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Introduction

Kinetic equations with the nonlinear Boltzmann equation as prototype, describe the
evolution of molecules of rarefied gases in which the average distance (the so-called
mean free-path) travelled by a molecule between two subsequent collisions is not
negligible in comparison with a length typical of the structure of the flow being
considered. The degree of rarefaction of a gas is generally expressed through the
knudsen number, kn = λ/L, where λ is the mean free-path and L is the characteris-
tic dimension. The validity of continuum approach is identified with the validity of
Navier-Stokes equations and the traditional requirements for this is that the knudsen
number should be less that 0.1. In the limit of zero knudsen number the Navier-
Stokes equation reduce to the inviscid Euler equation while the opposite limit of
infinite knudsen number is the collision-less or free-molecule flow regime. The inter-
mediate regime between the continuum and the free-molecule flow regime is called
the so-called transitional regime and most problems in rarefied gas dynamics involve
the transitional regime.

For f = f(t,x,v), a non-negative density function depending on the variables, time
t ∈ R, t ≥ 0, the molecular velocity v ∈ Rd, d ∈ {2, 3}, and the space x ∈ Rm, m ∈
{1, . . . , d}, the nonlinear Boltzmann equation is given by

(∂t + v · ∇x)f(v) = J[f , f ] (0.1)

where

J[f , f ] :=

∫

Rd

∫

Sd−1

k(v −w, η)[f(v′)f(w′)− f(v)f(w)]d2ηd3w (0.2)

is a (2d − 1)-fold integral known as Boltzmann collision operator. Here k(., .) is
the collision kernel in the operator satisfying some symmetry properties, the post
collision velocities v′,w′ result from the pre-collision velocities v,w satisfying the
collision relations,

conservation of momentum v + w = v′ + w′,

conservation of kinetic energy (|v|2 + |w|2) = (|v′|2 + |w′|2).
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Such a pair v′,w′ 7→ v,w can be parameterized by unit vectors η ∈ Sd−1 with the
transformation Tη(v,w) as

v′ = v − 〈v −w, η〉 · η

w′ = w + 〈v −w, η〉 · η
Some details of these has been described in Chapter 1.

For the space homogeneous and for some other special cases, there has been several
investigations on the general solution of (0.1) (see [51],[1],[9],[14],[31], [35],[49]). In
these special cases, there are some information about the existence and uniqueness
of the solution of the Boltzmann equation. However, we are concerned with the
numerical simulation techniques for the Boltzmann equation.

The field of numerical simulation techniques for the Boltzmann equation has seen
a real challenge for the numerical methods. This is due to the complexity of the
(2d − 1)-fold integral (the Boltzmann collision operator), which has to be numer-
ically evaluated at each point in the (discretize) six-dimensional space. Moreover,
the modelling of the Boltzmann collision operator have to be satisfied the kinetic
features of the classical kinetic theory which becomes very crucial for regular grids
of the velocity space. When choosing a pair of pre-collision velocities v,w belonging
to the collision sphere in a regular grid, the pair of post-collision velocities v′,w′

are in general very sparsely populated and therefore one has to choose a very fine
grid. Approximating the post-collision pair v′,w′ by some pairs close to the colli-
sion sphere might violate the microscopic conservation laws and is not accepted in
general.

Most numerical computations of the Boltzmann equation are based on probabilistic
Monte Carlo techniques at different levels. e.g. the direct simulation Monte Carlo
method (DSMC) by Bird [15] and the modified Monte Carlo method by Nanbu [52].
Detailed description of these methods can be seen in ([12], [15], [25], [40], [59]).
In the probabilistic method , the computational costs is much reduced and can
be considered approximately of the order of the number of points n. The DSMC
methods are mathematically well-understood (see [10], [11], [53], [55], [63]) and has
been used with good success in many cases.

On the other hand, because of stochastic character, the DSMC method suffers from
low accuracy and gives fluctuating results with respect to finite difference or finite
volume methods. In general the convergence is slow and in particular for small
knudsen number the convergent rate is very slow. But high accuracy is needed
for coupling of the Boltzmann and the fluid dynamic domain. Moreover DSMC
methods are still not very well-understood for the computation of stationary flows.
In contrary to the probabilistic approaches the deterministic methods enable, in
principle, an error estimation and calculation of the rate of convergence. In such
cases, it is thus necessary to prefer deterministic methods, based on the classical
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discretization of the Boltzmann collision operator. Therefore, we are concerned
with the numerical computations of the Boltzmann equation based on deterministic
method.

Several deterministic computational approaches have been proposed ([29], [32], [39],
[56], [64]) to avoid fluctuations which are specially designed for the numerical so-
lution of the problem in which particle methods are expensive to obtain sufficient
accuracy. But these works are for the case of linearized Boltzmann equation or for
some particular models.

The so-called discrete velocity models (DVM) as a deterministic method in which the
velocities of molecules are confined to a finite set vectors has been used for solving
the Boltzmann equation. The DVMs were introduced in kinetic theory first by
Carleman [23] and Broadwell [19], [20] for the better understanding of the solution
of the Boltzmann equation. In the past decades a kinetic theory on DVMs has
been established, e.g. the classical work of Gatignol [36]. For the mathematical
aspects of the theory concerning global existence and fluid dynamic limit we refer
the review article of Platkowski and Illner [58]. Results on stability, consistency and
convergence of the DVM can be seen in [16], [17], [57]. In [43], Junk and Rao has
presented a new DVM based on the methodology of kinetic schemes.

The DVM approximate the (2d − 1)-fold collision integral on a discrete lattice in
the velocity space. For a regular grid in Rd : {vi ∈ Rd; i = 1, . . . , M}, let fi(t,x) ≈
f(t,x,vi), i = 1, . . . ,M , then the standard form discrete velocity model for the
Boltzmann equation reads

(∂t + vi · ∇x)fi(t,x) =
∑

j,k,l

Ak,l
i,j [fk(t,x)fl(t,x)− fi(t,x)fj(t,x)] (0.3)

= : J [f , f ]i, i = 1, . . . , M,

for which the (microscopic) momentum and energy are conserved:

vi + vj = vk + vl, v2
i + v2

j = v2
k + v2

l . (0.4)

Here Ak,l
i,j denotes the probability of transition for the collision (i, j) → (k, l) satisfies

some symmetry properties, e.g. the so-called micro-reversibility property Ak,l
i,j = Ai,j

k,l.
Then the solution of the system (0.3) satisfies the kinetic features like conservation
laws and H-theorem [36]. The derivation of such moment preserving discretization
has been done in [13], [16], [22], [22], [54]. It is proved in [62] that the space of
summational invariants is reduced to mass, momentum and energy.

A classical operator-splitting method has been used for the computation of the
solutions of this system which is consists of splitting the equation into transport
and collision steps. The first step solves the transport equation during a time step
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∆t:

(∂t + v · ∇x)f
n+1/2 = 0 (0.5)

fn+1/2(0) = fn

where fn is a given solution from the previous step. The collision step solves the
space homogeneous kinetic equation

∂tf
n+1 = J [fn+1, fn+1] (0.6)

fn+1(0) = fn+1/2

which contains the Boltzmann collision operator. The validity of this operator split-
ting has been recently shown in [34].

In recent years several numerical techniques have been proposed to deal with the
complexity of the Boltzmann collision operator. In [62], Rogier and Schneider pro-
posed a numerical method for solving the Boltzmann equation which is based on a
finite difference scheme for the approximation of the collision kernel and a finite ele-
ment scheme for the transport phase where the properties of the Boltzmann equation
are satisfied. But in this method it requires a very small discretization parameter for
a reasonable accuracy. In [37], Görsch has made another approach by smearing out
the circle onto the grid and calculating weights which guarantee the conservation
laws. This shows a good approximation property but the micro-reversibility is lost.
Pareschi and Russo in [61] used some spectral Galerkin methods for the approxi-
mation of the Boltzmann operator in the velocity space and the complexity of the
method is O(n2), where n is the total number of discretization points in velocity
space. We refer the works [44], [45], [46], [47], [48] due to Junk and Klar (and with
collaboration) for further recent investigations based on a lattice Boltzmann-type
discrete velocity model.

However, in the transitional regime, not all features of the Boltzmann collision oper-
ator have to be modelled in details and it is desirable to construct simplified model
of the Boltzmann collision operator satisfying the basic kinetic features like conser-
vation laws, H-Theorem, correct number of invariants, the properties of linearize
collision operator etc. In this regard, in ([5],[7]) Babovsky has introduced simplified
collision models in rectangular grid , but there appears many artificial invariants
which need to be eliminated by further techniques.

Therefore, in [3] we developed a kinetic theory for the discrete Boltzmann equation
based on hexagonal grid in R2. The Boltzmann collision sphere can be much more
suited in the hexagonal grid than rectangular grid model. The system of binary
collisions contains spurious invariants and to avoid the spurious invariant a ternary
interaction law is introduced. It is shown that the conservation laws, the H-Theorem,
the correct number of invariants, the properties of linearized operator are satisfied
for the discrete Boltzmann equation in the hexagonal grid. This work give the
motivation of further tasks with the following contributions.
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Outline of the contribution

In chapter-1 we present a short discussion on the derivation of the Boltzmann equa-
tion and the basic properties of the Boltzmann collision operator.

In chapter-2, we present briefly the main results on the discrete Boltzmann equation
based on hexagons in R2 which has been developed in [3]. Then we develop a
automatic generation of the hexagonal collision model as described in the following.

In order to solve the Boltzmann equation by the hexagonal discrete velocity model
it is necessary to generate a hexagonal grid which automatically provide the basic as
well as all possible larger hexagons (on which the local hexagonal collision models are
based) contained in the grid. To identify all these regular hexagons, we prove that
the centers of all regular hexagons constructed by the nodes of the hexagonal grid
on R2, is either a center of the regular basic hexagons or an interior node of the grid.
We also prove that if we only include binary collision law, then the collision operator
based on any size of hexagonal grid in R2 provide only one spurious invariant and
this only spurious invariant is identified.

We give notion of a N -layer model which is conducive to find general formulae for
all possible regular hexagons contained in the grid GN of the model and prove the
existence of all the regular hexagons in the grid GN . We present algorithms to
generate hexagonal mesh of the N -layer model for any N ∈ N0 and derive general
formulae to identify the nodes of all the regular hexagons exist in the model. We
also establish the formulae to obtained information like number of nodes, number of
hexagons etc. of the hexagonal grid and this leads to determine the computational
costs (in floating point operation) for the evaluation of the Boltzmann collision
operator based on the N -layer model. The main results of this work is accepted for
publication in [4].

At the end of this chapter, we establish a construction of the equilibrium distribution
for the generalize N -layer hexagonal model where the equilibria is described by four
parameters characterizing mass, (x,y)-momenta and kinetic energy.

In chapter-3, we present numerical results based on the N -layer hexagonal grid in
R2. An error estimation by comparing the discrete equilibria with the corresponding
maxwellian leads to determine appropriate size N of the N -layer hexagonal grid for
given temperature and bulk velocity. In the case of space-homogeneous Boltzmann
equation, the numerical solution of the Boltzmann equation (based on the hexagonal
grid) is found very close to the exact solution of the Boltzmann equation due to
Krook and Wu [51], for maxwell molecules. In the relaxation problem for hard sphere
molecules, it is seen that the solution of the space homogeneous Boltzmann equation
completely satsfies the conservation laws and the H-Theorem. As a demonstration
of steady state solution of the space inhomogeneous Boltzmann equation, we study
standard test problem where the results are seen in a good qualitative agreement
with the well-known behaviors of the solution.
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The second part of the work concerns with the investigation of a 3D hexagonal
collision model. In chapter 4, we introduce a hexagonal collision model in R3 and
for this we consider the hexagonal grid of so-called sphere packing problem. The
local collision model in R3 is a twelve-velocity model and the inclusion of only binary
collision law in the local collision model produces three spurious invariants. Thus
ternary collision law is imposed to avoid the spurious invariant. In order to fulfil the
requirements of basic kinetic features, we prove that the 3d collision model satisfies
the conservation laws, the H-Theorem, the correct number of invariants as well as the
correct dimension of equilibria, and the properties of linearized collision operator.

A very remarkable and significant achievement in the investigation of the 3D hexago-
nal collision model is that the correct number of invariants as well as the cor-
rect dimension of the equilibria is obtained without introducing ternary
collision laws. For this our basic model is a 216-velocity model for which we get
rid of ternary collision laws. Therefore for the models smaller than 216-velocity
model we need to impose ternary collision law otherwise our model based on only
binary collision law. We prove that the basic kinetic features: the conservation
laws, the H-Theorem, the correct number of invariants as well as correct dimension
of equilibria, and the properties of linearized collision operator are satisfied for the
3D hexagonal model based on only binary collision law.

In order to obtain symmetric nature of the model we give notion of layer-wise con-
struction (extension) of the model and present examples of to different size 3D
model-(i) a 120-velocity model as a one-layer model which is based on both binary
and ternary collision law, (ii) a 444-velocity model as a 2-layer model which is based
on only binary collision law.

We present a construction of the discrete equilibria distribution for our 3D hexag-
onal model which is described by five parameters characterizing the five physical
quantities mass, (x, y, z)-momenta and kinetic energy.

In chapter 5, we present numerical results based on the 120-velocity model and
the 444-velocity model in R3. A comparison of the discrete equilibria with the
corresponding maxwellian leads to calculate error due the boundary cut on the
essential part of the distribution. For the space homogeneous case, the numerical
solution of the Boltzmann equation is seen very close to the exact solution given by
Krook and Wu [51] for maxwell molecules. In the relaxation problem for hard sphere
molecules, it is seen that the solution of the Boltzmann equation completely satisfies
the conservation laws and the H-Theorem. As a demonstration of the steady state
solution of the space inhomogeneous Boltzmann equation we study a standard test
problem with different knudsen number (mean-free-path), and we obtain a good
qualitative agreement with the well-known behavior of the solution.
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Chapter 1

The Boltzmann equation

The Boltzmann equation, a prominent representative of kinetic equations, describes
the evolution of rarefied gases. The dynamics of the Boltzmann equation is given by
a free flow step and a particle interactions step with the conservation of momentum
and energy. The free flow step is modelled by the Liouville-equation and the particle
interaction step is modelled by the Boltzmann collision operator which is presented
briefly in the following sections. Our presentation is mainly based on (Babovsky,
[8]). The basic properties of the Boltzmann collision operator and the boundary
conditions of the Boltzmann equation are also discussed.

1.1 The Liouville-equation

The motion of a particle with mass m in a force-field F (t, x, v) is described by the
Newton-equation

ẋ(t) = v(t), v̇(t) =
1

m
F (x(t), v(t), t) (1.1)

where x(t) ∈ Rm, m ∈ {1, . . . , d} and v(t) ∈ Rd, d ∈ {2, 3} are the spatial and
velocity coordinate at time t. If the coordinate of the particle at time t0 is known
as

(x(t0), v(t0)) = (x0, v0) =: q0 (1.2)

then in principle we can calculate the solution of the ordinary differential equation
(1.1) for the initial value (1.2) at any time t ∈ R.

Definition 1.1 If the initial value problem (1.1), (1.2) is uniquely solvable, we
denote the solution at any time t with Φt0,tq0 and then the curve t → Φt0,tq0 is
called trajectory.

We make the following assumption.
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Assumption 1.2 For all t0, t ∈ R and initial value q0 = (x0, v0) ∈ Γ := Rm × Rd

there exists a unique solution Φt0,tq0 =: q(t) of the initial vale problem (1.1), (1.2).
For all t ∈ R the mapping

q0 → Φt0,tq0 (1.3)

is a diffeomorphism (i.e. invertible and the mapping and the inverse mapping are
continuously differentiable).

With the above assumption the inverse mapping is given by
(
Φt0,t

)−1
= Φt,t0 . (1.4)

Remark 1.3 The assumption 1.2 contains the requirement - regularity of the force
field F . From the classical theory of the ordinary differential equation the require-
ment fulfill, for example, when F is Lipschitz continuous.

We now consider that the probability of finding a particle at time t0 in a measurable
subset M0 ⊂ Rm×Rd is µ0(M0). Then how is the corresponding probability density
in another time t ? To answer this question, we would like to derive an equation
and the basic principle for this is the principle of the conservation of probability.
With the assumption 1.2 a family of probability-measure µt obviously satisfy the
conservation of probability, if for any measurable set M0 and for any time t

µt({Φt0,tq0, q0 ∈ M0}) = µ0(M0) (1.5)

With this and from the equation (1.4) it follows the existence and uniqueness of the
corresponding measure-flow t → µt, and then for any measurable sets M ∈ Γ,

µt(M) = µ0((Φ
t0,t)−1M) = µ0(Φ

t,t0M). (1.6)

For µ0 is absolutely continuous, it gives a measurable function f0 by

µ0(M) =

∫

M

f0(q)dq (1.7)

The Liouville-equation states how the density can be determine in a situation of a
divergent-free force field F .

Theorem 1.4 Liouville-equation: Consider a divergent free force field F , i.e. for
∇·F = 0 for all (t, x, v). µ0 is absolute continuous and f0 ∈ C1(Γ) is the correspond-
ing density. Then the measure µt is also absolute continuous and the corresponding
density f(t) is continuously differentiable and constant along the trajectory:

f(t, Φt0,tq0) = f0(q
0) (1.8)

and fulfill the Liouville-equation

∂tf + v · ∇xf +
1

m
F · ∇vf = 0 (1.9)

where ∂t is the partial differential operator w.r.to t and ∇x and ∇y are the gradients
corresponding to spatial and velocity vectors x and v.
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proof: We refer ([8], p.10)

Adding the Boltzmann collision operator J [f, f ] to the Liouville equation (in absence
of the field of external forces), we obtain the Boltzmann equation is in the form

(∂t + v · ∇x)f(t, x, v) = J [f, f ] (1.10)

The formulation of the collision operator J [f, f ] is based on the momentum and
energy conserving particle interactions and the collision operator is composed of a
loss term and a win term which is described in the following section.

1.2 Particle interaction

Let v and w be the pre-collision velocities of two particles T 1 and T 2 of masses m1

and m2 respectively. We consider the collisions for which the kinetic energy and
moments are conserved and our task is to determine the post-collision velocities v′

and w′ of the particles T 1 and T 2 respectively.

Interaction between two identical particles

Suppose T 1 and T 2 are identical particles of same radii R and of same masses
m1 = m2 = 1. For a two-particles-interaction (v, w) → (v′, w′), conservation of
momentum and energy must hold. Thus the velocities of the two particles satisfy
momentum conservation law:

v + w = v′ + w′ (1.11)

and energy conservation law:

1

2
(v2 + w2) =

1

2
(v′2 + w′2) (1.12)

We choose v′ as v′ = v−Aη with a unite vector η, then it follows from the momentum
conservation w′ = w + Aη, and from the energy conservation A = 〈v − w, η〉.

Theorem 1.5 a) Two velocity pairs (v, w) and (v′, w′) for which the equations
(1.11) and (1.12) holds, is described with the relation

(
v′

w′

)
= Tη(v, w), (1.13)

where η is a unite vector and Tη = (T
(1)
η , T

(2)
η )> is defined as

T (1)
η (v, w) = v − 〈v − w, η〉 · η (1.14)

T (2)
η (v, w) = w + 〈v − w, η〉 · η (1.15)
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b) Tη = T−η and Tη ◦ Tη = id
c) Tη is differentiable w. r. to (v, w); and

∣∣∣∣∣
∂(v′, w′)
∂(v, w)

∣∣∣∣∣ = 1 (1.16)

particularly satisfy the integral transformation

dvdw = dv′dw′ (1.17)

d) The conservation equations

|v′ − w′| = |v − w| and 〈v − w, η〉 = 〈v′ − w′, η〉 (1.18)

are satisfied.

proof: Choosing v′ = v −Aη with a unite vector η, it follows from the momentum
conservation w′ = w + Aη and from the energy conservation A = 〈v − w, η〉. The
statements b) and d) follows from elementary calculations and the statement c)
immediately follows from the fact that Tη is an involution.

The impact parameters

?

