tions in the HP-model. These models are commonly called ”Hetero”models.
Due to the complex energy function, exact structure prediction is not possible

in these models. Usually one has to introduce artificial restrictions for compu-
tational feasibility, e.g. the restriction to compact conformations. However,

this counteracts the benefits of a more sophisticated energy function.

In [SG90, SSK94], the interactions were even generated by a random model
resulting in one specific type of interaction for every pair of amino acids.

Models of this kind are used to make prediction about general properties of
the protein folding problem.

When comparing the sequence lengths in Table 7.1, it is important to keep
in mind the type of the algorithm, which is specified in the last two columns.

All kinds of approaches are represented, including complete enumeration,
which all are necessarily restricted. The enumeration approaches either can

be applied only to small sequence lengths (≤ 18), or to models, where the

search space has been restricted artificially. An example here is the approach
by [SG90, SSK94], where only maximally compact conformations are inves-

tigated. Namely, only conformations on a 3 × 3 × 3 cube are taken into
account, which drastically reduces the search space. This implies, that they

consider only sequences of length 27, which equals the number of positions
in a 3 × 3 × 3 cube. For this model, one has to enumerate only all 103,346
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Structure Prediction Algorithms

Authors Model Dim. maxlen Algorithm Comment
Shakhnovich et al. [SG90]
and Sali et al. [SSK94]

cubic Hetero
(max. compact)

3 27 compl. enum fixed shape

Dinner et al. [DSK96] cubic Hetero
(max. compact)

3 125 compl. enum fixed shape

Yue&Dill [YD93] cubic HP 3 36 b&b proves optimum
Yue&Dill [YD95] cubic HP 3 88 b&b proves optimum
Xia et al. [XHLS00] tetrahedral Hetero 3 ? enumeration restricted shape
Kaya&Chan [KC00] cubic Hetero 3 55 monte carlo
Cui et al. [CWBBC02] square HP 2 18 compl. enum

Approximation Algorithms

Authors Model Dim. maxlen Algorithm Comment

Hart&Istrail [HI96] cubic HP 3 — approx. 3

8
of optimum

Hart&Istrail [HI97a] FCC-HP side chain 3 — approx. 86% of optimum
Agarwala et al. [ABD+97] FCC-HP 3 — approx. 3

5
of optimum

Table 7.1: Results for different lattice models by other groups.

maximally compact conformations [SG90]. In a later work, this was extended

to 5 × 5 × 5 cube for sequence length 125 [DSK96].

The protein structure prediction problem is reported to be difficult also for
inexact, heuristic methods. For example, in [YFT+95] a Monte Carlo opti-

mization procedure failed to predict the minimal HP-energy of all but one of
the ten test HP-sequences of length 48. [BFG+98] reports on an advanced

Monte Carlo strategy, called PERM, that reached the ground state for all of
the same ten sequences. However, the approach is slow and can not prove the

global optimality of found local optima. Of course, it is also not possible to
completely enumerate all optimal solutions by stochastic search methods. In

Table 7.2 we compare the run-times of PERM and CPSP for predicting the
minimal energy of the ten sequences of 48 monomers, which were originally

given in [YFT+95] and termed ”Harvard sequences”.

Finally, we compare our work with the CHCC-algorithm [YD93, YD95],

which is the only other approach that can find optimal conformations in
the cubic lattice HP-model and in the same time prove their optimality. The