....

j

η

¾-r

ª

µ

T 2

θ
θ

v − w

v′ − w′
+ R

3

r
T 1

Fig. 1.1 The impact parameters

Apart from the translational velocities of the two collision partners, two impact
parameters are required to completely specify a collision between spherically sym-
metric molecules. The first is the distance of closest approach r of the undisturbed
trajectories in the center of mass frame of reference. The plane in which the tra-
jectories lie in the center of mass frame is called the collision plane. The second
impact parameter is chosen as the angle θ between the collision plane and some
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reference plane. The direction η of the change of momentum depends on the impact
parameters. As shown in the Fig.1.1, we consider that the particle T 1 is moving with
pre-collision and post-collision velocities (v − w) and (v′ − w′) respectively relative
to the particle T 2. We now choose our co-ordinate system so that (v − w) is in the
direction of canonical unit-vector e3 i.e. v = (0, 0, |v − w|)>. Then T 1 is moving
nearer and nearer to T 2 on the trajectory τ → (rcosφ, rsinφ, τ |v − w|)>, so that by
the law of classical mechanics

(
v′

w′

)
= Tη(v, w), (1.19)

with a unite vector η = (sinθcosφ, sinθsinφ, cosθ)>, θ ∈ [0, π/2], φ ∈ [0, 2π]; where
θ depends on the impact parameter r and velocity |v − w| = |v′ − w′|:

θ = θ(r, |v − w|). (1.20)

¾

7
θ
θ

rT 1

T 2

(v − w)

(v′ − w′)

η

Fig. 1.2 Hard sphere interaction

The Fig.1.2 shows the interaction of two hard spheres. From the geometry it is
evident that

r = 2R sinθ (1.21)

We assume that θ is smooth and r is strictly monotonically increasing function and
θ(0, |v − w|) = 0 as well as θ(2R, |v − w|) = π/2.

1.2.1 The Boltzmann collision operator

On the basis of the previous discussion of particle interactions, we briefly describe
here the formulation of the Boltzmann collision operator. Let a particle of velocity
v meets another particle of velocity w within a time interval ∆t. By the translation
of a co-ordinate system, if we suppose that the second particle is at rest, then the
first particle moves with the velocity v − w. We consider N numbers of the second
particles as a field particles in a volume unit. Then the probability of finding the
test particle (the first particle) of velocity (v − w) meets a field particle at a point
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x0 in a time interval ∆t, is equal to the probability of finding the middle point of
the field particle in the collision-cylinder

Z∆t = {x| inf
t∈[0,∆t]

|x− (x0 + t(v − w))| < 2R} (1.22)

The collision cylinder Z∆t has the volume V ol∆t = 4πR2|v − w|∆t. But in a small
volume ∆X, the collision between two pre-selected particles is a rather rare event.
By searching a two-particle-density f (2)(v, w) for a system of finitely many par-
ticles can solve the problem. Following the argument, one can consider a most
general probability density and the particle evolution can be described only through
a hierarchy of equation (BBGKY-Hierarchy), which is not meaningful for practical
consideration . One way-out is in the Boltzmann-Grad limit: in a volume element
the number of particles N → ∞ and at the same time the radius R → 0 so that
NR2 = const. Then two particles that happen to collide can be thought of as two
randomly chosen particles, and it make sense to assume that the probability density
f (2)(v, w) of finding the first particle with velocity v and the second particle with the
velocity w is the product of the probability density of finding the first particle with
velocity v and the probability density of finding the second particle with velocity w.
With this assumption of molecular chaos we write

f (2)(v, w) = f(v)f(w) (1.23)

Then the probability of meeting a particle with velocity v to another particle with
velocity w within a time interval ∆t is proportional to N ·∆X, and so equal to

Nσ∆X = 4σπR2N∆t|v − w| · f(w) (1.24)

Then σ0 = lim
N→∞

4πσNR2 provide a loss-term of the collision operator in the form

−σ0|v − w|f(t, x, v)f(t, x, w) (1.25)

With the assumption that θ(r/R) is an diffeomorphism and for r0 = r/(2R), the
probability P(v′)(∆V ) of finding the test particle with the velocity v′ in the domain
∆V is

Pv′(∆V ) := σ0

∫

w′∈Rd

∫

η∈Sd−1
+ :T

(1)
η (v′,w′)∈∆v

r0(θ)
dr0

dθ
dθdφ|v′ − w′|f(w′)dw′ (1.26)

Then from the involution property of Tη (theorem 1.5(b))
∫

Rd

Pv′(∆V )f(v′)dv′ ≈ σ0

∫

Rd

∫

η∈Sd−1
+

k(|v − w|, θ)f(v′)f(w′)dω(η)dw (1.27)

the R.H.S. is the win-term, where

k(|v − w|, θ) = 4|v − w|r0(θ)

sinθ

dr0

dθ
(1.28)
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and dω is the surface element of the unite sphere:

dω(η) =
1

4π
sinθdθdφ (1.29)

The Boltzmann collision operator is then given by the sum of the loss-term and
win-term:

J [f, f ] := σ0

∫

Rd

∫

η∈Sd−1
+

(f(t, x, v′)f(t, x, w′)− f(t, x, v)f(t, x, w))k(|v − w|, θ)dηdw

(1.30)
where θ is the angle between η and v−w. But since Tη = T−η (theorem 1.5) we can
make the integration over the full surface S2 and we obtain the Boltzmann collision
operator as

J [f, f ] =
σ0

2

∫

Rd

∫

η∈Sd−1

(f(t, x, v′)f(t, x, w′)− f(t, x, v)f(t, x, w))k(|v − w|, θ)dηdw

(1.31)

For hard sphere model

As given by the equation (1.21), in particular, for hard sphere molecules

r = 2Rsinθ,

therefore,
r0dr0 = sinθcosθdθ

and thus with a constant α, it turns out that the Boltzmann collision operator for
a hard sphere gas is given by

J [f, f ] = α

∫

Rd

∫

η∈Sd−1

(f(t, x, v′)f(t, x, w′)− f(t, x, v)f(t, x, w))|v − w| cos θdηdw.

(1.32)

1.3 Basic properties

We discussed here the basic properties of the Boltzmann collision operator J [f, f ].

1.3.1 Collision Invariant

Definition 1.6 Collision invariant: A locally integrable function φ : Rd → R is
called collision invariant of the collision-operator J [., .], if for each f ∈ L1(Rd), φJ
is integrable, and satisfy ∫

Rd

φ(v)J [f, f ](v)dv = 0 (1.33)
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A necessary criteria for collision-invariants is the following.

Lemma 1.7 A local integrable function φ is collision-invariant, if for any v, w ∈ Rd

and for any unit vector η ∈ Sd−1, φ satisfies

φ(v) + φ(w) = φ(v′) + φ(w′) (1.34)

proof: By the interchange of v and w we have∫

Rd

φ(v)J [f, f ](v)dv

=

∫

Rd

∫

Rd

∫

Sd−1

k(|v − w|, η){f(v′)f(w′)− f(v)f(w)}φ(v)dηdwdv (1.35)

=

∫

Rd

∫

Rd

∫

Sd−1

k(|v − w|, η){f(v′)f(w′)− f(v)f(w)}φ(w)dηdwdv (1.36)

With the involution property T 2
η = id and the relation dvdw = dv′dw′ we have

∫

Rd

φ(v)J [f, f ](v)dv

= −
∫

Rd

∫

Rd

∫

Sd−1

k(|v − w|, η){f(v′)f(w′)− f(v)f(w)}φ(v′)dηdwdv (1.37)

= −
∫

Rd

∫

Rd

∫

Sd−1

k(|v − w|, η){f(v′)f(w′)− f(v)f(w)}φ(w′)dηdwdv (1.38)

It follows from the equations from (1.36) to (1.38) that

4×
∫

Rd

φ(v)J [f, f ](v)dv =

∫

Rd

∫

Rd

∫

Sd−1

k(|v − w|, η)× (1.39)

{f(v′)f(w′)− f(v)f(w)}{φ(v) + φ(w)− φ(v′)− φ(w′)}dηdwdv.

Then with the definition 1.6, the proof is completed. ¤

Definition 1.8 Basis-collision-invariant: We call a collision invariant φ a basis-
collision-invariant if for any v, w ∈ Rd and for any η ∈ Sd−1

φ(v) + φ(w) = φ(v′) + φ(w′) (1.40)

Due to the conservation of mass, momenta and energy during the interaction, the
functions φ0(v) ≡ 1 (mass), φi(v) := vi, i = 1, . . . , d (momenta) and φ4(v) := 1

2
‖v‖2

(kinetic energy) are conservative. The following theorem shows that these are the
only collision invariants with certain regularity properties.

Theorem 1.9 Basis-collision-invariant: A continuous function φ : Rd → R is
basis-collision-invariant if and only if

φ(v) = a + 〈b, v〉+ c‖v‖2 (1.41)

with a, c ∈ R and b ∈ Rd.

proof: see page 50 [8].
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1.3.2 Equilibrium solutions

We introduce a function f : Rd → R satisfying J [f, f ] ≡ 0. It will be evident
that the solution of the space homogeneous Boltzmann equation converge to the
equilibrium solution.

Definition 1.10 Equilibrium solution: A function f ∈ L1(Rd) ∩ C(Rd) with the
properties
(a) f(v) > 0 for all v ∈ Rd,
(b) ln(f)J [f, f ] ∈ L1(Rd)
is called equilibrium solution of the Boltzmann equation for which J [f, f ] ≡ 0.

Defining the so-called H-functional H[f ] :=
∫
Rd ln(f(v))f(v)dv we have the following

properties of the solution f(t, v) of the space homogeneous Boltzmann equation.

Theorem 1.11 H-theorem: If the collision kernel k(|v − w|, η) > 0 almost every-
where then
(a) For the solution f(t, v) of the space homogeneous Boltzmann equation

dH

dt
≤ 0,

(b) f(.) is an equilibrium solution if and only if

f(v) = exp(a + 〈b, v〉+ c‖v‖2). (1.42)

proof: It follows from the equation (1.39) that

4×
∫

Rd

ln(f(v))J [f, f ](v)dv =

∫

Rd

∫

R3

∫

Sd−1

k(|v − w|, η)× (1.43)

{f(v′)f(w′)− f(v)f(w)}{ln(f(v)) + ln(f(w))− ln(f(v′))− ln(f(w′))}dηdwdv

=

∫

Rd

∫

Rd−1

∫

Sd−1

k(|v − w|, η)f(v′)f(w′)
{

1− f(v)f(w)

f(v′)f(w′)

}
ln

( f(v)f(w)

f(v′)f(w′)

)
dηdwdv

where for x > 0, x → (1− x)ln(x) is a non-positive function and thus
∫

Rd

ln(f(v))J [f, f ](v)dv ≤ 0 (1.44)

and as 1 is a collision invariant, it follows immediately that

dH

dt
=

∫

Rd

(1 + ln(f(v)))J [f, f ](v)dv ≤ 0 (1.45)

and the equality sign holds if and only if f(v)f(w) = f(v′)f(w′) for any v, w ∈
Rd, η ∈ Sd−1 and so when ln(f) is a collision invariant. Then from the theorem 1.9
it follows that

ln(f(v)) = a + 〈b, v〉+ c‖v‖2 (1.46)

with a, c ∈ R and b ∈ Rd. ¤
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Remark 1.12 (a) With the above theorem all equilibrium functions can repre-
sented in the form

f(v) = M [ρ, v, T ](v) :=
ρ

(2πT )d/2
exp

(−(v − v)2

2T

)
(1.47)

These functions are also called Maxwell-functions. The quantities ρ, v and T are
given by

ρ =

∫

Rd

M [ρ, v, T ](v)dv (1.48)

ρv =

∫

Rd

vM [ρ, v, T ](v)dv (1.49)

ρT =
1

d

∫

Rd

‖v − v‖M [ρ, v, T ](v)dv (1.50)

and called the density, bulk-velocity, and temperature of the Maxwell-distribution.

(b) From the theorem 1.11(b), t → H[f(t)] decreases monotonically unless f is a
maxwellian and this concludes that f tends to maxwellian as t →∞. We refer [18],
[2], for some further approaches on this topic.

1.4 The Macroscopic equations

Let us now describe the evaluation of macroscopic quantities from the density func-
tion f and the relationship between them. Because of the significance of the density
function we need to take averages with respect to all the possible velocities for local
information, (e.g. density, bulk-velocity at some point of spatial space), while an
additional integration with respect to space coordinates is required to obtain global
quantities (e.g., total mass of the gas).

Definition 1.13 Moments: For a given non-negative integrable function f : Rd →
R, we define the (mass) density ρ by

ρ :=

∫

Rd

f(v)dv, (1.51)

the bulk-velocity v = (vi)
d
i=1 which is the average of the molecular velocities v by

vi :=
1

ρ

∫

Rd

vif(v)dv, (1.52)

the stress tensor P = (pij)
d
i,j=1 by

pi,j :=

∫

Rd

vivjf(v)dv − ρvivj, (1.53)
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the pressure p by

p :=
1

d
trace(P) =

1

d

d∑
i=1

pii, (1.54)

the energy density E by

E :=
1

2

∫

Rd

‖v‖2fdv, (1.55)

the density of the internal energy e by

e :=
1

2ρ

∫

Rd

‖v − v‖2fdv =
dp

2ρ
, (1.56)

and the temperature T by

T :=
p

ρ
=

2e

d
. (1.57)

Definition 1.14 Moment-flow: The flow F [Φ] of Φ[f ] :=
∫
Rd φ(v)f(v)dv is defined

by

F [Φ] :=

∫

Rd

vφ(v)f(v)dv, (1.58)

e.g., the flow of the energy density is given by

F [E] :=
1

2

∫

Rd

v‖v‖2f(v)dv. (1.59)

Like a flow with respect to the relative velocity v−v, the heat-flux vector is defined
by

q :=

∫

Rd

(v − v)‖v − v‖2f(v)dv, (1.60)

then the energy-density with the help of the heat-flux vector can be written in the
form

F [E] = ρ
(1

2
‖v‖2 + e

)
v + P · v + q. (1.61)

As a simple mathematical consequence of the Boltzmann equation

(∂t + v · ∇x)f(t, x, v) = J [f, f ], (1.62)

one can derive five differential relations satisfied by the macroscopic quantities intro-
duced above. These relations describe the balance of mass, momentum and energy
and have the same form as in continuum mechanics. To this end let us multi-
ply the Boltzmann equation with collision invariant φ and then with Φ(t, x) :=∫
Rd φ(v)f(t, x, v)dv we have

∂tΦ(t, x) +∇x · F [Φ](t, x) = 0. (1.63)
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Then taking φi, i = 0, . . . , 4 as defined in the definition 1.8, we have the following
five relations

∂tρ +∇x · (ρv) = 0 (1.64)

∂t(ρv) +∇x · (ρv ⊗ v + P) = 0 (1.65)

with the tensor product (v ⊗ v)i,j := vivj,

∂tE +∇x ·
(
ρ
(1

2
‖v‖2 + e

)
v + P · v + q

)
= 0. (1.66)

Remark 1.15 We remark here that in the so-called space-homogeneous case, the
various quantities do not depend on x, then all the space derivatives disappear from
the equations (1.64-1.66) and then the quantities ρ, ρv,E are conserved, i.e. do not
change with time.

We mention here that the number of unknowns in the equation (1.64-1.66) are larger
than the number of equations. i.e. the set of equations are not in a closed form. An
important modelling problem remains with the formation of closed relations. We
give here two examples of the relations of closed form.

1. Euler-equation: ρ,v as well as E and T are defined as in the definition 1.13
and all other moments are defined through the Maxwell-density M [ρ,v,T].
For Maxwell-functions it can be shown that P = p · I(I is the unit matrix),
and q = 0. With this we obtain the Euler-equation as a closed system of 5
equations with 5 unknowns as

∂tρ +∇x · (ρv) = 0 (1.67)

∂t(ρv) +∇x · (ρv ⊗ v + p) = 0, (1.68)

∂tE +∇x ·
((ρ

2
‖v‖2 + ρe + p

)
v
)

= 0 (1.69)

2. Navier-Stokes-equations: These equations are obtained through the correction
of terms P and q:

P := (p + σ∇x · v)I− µ(Dv + Dv>) (1.70)

with the functional matrix Dv with the coefficients (Dv)ij = ∂vi/∂xj, and

q = −κ∇xT. (1.71)

The quantities σ and µ are called the viscosity coefficients and κ is called the coef-
ficient of heat conduction.
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1.5 The Linearized Collision Operator

We introduced here the linearize collision operator and study some properties of the
operator as described in Cercignani, [25]. For M denote the equilibrium solution
and with a new unknown h and ε > 0, inserting the ansatz

f = M + εM
1
2 h (1.72)

to the non-linear Boltzmann equation (given by equation 1.10) we have:

∂th + v · ∇xh = Lh + εΓ(h, h). (1.73)

Here L is the linearized collision operator defined by

Lh = 2M− 1
2 J [M

1
2 h,M ], (1.74)

where J is the bilinear operator associated with J [f, f ] i.e.

J [f, g] =
1

2

∫

Rd

∫

Sd−1

(f ′g′∗ + g′f ′∗ − fg∗ − gf∗)k(|v − w|, θ)dηdw (1.75)

and Γ(h, h) is the non-linear part, and is given by

Γ(g, h) = M− 1
2 J [M

1
2 g,M

1
2 h] (1.76)

with g = h. A more explicit form of Lh is as follows

Lh =

∫

Rd

∫

Sd−1

(h′R′
∗ + R′h′∗ −Rh∗ − hR∗)R∗k(|v − w|, θ)dηdw (1.77)

where for convenience R denotes M
1
2 and M ′M ′

∗ = MM∗. It has been shown in
([25], chap. 3, eq. 1.10) that

∫

Rd

J [f, g]φ(v)dv =
1

8

∫

Rd

∫

Rd

∫

Sd−1

(f ′g′∗+g′f ′∗−fg∗−gf∗)(φ+φ∗−φ′−φ′∗)k(|v−w|, θ)dηdwdw∗
(1.78)

Substituting f by Rh, g by M and φ by g/R, it follows from the equation (1.78)
that

∫

Rd−1

gLhdv = −1

4

∫

Rd

∫

Sd−1

(h′R′
∗ + R′h′∗ −Rh∗ − hR∗)

×(g′R′
∗ + R′g′∗ −Rg∗ − gR∗)k(|v − w|, θ)dηdwdw∗ (1.79)

Now introducing the Hilbert space of square summable functions of v endowed with
the scalar product

(g, h) =

∫

Rd

ghdv, (1.80)



26 The Boltzmann equation

where the bar denote the complex conjugation, equation (1.79) gives

(g, Lh) = (Lg, h). (1.81)

Furthermore
(h, Lh) ≤ 0, (1.82)

and the equality sign holds if and only if

h′/R′ + h′∗/R
′
∗ − h/R− h ∗ /R∗ = 0, (1.83)

i.e., if and only if h/R is a collision invariant. Thus from the above we have the
following properties of the Linearized collision operator.

Theorem 1.16 The linearized collision operator is self-adjoint and non-positive,
with a (d+2)-fold null eigenspace spanned by M1/2φi, where φi, i = 0, . . . , d+1 are
the collision invariants.

1.6 Boundary conditions

The Boltzmann equation is appended by boundary conditions, which describe the
interaction of the gas molecules with the solid walls. The details of the boundary
conditions has been described in the corresponding chapters in ([8], [24]). Among
the possible boundary conditions described in the above two references, in practice
there are mainly two classes of reflection laws which we described here as in [8].

Definition 1.17 (i) Deterministic reflection law is formulated through bijective
mapping

R(a; .) : {v : 〈n(a), v〉 < 0} → {v : 〈n(a), v〉 > 0} (1.84)

where a molecule striking a wall at ’a’ with velocity v reemerges from the wall with
a new velocity w = R(a; .). The corresponding boundary condition reads

|〈n(a), v〉|f(t, a, v) = |〈n(a), R(a; v)〉|f(t, a, R(a; v)) (1.85)

for all v with 〈n(a), v〉 < 0.

(ii) Stochastic refection law describes through a family of probability mass {Ra(.|v) :
〈n(a), v〉 < 0} in the set {w ∈ R3 : 〈n(a), w〉 > 0}. A molecule striking with the
velocity v at a point a ∈ ∂Ω in the wall reemerge randomly in accordance with
Ra(.|v). Then Ra(.|v) is the velocity density of all the molecules after the impact
with the wall. The mass Ra is absolute continuous i.e. Ra(dw|v) = ra(w|v)dw so
that the corresponding boundary condition for 〈n(a), w〉 > 0 reads

〈n(a), w〉f(t, a, w) =

∫

〈n(a),v〉<0

ra(w|v)|〈n(a), v〉|f(t, a, v)dv (1.86)
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Example 1.18 (i) The specular (elastic) reflection law is described by

Rel(a; v) = v − 2〈n(a), v〉n(a) (1.87)

By the specular reflection the kinetic energy Ekin := mv2/2 of the particles do
not change. The component of the momenta p := mv orthogonal to n(a) is un-
changed while the component parallel to n(a) change in sign. With the help of the
distribution-notation, the specular reflection can be formally written in the form of
stochastic reflection law as

ra(.|w) = δRel(a;w)(.). (1.88)

(ii) The diffuse reflection with wall temperature T is described through the stochas-
tic reflection law. The corresponding probability masses are absolute continuous
and independent of the out going velocity w. Defining the diffuse reflection with
the requirement that the post-collision velocity is independent of the pre-collision
velocity and that the equilibrium densities

MT (v) =
1

(2T )5/2
exp

(
− |v|2

2T

)
(1.89)

are invariant w. r. to the diffusion reflection, i.e.

〈n(a), v〉MT (v) =

∫

〈n(a),v〉<0

rT (v|w)|〈n(a), w〉|MT (w)dw (1.90)

With this rT (v|w) ∼ 〈n(a), v〉MT (v) and after multiplying with the normalization
constant

rT (v|w) =
2

π

√
2T 〈n(a), v〉MT (v). (1.91)

(iii) The maxwellian reflection law with accommodation coefficient λ ∈ [0, 1] is a
combination of the above two examples:

r
(λ)
T (v|w) = λδRel(a;w)(v) + (1− λ)rT (v|w). (1.92)

(iv) Another example is the reverse reflection law which is given by

R(a; v) := −v (1.93)

The only law guaranteeing no-slip condition is the reverse reflection. In both the
deterministic laws above, there is no exchange of energy between the fluid and wall.
i.e. the deterministic laws are adiabatic, while the diffusive law is not adiabatic. The
only law with vanishing shear stress is the specular reflection law.





Chapter 2

Discrete Boltzmann equation in R2

In this chapter first we briefly describe the main results of the discrete Boltzmann
equation based on hexagonal collision model in R2, which has been developed in [3].
Then in order to identify all the regular hexagons we prove that the centers of all
regular hexagons constructed by the nodes of the hexagonal grid in R2, is either a
center of the regular basic hexagons or an interior node of the grid. We also prove
that the system of binary collision law based on bounded hexagonal grid produces
only one spurious invariant. We give notion of a N -layer model and prove the exis-
tence of all possible regular hexagons belonging to the grid GN of the N -layer model.
We develop a mesh generator of the N -layer model which automatically provides
the basic as well as all possible larger hexagons (on which the local hexagonal colli-
sion model are based) and leads to determine computational costs of the Boltzmann
collision operator in floating point operation. At the end, we present the construc-
tion of the discrete equilibrium distribution for any larger size model based on the
hexagonal grid.

2.1 Hexagonal Discretization of R2

Define the points
cα = (cα,x, cα,y), α = (i, j) ∈ Z2 (2.1)

by

cα,x :=

{
3hi for j even
(1.5 + 3i)h for j odd

(2.2)

cα,y :=

√
3h

2
j (2.3)

where h is a discretization parameter, and the set

C := {cα|α ∈ Z2}. (2.4)



30 Discrete Boltzmann equation in R2

The elements cα ∈ C are the centers of the hexagons Hα and the nodes of Hα are
given by

Gα := cα + h
(
sin

(2π

6
(k + 0.5)

)
, cos

(2π

6
(k + 0.5)

))5

k=0
∈ (R2)6 (2.5)

The set

G :=
⋃

α∈Z2

Gα (2.6)

of nodes of all hexagons Hα yields the grid by which we discretize R2.

The Fig. 2.1 shows the hexagonal discretization of R2.

Fig. 2.1 Hexagonal discretization of R2.

Each of the hexagons Hα defined above is called a basic hexagon of G. However, G
contains many larger regular hexagons as indicated by the dotted and dashed line
in the Fig. 2.1. The set of all regular hexagons with vertices in G is denoted by H.
For each H ∈ H a numbering πH = (πH

0 , . . . , πH
5 ) is given which lists all nodes of H

consecutively in clockwise ordering.

For a given real-valued function f ∈ R|G| on G we denote by fH = PHf the restriction
of f on H, i.e.

PHf = (fπH
0
, . . . , fπH

5
) ∈ R6 (2.7)

For H := (πH
0 , . . . , πH

5 ) ∈ H and fH ∈ R6
+, a local collision operator is introduced as

JH [fH , fH ] = γbinJbin[fH , fH ] + γterJter[fH , fH ] (2.8)
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where

Jbin[fH , fH ]l = Jbin[fH , fH ]l+3 = S[f , f ]− 3flfl+3; (2.9)

S[f , f ] := f0f3 + f1f4 + f2f5, l = 0, 1, 2

and

Jter[fH , fH ]l = (−1)lT [f , f ]; T [f , f ] := f1f3f5 − f0f2f4; l = 0, . . . , 5, (2.10)

The inclusion of only binary collision operator Jbin[f , f ] yields an artificial invariant
〈aH , fH〉,

aH = (1,−1, 1,−1, 1,−1)>, (2.11)

and therefore to avoid this artificial invariant we included the ternary collision op-
erator Jter[f , f ].

Then the space homogeneous kinetic equation as an evolution equation for densities
f = f(t) on G takes the form

∂tf = J [f , f ], (2.12)

where the global collision operator J [f , f ] is given in its weak formulation as

〈φ, J [f , f ]〉 =
∑
H∈H

γH

5∑

l=0

φ(πH
i )JH [fH , fH ]l. (2.13)

In a bounded hexagonal grid Gb, we call (Hb, γ) the regular collision model (see Def.
4.4, [3]) which has the four invariants

mass ρ =
∑

fl,

x-momentum ρv̄x =
∑

vl,xfl,

y-momentum ρv̄y =
∑

vl,yfl,

kinetic energy
1

2
|v|2 =

1

2

∑
(v2

l,x + v2
l,y)fl

which are conserved in each collision event.

We summarize the results satisfying the common features of kinetic theory which
has been developed in [3] as follows.

Let (Hb, γ) be a regular collision model. Then we have

• H-Theorem: Let f(t) be a solution of the space-homogeneous kinetic equation
(2.12) for (Hb, γ) with all components fl are strictly positive. Then for the H-
functional

H[f ] :=
∑

l

flln(fl),
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dtH[f ] ≤ 0

and dtH[f ] = 0 if and only if f is an equilibrium solution (see theorem 4.1, [3]).

• A vector f is an equilibrium solution if and only if for all regular hexagons H ∈ Hb,
the six-tupel fH is an equilibrium solution of the six-velocity model.

• The set E of equilibria is a smooth four-dimensional manifold (see proposition
4.5 [1]).

• The set of collision invariants is spanned by mass, momenta and kinetic energy
(see proposition 4.5 [3]).

The weak formulation of the full linearized operator L on (Hb, γ) is given by

〈ψ, Lφ〉 =
∑

H∈Hb

γH

11∑

l=0

ψ(πH
l )(LHφH)l

=
∑

H∈Hb

γH〈PHψ, LHPHφ〉 (2.14)

and thus

L =
∑

H∈Hb

γHP T
HLHPH (2.15)

where (PH)l,m =

{
1 if l ≤ 5 and m = πH

l

0 else
(2.16)

• L is a symmetric operator, its null space is four-dimensional and given by

N(L) = D− 1
2 E = D

1
2 span(l1,vx,vy,Ekin)

and all of its non-zero eigenvalues are negative.

• At the end, the above results were generalized for unbounded hexagonal grid. In
a further work in [6], Babovsky has shown that the ternary collision terms imposed
in the hexagonal collision model don’t exists any more in the continuum limit and
the binary collision operator then converges weakly to the true Boltzmann collision
operator. ¤

Now, for the calculation of the collision operator in a bounded hexagonal grid, we
need in advance a list L of all sixtupels (πH

l )5
l=0 of nodes of regular hexagons H ∈ H.

Therefore, the task of [3] gives the motivation to generate a hexagonal grid which
provide all the regular hexagons automatically.

In order to identify all the regular hexagons, we re-write the definition of hexagonal
grid G as well as the center points as follows.
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For α = (i, j) ∈ Z2, denote gt
α = (gt

α,x, g
t
α,y), t = 0, . . . , 3 by

g0
α,x := (3i +

1

2
)h, g0

α,y := (2j + 1)

√
3

2
h

g1
α,x := (3i + 1)h, g1

α,y := 2j

√
3

2
h (2.18)

g2
α,x := (3i + 2)h, g2

α,y := 2j

√
3

2
h

g3
α,x := (3i +

5

2
)h, g3

α,y := (2j + 1)

√
3

2
h

Then for

Gt : =
{
gt

α|α ∈ Z2
}
, t = 0, . . . , 3 (2.19)

G : =
⋃
t

Gt

is the set of grid points of the hexagonal discretization on R2. Again we denote
cs

α = (cs
α,x, c

s
α,y) s = 0, 1 by

c0
α,x := 3ih, c0

α,y := 2j

√
3

2
h (2.20)

c1
α,x := (3i +

3

2
)h, c1

α,y := (2j + 1)

√
3

2
h

and then for

Cs :=
{
cs

α|α ∈ Z2
}
, s = 0, 1 (2.21)

C :=
⋃
s

Cs

is the set of center points of the hexagons in R2. With the grid points given by
equations (2.18), one can construct many other larger regular hexagons (as indicated
by the dotted and dashed line in the Fig. 2.1) in addition to the basic hexagons.
In order to identify all the regular hexagons H ∈ H, we are going to proof that the
centers of all the regular hexagons can be either, the grid-points given by equations
2.18, or the center-points given by the equations 2.20. With this ends we discuss
the followings properties.

Proposition 2.1 If P1(x1, y1) and P2(x2, y2) are any two consecutive nodes of a
regular hexagon H, then the center C(x, y) of H is given by

x =
1

2
(x1 + x2)±

√
3

2
(y2 − y1) (2.22)

y =
1

2
(y1 + y2)∓

√
3

2
(x2 − x1) (2.23)
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proof:

P1(x1, x2) P2(x2, y2)

C(x, y)

rr

√
3

2
r

Q

Fig. 2.2 Center point C(x, y).

P1C = P2C yields

2(x2 − x1)x + 2(y2 − y1)y + x2
1 + y2

1 − x2
2 − y2

2 = 0 (2.24)

The equation of the line P1P2 is given by

y = m(x− x1) + y1, m =
y2 − y1

x2 − x1

, x1 6= x2 (2.25)

Then CQ⊥P1P2 yields

y −mx + mx1 − y1 = ±
√

3

2
r
√

1−m2 (2.26)

Then solving equations (2.24) & (2.26) with r = |P1P2| we obtain x, y as in the
statement. ¤

Lemma 2.2 Let Ze and Zo denote the set of even and odd integers respectively.
Then for any i1, i2 ∈ Z (set of integers), (i1 + i2) ∈ Ze(Zo) if and only if (i2 − i1) ∈
Ze(Zo)

proof: For any i1, i2 ∈ Z with (i1 + i2) ∈ Ze we assume (i2 − i1) ∈ Zo. Then we
write

i1 + i2 = 2k, i2 − i1 = 2l + 1, k, l ∈ Z
which contradicts the fact that i1, i2 ∈ Z. Thus (i2 − i1) ∈ Ze. Similarly, we can
proof the other cases. ¤.

We use the above two properties to proof the following lemma.
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Lemma 2.3 Let P1 and P2 are any two consecutive nodes of a regular hexagon H
and the coordinates of both of the nodes belong to the set Gt (given by the equation
(2.19)), t = 0, . . . , 3. Then the coordinates of the center C of the hexagon H belongs
to either Gt or G t̃, t̃ = t + 2 (mod 4).

proof: Suppose P1(x1, y1), P2(x2, y2) ∈ G0 i.e.

P1 =
(
(3i1 +

1

2
)h, (2j1 + 1)

√
3

2
h
)
, P2 =

(
(3i2 +

1

2
)h, (2j2 + 1)

√
3

2
h
)

for some (i1, j1), (i2, j2) ∈ Z2. Then by proposition 2.1, the center C(x, y) of hexagon
H is given by

x =
(3

2
(i1 + i2) +

1

2

)
h± (j2 − j1)

3

2
h (2.27)

y = (j1 + j2 + 1)

√
3

2
h∓ 3(i2 − i1)

√
3

2
h (2.28)

We have to consider the following four cases:

1. In the first case, we consider both (i1 + i2), (j1 + j2) ∈ Ne. Then by lemma
2.2 we have

(i1 + i2) = 2k1, (i2 − i1) = 2k2, (j1 + j2) = 2l1, (j2 − j1) = 2l2

for some (k1, l1), (k2, l2) ∈ Z2. Then the the center C(x, y) is given by

x =
(
3(k1 ± l2) +

1

2

)
h ≡ (3̃i +

1

2
)h

y =
(
2(l1 ∓ 3k2) + 1

)√3

2
h ≡ (2j̃ + 1)

√
3

2
h

for some (̃i, j̃) ∈ Z2 and thus (x, y) ∈ G0.

2. Here we consider (i1 + i2) ∈ Ne, (j1 + j2) ∈ No. Then by lemma 2.2 we have

(i1 + i2) = 2k1, (i2 − i1) = 2k2, (j1 + j2) = 2l1 + 1, (j2 − j1) = 2l2 + 1

for some (k1, l1), (k2, l2) ∈ Z2. Then the center C(x, y) is given by

x =
(
3(k1 ± l2) +

1

2
± 3

2

)
h ≡ (3̃i + 2)h

y =

√
3

2
h
(
2(l1 ∓ 3k2 + 2)

)
≡ 2j̃

√
3

2
h

for some (̃i, j̃) ∈ Z2 and thus (x, y) ∈ G2.
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3. In this case we consider (i1 + i2) ∈ No, (j1 + j2) ∈ Ne. Then by lemma 2.2 we
write

(i1 + i2) = 2k1 + 1, (i2 − i1) = 2k2 + 1, (j1 + j2) = 2l1, (j2 − j1) = 2l2

for some (k1, l1), (k2, l2) ∈ Z2. Then the center C(x, y) is given by

x =
(
3(k1 ± l2) +

3

2
+

1

2

)
h ≡ (3̃i + 2)h

y =

√
3

2
h
(
2(l1 ∓ 3k2 ∓ 3)

)
≡ 2j̃

√
3

2
h

for some (̃i, j̃) ∈ Z2 and thus (x, y) ∈ G2.

4. This is the case of both (i1 + i2), (j1 + j2) ∈ No. Then by lemma 2.2 we write

(i1 + i2) = 2k1 + 1, (i2 − i1) = 2k2 + 1, (j1 + j2) = 2l1 + 1, (j2 − j1) = 2l2 + 1

for some (k1, l1), (k2, l2) ∈ Z2. Then the center C(x, y) is given by

x =
(
3(k1 ± l2) +

3

2
+

1

2
± 3

2

)
h ≡ (3̃i +

1

2
)h

y =

√
3

2
h
(
2(l1 ∓ 3k2) + 2∓ 3

)
≡ (2j̃ + 1)

√
3

2
h

for some (̃i, j̃) ∈ Z2 and thus (x, y) ∈ G0.

The proof of the other cases for t = 1, 2, 3 are similar. ¤

Lemma 2.4 Let P1 and P2 be any two consecutive nodes of a regular hexagon H
where P1(x1, x2) ∈ Gt & P2(x2, y2) ∈ Gt′ (Gt, t = 0, . . . , 3 given by (2.19), t′ ∈
{0, . . . , 3} − {t}), then

1. For |t− t′| = 2, the coordinates of the center C(x, y) of the hexagon H belongs
to either Gt or Gt′;

2. For |t− t′| 6= 2, the coordinates of the center C(x, y) of the hexagon H belongs
to either C0 or C1 (Cs, s = 0, 1, is given by 2.21).

proof: First we choose t = 0, t′ = 1 , i.e.

P1 =
(
(3i1 +

1

2
)h,

√
3

2
h(2j1 + 1)

)
, P2 =

(
(3i2 + 1)h, 2j2

√
3

2
h
)
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for any (i1, j1), (i2, j2) ∈ Z2. Then by proposition 2.1, the center C(x, y) of hexagon
H is given by

x =
(3

2
(i1 + i2) +

3

4

)
h± 3

2
h
(
j2 − j1 − 1

2

)
(2.29)

y =

√
3

2
h
(
j1 + j2 +

1

2

)
∓
√

3

2
h
(
3(i2 − i1) +

1

2

)
(2.30)

For all the four different cases of (i1 + i2), (j1 + j2) be even or odd, as in proof of the
lemma 2.3, we obtained (x, y) as

(x, y) ≡
(
3̃ih, 2j̃

√
3

2
h
)
∈ C0 or

(
(3̃i +

3

2
)h, (2j̃ + 1)

√
3

2
h
)
∈ C1

for (̃i, j̃) ∈ Z2 and thus (x, y) ∈ Cs, s = 0, 1. Proof of other cases can be shown by
similar straight forward calculation. ¤

Theorem 2.5 The centers of all regular hexagons constructed by any six-tupel nodes
of hexagonal grid on R2 is either a node of the hexagonal grid or a center of the
regular basic hexagon of the hexagonal grid.

proof: The proof follows from the lemmas (2.3-2.4). ¤

Definition 2.6 Class-A, Class-B hexagons: Following Theorem 2.5, the hexag-
onal grid contains two different classes of regular hexagons with center at the centers
of regular basic hexagons and with centers at the interior grid points. We call these
two classes of regular hexagons as class-A and class-B respectively (in Fig. 2.1 they
are marked by dotted and dashed line respectively).

Now let gl ∈ G, l = 0, 1 be any two neighboring nodes of the hexagonal grid in R2

i.e |g0 − g1| = h. We introduce a sign-function (as in [6])

sign: G → {−1, 1} (2.31)

such that

sign(g0)sign(g1) = −1 (2.32)

Then for α = (0, 0), if we consider sign(g0
α) := 1, for any α = (i, j) ∈ Z2 we have

sign(gt
α) = (−1)t for t = 0, . . . , 3 (2.33)

where gt
α is defined by equation (2.18).

Thus with the above definition of sign-function,

sign(g) = (−1)t, ∀g ∈ Gt, for t = 0, . . . , 3. (2.34)

(2.35)

We have the following properties.
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Theorem 2.7 Let (g0, . . . ,g5) be the six-tupel nodes of any regular hexagon H ∈
class-A. Then

sign(gl)sign(gm) = −1, m = l + 1 (mod 6), l = 0, . . . , 5 (2.36)

proof: Lemma 2.4(2) is the case of class-A hexagons where the pair (gl,gm) is such
that either

gl ∈ G0 & gm ∈ G1, =⇒ sign(gl) = 1, sign(gm) = −1 (by def.
(
2.33)

)
(2.37)

or gl ∈ G0 & gm ∈ G3, =⇒ sign(gl) = 1, sign(gm) = −1 (2.38)

or gl ∈ G1 & gm ∈ G2, =⇒ sign(gl) = −1, sign(gm) = 1 (2.39)

or gl ∈ G2 & gm ∈ G3, =⇒ sign(gl) = 1, sign(gm) = −1 (2.40)

In all the four cases,
sign(gl)sign(gm) = −1. ¤

Theorem 2.8 For gl ∈ G, l = 0, 1; let (g0, . . . ,g5) denote the six-tupel nodes and
g ∈ G denote the center of any regular hexagon H ∈ class-B . Then

sign(gl) · sign(gm) = 1, m = l + 1 (mod 6), l = 0, . . . , 5 and (2.41)

sign(gl) · sign(g) = 1, l = 0, . . . , 5 (2.42)

proof: Again with the definition (2.33), the proof follows from the lemma 2.3 and
lemma 2.4 (1). ¤

If we exclude the ternary collision operator from the global collision operator given
by the equation (2.8), then we have the following result.

Corollary 2.9 Let f be a strictly positive density function on G. Then

〈sign(g), f〉 = invariant

and it is the only spurious invariant.

proof: From theorem 2.7 and theorem 2.8 it follows respectively that 〈sign(gH), fH〉
is the spurious invariant 〈aH , fH〉 (aH is given by equation 2.11) for H ∈ class-A
and the physical invariant ±ρH = 〈±(1, 1, 1, 1, 1, 1)>, fH〉 for H ∈ class-B. Then the
proof is completed from the definition (given by equation 2.13) of the global collision
operator.

If we consider only binary collision law, then it is seen that the equilibria is a five-
dimensional manifold and thus 〈sign(g), f〉 is the only spurious invariant ¤

Remark 2.10 Thus to assure the correct number of invariants of the system it is
sufficient to include ternary collision law for a single basic hexagon. However, in
order to use shift operator it is necessary to include the ternary collision law for all
the basic hexagons but we can exclude it for the class-A and class-B hexagons.
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Now to collect all the class-A and class-B hexagons H ∈ H from the grid G, we
need a more systematic approach, a layer-wise construction of the model that can
be called a N-layer model which is described in the next section.

2.2 A N-layer hexagonal model

Fig. 2.3 shows a 54-velocity model which is constructed by adding two-layers of
hexagons centering to a central one and thus called a two-layer model. Similarly by
adding one more layer of regular basic hexagons, one can obtain a 3-layer model and
so on. In general, we may call such models the N -layer model (as a regular collision
model defined in [3]) which can be divided into six symmetric partition as shown in
the Fig. 2.3
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Fig. 2.3 A 54-velocity model as a two-layer model.