HP-model is not designed to generate one single minimal energy conforma-
tion for each sequence. Instead, commonly there are a lot of minimal energy

conformations, suggesting possible topologies for a protein. The number of
this minimal energy conformations for a specific sequences seq is called the

degeneracy of seq. In [YFT+95], Yue et al. have given a lower bound on
the degeneracy of the ten ”Harvard sequences”. We have largely improved
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No. Sequence CPSP PERM
1 HPH2P2H4PH3P2H2P2HPH3PHPH2P2H2P3HP8H2 0.1 s 6.9 min
2 H4PH2PH5P2HP2H2P2HP6HP2HP3HP2H2P2H3PH 0.1 s 40.5 min
3 PHPH2PH6P2HPHP2HPH2PHPHP3HP2H2P2H2P2HPHP2HP 4.5 s 100.2 min
4 PHPH2P2HPH3P2H2PH2P3H5P2HPH2PHPHP4HP2HPHP 7.3 s 284.0 min
5 P2HP3HPH4P2H4PH2PH3P2HPHPHP2HP6H2PH2PH 1.8 s 74.7 min
6 H3P3H2PHPH2PH2PH2PHP7HPHP2HP3HP2H6PH 1.7 s 59.2 min
7 PHP4HPH3PHPH4PH2PH2P3HPHP3H3P2H2P2H2P3H 12.1 s 144.7 min
8 PH2PH3PH4P2H3P6HPH2P2H2PHP3H2PHPHPH2P3 1.5 s 26.6 min
9 PHPHP4HPHPHP2HPH6P2H3PHP2HPH2P2HPH3P4H 0.3 s 1420.0 min
10 PH2P6H2P3H3PHP2HPH2P2HP2HP2H2P2H7P2H2 0.1 s 18.3 min

Table 7.2: The ten ”Harvard sequences”of [YFT+95]. Time to find and prove
minimal energy in the cubic HP-model by CPSP vs. time to only find the
same energy by PERM, which is reported in [BFG+98].

these bounds (see Table 7.3). Only for one sequence, CHCC can find as many
structures as CPSP. In the remaining cases, CHCC clearly fails to predict the

correct degeneracy and only yields rather loose bounds. For an explanation

of this behaviour, compare Chapter 4, where we review parts of the CHCC
review.

Note that we tested the validity of our results by an independent program.
This program takes the list of predicted optimal structures and then checks

• that all structures have the proposed optimal energy and

• that all structures differ from each other.

The first test simply counts the HH-contacts of each structure. For the

second test we normalize each structure, which is given as absolute walks, to
the lexicographically minimal symmetric walk in order to handle geometrical

symmetry. Then, the list of normalized walks is tested for uniqueness using
string comparison. This proves independently that the given numbers of

structures are indeed a lower bounds on the degeneracy, since in particular
the optimal energies are confirmed in the literature.

7.2 Implementation and Application Range

Here, we shortly recall and discuss the currently available implementations

of the CPSP method. For assessing the applicability of this implementation,
we investigate its run-time behaviour.
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Seq. No. Degeneracy Run-time
CHCC our approach CPSP

1 1500 × 103 10, 677, 113 138 min
2 14 × 103 28, 180 37 s
3 5 × 103 5, 090 33 s
4 62 × 103 49, 442 104 s
5 54 × 103 1, 954, 172 37 min
6 52 × 103 1, 868, 150 28 min
7 59 × 103 106, 582 156 s
8 306 × 103 15, 926, 554 166 min
9 103 2, 614 4.5 s
10 188 × 103 580, 751 11 min

Table 7.3: Degeneracy values for the ten ”Harvard sequences”of [YFT+95]
by our algorithm compared to lower degeneracy bounds that were computed
using CHCC [YFT+95]. Additionally, we show the run-times of CPSP for
enumerating the optimal structures. [YFT+95] does not report the run-times
for CHCC.

We implemented separate programs for the three steps of our approach. First,
there is a stand-alone applications for computing number sequences for the

cubic lattice and one for computing frame sequences for the face-centered
cubic lattice. The implementation for the FCC was already discussed in

Chapter 4, where we also report on its good performance.

For core construction, we implemented two separate constraint programs —

one for each lattice. Both programs were written in Oz 3.0 using the pro-
gramming system Mozart 1.3. Some results are already given in Chapter 5.

The two steps computation of frame/number sequences and core construction

are considered precomputation steps for CPSP. The programs for these steps
are only used to generate a library of cores.