In order to generate a hexagonal mesh for the N -layer model, first we collect the
centers of all basic hexagons ordered layer-wise and partition-wise as shown in algo-
rithm 2.1.
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For a given N ∈ N,
INITIALIZE cx = 0; cy = 0;
FOR n = 1 TO N

cx0,n = (0, . . . , n− 1)
3

2
h

cx1,n = (n
3

2
h, · · · , n · 3

2
h

︸ ︷︷ ︸
n

)

cx2,n = (n · 3

2
h− (0, · · · , n− 1)

3

2
h)

cx3,n = −(0, · · · , n− 1) · 3

2
h

cx4,n = (−n · 3

2
h, · · · ,−n · 3

2
h

︸ ︷︷ ︸
n

)

cx5,n = (−n · 3

2
h + (0, · · · , n− 1)

3

2
h)

cxn =
(
cx0,n , cx1,n , cx2,n , cx3,n , cx4,n , cx5,n

)

cx = (cx, cxn)

cy0,n = (2n− (0, · · · , n− 1)) ·
√

3

2
h

cy1,n = (n− 2(0, · · · , n− 1))

√
3

2
h

cy2,n = −(n + (0, · · · , n− 1)) ·
√

3

2
h

cy3,n = (−2n + (0, · · · , n− 1)) ·
√

3

2
h

cy4,n = (−n + 2(0, · · · , n− 1))

√
3

2
h

cy5,n = (n + (0, · · · , n− 1)) ·
√

3

2
h

cyn =
(
cy0,n , cy1,n , cy2,n , cy3,n , cy4,n , cy5,n

)

cy = (cy, cyn)

END
Indices i, n in (cxi,n

, cyi,n
) are for layer and partition re-

spectively.

Algorithm 2.1 Centers of basic hexagons.

By the above algorithm, we obtain the vectors cx, cy for the (x, y)-coordinate of the
centers of all regular basic hexagon of the N -layer model. The (x, y)-coordinates of
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nodes of the basic hexagons are given by

G = c + h ·
(
sin

(2π

6
(k − 0.5)

)
, cos

(2π

6
(k − 0.5)

))6

k=1
(2.43)

where h is the discretization parameter, c = (cx, cy) is already obtained by the above
algorithm 2.1. The following algorithm 2.2 provides the vectors Gx, Gy respectively
for the the x, y-coordinates of the nodes of a N -layer grid and plots the hexagonal
mesh as seen in Fig. 2.4.

INITIALIZE VECTORS Gx, Gy

FOR i = 1 TO |cx|
INITIALIZE VECTORS gx, gy

FOR k = 1 TO 6
gxk

=
(
gx, cxi

+ h
(
sin

(
2π
6

(k − 0.5)
)))

gyk
=

(
gy, cyi

+ h
(
cos

(
2π
6

(k − 0.5)
)))

gx = (gx, gxk
)

gy = (gy, gyk
)

END
Gx = (Gx, gx)
Gy = (Gx, gy)
FOR k = 1 TO 6

l = 1 + mod(j, 6)
x = (gxk

, gxl
)

y = (gyk
, gyl

)
PLOT (x, y)

END
END

Algorithm 2.2 Grid points.

Fig. 2.4 A 20-layer hexagonal mesh.

It can be considered that the 20-layer mesh (Fig. 2.4) consists of 1261 regular basic
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hexagons and 2646 nodes but the formulae for this information are given by the
lemmas, lemma 2.11 and lemma2.12 respectively .

The vectors Gx, Gy give, respectively, the (x, y)-co-ordinates of 6× |cx| nodes many
of which are common. Unique velocity vectors for unique nodes of the N -layer model
enumerated as in Fig. 2.3 can be obtained as shown in Algorithm 2.3.

INITIALIZE VECTOR U = (0, . . . , 5)
FOR n = 1 TO N (For each n-th layer)

INITIALIZE W
FOR k = 1 TO 6 (for each k-th partition)

l = 1 + mod(k, 6)
INITIALIZE v
FOR j = 1 TO n (for each j-th hexagon)
† v1 =

(
3(n− 1)n + 1 + n(k − 1) + j − 1

)× 6− 1 + k
† v2 =

(
3(n− 1)n + 1 + n(k − 1) + j − 1

)× 6− 1 + l
v = (v, v1, v2)

END
vf = (3(n− 1)n + 1 + nk)× 6− 1 + k ((2n + 1)-th node)
IF k=6

vf = (3(n− 1)n + 1 + 1)× 6− 1
END
V = (v, vf )
W = (W,V )

END
U = (U,W )

END
INITIALIZE VECTORS vx, vy (unique velocity vector)
FOR i = 1 TO |U |

vxi
= Gx(Ui)

vyi
= Gy(Ui)

vx = (vx, vxi
)

vy = (vy, vyi
)

END

Algorithm 2.3 Re-enumeration.

The vectors vx, vy in the above algorithm represent, respectively, the (x, y)-component
velocity vectors of length 6(N +1)2 of the N -layer model enumerated as in Fig. 2.3.

† In Algorithm 2.3

v1 =
(
3(n− 1)n + 1 + n(k − 1) + j − 1

)
× 6− 1 + k

v2 =
(
3(n− 1)n + 1 + n(k − 1) + j − 1

)
× 6− 1 + l, l = 1 + mod(k, 6)
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are the indices of G for the (k, k + 1)-th pair of nodes of each j-th (j = 1, · · · , n)
hexagon of k-th (k = 1, · · · , 6) partition of each n-th (n = 1, · · · , N) layer, where
3(n−1)n+1 is the number of hexagon up to (n−1)-th layer , n(k−1) is the number
of hexagon up to (k− 1)-th partition of n-th layer. With (v1, v2) we collect the first
2n-th indices of each k-th partition of each n-st layer. Finally we collect (2n+1)-th
index

vf =
(
3(n− 1)n + 1 + nk

)
× 6− 1 + k and in particular for k = 6

vf =
(
3(n− 1)n + 1 + 1

)
× 6− 1 ¤

The centers of a N -layer model is given in algorithm 2.1. The lines passing through
the centers of each nth layer produce N number of hexagons Hc as shown in the
figure below. The thick dots in the figure indicate the centers of regular basic
hexagons of a 3-layer model.

n=0 

n=1 

n=2 

n=3 

Fig. 2.5 Hexagons Hc passing through the centers at
different layers.

Lemma 2.11 There are 6n number of regular basic hexagons in the n-th (n =
1, · · · , N) layer of a N-layer grid and the total number of regular basic hexagons of
a N-layer grid is given by 3N(N + 1) + 1.

Proof: From the definition of center points (as given in algorithm 2.1) of a N -layer
grid, the length of each side of a n-th layer hexagon Hc (Fig. 2.5) , is given by

L =
((

n
3

2
h
)2

+
(
n

√
3

2
h
)2

)1/2

= n
√

3h,

and the distance between any two neighboring centers is given by

l =
√

3h.
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Thus the number of center points lies on each side is given by

L

l
= n + 1.

That is, the number center points lies on each Hc is 6n. In other words, the total
number of hexagons in the n-th layer is 6n. Thus,

#(regular basic hexagons in a N -layer grid) = 1 + 6(1 + 2 + · · ·+ N)

= 3N(N + 1) + 1 ¤
Lemma 2.12 There are 6(2n + 1) number of nodes in the n-th (n = 0, . . . , N)
layer of a N-layer grid, and the total number of nodes in a N-layer grid is given by
6(N + 1)2.

Proof: In 0-st layer, the grid has 6 nodes. For each n-th layer, the grid provides
6n(6 − 2) = 24n number of nodes which include the nodes of the (n − 1)-st layer
too. e.g.

In 1st-layer, the grid provides (24× 1− 6) = 18 = 6(2× 1 + 1) number of nodes.
In 2nd-layer, it provides (24× 2− 18) = 30 = 6(2× 2 + 1) number of nodes.
In 3rd-layer, it provides (24× 3− 30) = 42 = 6(2× 3 + 1) number of nodes.

Now let us assume that, in m-th layer the grid provides 6(2m+1) number of nodes.
Then in the (m + 1)-th layer, it provides

(
24× (m + 1)− 6(2m + 1)

)
= 12m + 18

= 6
(
2× (m + 1) + 1

)

new nodes.

Therefore, in the N -model,

#(the total number of nodes) = 6 + 6
(
2(1 + 2 + · · ·+ N) + N

)

= 6(N + 1)2 ¤

2.2.1 Identification of Class-A and Class-B hexagons

We already know the co-ordinates (vx(l), vy(l)) of each l-th node
(
l = 1, . . . , 6(N +

1)2
)

of the N -layer model. We also know formula 2.43 to identify the nodes of all ba-
sic hexagons. We exclude the basic hexagons from ’class-A’ and we call them ’class-0’
hexagons and the rest of the ’class-A’ ones will be known as ’class-A’ hexagons. Then
we need to identify the nodes of the class-A and class-B hexagons (definition 2.6).
To this aim, we write the definition of grid-points and centers for the N -layer model
as follows.
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Grid points and Centers of N-layer model

For N is even(odd), k = N
2

(
N−1

2

)
, α = (i, j) ∈ Z2, denote gt

α = (gt
α,x, g

t
α,y), t =

0, . . . , 3 by

g0
α,x := (3i +

1

2
)h, g0

α,y := (2j + 1)

√
3

2
h where for each

i = 0, . . . , k; j = 0,±1, . . . ,±(N − i),−(N − i + 1) and for each

i = −1, . . . ,−(k + 1); j = 0,±1, . . . ,±(N − |i|),−(N − |i|+ 1), (2.44)

g1
α,x := (3i + 1)h, g1

α,y := 2j

√
3

2
h where for each

i = 0, . . . , k; j = 0,±1, . . . ,±(N − i) and for each

i = −1, . . . ,−(k + 1); j = 0,±1, . . . ,±(N − |i|+ 1), (2.45)

g2
α,x := (3i + 2)h, g2

α,y := 2j

√
3

2
h where for each i = 0, . . . , (k − 1)( or k)

(according as N is even( or odd)); j = 0,±1, . . . ,±(N − i),

and for each i = −1, . . . ,−(k + 1); j = 0,±1, . . . ,±(N − |i|+ 1) (2.46)

g3
α,x := (3i +

5

2
)h, g3

α,y := (2j + 1)

√
3

2
h where for each i = 0, . . . , (k − 1)( or k)

(according as N is even(or odd)); j = 0,±1, . . . ,±(N − i− 1),−(N − i) and for each

i = −1, . . . ,−(k + 1); j = 0,±1, . . . ,±(N − |i|+ 1),−(N − |i|+ 2). (2.47)

Then for

Gt
N : =

{
gt

α|α ∈ Z2
}
, t = 0, . . . , 3

GN : =
⋃
t

Gt
N (2.48)

is the set of grid points of the N -layer hexagonal mesh on R2. Again we denote
cs

α = (cs
α,x, c

s
α,y) s = 0, 1 by

c0
α,x := 3ih, c0

α,y := 2j

√
3

2
h where for each

i = 0,±1, . . . ,±k; j = 0,±1, . . . ,±(N − |i|) (2.49)

c1
α,x := (3i +

3

2
)h, c1

α,y := (2j + 1)

√
3

2
h where for each

i = 0, . . . , k; j = 0,±1, . . . ,±(N − i− 1),−(N − i) and for each

i = −1, . . . ,−(k + 1); j = 0,±1, . . . ,±(N − |i|),−(N − |i|+ 1) (2.50)

(2.51)

and then for

Cs
N :=

{
cs

α|α ∈ Z2
}
, s = 0, 1 (2.52)

CN :=
⋃
s

Cs
N
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is the set of center points of the basic hexagons of the N -layer hexagonal grid on
R2.

Hexagons of Class-A P
0
 

P
1
 

P
2
 

P
3
 

P
4
 

P
5
 

C 

D 

Fig. 2.6 Class-A hexagons.

Fig. 2.6 shows a 3-layer model, where the nodes 0, . . . , 5 (enumeration is shown in
Fig. 2.3) belongs to the 0-th layer (marked by thickest line segments), the nodes
6, . . . , 23 belongs to the 1st layer (marked by 2nd thickest line segments), and so on.
By the three solid straight lines the model is divided into six symmetric partitions
and the partition immediately right to the positive y-axis is called as first partition.
Each partition in the n-th (n = 0, . . . , N) layer contains 2n+1 number of nodes and
have symmetry about the divider line CD. If the center C(x, y) of a regular class-A
hexagon H is given together with a node P0(x0, y0), then we can find the all other
nodes Pm(xm, ym),m = 1, . . . , 5 of H by the following formulae.

(x3, y3) = (2x− x0, 2y − y0), (2.53)

(
x1(x5), y1(y5)

)
=

(1

2
(x0 + x)±

√
3

2
(y0 − y),

1

2
(y0 + y)∓

√
3

2
(x0 − x)

)
,(2.54)

(
x2(x4), y1(y5)

)
=

(1

2
(x3 + x)±

√
3

2
(y3 − y),

1

2
(y3 + y)∓

√
3

2
(x3 − x)

)
.(2.55)

We may call the pair (C, P0) as a generator of H.

Proposition 2.13 Let the origin of the grid GN be the center C(0, 0), and P0(x0, y0)
be any node in the nth layer of the first partition. Then with generator (C, P0), there
exist always a regular hexagon H ∈ GN .

proof: Let P0(x0, y0) be any node in the nth layer of the first partition. Then
P0 ∈ Gt

N for any t = 0, . . . , 3. Thus we have to go through with all this four cases
for t = 0, . . . , 3.
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Case-0: Let P0(x0, y0) ∈ G0 in the first partition of the n-th layer. Then

(x0, y0) =
(
(3i +

1

2
)h, (2j + 1)

√
3

2
h
)

for each i = 0, . . . , k; j = (n− i)

Using the equation (2.53), we find

x3 = −(3i +
1

2
)h =

(
− 3(i + 1) +

5

2

)
h ≡

(
3̃i +

5

2

)
h

y3 = −
(
2(n− i) + 1

)√3

2
h =

(
− 2(n− i− 1) + 1

)√3

2
h ≡ (2j̃ + 1)

√
3

2
h

where ĩ = −(k + 1), · · · ,−1 respectively with j̃ = −(n − k − 1), · · · ,−(n − 1)
guarantee that (x3, y3) ∈ G3

N .

We show now P1(x1, y1), P5(x5, y5) belongs to GN . Using the formula 2.54, we find

(x1, y1) =
(
(
3

2
n + 1)h, (n− 4i)

√
3

2
h
)

(x5, y5) =
(
(3i− 3

2
n− 1

2
)h, (n + 2i + 1)

√
3

2
h
)

For n is even we have n = 2k, then

(x1, y1) =
(
(3k + 1)h, 2(k − 2i)

√
3

2
h
)
≡

(
(3̃i1 + 1)h, 2j̃1

√
3

2
h
)

(x5, y5) =
(
(3(i− k − 1) +

5

2
)h,

(
2(k + i) + 1

)√3

2
h
)
≡

(
(3̃i5 +

5

2
)h, (2j̃5 + 1)

√
3

2
h
)

where ĩ1 = k with j̃1 = −k, . . . , k and ĩ5 = −(k + 1), . . . ,−1 respectively with
j̃1 = k, . . . , 2k guarantee that P1(x1, y1) ∈ G1

N and P3(x5, y5) ∈ G3
N .

For n is odd, n = 2k + 1, then we have

(x1, y1) =
((

3k +
5

2

)
h, (2(k − 2i) + 1)

√
3

2
h
)
≡

(
(3̃i1 +

5

2
)h, (2j̃1 + 1)

√
3

2
h
)

(x5, y5) =
(
(3(i− k − 1) + 1)h, 2(k + i + 1)

√
3

2
h
)
≡

(
(3̃i5 + 1)h, 2j̃5

√
3

2
h
)

where ĩ1 = k with j̃1 = −k, · · · , k and ĩ5 = −(k + 1), · · · ,−1 respectively with
j̃1 = (k + 1), · · · , (2k + 1) guarantee that P1(x1, y1) ∈ G3

N and P3(x5, y5) ∈ G1
N .

Thus P1(x1, y1), P5(x5, y5) belongs to GN . Similarly using the formulae (2.55), it is
seen that P2(x1, y1), P2(x5, y5) also belongs to GN .

Case-(1,2,3): In these three cases for P0(x0, y0) ∈ Gt
N , t = 1, 2, 3, similar arguments

holds and it is seen that all the rest nodes Pm(xm, ym) ∈ GN , m = 1, . . . , 5. ¤
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Thus each l-th (l = 1 · · · , 2n + 1) nodes from each six partitions of n-th (n =
1, . . . , N) layer produce (2n + 1) number of distinct class-A hexagons. Here we
exclude n = 0, as it is the case for the basic hexagons which we exclude from class-
A and we will call the class of all basic hexagons as ”class-0”. Since the N -layer
model can be decompose into 3n(n + 1) + 1 number of (N − n)-layer model for
n = 1, . . . , N−1, therefore for n = N−1, the same (2(N−1)+1) distinct hexagons
exists for the six centers in the 1-layer, in addition to the center C(0, 0); and for
n = N − 2 the same (2(N − 2) + 1) distinct hexagons exists for the centers up to
the centers in the 2-layer and so forth. In Fig. 2.6, we observe the situation as

1. there are seven distinct hexagons with centers at origin and all seven nodes
from each six partition of the n = 3-rd layer,

2. there are five distinct hexagons with center at origin and all five nodes from
each six partitions of the n = 2-st layer and in addition, we have the similar
five distinct hexagons with center at each 6 centers of the basic hexagons in
the 1-st layer,

3. similarly if we consider the hexagons centering to the origin with nodes from
the 1-st layer we find three distinct hexagons but we have the similar three
distinct hexagons for each centers of the basic hexagons up to the 2-layer.

Thus the total number of class-A hexagons for this N = 3-layer model is given by

#(HA
3 ) = 7× 1 + 5× 7 + 3× 19

and in general the total number of class-A hexagons HA
N of a N -layer model is given

by

#(HA
N) =

N∑
n=1

(2n + 1)
(
3
(
N − n

)(
N − n + 1)

)
+ 1

)
.

Now in order to derive formula to identify the class-A hexagons, we need to find
their radii RA

n,l, l = 1, · · · (2n + 1) and the initial angles θn,l for each n-th layer.
However the radii are symmetric about the dividing line CD (see Fig. 2.6) of the
partition and therefore we need to find the radii for l = 1, . . . , n + 1 only and for
each l = 1, . . . , n + 1 we have to find two initial angles θm

n,l,m = 0, 1. One can easily
verify the following proposition.

Proposition 2.14 In each partition of n-th layer of a N-layer grid, the radii of
class-A hexagons are symmetric about the dividing line CD in Fig. 2.6 and are
given by

RA
n,l∈[1,n+1] :=

{
Rn,2k−1, Rn,2k

}
(2.56)

where

R2
n,2k−1 :=

(1 + 3(k − 1)

2
h
)2

+
(2n + 2− k

2

√
3h

)2
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for

k = 1, . . . ,
n + 1

2
when n is odd; k = 1, . . . ,

n + 2

2
when n is even

and

R2
n,2k :=

(2 + 3(k − 1)

2
h
)2

+
(2n + 1− k

2

√
3h

)2

for

k = 1, . . . ,
n + 1

2
when n is odd; k = 1, . . . ,

n

2
when n is even.

With the radii as given in the above proposition, we give the general formulae to
identify the class-A regular hexagons as follows.

Nodes of class-A hexagons HA
N

If Cn ∈ R2 denotes the centers of the regular basic hexagons up to n-th layer with

successive layer ordering n = 1, . . . , N then the nodes GA,m
l,n ∈ (

R2
)6

of the hexagons

HA
N = {HA,m

l,n } is given as

GA,m
l,n : = CN−n + RA

n,l

(
cos

(
(
2π

6
)k + θm

n,l

)
, sin

(
(
2π

6
)k + θm

n,l

))6

k=1
∈ (
R2

)6
,

n = 1, . . . , N ; m = 0, 1 for l = 1, . . . , n and m = 0 for l = n + 1 (2.57)

where

θm
n,l = sin−1

(Pm
n,l

RA
n,l

)

in which Pm
n,l is given by

P 0
n,l :=

(
n− (l − 1)

)√3

2
h for 1 ≤ l ≤ n + 1

and
P 1

n,l :=
{

P 2
2k−1,n, P 2

2k,n

}

with

P 2
2k−1,n :=

n + k

2

√
3h, k = 1, . . . ,

n + 1

2

(n

2

)
when n is odd

(
even

)

P 2
2k,n :=

n + k

2

√
3h, k = 1, . . . ,

n− 1

2

(n

2

)
when n is odd

(
even

)
.
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Hexagons of Class-B

It has been seen that the N -layer grid has six symmetric partitions and each partition
of the nth (n = 0, . . . , N) layer contains (2n + 1) number of nodes. If the center
C(x, y) of a regular hexagon H is given together with a node P0(x0, y0), then we
can find the all other nodes Pm(xm, ym),m = 1, . . . , 5 of H by equations (2.53, 2.54,
2.55).

P
0
 

P
1
 

P
2
 

P
3
 

P
4
 

P
5
 

C 

Fig. 2.7 Class-B hexagons.

We then called the pair (C,P0) as a generator of H.

Proposition 2.15 Let us consider the first node of the grid GN as a center C, i.e.
C ≡ C(1

2
h,

√
3

2
h) and let P0(x0, y0) be a node in the n-th layer of the first partition.

Then with generator (C, P0),

1. no regular hexagon exist, if P0(x0, y0) be an even node in the n-th layer.

2. there exists a regular hexagon H ∈ GN if P0(x0, y0) be a odd node in the n-th
layer.

proof: 1. Let P0(x0, y0) be an even node in any n-th layer. Then (x0, y0) belongs
to either in G1

N or in G3
N . Using the formula 2.53, for (x0, y0) ∈ G1

N we find

x3 = h− (3i + 1)h = −3ih ≡ 3̃ih,

y3 = 2

√
3

2
h− 2j

√
3

2
h ≡ (2j̃)

√
3

2
h,
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and for (x0, y0) ∈ G3
N , we find

x3 = h− (3i +
5

2
)h = (−3i +

3

2
)h ≡ (3̃i +

3

2
)h

y3 = 2y − y0 = 2

√
3

2
h− (2j + 1)

√
3

2
h ≡ (2j̃ + 1)

√
3

2
h

Thus from the definition of the N -layer grid given by the equation (2.48), (x3, y3) /∈
GN .

2. If P0(x0, y0) be an odd node in any nth layer, then (x0, y0) belongs either to G0
N

or to G2
N .

For (x0, y0) ∈ G0
N , using the formula (2.53), we find

x3 = h− (3i +
1

2
)h = (−3i +

1

2
)h ≡ (3̃i +

1

2
)h,

y3 = 2

√
3

2
h− (2j + 1)

√
3

2
h ≡ (2j̃ + 1)

√
3

2
h,

where for i = 0, . . . , k; j = (n−i) implies ĩ = −i, j̃ = −((n−i)−1) which guarantee
that (x3, y3) ∈ G0

N .

For (x0, y0) ∈ G2
N , we find

x3 = h− (3i + 2)h = (−3i− 1)h ≡ (3̃i + 2)h,

y3 = 2

√
3

2
h− (2j)

√
3

2
h ≡ (2j̃)

√
3

2
h,

where for i = 0, . . . , k; j = (n − i) implies ĩ = −(i + 1), j̃ = −((n − i) − 1) which
guarantee that (x3, y3) ∈ G2

N . That is, the node P3(x3, y3) ∈ GN .

Now we show that P1(x1, x2), P5(x5, y5) belongs to the grid GN .

For P0(x0, y0) ∈ G0
N , i.e. for

(x0, y0) =
(
(3i +

1

2
)h, (2(n− i) + 1)

√
3

2
h
)
,

using the formula (2.54), we find that

(x1, y1) =
(
(
3

2
n +

1

2
)h, (n− 4i + 1)

√
3

2
h
)
,

(x5, y5) =
(
(3i− 3

2
n +

1

2
)h, (n + 2i + 1)

√
3

2
h
)
.

Then in case of n ∈ Ne, n = 2k, i = 0, . . . , k

(x1, y1) =
(
(3k +

1

2
)h, (2(k − 2i) + 1)

√
3

2
h
)
≡

(
(3̃i1 +

1

2
)h, (2j̃1 + 1)

√
3

2
h
)
,

(x5, y5) =
(
(3(i− k) +

1

2
)h, (2(k + i) + 1)

√
3

2
h
)
≡

(
(3̃i5 +

1

2
)h, (2j̃5 + 1)

√
3

2
h
)
,
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where ĩ1 = k with j̃1 = −k, . . . , k and ĩ5 = −k, . . . , 0 respectively with j̃5 = k, . . . , 2k
guarantee that Pm(xm, ym) ∈ GN , m = 1, 5.

In case of n ∈ No, n− 1 = 2k, i = 0, . . . , k

(x1, y1) =
(
(3k + 2)h, 2(k − 2i + 1)

√
3

2
h
)
≡

(
(3̃i1 + 2)h, (2j̃1)

√
3

2
h
)
,

(x5, y5) =
(
(3(i− k − 1) + 2)h, 2(k + i + 1)

√
3

2
h
)
≡

(
(3̃i5 + 2)h, (2j̃5)

√
3

2
h
)
,

where ĩ1 = k with j̃1 = −(k− 1), . . . , (k + 1) and ĩ5 = −(k + 1), . . . ,−1 respectively
with j̃5 = (k + 1), . . . , (2k + 1) guarantee again that Pm(xm, ym) ∈ GN m = 1, 5.

Now for (x0, y0) ∈ G2
N , i.e. for

(x0, y0) =
(
(3i + 2)h, 2(n− i)

√
3

2
h
)
,

using equation 2.54, we have

(x1, y1) =
(
(
3

2
n +

1

2
)h, (n− 4i− 1)

√
3

2
h
)
,

(x5, y5) =
(
(3i− 3

2
n + 2)h, (n + 2i + 2)

√
3

2
h
)
.

In case of n ∈ Ne, n = 2k

(x1, y1) =
(
(3k +

1

2
)h, (2(k − 2i− 1) + 1)

√
3

2
h
)

i = 0, · · · , k

≡
(
(3̃i1 +

1

2
)h, (2j̃1 + 1)

√
3

2
h
)
,

(x5, y5) =
(
(3(i− k) + 2)h, 2(k + i + 1)

√
3

2
h
)
, i = 0, · · · , (k − 1)

≡
(
(3̃i5 + 2)h, (2j̃5)

√
3

2
h
)
,

where ĩ1 = k with j̃1 = −(k + 1), · · · , (k− 1) and ĩ5 = −k, . . . ,−1 respectively with
j̃5 = (k + 1), . . . , 2k guarantee that Pm(xm, ym ∈ GN , m = 1, 5.

In case of n ∈ No, n− 1 = 2k, i = 0, . . . , k

(x1, y1) =
(
(3k + 2)h, 2(k − 2i)

√
3

2
h
)
≡

(
(3̃i1 + 2)h, (2j̃1)

√
3

2
h
)
,

(x5, y5) =
(
(3(i− k) +

1

2
)h, (2(k + i + 1) + 1)

√
3

2
h
)
,≡

(
(3̃i5 +

1

2
)h, (2j̃5 + 1)

√
3

2
h
)
,

where, ĩ1 = k with j̃1 = −k, . . . , k and ĩ5 = −k, . . . , 0 respectively with j̃5 =
(k + 1), . . . , (2k + 1) guarantee that Pm(xm, ym) ∈ GN , m = 1, 5.
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By similar arguments it is also seen that P2(x2, y2) ∈ GN , P4(x4, y4) ∈ GN . ¤

It is observed (Fig.2.7) that the 1-st and the (2n+1)-th nodes (of each n-st layer) are
two consecutive node of the same hexagon. Thus there exist (2n−1)/2 = n number
of different hexagons for each n odd nodes as P0 of each n-st layer of a partition. We
have the same situation for other five symmetric partitions and in these cases our
centers are respectively the (1, . . . , 5)-th nodes of the 0-layer. But since the N -layer
model can be decompose into (N−n)-layer model for each (n = 1, . . . , N), therefore,
for P0 belongs to nth layer (n = 1, · · · , N−1), the same n number of hexagons exist
for all the nodes (as center C) up to (N−n)-th layer. e.g. for P0 belongs to n = 1-st
layer there exists a regular hexagon for each nodes up to (N −1)-th layer as centers,
i.e. for the first 6(N − 1 + 1)2 nodes of the grid as centers. Similarly, for P0 belongs
to n = 2-th layer there exist two regular hexagons for each nodes up to (N − 2)-st
layer as centers i.e. for the first 6(N − 2 + 1)2 nodes of the grid as centers and so
forth.

Thus in general, for P0 belongs to nth (n = 1, . . . , N) layer there exist n regular
hexagons for each nodes up to (N − n)-th layer as centers, i.e. for the first 6(N −
n + 1)2 nodes of the grid as centers. Thus the total number of regular hexagons of
class-B of a N -layer model is given by

#(HB
N ) =

N∑
n=1

6(N − n + 1)2 × n.

Now in order to collect the six nodes of all these hexagons of class-B, we need to know
the radii R and initial angles θ for the n different hexagons with center C(1

2
h,

√
3

2
h)

for each nth (n = 1, . . . , N) layer. However the radii are symmetric about the
dividing line of the partition as shown in the Fig. 2.7, e.g. R1 = R2n+1, R2 = R2n

etc. Then we need to find only (n/2 + 1) or (n + 1)/2 number of radii RB
n,l (l =

1, . . . , (n/2 + 1) or (n + 1)/2)in each nth layer according as n is even or odd and for
each radius Rn,l we have to find two initial angles θm

n,l,m = 0, 1. Then we obtained
all the hexagons by shifting the center C to all nodes up to (N − n)th layer.

Nodes of class-B hexagons HB
N

If G̃n ∈ (R2)6(n+1)2 denotes the nodes up to n-th layer for n = 1, . . . , N succes-
sively of the N-layer hexagonal grid, then the nodes GB,m

l,n of the hexagons HB
N ={

HB,m
l,n

}
(n = 1, . . . , N) of radii RB

n,l is given by

GB,m
l,n : = G̃N−n + RB

n,l

(
cos

(
(
2π

6
)k + θj

n,l

)
, sin

(
(
2π

6
)k + θj

n,l

))6

k=1
∈ (
R2

)6
, n = 1, . . . , N

m = 0, 1 for each l = 0, . . . , (n− 1)/2
(
n/2− 1

)
according as n ∈ Ne(No) (2.58)

and m = 1 for l = n/2,
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where the radii

RB
n,l =

((3l

2
h
)2

+
(
(2n− l)

√
3

2
h
)2

) 1
2
, l = 0, . . . ,

n

2

(n− 1

2

)
according as n ∈ Ne(No)

and

θm
n,l = sin−1

(Pm
n,l

RB
n,l

)

in which Pm
n,l, m = 0, 1 are given by

P 0
n,l :=

(
2n− l)

) ·
√

3

2
h for l = 0, . . . , (n−1)/2 (n/2−1) according as n ∈ Ne(No),

and

P 1
n,l := (n + l)

√
3

2
h, l = 1, . . . ,

n− 1

2

(n

2
− 1

)
according as n ∈ Ne(No).

We note that for P 1
n,l , l = 0 in both odd and even n, and l = n

2
for even n is already

included with P 0
n,l.

Thus in a N -layer grid, the total number of regular hexagons of all classes, with the
regular basic hexagons as ”class-0”, is given by

HN : = #
(
H0

N + HB
N + HA

N

)

=
(
3N(N + 1) + 1

)
+

N∑
n=1

6(N − n + 1)2 × n

+
N∑

n=1

(2n + 1)
(
3(N − n)(N − n + 1) + 1

)
(2.59)

Therefore, as we know , the co-ordinates (vx(l), vy(l)) of each lth node
(
l = 1, . . . , 6(N+

1)2
)

of a N -layer grid as well as the formulae for identifying the regular basic
hexagons by equation (2.43) and for the class-A, class-B regular hexagons given
above, we can easily find the list of all hexagons H ∈ H. ¤

2.2.2 Computational costs

For a point-wise evaluation of the full collision operator J [f , f ] defined by equation
(2.12), first we calculate

S := fπH
0
fπH

3
+ fπH

1
fπH

4
+ fπH

2
fπH

5
and T := fπH

0
fπH

2
fπH

4
− fπH

1
fπH

3
fπH

5
,

then we calculate

JπH
i

:= γH
bin(S − 3 ∗ fπH

i
fπH

j
)− γH

ter(−1)iT, i = 0, . . . , 5, j = i + 3 mod 6



Equilibria for a N-layer model 55

for all basic hexagons H ∈ HO
N , but for all H ∈ HA

N and for all H ∈ HB
N we exclude

the ternary collision term T . Then it is seen that it requires 14 × 6 floating point
operations (FLOPS) for the calculation of the collision operator restricted to each
H ∈ HO

N and 7× 6 FLOPS for the calculation of the collision operator restricted to
each H ∈ HA

N and H ∈ HB
N . Therefore, for the calculation of the collision operator

J [f , f ], we define the total computational cost (in FLOPS)

CJ := 6×
(
14× |H0

N |+ 7× |(HA
N + HB

N )|
)
.

Using the general formulae for the N -layer grid, we make a list of the number of grid
points, number of basic hexagons, number of class-A and class-B hexagons and the
computational cost CJ for a N -layer model, (N = 0, . . . , 10) as in the following table.

N 0 1 2 3 4 5 6 7 8 9 10
#(nodes) 6 24 56 96 150 216 294 384 486 600 726
#

(
H0

N

)
1 7 19 37 61 91 127 169 217 271 331

#
(
HB

N

)
0 6 36 120 300 630 1176 2016 3240 4950 7260

#
(
HA

N

)
0 3 26 99 264 575 1098 1911 3104 4779 7050

#
(
HA

N + HB
N

)
0 9 62 219 564 1205 2274 3927 6344 9729 14310

#
(
HN

)
1 16 81 256 625 1296 2401 4096 6561 10000 14641

cost CJ 84 966 4200 12306 28812 58254 106176 179130 284676 431382 628824

Table 2.1: Computational cost for a N -layer model.

2.3 Equilibria for a N-layer model

It has been shown in [3] that the equilibria f ∈ E of the discrete Boltzmann equation
can be expressed in terms of four parameters characterizing mass, momenta and
energy. In this section we present such equilibrium distribution for a generalized
N -layer model for any N ∈ N0.

Strictly positive density vectors f = (fi)
6(N+1)2−1
i=0 for which J [f , f ] ≡ 0 is said to

be the equilibrium solutions (equilibria) for a N -layer hexagonal model. The set of
equilibria for a N -layer hexagonal model is denoted by EN . Suppose f ∈ EN be the
equilibria of a N -layer model and the equilibria at the six nodes of 0-st layer (i.e.
at the nodes of the central basic hexagon) is given by

(f0, f1, f2, f3, f4, f5) = z · (κ0+, κ1+, κ2+, κ0−, κ1−, κ2−)>

where z, κ0+, κ1+, κ2+ > 0 are arbitrary quantities satisfying κ0+κ1−κ2+ = 1 (see
prop. 3.3 [3]).
For a 3-layer model, the Fig. 2.8 presents the equilibria for the nodes of the partition
corresponding to the triple z · (κ0+, κ1+, κ2+).
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Fig. 2.8 Equilibria restricted to a partition of a 3-layer model.

The values of the equilibria are calculated in a similar way as in Theorem 4.1 in [3],
for the layer n = 1, 2, 3, respectively as

z(µ2κ2
1+κ0+, µκ2

1+, µ2κ2
1+κ2+) ∈ 1st layer,

z(µ6κ3
1+κ2

0+, µ4κ3
1+κ0+, µ5κ4

1+, µ4κ3
1+κ2+, µ6κ3

1+κ2
2+) ∈ 2nd layer,

z(µ12κ4
1+κ3

0+, µ9κ4
1+κ2

0+, µ10κ5
1+κ0+, µ8κ5

1+, µ10κ5
1+κ2+, µ9κ4

1+κ2
2+, µ12κ4

1+κ3
2+) ∈ 3rd layer,

where z parameterizes mass, (κ0+, κ2+) characterize non-vanishing bulk-velocity,
and µ is responsible for kinetic energy. At each nth layer of a partition we have
(2n + 1) nodes and the node numbering is from the top to bottom of at each layer.
We generalize these values of equilibria for a partition of a N -layer model as in the
proposition below.

Proposition 2.16 For a partition (of a N-layer model) corresponding to the triple
z(κ0+, κ1+, κ2+), the equilibria is described in-terms of the parameters µ, κ0+, κ1+, κ2+

as in the following three steps.

1. Corresponding to the values at the first node (the top one in the figure) of the
(n − 1)-th layer (n = 2, · · · , N), there obtained two values of equilibria with
increments κ1+µn and κ0+κ1+µ2n which are assigned respectively to the second
and first nodes of the n-st layer. Corresponding to the values at the last node
(the bottom one in the figure) of the (n − 1)-th layer, there obtained also two
values of equilibria with increments κ1+µn and κ1+κ2+µ2n which are assigned
respectively to the 2n-th and (2n + 1)-th nodes of the nth layer.
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2. Corresponding to the values of each 2m-th (even) node (m = 1, . . . , n − 1) of
the (n− 1)-th layer, there obtained values at the (2m + 1)-th node of the n-th
layer with an increment κ2

1+µ2n.

3. Corresponding to each (2l + 1)-th (odd) node (l = 1, . . . , n− 2) of the (n− 1)-
th layer, there obtained values of equilibria with an increment κ1+µn which is
assigned to the (2l + 2)-th node of the nth layer.

The equilibria for other partitions as well as for the complete N-layer model is
determined by symmetry.

Let the equilibria at the ith (i = 1, . . . , 2n+1) node of the nth (n = 0, · · · , N) layer
is given by

f(n, i) = zµm(n,i)κ
k0(n,i)
0+ κ

k1(n,i)
1+ κ

k2(n,i)
2+ ; (m, k0, k1, k2) ∈ N0 (2.60)

Then following the statement of the proposition 2.16, one can calculate the expo-
nents m(n, i), k0(n, i), k1(n, i), k2(n, i); n = 0, . . . , N ; i = 1, . . . , 2n + 1 as shown
in Algorithm 2.4.

INITIALIZE m(0, 1) = 0,m(1, 1) = 2,
m(1, 2) = 1, m(1, 3) = 2

FOR n = 2 TO N
m(n, 1) = m(n− 1, 1) + 2n
FOR i = 2(2)2n

m(n, i) = m(n− 1, i− 1) + n
END
FOR j = 3(2)(2n− 1)

m(n, j) = m(n− 1, j − 1) + 2n
END
m(n, 2n + 1) = m(n− 1, 2n− 1) + 2n

END

INITIALIZE k1(1, 1) = 2, k1(1, 2) = 2,
k1(1, 2) = 2

FOR n = 2 TO N
k1(n, 1) = k1(n− 1, 1) + 1
FOR i = 2(2)2n

k1(n, i) = k1(n− 1, i− 1) + 1
END
FOR j = 3(2)(2n− 1)

k1(n, j) = k1(n− 1, j − 1) + 2
END
k1(n, 2n + 1) = k1(n− 1, 2n− 1) + 1

END

INITIALIZE k0(0, 1) = 1, k0(1, 1) = 1
FOR n = 2 TO N

k0(n, 1) = k0(n− 1, 1) + 1
FOR i = 2 TO n

k0(n, i) = k0(n− 1, i− 1)
END
FOR i = n + 1 TO 2n + 1

k0(n, i) = 0
END

END

INITIALIZE k2(0, 1) = 1, k2(1, 3) = 1
FOR n = 2 TO N

k2(n, 2n + 1) = k2(n− 1, 2n− 1) + 1
FOR i = n + 2 TO 2n

k2(n, i) = k2(n− 1, i− 1)
END
FOR i = 1 TO n + 1

k2(n, i) = 0
END

END

Algorithm 2.4 To calculate the exponents m(n, i), k0(n, i), k1(n, i), k2(n, i).
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Now if we substitute κ1+ by κ0+κ2+ in equation (2.60) then we have the following
statement.