When this library is generated up to a core size nH, structures of arbitrary
sequences with up to nH H-monomers can be predicted by the final step

of our approach, namely threading. Only the run-time of this final step is
important for many applications of our method, where we predict structures

for many differrent sequences of only a few different core sizes.

Since optimal structures can have sub-optimally compact cores, our library
has to contain also many cores that are not optimally compact. It is possible

to precompute and store sufficiently many sub-optimal cores such that almost
all sequences can be threaded to cores in the library. For the few sequences
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that do not fit to the available cores, one could generate the missing cores on
demand. However, in many applications it seems tolerable to simply ignore

such sequences. In this case, the run-time for predicting the structures of a

given sequence depends only on the threading step.

The final prediction step is again implemented in Oz. The programm is

always given a single sequence seq and then predicts structures of seq. Con-
trolled by options, it performs various structure prediction tasks, like count-

ing all structures or only finding the best energy. The application system-
atically threads the given sequence to a series of cores, much like it was

described in Figure 3.5. We handle both lattices by a single program. This
reflects that changing the lattice in the threading step only requires changing

the core library and adapting the definition of neighborship.

Besides our main implementation, there is a web-application, which demon-

strates the structure prediction approach via the internet. For a given HP-

sequence, it computes its maximal HH-contacts and one optimal structure
per hydrophobic core that fits the sequence. The server can be accessed by

its address http://www.bio.inf.uni-jena.de/Software/Prediction.

Our implementations predict only structures with connected hydrophobic

cores. The issue of structures with unconnected hydrophobic cores was dis-
cusssed before in Chapter 6. In principle, those structures can be handled

by a slight extension of the implemented algorithm.

7.3 Degeneracy of HP-Models

An interesting use of CPSP is determining the number of optimal structures
for a sequence. For a sequence seq, we denote the number of its optimal

structures by gnat(seq). This number is known as the degeneracy of seq.
When enumerating only structures with connected cores, we do not deter-

mine gnat(seq), but gcon(seq), which denotes the number of optimal structures
of seq with connected hydrophobic cores. Usually gcon(seq) is a very good

bound on gnat(seq). In many cases, this bound is tight, since unconnected hy-
drophobic cores have less contacts than connected ones. Thus unconnected

cores are disfavoured, if not impossible, for optimal structures of most se-

quences. Due to these considerations we will not distinguish between the
two kinds of degeneracy in the following and also omit the superindex in

gcon(seq).

For practical application, we need to gain insight into the typical run-time

behaviour of our implementation. It turns out that the time for predict-
ing structures of a sequence is roughly linear to the number of enumerated
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Figure 7.1: Run-time grows only linear with degeneracy. Plot of degneracy
in the cubic HP-model vs. time in seconds from a sampling of 1000 sequences
of length 27. Only sequences with a degeneracy below 106 are plotted.

structures (cf. Figure 7.1). In consequence, the enumeration of all optimal
structures of a sequence depends on the number of those structures, i.e. the

degeneracy of the sequence. Clues towards the average run-time are provided
by a study on the distribution of degeneracy in our HP-models.

For the study of degeneracy, as well as for our later application examples, we
use a “trick” to speed up the computation. Instead of determining g(seq), we

will always compute a modification g≤t(seq) = min(g(seq), t) for a threshold
t ∈ N, where t can be kept rather small in practice. The run-time for

computing g≤t is roughly linear in t. For determining g≤t(seq), we use the
feature of our implementation that allows to stop the enumeration after t

structures.

Note that by definition, if g≤t(seq) < t for a sequence seq and a threshold

t, then we know g(seq) exactly, namely g(seq) = g≤t(seq). Otherwise, if
g≤t(seq) = t, then we know that the degeneracy of seq is at least t.