Theorem 2.17 Let No,Ne denote respectively the set of odd and even natural num-
bers. The i-th equilibria in the n-th layer of the partition corresponding to the triple
(κ0+, κ1+, κ2+) is given by

f(n, i) = zµm(n,i)κ
k0(n,i)
0+ κ

k2(n,i)
2+ ; n = 0, . . . , N ; i = 1, . . . , 2n + 1 (2.61)

where for i = 1, . . . , n + 1,

m(n, i) = n2 + n− di, for i ∈ No di=2k+1 = nk − k2,

k = 0, . . . ,
n

2
if n ∈ Ne and k = 0, . . . ,

n− 1

2
if n ∈ No,

= n2 − di for i ∈ Ne di=2k+2 = nk − k(k + 1),

k = 0, . . . ,
n− 2

2
if n ∈ Ne and k = 0, . . . ,

n− 1

2
if n ∈ No;

k0(n, i) = 2n + 1− di, for i ∈ No di=2k+1 = k,

k = 0, . . . ,
n

2
if n ∈ Ne and k = 0, . . . ,

n− 1

2
if n ∈ No,

= 2n− di, for i ∈ Ne di=2k+2 = k,

k = 0, . . . ,
n− 2

2
if n ∈ Ne andk = 0, . . . ,

n− 1

2
if n ∈ No;

k2(n, i) = n + 1 + di, for i ∈ No di=2k+1 = k,

k = 0, . . . ,
n

2
if n ∈ Ne and k = 0, . . . ,

n− 1

2
if n ∈ No,

= n + 1 + di, for i ∈ Ne d2k+2 = k,

k = 0, . . . ,
n− 2

2
if n ∈ Ne andk = 0, . . . ,

n− 1

2
if n ∈ No.

For the rest i = n + 2, . . . , 2n + 1,

m(n, i(=n+2,...,2n+1)) = m(n, i(=n,...,1)) respectively,

k0(n, i(=n+2,...,2n+1)) = k2(n, i(=n,...,1) respectively,

k2(n, i(=n+2,...,2n+1)) = k0(n, i(=n,...,1)) respectively.

proof: By lemma-3.2 [3], we obtain the values of the equilibria for n = 2 and
n = 3 as shown in the Fig. 2.8 and we see that the statement holds true for
n = 0, . . . , n = 3. Now let us assume that the statement is true for an arbitrary
n ≥ 4. Then in this n-th layer we consider three consecutive values of equilibria
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respectively for i = (2k + 1), (i + 1) ,(i + 2) for any k = 0, . . . , (n− 1)/2− 1 if n is
odd, or, for any k = 0, . . . , n/2− 1 if n is even, as stated in the theorem as

g2 = µn2+n+k2−nkκ2n−k+1
0+ κn+k+1

2+

g1 = µn2−nk+k(k+1)κ2n−k
0+ κn+k+1

2+

g0 = µn2+n+(k+1)2−n(k+1)κ2n−k
0+ κn+k+2

2+

Choosing these equilibria g2, g1, g0 of three consecutive nodes of the n-th layer, we
denote g3, g4, g5 the equilibria at the (i + 1)-th, (i + 2)-th and (i + 3)-th nodes
respectively in the (n + 1)-st layer. Then (g0, . . . , g5) are the equilibria restricted to
a regular basic hexagon and the unknown values g3, g4, g5 are obtain by lemma(3.2)
[3], i.e. by

g0g2

g1

=
g1g3

g2

=
g2g4

g3

=
g3g5

g4

=
g4g0

g5

=
g5g1

g0

as,

g3 = µ(n+1)2−(n+1)k+k(k+1)κ
2(n+1)−k
0+ κ

(n+1)+k+1
2+

g4 = µ(n+1)2+(n+1)+(k+1)2−(n+1)(k+1)κ
2(n+1)−k
0+ κ

(n+1)+k+1
2+

g5 = µ(n+1)2−(n+1)(k+1)+(k+1)(k+2)κ
2(n+1)−(k+1)
0+ κ

(n+1)+(k+1)+1
2+

Thus we see that if the theorem is true for any (n, i) then it also holds true for
(n + 1, i + 1). ¤

Corollary 2.18 For a regular collision model (Hb, γ), let f ∈ E be the equilibria. If
we denote the i-th component equilibria as fi := zµmκ, and the corresponding radius
ri :=

√
3n + 1 where r2

i = v2
x,i + v2

y,i, then m = n.





Chapter 3

2D Numerical experiments

In this chapter we present numerical results based on the N -layer hexagonal grid (in
R2) which has been developed in the previous chapter. A comparison of the discrete
equilibria with the corresponding maxwellian leads to determine an appropriate size
N of the N -layer hexagonal grid for given temperature and bulk velocity.

In the case of space-homogeneous case, we compare the numerical solution with the
exact solution of the Boltzmann equation due to Wu and Krook [51] for maxwell
molecules and perform relaxation problem. In the space inhomogeneous case, we
present the steady state results of the test problems: Heat transfer between two
parallel plates, a 2d vapor deposition problem.

3.1 Computation of equilibria

Here we compute the discrete equilibria establish by theorem 2.17, which is described
by the parameters z, µ, κ0+, κ2+ characterizing respectively mass, temperature, bulk-
velocity. It is evident that

vx = 0, < 0, > 0 according as κ0+κ2+ = κ1+ = 1, < 1, > 1, and
vy = 0, < 0, > 0 according as (κ0+ − κ2+) = 0, < 0, > 0. We have

κ0+ − κ2+ = κ0+ − κ1+

κ0+

(3.1)

Therefore to obtain a pre-assign pair (v̄x, v̄y) = (p, q), we first find the value of
κ1+ for which v̄x = p and then we find the value of κ0+ for which v̄y = q. Then
q = 0, < 0, > 0 according as κ0+ =

√
κ1+, <

√
κ1+, >

√
κ1+.
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Fig. 3.1 T (µ), vx(κ1+), and vy(κ0+).

Figure 3.1 shows respectively the temperature T for different values of µ in zero
bulk velocity, the x-component bulk-velocity vx for different values of d1 with µ =
0.2, κ0+ =

√
(κ1+), and the y-component bulk-velocity vy for different values of κ0+

with µ = 0.2, κ1+ = 1. As all these macroscopic quantities (say, g(k)) are mono-
tonically increasing with respect to the corresponding parameters (k), thus for a
pre-assigned g = g̃ we can easily find the parameter k = k̃ as shown in Algorithm
3.1.

Initial guess: k = k0

Calculate g(k)
IF g = g̃

k̃ = k
BREAK

ELSE
k = k + (g̃ − g)ε

(ε depends upon a given accuracy)
END
CONTINUE

Algorithm 3.1

Now we compute the discrete equilibria f̃h ∈ E given by the theorem 2.17 for the
case of zero bulk-velocity on a 4-layer grid (of 150 grid points) with discretization
parameter h = 1 for three different value of µ = 0.05, 0.7, 0.9 and the corresponding
maxwellian given by

f̃ =
ρ

(2πT )d/2
exp

(−(v − v̄)2

2T

)
, d = 2

where ρ :=
∑
i

f̃h
i is the mass density, v̄ := (1/ρ)

∑
i

vif̃
h
i is defined as the bulk veloc-

ity and T = (1/2ρ)
∑
i

(vi − v̄)2 · f̃h
i is the temperature. We compare the normalize

discrete equilibrium state fh with the normalize maxwellian f and calculate the error

err =: ‖f − fh‖1 (3.2)
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fh = Discrete equilibria f = Maxwellian err = ‖f − fh‖L1
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Table 3.1: Discrete equilibria and Maxwellian in varying temperature on a 4-layer
grid.

and the moments, temperature as shown in the table 3.1. Here we present three
interesting cases of three different temperatures with zero bulk-velocities.

1. In the first case the calculated temperature T = 0.5854 for µ = 0.05. The
main part of the configuration is centered at the origin with a small radius
and a small part of the mass occurred on the grid. That is the resolution of
the grid is too low to present such low temperature and this causes 6% error.

2. This is a good situation because the main part of the mass of the function f
lies inside of the domain. In this case it occurs very little error for µ = 0.7 for
which the calculated temperature T = 4.1865.

3. Here the grid is not large enough to present such high temperature T = 10.277
for a given µ = 0.9 and a significant fraction of the mass of the function f is
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cut down the boundary which causes a noticeable 17% error. Thus to avoid
this error it requires further extension of the 4-layer grid model.

It is thus seen that for larger temperature we need a larger model to restrict the
error to a reasonable range otherwise we obtained a noticeable error due to boundary
effect.

Let us now observe the effect of varying bulk-velocity for a constant temperature.
For this we choose µ = 0.8 in a 6-layer hexagonal grid (of 294 grid points) and
calculate the equilibrium solution for three different cases of bulk-velocities (vx, vy) =
(0, 0), (3, 0), and (3,

√
3) by taking (using Algorithm 3.1) respectively

κ0+ = κ1+ = 1; κ1+ = 1.5671, κ0+ =
√

d1; and κ1+ = 1.5671; κ0+ = 1.5673.

For these values of the parameters we compute the moments, temperature together
with the heat flux components

qh
x =

1

2

∑
i

fi · (vxi − v̄x)
(
(vxi − v̄x)

2 + (vyi − v̄y)
2
)

qh
y =

1

2

∑
i

fi · (vyi − v̄y)
(
(vxi − v̄x)

2 + (vyi − v̄y)
2
)

and the stress tensor components

ph
xx =

∑
i

fi · (vxi − v̄x)
2

ph
xy = ph

yx =
∑

i

fi · (vxi − v̄x)(vyi − v̄y)

ph
yy =

∑
i

fi · (vyi − v̄y)
2

The table 3.2 illustrates three different situations.

1. In the first case both the bulk-velocity components are zero and fh ∈ E is sym-
metric about both the axes. In the stress tensor, both the principal diagonal
elements are equal to the calculated temperature T = 6.7144 and both the off
diagonal elements are zero. Here we observe vanishing heat flux components.
As the main part of the mass lies inside the domain we obtain a very little
error in this case.

2. In the second case, we impose positive x-component bulk-velocity and zero y-
component bulk-velocity . In this situation fh ∈ E loses its symmetry property
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fh = Equilibria mh ph qh
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Table 3.2: Discrete equilibria in varying bulk-velocity on a 6-layer grid.

about the x-axis and we obtain non-zero x-component heat flux. However,
the remaining symmetry property in the direction of v̄y still guarantees the
diagonal form of the stress tensor ph. It is seen that the principal diagonal
elements of the stress tensor are not equal anymore. On the other hand,
temperature remains almost the same as in the first case which means nonzero
bulk- velocity doesn’t influence the temperature. In this case we have more
error than the first case which is due to a little boundary effect and this cause
a little change of the temperature.

3. In the third case, both the components of the bulk-velocity are positive and
this causes the non-symmetric nature of fh ∈ E about both the co-ordinate
axes of the grid. The diagonal form of the stress tensor ph is violated and both
the components of qh are negative. The temperature changes is little which is
consistent with the little error due the boundary effect.
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In all the three cases the main part of the configuration is symmetric about the
centers (whose co-ordinates are given by the corresponding bulk-velocity (vx, vy)) of
three different basic hexagon of the grid.

The results presented in the table 3.1 and 3.2 are seen good agreement with the
similar results presented in [38].
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Fig. 3.2 Error occurs due to boundary cut.

We further increase the bulk velocity e.g by imposing κ1+ = 1; κ0+ = 0.37 for the
same temperature by µ = 0.8 on the same 6-layer grid. Then we obtain a large error
17.12% due to the boundary effect as shown in the Fig. 3.2. In this situation of the
bulk velocity v̄x = 0, v̄y = −7.1705, it requires a larger size grid than the 6-layer
grid in order to restrict error to a reasonable range. Therefore, an appropriate size
N of the grid have to be determined which depends upon the values of temperature
T and the magnitude of the bulk-velocity |v| i.e N = N(T, |v|) and this is described
in the following.

Appropriate grid size

In order to determine the appropriate size grid for a given values of µ, κ0+, κ2+, we
compute the error err = ‖f − fh‖1 for different sizes N of the N -layer model and
choose the smallest N as an appropriate size for which the error restricted to a given
tolerance.
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Fig. 3.3 Error w.r.to size N for increasing temperature
T in zero bulk-velocity v.

Fig. 3.3 shows the error with respect to the size N for zero bulk velocity with
four increasing values of temperature res for µ = 0.3, 0.5, 0, 7, 0.9. In the first case
for µ = 0.3, it shows that the error goes below 1% for N = 2 and thus for given
tolerance 0.01, N = 2 is the appropriate size for µ = 3. Similarly the rest three cases
shows that N = 3, 4, 8 are the appropriate size for given values of µ = 0.5, 0.7, 0.9
respectively. For given temperature and bulk-velocity we can determine the appro-
priate size (az) of the model by the few steps as shown in Algorithm 3.2

Initialize: N = 1
Calculate err = ‖f − fh‖L1

IF err < tol
az = N

BREAK
ELSE

N = N + 1
END
CONTINUE

Algorithm 3.2

The table 3.3 lists up appropriate size N for tolerance 0.005 at zero bulk-velocity
with some different values of µ.
In table 3.4, we present temperature T corresponding to given values of µ.
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µ 0.2 0.3-0.4 0.45-0.55 0.6-0.7 0.75 0.80 0.85 0.9
N 1 2 3 4 5 6 7 8

Table 3.3: N for err < 0.005

µ 0.1 0.2 0.3 0.35 0.4 0.45 0.5 0.55
T 0.6875 0.9384 1.2457 1.4257 1.6275 1.8781 2.1623 2.5026
µ 0.6 0.65 0.7 0.75 0.8 0.83 0.85 0.87
T 2.9357 3.4780 4.1865 5.2053 6.7144 8.0165 9.2136 10.7174
µ 0.88 0.89 0.9 0.91 0.92 93 0.94 0.95
T 11.6369 12.8269 14.1435 15.8485 17.9490 20.5536 24.1173 29.0648

Table 3.4: Temperature T w.r.to µ

Fig. 3.4 shows the calculated bulk-velocity for given µ ∈ [0.1, 0.9] at three different
choice of (κ0+, κ2+).
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Fig. 3.4 Bulk-velocity depends on T (µ) and κ’s

As expected, it is clearly seen in the Fig. 3.4 that the modulus of the bulk-velocity
|v| depends upon the choice of temperature as well as the values of the parameters
κ0+, κ2+.

Fig. 3.5 below shows appropriate size N(T, |v|) for two different choices of the pairs
(d0, d1) and some varying values of µ. For both the cases of (d0, d1) = (2, 2), (3, 3) (in
figure the upper and lower respectively) we observed that the temperature profiles
are the same but the velocity profiles are changing as expected.
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Fig. 3.5 Size N(T, |v|) depends on temperature T and
bulk-velocity v

3.2 Solution of the Boltzmann equation

3.2.1 The space homogeneous case

As a demonstration of the solution of the space homogeneous Boltzmann equation
we present here (A) Comparison of the numerical solution with the exact solution
of the Boltzmann equation due to Krook and Wu [51], (B) The relaxation problem.
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(A) Comparison with Exact solution

The exact solution of the space homogeneous Boltzmann equation for Maxwell’s
molecules is due to Krook and Wu [51] and is given by

f(v, t) =
exp(−v2/2K)

2(2πK)3/2

((5K − 3)

K
+

(1−K)v2

K2

)
(3.3)

where
K = 1− exp(−t/6)

As a distribution function, f must be nonnegative. Therefore K ≥ 3
5

yields t ≥ t0 =
5.498.
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Fig. 3.6 Comparison with exact solution

We compute the solution fh of space homogeneous Boltzmann equation by using
fourth order Runge-Kutta scheme. For three different size model, M1: 24-velocity
model as a 1-layer model, M2: 54-velocity model as 2-layer model, M3: 96-velocity
model as a 3-layer model we calculated the relative error

err =
‖f − fh‖1

‖f‖1

where f is the exact solution given by equation (3.3).

Fig. 3.6 shows the relative errors for the three models where the error is larger in
the case of 1-layer model than the other two cases as because the size of 1-layer
model is not enough to include the essential part of the initial distribution. For the
other two models M2, M3 error coincide extremely well and in the larger time the
errors decreases to 0.00065 which is quite reasonable with the error that has been
computed by comparing discrete equilibria and Maxwellian in the previous section.
The dashed line in the second figure shows the error err for re-scaled time by a some
factor and in this case the maximum of the error reduced significantly and in large
time it is the same as before.
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(B) The Relaxation problem:

Our test case here concerns the relaxation of a spatially homogeneous distribution
to its equilibrium. We consider a gas of identical hard sphere molecules so that the
collision frequency for the hexagons H is given by

γH = πd2 × diam(H)

where d is the diameter of the molecules. The given value of the diameter d is related
to determine viscosity coefficient µ given by (see page 67, Bird [15])

µ = (5/16)(T/π)1/2(ρ/d2), (3.4)

as well as the mean free-path λ given by (see page 117, Cercignani, [27])

λ =
µ(πT/2)1/2

p
, (3.5)

where ρ, T, p are the density, temperature, pressure respectively.

We perform here the relaxation of space homogeneous problem and verify the physi-
cal properties of the numerical scheme. We consider the initial density (Fig. 3.7a) as
a composition of two discrete equilibria centered at two different points on the grid
and of the same width. We choose a 6-layer grid (of 294 nodes) which is sufficient
to include the essential part of the initial density. (Fig. 3.7b) shows the solution at
equilibrium sate and (Fig. 3.8c) shows the time evolution of the H-functional.

These results are completely consistent with the basic features of kinetic theory
which has been developed in [3]. i.e. Mass, momenta, kinetic energy are invariants
and the H-functional is monotonically decreasing w. r. to time.
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Fig. 3.7 Relaxation problem in a 6-layer grid of 294 nodes
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Fig. 3.8 Entropy along time in the relaxation problem
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3.2.2 The space inhomogeneous case

As a demonstration of steady flows established at large time, we study the test
problems: a) heat transfer between two parallel plates, and b) two-dimensional
vapor deposition problem, as an initial value problem. We use the classical operator-
splitting method for the computation of the solutions where the equation spilt into
transport and collision steps. For the transport step we use a finite difference scheme
and for the collision step we use the fourth order Runge-Kutta scheme. We present
the results obtained by using three different size discrete velocity models- M2: 54-
velocity model, M3: 96-velocity model, M4: 150-velocity model as a 2-layer, 3-layer
and 4-layer models respectively.

(a) Heat transfer between two parallel plates

This is a standard test problem in kinetic theory known as ” stationary plane Cou-
ette flow” and for this we refer [35], [49], [50], [60],[65]. We consider a hard sphere
gas between two parallel infinite plates placed at a distance L and having uniform
wall temperature T0 = 1 and T1 = 1.5 at x = 0 and x = L respectively. We im-
pose diffuse reflection boundary condition on both the walls with density ρ = 1 and
bulk-velocity ṽ = 0. In our calculation, the discretization parameter of the velocity
space h = 1, the Knudsen number Kn = λ/L, where λ is the mean free path.
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Fig. 3.9 Heat transfer problem for kn = 0.1

Fig. 3.9(a) shows the temperature distributions obtained by the three different
size models M2, M3, M4. The result by the model M2 differ than the results by the
other two models at the high-temperature as because the size of M2 is not enough for
the high temperature. We know from the Navier-stokes theory that the temperature
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profile between the two plates is a straight line connecting the two wall temperatures
T0 and T1. However, due to the description of the considered gas by kinetic equation
and boundary conditions, we obtain the expected temperature jump as well as the
kinetic boundary layers. As we also know from the theory of steady Couette flow
(can be seen in [26], equation (2.3.6)) that the pressure is constant throughout the
spatial domain between the plates, Fig. 3.9(b) shows almost a constant pressure
profile except little boundary effect.
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Fig. 3.10 The temperature distribution for kn = 0.02

Fig. 3.10 shows the temperature distribution for smaller knudsen number kn = 0.02.
In this case we obtain less temperature jump than the previous case of larger knudsen
number. The Temperature profile from the model M2 differ from that from the
models M3 and M4 as before.

(b) Two-dimensional vapor deposition problem
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Fig. 3.11 Model chamber of vacuum vapor deposition
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We consider a two-dimensional chamber of vacuum deposition as shown in figure
3.11, as a model of a vacuum vapor deposition apparatus [28]. Here AB is the
evaporation surface from which molecules reflected are assumed to posses a steady
Maxwellian distribution at a surface temperature T0. All incident molecules are
deposited on the deposition surface DE and the molecules reflect specularly from
the surface of symmetry EA. The rest walls BC and CD are diffuse reflection surface
a temperature T0. The dimensions of the chamber are h/l = 1.0, b/l = 0.5.

i) Model M2:

ii) Model M3

Fig. 3.12 Velocity vectors and density contours

The calculated results are shown in the figure 3.12 and the results are in reasonable
qualitative agreement with the results shown in [28]. It is seen that the velocity
vectors are similar in the three cases but the density contours differs slightly.





Chapter 4

Discrete Boltzmann equation in R3

In this chapter we present the kinetic theory of a discrete Boltzmann equation based
on hexagonal discretization of R3. We introduce hexagonal collision model in R3

and prove that the model satisfies the basic kinetic features of the classical kinetic
theory.

4.1 Hexagonal discretization of R3

For the hexagonal discretization of R3, we select the grid of so-called ’sphere-packing’
problem. Details about the sphere packing problem can be seen in [30].
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Fig. 4.1 Hexagonal grid in R3

The Fig. 4.1a shows a horizontal cut across the middle of unit spheres arranged in
a layer and Fig. 4.1b is the corresponding hexagonal grid obtained from the contact
points of the spheres. First we take such a layer of spheres with the arrangement as
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shown in Fig. 4.1, with the centers at the points marked ’p’. Then above this p-label
spheres we place a second layer of spheres with centers marked ’r’ as r-label spheres
and below the p-label we place another layer of spheres with centers marked ’q’ as
q-label of spheres. In Fig. 4.1b, the centers of the p-label spheres are the centers of
the corresponding hexagons, and the centers of the q-label and r-label spheres are
the center of gravity of the corresponding triangles.

Then choosing the labels of spheres as

· · · pqrpqrpqr · · ·
we generate a 3d-hexagonal grid where the nodes are the contact points of the spheres
(there can be other possibilities too). In this arrangement of spheres, due to the
contact points above and below the mid horizontal cuts of the spheres, in between
the two consecutive horizontal cuts (along the mid horizontal cuts of the spheres)
(r, p), (p, q), (q, r) there exists intermediate horizontal cuts q, r, p respectively.
Thus, choosing the horizontal cuts with the arrangement as

· · · prqprqprq · · · .

we obtain the final grid by which we discretize R3.

Therefore, we can define the hexagonal grid in R3 as follows.
For α = (i, j, k) ∈ Z3, denote gt,p

α = (gt,p
α,x, g

t,p
α,y, g

t,p
α,z), t = 0, . . . , 3, by

g0,p
α,x := 2ih, g0,p

α,y := (4j + 2)

√
3

2
h;

g1,p
α,x :=

(
2i +

1

2

)
h, g1,p

α,y := (2j + 1)

√
3

2
h; (4.1)

g2,p
α,x := (2i + 1)h, g2,p

α,y := 4j

√
3

2
h;

g3,p
α,x := (2i +

3

2
)h, g3,p

α,y :=
(
2j + 1

)√3

2
h;

and gt,p
α,z := 3k

√
6

3
h for all t = 0, . . . , 3.

Then for

Gt,p :=
{
gt,p

α | α ∈ Z3
}
, t = 0, . . . , 3, (4.2)

Gp :=
⋃
t

Gt,p

is defined as the set of grid points of the p-label cut.

Denoting

gt,q
α,x := gt,p

α,x + h, gt,q
α,y := gt,p

α,y +
1√
3
h, gt,q

α,z := (3k + 1)

√
6

3
h, (4.3)
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Gt,q :=
{
gt,q

α | α ∈ Z3
}
, t = 0, . . . , 3, (4.4)

Gq :=
⋃
t

Gt,q

is defined as the set of grid points of the q-label cut.

Again denoting

gt,r
α,x := gt,p

α,x + h, gt,r
α,y := gt,p

α,y −
1√
3
h, gt,r

α,z := (3k + 2)

√
6

3
h (4.5)

Gt,r :=
{
gt,r

α | α ∈ Z3
}
, t = 0, . . . , 3, (4.6)

Gr :=
⋃
t

Gt,r

is defined as the set of grid points of the r-label cut. Thus finally the set

G :=
⋃
p

Gp (4.7)

is defined as the set of grid points of our hexagonal grid in R3.

Now to define the centers of all the basic unit spheres (including the intermediate
imaginary spheres) we denote first cs,p

α := (cs,p
α,x, c

s,p
α,y, c

s,p
α,z), s = 0, 1 by

c0,p
α,x := 2ih, c0,p

α,y := 4j

√
3

2
h; (4.8)

c1,p
α,x := (2i + 1)h, c1,p

α,y := (4j + 2)

√
3

2
h;

and cs,p
α,z := 3k

√
6

3
h for both s = 0, 1;

then for

Cs,p :=
{
cs,p

α | α ∈ Z3
}
, s = 0, 1 (4.9)

Cp :=
⋃
s

Cs,p

is defined the set of center points of the unit spheres corresponding to p-label cut.
Now denoting

cs,q
α,x := cs,p

α,x + h, cs,q
α,y := cs,p

α,y +
1√
3
h, gs,q

α,z := (3k + 1)

√
6

3
h (4.10)

Cs,q :=
{
ct,q

α | α ∈ Z3
}
, s = 0, 1 (4.11)

Cq : =
⋃
s

Cs,q
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is defined as the set of center points of the unit spheres corresponding to the q-label
cuts. Again denoting

cs,r
α,x := cs,p

α,x + h, cs,r
α,y := cs,p

α,y −
1√
3
h, cs,r

α,z := (3k + 2)

√
6

3
h (4.12)

Cs,r : =
{
cs,r

α | α ∈ Z3
}
, s = 0, 1 (4.13)

Cr : =
⋃
s

Cs,r

is defined as the set of center points of the unit spheres corresponding to the r-label
cuts. Then finally

C :=
⋃
p

Cp (4.14)

is the set of center points of the spheres placed in the hexagonal grid G given by the
equation (4.7).

4.1.1 Hexagonal collision model in R3

Now we investigate the 3D-hexagonal collision model corresponding to a sphere as a
local collision model. In the sphere-packing problem, a unit sphere keeps in contact
with twelve other neighbouring unit spheres at twelve contact points. Collecting
these twelve contact points as nodes, we construct a twelve-velocity collision model
as a local collision model corresponding to each single sphere. Connecting these
twelve nodes (uniformly distributed on the surface of a unit sphere) as shown in the
Fig. 4.2 we obtain a cubic figure which is called as ’cub-octahedron’ (archimedean
solid) in [33], (p.-82). But for the sake of familiarity with our title ’hexagonal model’
(and as one can easily observe that the cubic figure is a composition of four regular
hexagons), this cubic figure can be known as ’hexagonal-cube’ or shortly as ’h-cube’.
We call such unit h-cubes (including the h-cubes for the intermediate imaginary
spheres) as regular basic h-cubes.
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Fig. 4.2 A regular basic hexagonal-cube (h-cube).

The (x,y,z)-coordinates of the twelve nodes of the regular basic h-cube (Fig. 4.2)
are defined by

vx :=
1

2




2
1

−1
−2
−1

1
1

−1
0

−1
1
0




, vy :=

√
3

6




0
3
3
0

−3
−3
−1
−1

2
1
1

−2




, vz :=

√
6

3




0
0
0
0
0
0
1
1
1

−1
−1
−1




(4.15)

In our collision model we impose collision law for each regular basic h-cubes as well as
for some other larger regular h-cubes constructed from the hexagonal grid G defined
by the equation (4.7). In order to identify these larger (non-basic) h-cubes, we need
to study some properties of the hexagonal grid G. In Fig. 4.2, the plane hexagon
(0, 1, 2, 3, 4, 5) belongs to the p-label cut (p-cut), the upper triangular section (6, 7, 8)
belongs to the q-cut and the lower triangular section (9, 10, 11) belongs to the r-cut
and the center of the h-cube is the center of the plane hexagon. We consider a p-cut
along the plane hexagon (0, 1, 2, 3, 4, 5) and investigate the existence of the regular
h-cubes (as in Fig. 4.2), of different radii and centers corresponding to this reference
p-cut. To this aim, first we investigate the existence of plane hexagons (of different
radii and centers) in the reference cut. For this one can prove the following lemma
as in the case of hexagonal grid in R2 described in chapter 3.
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Lemma 4.1 Let P1 and P2 are any two consecutive nodes of a regular hexagon H
of any cut and the coordinates of both of the nodes belong to the set Gt, t = 0, . . . , 3
(Gt is defined by the equation (4.2)). Then

1. for t = 0, 2, the coordinates of the center C of the hexagon H belongs to either
G0 or G2, and

2. for t = 1, 3, the coordinates of the center C of the hexagon H belongs to either
any Gt, t = 0, . . . , 3.

Lemma 4.2 Let P1 and P2 are any two consecutive nodes of a regular hexagon H
of any cut where P1(x1, x2) ∈ Gt and P2(x2, y2) ∈ Gt′ (Gt, t = 0, . . . , 3 given by the
equation (4.2), t′ ∈ {0, . . . , 3} − {t}), then

1. for |t− t′| = 2, the center C(x, y) of the hexagon H belongs to either Gt or Gt′;

2. for |t − t′| 6= 2, the center C(x, y) of the hexagon H belongs to either any
Cs, s = 0, 1 or any Gt, t = 1, 3.

From the above two lemmas we conclude the following theorem.

Theorem 4.3 The centers of all regular hexagons constructed by any six-tupel nodes
of any hexagonal cut (Fig. 4.1b) is either a node of the hexagonal grid or a center
of the regular basic hexagon of the hexagonal cut.

proof: The proof follows from the lemmas 4.1 and 4.2 ¤

(a) (b) (c)

Fig. 4.3 Hexagons of different classes

Following the theorem 4.3, we classify all the possible hexagons of the cut according
to their centers and radii.

1. Class-A: Fig. 4.3a shows the ’Class-A’ hexagons in which the centers are the
center of regular basic hexagons and the radii ra ∈ Ra :=

{
(2i + 1)h, i =

0, 1, 2, . . .
}
.
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2. Class-B: Fig. 4.3b shows the ’Class-B’ hexagons in which the centers are
interior nodes and the radii rb ∈ Rb :=

{
(2i + 2)h, i = 0, 1, 2, . . .

}
.

3. Class-C: In this class (Fig. 4.3c) the center of the hexagons are either the
centers of the regular hexagons or the interior nodes but the radii rc /∈ N =
Ra ∪Rb i.e. rc ∈ (Ra ∪Rb)

c, the complement of Ra ∪Rb.

If we consider a regular h-cube by choosing the class-C hexagons of the cut as a mid
horizontal section, then the z-coordinates of the rest six nodes above and below the
class-C hexagons are given by

vz = (3k + rc)

√
6

3
h, k ∈ Z (4.16)

where rc /∈ N implies that the z-coordinate vz /∈ gt,n
α,z, n = p, q, r

(
defined by the

equations (4.1), (4.3), (4.5)
)
. In other words, the regular h-cubes corresponding to

the class-C hexagons of the cut do not belong to the hexagonal grid G.

Therefore our investigation of the 3d collision model based on the class-A and class-
B hexagons of the reference cut. The (x, y, z)-coordinates of the twelve nodes of the
larger h-cubes corresponding to the class-A and class-B hexagons of the reference
cut can be obtained by

ṽ = c + rv (4.17)

where c and r are center and radius of the class-A and class-B hexagons of reference
cut and v = (vx,vy,vz) is the (x, y, z)-coordinates of the twelve nodes of a unit
h-cube given by the equation (4.15). We have the following property.

Proposition 4.4 Corresponding to each hexagons of class-A and class-B of the cut,
there exists always a regular h-cube where all the twelve nodes of the h-cube belong
to the grid G.

proof: Following the definitions 4.3 and 4.5, we can write the (x,y,z)-coordinates of
the grid of q-cut and r-cut respectively as

g0,q
α,x := (2i + 1)h, g0,q

α,y := 4(3j + 2)

√
3

6
h;

g1,q
α,x :=

(
2i +

3

2

)
h, g1,q

α,y := (6j + 5)

√
3

6
h; (4.18)

g2,q
α,x := 2ih, g2,q

α,y := (12j + 2)

√
3

6
h;

g3,q
α,x :=

(
2i +

1

2

)
h, g3,q

α,y := (6j + 5)

√
3

6
h;

gt,q
α,z := (3k + 1)

√
6

3
h, for all t = 0, . . . , 3;
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and

g0,r
α,x := (2i + 1)h, g0,r

α,y := 4(3j + 1)

√
3

6
h

g1,r
α,x :=

(
2i +

3

2

)
h, g1,r

α,y := (6j + 1)

√
3

6
h (4.19)

g2,r
α,x := 2ih, g2,r

α,y := (12j − 2)

√
3

6
h

g3,r
α,x :=

(
2i +

1

2

)
h, g3,r

α,y := (6j + 1)

√
3

6
h

gt,q
α,z := (3k + 2)

√
6

3
h, for all t = 0, . . . , 3.

For the center (cx, cy, cz) ∈ c0,p
α and radii ra ∈ Ra, by the equation (4.17), we have

for l = 0, 1, 2, . . .

ṽx = 2ih + (2l + 1)h · vx,

ṽy = 4j

√
3

2
h + (2l + 1)h · vy (4.20)

ṽz = 3k

√
6

3
h + (2l + 1)h · vz

Then at the first node, we have

ṽx,0 = 2ih + (2l + 1)h = (2(i + l) + 1)h = (2̃i + 1)h, ĩ = (i + l) ∈ Z

ṽy,0 = 4j

√
3

2
h + (2l + 1)× 0 = 4j̃

√
3

2
h, j̃ = j ∈ Z

ṽz,0 = 3k

√
6

3
h = 3k̃

√
6

3
h, k̃ = k ∈ Z

=⇒ (ṽx,0, ṽy,0, ṽz,0) ∈ G2,p.

Similarly it is seen that for i = 1, . . . , 5,

(ṽx,i, ṽy,i, ṽz,i) ∈ Gt,p, for some t = 0, . . . , 3

Now we have

ṽx,6 = 2ih + (2l + 1)
h

2
=

(
2̃i +

1

2

)
h or (2̃i +

3

2
)h

according as l ∈ Ne or l ∈ No respectively, for any ĩ ∈ Z;

ṽy,6 = 4j

√
3

2
h− (2l + 1) ·

√
3

6
h = (6j̃ + 5)

√
3

6
h ∈ q-cut for l = 0, for any j̃ ∈ Z

= (2j̃ + 1)

√
3

2
h ∈ p-cut for l = 1, for any j̃ ∈ Z

= (6j̃ + 1)

√
3

6
h ∈ r-cut for l = 2, for any j̃ ∈ Z

= (6j̃ + 5)

√
3

6
h,∈ q-cut for l = 3, for j̃ = . . .− 2, 0, 2, . . . ;



Hexagonal discretization of R3 85

and so forth, and

ṽz,6 = 3k

√
6

3
h + (2l + 1)

√
6

3
h = (3k̃ + 1)

√
6

3
h ∈ q-cut for l = 0, for any k̃ ∈ Z

= 3k̃

√
6

3
h ∈ p-cut for l = 1, for any k̃ ∈ Z

= (3k̃ + 2)

√
6

3
h ∈ r-cut for l = 2, for any k̃ ∈ Z

= (3k̃ + 1)

√
6

3
h ∈ q-cut for l = 3, for any j̃ ∈ Z,

and so forth. Therefore,
(ṽx,6, ṽy,6, ṽz,6) ∈ G.

Similarly it can be shown that

(ṽx,i, ṽy,i, ṽz,i) ∈ G for i = 7, . . . , 11.

Similar arguments also holds true for the case of (cx, cy, cz) ∈ c1,p
α with radii r ∈ Ra

and for the case of (cx, cy, cz) ∈ Gint with radii r ∈ Rb ¤

With the horizontal p, q, r-label cuts in our hexagonal grid, there exists some other
(non-horizontal) cuts too, e.g. along the hexagon (1, 10, 11, 4, 7, 8) of the Fig. 4.2,
as shown in Fig. 4.7 and by symmetry, the properties given by the theorem 4.3 and
proposition 4.4 are also true for these non-horizontal cuts.

Definition 4.5 We call the h-cubes corresponding to the class-A and class-B hexagons
(of the cuts) as ’class-A’ h-cubes and ’class-B’ h-cubes respectively.

The set of all such regular h-cubes with vertices in G is denoted by H. For each
H ∈ H a numbering πH = (πH

0 , . . . , πH
11) is given which lists all nodes of H as

enumerated in Fig. 4.2.

For a given real-valued function f ∈ R|G| on G we denote by fH = PHf the restriction
of f on H, i.e.

PHf = (fπH
0
, . . . , fπH

11
) ∈ R12. (4.21)

For H := (πH
0 , . . . , πH

11) ∈ H and fH ∈ R11
+ , a local collision operator

JH [fH , fH ] = (JH [fH , fH ]0, . . . , JH [fH , fH ]11) (4.22)

has been introduced in the next section. Given this, the space homogeneous kinetic
equation as an evolution equation for densities f = f(t) on G has the form

∂t = J [f , f ] (4.23)
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where the global collision operator J [f , f ] is given in its weak formulation as

〈φ, J [f , f ]〉 =
∑
H∈H

γH

11∑
i=0

φ(πH
i )JH [fH , fH ]i. (4.24)

Here φ : G → R is an appropriate test function and the scalar product is defined by

〈φ, f〉 =
∑
g∈G

φ(g)f(g). (4.25)

Let γH ≥ 0 denotes the collision rate corresponding to H and then for (4.24), we
denote

H+ := {H ∈ H|γH > 0} (4.26)

as the set of all regular hexagons which are involved in the collisions.

4.2 The local collision model

In this section we describe a twelve-velocity collision model as a local collision model
and prove that the model satisfies the basic kinetic features of the classical kinetic
theory.

4.2.1 A twelve-velocity model

Let H = (z0, . . . , z11) denote a regular h-cube enumerated as in Fig. 4.4 and f =
(fi)

11
i=0 denote a density vector on H with strictly positive components. Our collision

model on H consists of binary and ternary collisions. The binary interaction law
states that any pair of velocities (zi, zi+3) (i = i1+i2; for each i1 = 0, 6; i2 = 0, 1, 2)
is transformed into the pairs (zk, zk+3) (k = k1 + k2; for each k1 = 0, 6; k2 =
0, 1, 2) with equal probabilities. This binary interactions yields the collision operator
Jbin[f , f ] given by
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Fig. 4.4 A twelve-velocity local collision model

Jbin[f , f ]i = Jbin[f , f ]i+3 = S[f , f ]− 6fifi+3; i = i1 + i2; for each i1 = 0, 6; i2 = 0, 1, 2

where

S[f , f ] = f0f3 + f1f4 + f2f5 + f6f9 + f7f10 + f8f11.

Then the kinetic equation reads

∂tf = Jbin[f , f ]. (4.27)

Define the vectors

l1 :=




1
1
1
1
1
1
1
1
1
1
1
1




, vx :=
1

2




2
1

−1
−2
−1

1
1

−1
0

−1
1
0




, vy :=

√
3

6




0
3
3
0

−3
−3
−1
−1

2
1
1

−2




, vz :=

√
6

3




0
0
0
0
0
0
1
1
1

−1
−1
−1




, (4.28)
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a1 :=




1
1
1
1
1
1

−1
−1
−1
−1
−1
−1




, a2 :=




1
1
1

−1
−1
−1
−1
−1
−1

1
1
1




, a3 :=




1
1
1

−1
−1
−1

1
1
1

−1
−1
−1




. (4.29)

Then it can be verified that the equation (4.27) has the four physically relevant
invariants

mass ρ = 〈 l1, f〉, (4.30)

x-momentum ρv̄x = 〈vx, f〉, (4.31)

y-momentum ρv̄y = 〈vy, f〉, (4.32)

z-momentum ρv̄z = 〈vz, f〉 (4.33)

and three artificial collision invariants 〈al, f〉, l = 1, 2, 3. In order to eliminate these
three artificial invariants, we introduce the ternary interaction law

(zi, zjp , zkp) ←→ (zlp , zmp , znp) p = 1, 2, (4.34)

where for i = 0, . . . , 11,

{{i, jp, kp}, {lp,mp, np}
} ∈ T :=

{{{1, 3, 5}, {0, 2, 4}},
{{3, 6, 10}, {0, 7, 9}},

{{4, 8, 10}, {1, 7, 11}},
{{5, 8, 9}, {2, 6, 11}}

}
(4.35)

which results a ternary collision operator

Jter[f , f ]i =
2∑

p=1

(flpfmpfnp − fifjpfkp) for each i = 0, . . . , 11, p = 1, 2

{{i, jp, kp}, {lp,mp, np}
} ∈ T. (4.36)

It can be verified that Jter[f , f ] has the physically relevant collision invariants (4.30)
to (4.33) but the artificial invariants 〈al, f〉, l = 1, 2, 3 are no longer.

Thus the local collision operator JH is given by

JH [f , f ] = γbinJbin[f , f ] + γterJter[f , f ], (γbin, γter) > 0, (4.37)

and the space homogeneous evolution equation reads

∂tf = JH [f , f ]. (4.38)
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4.2.2 H-Theorem, Equilibrium solutions

For a twelve-velocity collision model on a regular h-cube H, we define equilibrium
solutions (equilibria) as a strictly positive density vector f = (fi)

11
i=0 for which

JH [f , f ] = 0 and we denote the set of equilibria by EH .

Theorem 4.6 H-Theorem: For a given strictly positive density vector f = (fi)
11
i=0,

we define the H-functional

H[f ] :=
11∑
i=0

fi ln(fi). (4.39)

If t 7→ f(t) denotes a solution of (4.38), then H[f ](t) is monotonically decreasing
with t. Moreover, ∂tH[f ](t) = 0 if and only if f(t) ∈ EH .