7.3.1 Degeneracy in the Cubic Lattice

We determined the degeneracies in the cubic lattice for a sample of sequences

of size 27 in order to estimate the distribution. Instead of determining the
exact degeneracy for each sequence seq, we determined g≤106

(seq) in order
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Figure 7.2: Distribution of degeneracy for sequences of length 27 in the
cubic HP model. We show a histogram of degeneracy and a histogram of log
degeneracy (decadic logarithm). Degeneracies are experimentally determined
by sampling 1000 sequences. Only degeneracies below 106 are determined
exactly. The last column includes all sequences with degeneracy g ≥ 106.
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to save computation time. Figure 7.2 shows the resulting histogram for
sequences of length 27. In addition to the histogram of degeneracy, we show

the histogram of log degeneracy. This histogram is shown for this and the

following degeneracy distributions, since it allows a better by-eye comparison
of different degeneracy distributions. Also, log degeneracies are related to

the stability of a native conformation as we discuss in the next section. The
last column of the histograms includes the sequences with higher degeneracy

(> 106). Despite the distribution clearly favours low degeneracies, there are
about 30% such sequences of length 27.

7.3.2 Degeneracy in the FCC Lattice

For the face-centered cubic lattice, we performed the same study as in the

cubic case before. This time, the sequences have only length 12, which was
chosen due to the much higher degeneracy of the FCC and our limited com-

putation time. Figure 7.3 shows the corresponding histogram of degeneracy
for the FCC and again in addition the histogram of log degeneracy.

We also compare our results for the FCC, to sequences of length 12 in the

cubic HP model. Figure 7.4 compares the two distributions.

7.4 Protein-Like HP-Sequences

It is known that most sequences in the cubic HP-model have many optimal

structures. This fact, which is known as degeneracy of the HP-model, was
shown and made more precise in the last section.

For real proteins it is known that most randomly generated sequences fail to

fold into a stable native structure. In particular, this is an important issue

in the sequence design problem. The property of native structure stability is
reflected in the HP-model. Thermodynamic stability in the HP-model can be

computed from the complete density of states (DOS). Here, the DOS gE(seq)
of a sequence seq gives the number of its structures that have energy E. The

free energy of the native structure (i.e. one of the optimal structures of seq)
is then calculated as

∆G = Emin − kBT ln[e−Emin/(kBT ) −
∑

E

gE(seq)e−E/(kBT )],

where Emin denotes the energy of the native structure, kB is the Boltzmann
constant and T the temperature (see [BBC99]).
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Figure 7.3: Histogram of degeneracies and log degeneracies for sequences
of length 12 in the FCC HP-model from sampling 1000 sequences. Only
degeneracies below 106 are determined exactly. The last column includes all
sequences with degeneracy g ≥ 106.
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Figure 7.4: Comparison of degeneracy distributions and log degeneracy dis-
tribution for cubic and FCC HP-model at length 12.
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The more negative ∆G of a sequence seq, the more stable is its native struc-
ture. The free energy term is strongly dominated by the degeneracy of seq.

Especially, ∆G is always positive if the degeneracy is greater than one, since

then the probability of one native structure falls below 50%.

Due to these considerations, only sequences where g(seq) = 1 have a stable

native structure. It is reasonable to assume that only those HP-sequences
correspond to the sequences in real proteins, which were selected for stability

by evolution.

In [YFT+95], the authors found some sequences of length 60-80 with fewer
than five optimal structures in the cubic lattice HP-model, but do not know

of HP-sequences with a unique ground state. It was unknown, whether such
sequences exist in three-dimensional HP-models.

We present an application of CPSP for answering this question. In the same

time we devise a method for constructing such protein-like sequences, which
shows a way for rational protein design in simplified protein models.

Our approach simulates protein evolution by point mutations of the HP-

sequences, where the only driving force is towards lower degeneracy. For
evolving a protein-like sequence, we apply an optimization strategy, which

relies on exact protein structure prediction for computing degeneracies.

The good performance of this strategy points to a super-funnel-like arrange-
ment of the sequence space (cf. [BBC99]). Due to the super-funnel hypoth-

esis, the sequence space is structured into neutral nets, where a neutral net
consists of sequences that are related by point mutations and encode for the

same common structure. The sequences of a neutral net are centered around
a prototype sequence that encodes the common structure in the most sta-

ble way. Finally, the stability of the common structure decreases with the
hamming distance to the prototype sequence. [BBC99] verifies this funnel-

like arrangement for the 2D-cubic HP-model and a further two-dimensional
lattice model.

The next sub-section describes the simulation of protein evolution for gener-

ating low degenerated sequences. After this, we show a second application
of CPSP, which points toward the computation of neutral nets in three-

dimensional HP-models.

7.4.1 Finding Protein-Like Sequences

The sequences with degeneracy one are computed using a modified Monte

Carlo (MC) optimization procedure for minimizing ln(g(seq)). This method
relies on CPSP for computing the degeneracies of sequences in each step.
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Note that minimizing the logarithm of degeneracies also minimizes the de-
generacy. However, minimizing the logarithms turned out to be more efficient

then directly optimizing degeneracy. Presumably this can be attributed to

the well suited distribution of log degeneracy.

A search for a protein-like sequence, in the following also called simulation
run, starts with guessing a low degenerated sequence, e.g. a sequence seq with

g(seq) < t for t = 5000. Therefore, we iteratedly choose a random sequence
seq, where we choose for each position H or P with equal probability, and

compute g≤t(seq) until g≤t(seq) < t. This last sequence seq is chosen as
start sequence s0 for the MC optimization. Then, we apply MC steps to

this sequence, which are described below. Thereby, we (virtually) produce
a series of sequences s0, . . . , sn until g(sn) = 1 or n reaches a certain limit

on the number of steps. We fix a temperature T ∈ R and a cut-off value
0 < c << 1 for all simulation runs. The cut-off value c is introduced for

efficiency; as explained soon, c is the minimal probability for accepting a

change for the worse in a MC step. For each single MC step, i.e. going from
si to si+1, we proceed as follows.

1. Apply a random point mutation to si producing sm
i , where each position

for the mutation is equally probable.

2. Compute g≤t(sm
i ), where

t = g(si) · exp(−T · ln(c)). (7.1)

Note that g(si) is already known exactly.

3. If g≤t(sm
i ) < g(si), then si+1 = sm

i . Else if g≤t(sm
i ) < t then we choose

si+1 = sm
i with a probability

exp
ln g(sm

i ) − ln g(si)

−T . (Metropolis criterion)

Otherwise, the sequence is not changed in this step, i.e. si+1 = si.

The above schema is a modification of the standard Monte Carlo optimization

procedure. Instead of computing g(sm
i ) for the mutated sequence, which is

required for the standard approach, we compute only g≤t(sm
i ). The threshold

t is chosen such that there is a controlled and very limited deviation to the
standard MC procedure. Namely, for g(sm

i ) ≥ t the mutated sequence is al-

ways declined, but in the standard approach it is accepted with a probability
less or equal c.
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This claim is shown by the calculation

exp
ln g(sm

i ) − ln g(si)

−T ≤(7.1) exp
ln[g(si) · exp(−T · ln(c))] − ln g(si)

−T
= exp

ln g(si) − T · ln(c)) − ln g(si)

−T = c.

For efficiency, all values g≤t(seq) that are computed during one simulation
run are cached. If later in the simulation, a degeneracy g≤t’(seq) of the

same sequence seq is requested, there are two possibilities. Either t′ ≤ t,
then g≤t’(seq) is easily determined from g≤t(seq), or t′ > t, then the value

g≤t’(seq) is computed from the scratch.
Figure 7.5 shows the unique ground states of some sequences of size 64 and

80 that were found following the above strategy.

7.4.2 Neutral Environments

Since we know protein-like sequences due to the last sub-section, we can

now explore their surrounding in the sequence space. In this sub-section, we
describe how to expand a neutral environment around a given sequence with

degeneracy one.
The neutral environment of a sequence seq is a graph of sequences

• that have a limited hamming distance d to seq (d denotes the size of

the environment)

• that are connected by point mutations and

• have the unique structure of seq in their ground state.

Obviously, the neutral environment of size 0 consists of seq alone, i.e. set

E0 = {seq}. The neutral environment Ei of size i can be generated by adding
to the neutral environment Ei−1 of size i− 1 all sequences which are related

by neutral point mutations to sequences in Ei−1. Noteworthy, the added

sequences are always related by (neutral) point mutations to sequences in
Ei−1 − Ei−2 for i ≥ 2 (respectively, E0, for i = 1), which is used in our

efficient implementation.
Here, the crucial step is to decide whether a point mutation, which relates

sequences seq and seq ′, is neutral. For our purposes, it is always known that
str is an optimal structure for one of the sequences. Hence, we test for the

other sequence if str is also an optimal structure. Instead of enumerating all
optimal structures of the sequence, it suffices to determine the energy of the
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1) 2)

3) 4)

seq1:HHHPHHPHPPHPPPHPHHPHPPPHPHHHPHPPHHHHHHHHHHPPHHHPHHPHPPHPPHHPHHHP
str 1 :UUFDDDBRBLDFLUFULDBDBRUBURUUFRDLDLFUFULDBLDRBDBUUUFLFRURDBBDFLL
seq2:HHHHPPHPPHPPPHPHPHHHPPHHHPHHHPHPHPHPHHHPPHHPPHHHHPPPHHHHPPHHHPHH
str 2 :URFRULUBDRDDLDLBURUBLFLDDFFRRUFUULLBDDLBRULURBRRULFDFDFFLBDDRUB
seq3:HPPHPHHHPPHPHPHPHHPPPHHPPHHPPPHPHHHHHHPPHPHHHHPHHPPHHPPHHHPHPHHHPHPPPHPPHPPHPPHH
str 3 :FDBRUUBRDLDLDLFUULUBRUURDRUBLDBDFFDBBBRFDLLUUUFDLDRFLDRBDRURUUBUFRFFLFLBULDFDBR
seq4:HPHHHPHPPHPPHPPHPPHPPPHPHPHHHHHPPHHHHHHHPHHHPHHHHHPHHHPHPHPPPHHPHPPHHHHPHHPHPPHH
str 4 :LDDRDFDLULFRDFULURFRRBDBRULBLLLFRRDFUUULDBBURDBRURDDLDFRURFFLUULFDBBBURDFULULDD

Figure 7.5: Some HP-sequences of 64 and 80 monomers with unique ground
state. Besides the graphical representation, we give the HP-sequences seq i

and the absolute walks of the structures str i (Forward, Backward, Left,
Right, Up, Down).
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optimal structures, which can be done much faster. Then, we test whether
a HP-protein with this sequence and structure str has the same energy.

An example of a neutral environment is shown in Figure 7.6.

Conclusion

The given results and application examples demonstrate the applicability of

the introduced protein structure prediction approach CPSP in the ongoing
research on proteins. Due to its speed and flexibility, which is superior to all

previous approaches to exact structure prediction, CPSP provides new re-
search opportunities. As we have shown, CPSP promotes our understanding

of widely-used protein models. By the ability of CPSP to predict structures
in the FCC lattice, the deployment of exact models for the structure predic-

tion of real proteins seems to come into reach. Finally, CPSP enables the
use of unrestricted, three-dimensional protein models for the exploration of

protein evolution and kinetics.
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Figure 7.6: Neutral environment of a sequence with unique ground state in
the cubic lattice. Each node represents one sequence and is labeled by its
degeneracy. Edges are drawn between sequences that are related by exactly
one point mutation. The figure shows only sequences seq of the environment
of size 3 with g(seq) ≤ 1000.
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Ehrenwörtliche Erklärung
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