Proof: It can be shown that

∂tH[f ](t) =
11∑
i=0

(
1 + ln(fi(t))

)
∂tfi(t) = f1f4 ln

(f0f3

f1f4

)(
1− f0f3

f1f4

)

+f2f5 ln
(f0f3

f2f5

)(
1− f0f3

f2f5

)
+ f6f9 ln

(f0f3

f6f9

)(
1− f0f3

f6f9

)

+f7f10 ln
( f0f3

f7f10

)(
1− f0f3

f7f10

)
+ f8f11 ln

( f0f3

f8f11

)(
1− f0f3

f8f11

)

+f2f5 ln
(f1f4

f2f5

)(
1− f1f4

f2f5

)
+ f6f9 ln

(f1f4

f6f9

)(
1− f1f4

f6f9

)

+f7f10 ln
( f1f4

f7f10

)(
1− f1f4

f7f10

)
+ f8f11 ln

( f1f4

f8f11

)(
1− f1f4

f8f11

)
(4.40)

+f6f9 ln
(f2f5

f6f9

)(
1− f2f5

f6f9

)
+ f7f10 ln

( f2f5

f7f10

)(
1− f2f5

f7f10

)

+f8f11 ln
( f2f5

f8f11

)(
1− f2f5

f8f11

)
+ f7f10 ln

( f6f9

f7f10

)(
1− f6f9

f7f10

)

+f8f11 ln
( f6f9

f8f11

)(
1− f6f9

f8f11

)
+ f8f11 ln

(f7f10

f8f11

)(
1− f7f10

f8f11

)

+f1f3f5 ln
(f0f2f4

f1f3f5

)(
1− f0f2f4

f1f3f5

)
+ f3f6f10 ln

( f0f7f9

f3f6f10

)(
1− f0f7f9

f3f6f10

)

+f4f8f10 ln
(f1f7f11

f4f8f10

)(
1− f1f7f11

f4f8f10

)
+ f5f8f9 ln

(f2f6f11

f5f8f9

)(
1− f2f6f11

f5f8f9

)

=
19∑

j=1

ζjφ(ξj)

where φ(x) = ln(x)(1− x), and ζj, ξj are strictly positive numbers. The H-Theorem
follows from the fact that φ is a non-positive function for x > 0 with φ(x) = 0 ⇔
x = 1. ¤
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Proposition 4.7 f = (fi)
11
i=0 is a equilibria if and only if the following conditions

are satisfied.
f0f3 = f1f4 = f2f5 = f6f9 = f7f10 = f8f11, (4.41)

f0f2f4 = f1f3f5, f0f7f9 = f3f6f10, f1f7f11 = f4f8f10, f2f6f11 = f5f8f9. (4.42)

Proof: The proof follows from the above H-Theorem. ¤

For the characterization of f ∈ EH , we need the following results.

Lemma 4.8 For f ∈ EH if we denote

r2 := f0f3 = f1f4 = f2f5 = f6f9 = f7f10 = f8f11 (4.43)

then the following relation holds

r3 =f0f2f4 =f1f3f5 =f0f7f9 =f3f6f10 =f1f7f11 =f4f8f10 =f2f6f11 =f5f8f9 (4.44)

r =
f0f2

f1

=
f1f3

f2

=
f2f4

f3

=
f3f5

f4

=
f4f0

f5

=
f5f1

f0︸ ︷︷ ︸
(a)

=
f0f7

f6

=
f3f6

f7

=
f7f9

f3

=
f3f10

f9

=
f9f0

f10

=
f10f6

f0︸ ︷︷ ︸
(b)

=
f2f6

f8

=
f5f8

f6

=
f6f11

f5

=
f5f9

f11

=
f2f11

f9

=
f8f9

f2︸ ︷︷ ︸
(c)

(4.45)

=
f1f11

f10

=
f4f10

f11

=
f7f11

f4

=
f4f8

f7

=
f1f7

f8

=
f8f10

f1︸ ︷︷ ︸
(d)

Proof: As f0f2f4 = f1f3f5, therefore,

f0f2f4 =
r6

f1f3f5

yields
r3 = f0f2f4 = f1f3f5.

Similarly, r3 = f3f6f10 = f0f7f9 and so on.

From (4.43), we find

f3f6
r2

f7

= f3f6f10 = f0f7f9 = f7
r4

f3f6



The local collision model 91

yields

r =
f3f6

f7

Similarly the other equalities also hold. ¤

Remark 4.9 In the above lemma, the equations
(
4.45(a)−(d)

)
are corresponding to

the four plane hexagons (0, 1, 2, 3, 4, 5); (0, 10, 9, 3, 7, 6); (6, 5, 11, 9, 2, 8); (1, 10, 11, 4, 7, 8)
respectively.

Proposition 4.10 EH is a smooth four-dimensional manifold.

Proof: Following the equation (4.45-a) of the above lemma with the proposition 3.3
in [3], the equilibria at the six nodes of the horizontal hexagonal cut of the h-cube
H can be presented by

(fi)
5
i=0 = r(κ0+, κ1+, κ2+, κ0−, κ1−, κ2−)>, κ1+ = κ0+κ2+, κi− = 1/κi+, i = 0, 1, 2

(4.46)
Denoting f6 := rκ3+, from the equation (4.45-(b)), i.e from

f0f7

f6

=
f3f6

f7

=
f7f9

f3

=
f3f10

f9

=
f9f0

f10

=
f10f6

f0

we have

f 2
7 =

f3f
2
6

f0

=⇒ f7 = rκ0−κ3+ =: rκ4+,

f9 =
f0f3

f6

= rκ3−,

f10 =
f0f3

f7

= rκ0+κ3− =: rκ4−.

Again from (4.45-(d)), i.e. from

f1f11

f10

=
f4f10

f11

=
f7f11

f4

=
f4f8

f7

=
f1f7

f8

=
f8f10

f1

we have,

f 2
8 =

f1f
2
7

f4

=⇒ f8 = rκ2+κ3+ =: rκ5+

and

f11 =
f1f4

f8

= rκ2−κ3− =: rκ5−.

Thus the set of equilibria f ∈ EH is given by

f = r(κ0+, κ1+, κ2+, κ0−, κ1−, κ2−, κ3+, κ4+, κ5+, κ3−, κ4−, κ5−)> (4.47)

with κ1+ = κ0+κ2+, κ4+ = κ0−κ3+, κ5+ = κ2+κ3+, κi− = 1/κi+, i = 0, . . . , 5.
¤
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4.2.3 The linearized system

Let

e = (ei)
11
i=0 = r(κ0+, κ1+, κ2+, κ0−, κ1−, κ2−, κ3+, κ4+, κ5+, κ3−, κ4−, κ5−)> ∈ EH

(4.48)
be an equilibrium solution of the twelve-velocity model and define

DH := diag(ei, i = 0, . . . , 11) (4.49)

Inserting the ansatz

f = e + εD
1
2
Hφ (4.50)

into the equation (4.38) and neglecting the terms quadratic in ε yields the linearized
equation

∂tφ = LHφ := D
− 1

2
H (γbinL1D1 + γter(L

1
2D2 + L2

2D3))D
1
2
Hφ (4.51)

where the diagonal matrices

D1=diag(e3, e4, e5, e0, e1, e2, e9, e10, e11, e6, e7, e8), (4.52)

D2=diag(e2e4, e3e5, e0e4, e1e5, e0e2, e1e3, e2e11, e0e9, e4e10, e5e8, e3e6, e1e7), (4.53)

D3=diag(e7e9, e7e11, e6e11, e6e10, e8e10, e8e9, e3e10, e1e11, e5e9, e0e7, e4e8, e2e6), (4.54)

and

L1 =




−5 1 1 −5 1 1 1 1 1 1 1 1
1 −5 1 1 −5 1 1 1 1 1 1 1
1 1 −5 1 1 −5 1 1 1 1 1 1

−5 1 1 −5 1 1 1 1 1 1 1 1
1 −5 1 1 −5 1 1 1 1 1 1 1
1 1 −5 1 1 −5 1 1 1 1 1 1
1 1 1 1 1 1 −5 1 1 −5 1 1
1 1 1 1 1 1 1 −5 1 1 −5 1
1 1 1 1 1 1 1 1 −5 1 1 −5
1 1 1 1 1 1 −5 1 1 −5 1 1
1 1 1 1 1 1 1 −5 1 1 −5 1
1 1 1 1 1 1 1 1 −5 1 1 −5




, (4.55)
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L1
2 =




−1 1 −1 1 −1 1 0 −1 0 0 1 0
1 −1 1 −1 1 −1 0 0 1 0 0 −1

−1 1 −1 1 −1 1 −1 0 0 1 0 0
1 −1 1 −1 1 −1 0 1 0 0 −1 0

−1 1 −1 1 −1 1 0 0 −1 0 0 1
1 −1 1 −1 1 −1 1 0 0 −1 0 0
0 0 0 0 0 0 −1 1 0 1 −1 0
0 0 0 0 0 0 0 −1 1 0 1 −1
0 0 0 0 0 0 1 0 −1 −1 0 1
0 0 0 0 0 0 1 −1 0 −1 1 0
0 0 0 0 0 0 0 1 −1 0 −1 1
0 0 0 0 0 0 −1 0 1 1 0 −1




, (4.56)

L2
2 =




−1 0 0 1 0 0 1 0 0 −1 0 0
0 −1 0 0 1 0 0 −1 0 0 1 0
0 0 −1 0 0 1 0 0 1 0 0 −1
1 0 0 −1 0 0 −1 0 0 1 0 0
0 1 0 0 −1 0 0 1 0 0 −1 0
0 0 1 0 0 −1 0 0 −1 0 0 1
1 0 −1 −1 0 1 −1 0 1 1 0 −1

−1 −1 0 1 1 0 1 −1 0 −1 1 0
0 1 1 0 −1 −1 0 1 −1 0 −1 1

−1 0 1 1 0 −1 1 0 −1 −1 0 1
1 1 0 −1 −1 0 −1 1 0 1 −1 0
0 −1 −1 0 1 1 0 −1 1 0 1 −1




. (4.57)

Denoting L2 := L1
2 + L2

2, we have

L2 =




−2 1 −1 2 −1 1 1 −1 0 −1 1 0
1 −2 1 −1 2 −1 0 −1 1 0 1 −1

−1 1 −2 1 −1 2 −1 0 1 1 0 −1
2 −1 1 −2 1 −1 −1 1 0 1 −1 0

−1 2 −1 1 −2 1 0 1 −1 0 −1 1
1 −1 2 −1 1 −2 1 0 −1 −1 0 1
1 0 −1 −1 0 1 −2 1 1 2 −1 −1

−1 −1 0 1 1 0 1 −2 1 −1 2 −1
0 1 1 0 −1 −1 1 1 −2 −1 −1 2

−1 0 1 1 0 −1 2 −1 −1 −2 1 1
1 1 0 −1 −1 0 −1 2 −1 1 −2 1
0 −1 −1 0 1 1 −1 −1 2 1 1 −2




. (4.58)

We note that both L1 and L2 are symmetric. L1 has 0 as 7-fold and −12 as 5-fold
eigenvalue; L2 has 0 as 9-fold eigenvalue and −8 as 3-fold eigenvalue. The com-
mon null space ker(L1)∩ker(L2) is spanned by l1,vx,vy,vz defined in (4.28) which is
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because of the conservation of mass and (x,y,z)-momentum. L1 and L2 are commuta-
tive and thus there exists an orthogonal basis v0, · · · , v11 of R12 of joint eigenvectors
of L1 and L2 giving rise to the representations

L1 = T diag(−12,−12,−12,−12,−12, 0, 0, 0, 0, 0, 0, 0)T−1, (4.59)

L2 = T diag(0, 0, 0, 0, 0, 0, 0, 0, 0,−8,−8,−8)T−1. (4.60)

(4.61)

At first we consider the case

e =
ρ

12
(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)> (4.62)

in which

DH = D1 =
ρ

12
I and D2 = D3 =

ρ2

144
I =

ρ

12
D1 (4.63)

where I denotes the identity matrix. The linearized collision operator is thus given
by

LH=
1

12
(γ̃binL1 + γ̃terL2)

=T diag(−γ̃bin,−γ̃bin,−γ̃bin,−γ̃bin,−γ̃bin, 0, 0, 0, 0,−γ̃ter,−γ̃ter,−γ̃ter)T
−1 (4.64)

with the new collision frequencies

γ̃bin = ρ γbin (4.65)

γ̃ter =
ρ2

12
γter (4.66)

In the second case we consider the equilibrium e to be of the general form (4.48).
Then we have

diag(κ0−, κ1−, κ2−, κ0+, κ1+, κ2+, κ3−, κ4−, κ5−, κ3+, κ4+, κ5+)> = rD−1
H (4.67)

D2=D3 = r2diag(κ0−, κ1−, κ2−, κ0+, κ1+, κ2+, κ3−, κ4−, κ5−, κ3+, κ4+, κ5+)>

= rD1 = r3D−1
H (4.68)

and thus the equation (4.51) yields

LH = D
− 1

2
H (γ̃binL1 + γ̃terL2)D

− 1
2

H (4.69)

with

γ̃bin = r2γbin (4.70)

γ̃ter = r3γter (4.71)

Following the arguments above, γ̃binL1+ γ̃terL2 has a four-fold eigenvalue 0 and eight
strictly negative eigenvalues. Thus the same is true for LH . We collect the results.
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Proposition 4.11 Let e be an equilibria of the form (4.48). Then the lineariza-
tion LH (given by (4.69)) around e is a symmetric operator, it has four-fold zero
eigenvalue. The null-space is

N(LH) = D
1
2
Hspan( l1,vx,vy,vz) (4.72)

The rest eight eigenvalues are strictly negative, five of which are proportional to r2

and the other three are proportional to r3.

4.3 Collision model in a bounded hexagonal grid

In this section we prove that the basic kinetic features: the conservation laws, correct
number of invariants as well as correct dimension of the equilibria, the properties of
linearized collision operator are satisfied for the global collision model on bounded
hexagonal grid in R3. The bounded hexagonal grid is composed of a finite number
of connected basic h-cubes.

4.3.1 Regular collision model

Let Gb denote the finite restrictions of the infinite grid G and Hb denote the set of
regular h-cubes contained in Gb with the assumption Hb 6= ∅. Then the collision
operator Jb on Gb is given by the weak formulation

〈φ, J [f ]〉 =
∑

H∈Hb

γH

11∑
i=0

φ(πH
i )Jb[fH ]i (4.73)

In the sequel we denote by a collision model on G a pair (Hb, γ), where Hb ⊂ H is a
bounded set of h-cubes, and γ : Hb 7→ [0,∞) denote the collision frequencies for all
h-cubes contained in Hb H+ denotes the set of H ∈ Hb with γH > 0.

As an immediate generalization of the twelve-velocity model we find the following
H-Theorem.

Theorem 4.12 H-Theorem: Let f(t) be a solution of the kinetic equation for
a collision model (Hb, γ) with all components fi are strictly positive. For the H-
functional

H[f ] :=
∑

i

fi ln(fi), (4.74)

dtH[f ] ≤ 0 and dtH[f ] = 0 if and only if f is an equilibrium solution.
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proof: For each H ∈ Hb and for fi := fπH
i
, i = 0, · · · , 11 define (as in the proof of

Theorem 4.6)

ηH [f ] : = f1f4 ln
(f0f3

f1f4

)(
1− f0f3

f1f4

)

+f2f5 ln
(f0f3

f2f5

)(
1− f0f3

f2f5

)
+ f6f9 ln

(f0f3

f6f9

)(
1− f0f3

f6f9

)

+f7f10 ln
( f0f3

f7f10

)(
1− f0f3

f7f10

)
+ f8f11 ln

( f0f3

f8f11

)(
1− f0f3

f8f11

)

+f2f5 ln
(f1f4

f2f5

)(
1− f1f4

f2f5

)
+ f6f9 ln

(f1f4

f6f9

)(
1− f1f4

f6f9

)

+f7f10 ln
( f1f4

f7f10

)(
1− f1f4

f7f10

)
+ f8f11 ln

( f1f4

f8f11

)(
1− f1f4

f8f11

)
(4.75)

+f6f9 ln
(f2f5

f6f9

)(
1− f2f5

f6f9

)
+ f7f10 ln

( f2f5

f7f10

)(
1− f2f5

f7f10

)

+f8f11 ln
( f2f5

f8f11

)(
1− f2f5

f8f11

)
+ f7f10 ln

( f6f9

f7f10

)(
1− f6f9

f7f10

)

+f8f11 ln
( f6f9

f8f11

)(
1− f6f9

f8f11

)
+ f8f11 ln

(f7f10

f8f11

)(
1− f7f10

f8f11

)

+f1f3f5 ln
(f0f2f4

f1f3f5

)(
1− f0f2f4

f1f3f5

)
+ f3f6f10 ln

( f0f7f9

f3f6f10

)(
1− f0f7f9

f3f6f10

)

+f4f8f10 ln
(f1f7f11

f4f8f10

)(
1− f1f7f11

f4f8f10

)
+ f5f8f9 ln

(f2f6f11

f5f8f9

)(
1− f2f6f11

f5f8f9

)

Then

dtH[f ](t) =
∑

H∈Hb

γH ηH [f ] ≤ 0. (4.76)

since

ηH [f ] ≤ 0 (4.77)

An equilibrium state is achieved if and only if for all H ∈ Hb with γH > 0

ηH [f ] = 0. ¤ (4.78)

The last statement of the previous proof can be restated as follows.

Corollary 4.13 A vector f is an equilibrium solution if and only if for all regular
h-cubes H ∈ H+, the twelve-tupel fH is an equilibrium solution of the twelve-velocity
model.
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For a collision model (Hb, γ), we have the five invariants

mass ρ =
∑

fi, (4.79)

x-momentum ρv̄x =
∑

vi,xfi, (4.80)

y-momentum ρv̄y =
∑

vi,yfi, (4.81)

z-momentum ρv̄z =
∑

vi,zfi, (4.82)

kinetic energy
1

2
|v|2 =

1

2

∑
(v2

i,x + v2
i,y + v2

i,z)fi (4.83)

which are conserved in each collision event. Since we want to exclude artefacts
we are going to introduce the notion of regular collision models. Our basic model
(A model, with minimum number of h-cubes which satisfies the requirements that
the five quantities: mass, (x,y,z)-momenta and kinetic energy are invariant in each
collision event) for this is a 81-velocity model.

A 81-velocity model:

Definition 4.14 Following the definition of the center points given by the equation
(4.14), a h-cube H l is called as a l-level h-cube if the z-coordinate of the center of
H l is given by

cz := l
2
√

6

3
(4.84)

We construct a 81-velocity model, which is the composition of

1. five 0-level regular basic h-cubes H0
i , i = 0, · · · , 4, having centers

C0 =
{

(0, 0, 0), (1,−
√

3, 0), (2, 0, 0), (1,
√

3, 0), (−1,
√

3, 0)
}

respectively (A cut along the horizontal hexagonal sections is shown in the
figure 4.5),

2. two 1-level regular basic h-cubes H1
i , i = 0, 1 and one (−1)-level regular basic

h-cubes H−1
0 with centers at

C1 =
{(

1,− 1√
3
,
2
√

6

3
), (0,

2√
3
,
2
√

6

3

)}
and C−1 =

{(
1,

1√
3
,−2

√
6

3

)}

respectively,
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3. two (−1/2)-level regular basic h-cubes H
−1/2
i , i = 0, 1 and one (1/2)-level

regular basic h-cubes H
1/2
0 with their centers

C−1/2 =
{(

1,− 1√
3
,−
√

6

3

)
,
(
0,

2√
3
,−
√

6

3

)}
and C1/2 =

{(
1,

1√
3
,

√
6

3

)}

respectively,

4. In addition to these basic h-cubes of the model, we can also find some other
larger class-A and class-B h-cubes. Among those we collect the two class-B
h-cubes H̃i, i = 0, 1 of radii 2h centered at the first two nodes 0,1 of H0

0 , in
Fig. 4.5, the six nodes of the hexagons restricted to the 0-level cut of these
two class-B h-cubes are marked by ’o’ and ’*’ respectively.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3

−3

−2

−1

0

1

2

3

0 

1 2 

3 

4 5 
13 

14 12 

15 16 

23 

24 25 

26 

33 

34 35 

36 

43 44 

45 

46 

Fig. 4.5 Horizontal cut of the 0-level h-cubes of a
81-velocity model

With the enumeration as shown in Fig. 4.2 for each h-cubes of the 81-velocity model,
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the list of h-cubes can be given as,

H0
0 = (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11),

H0
1 = (12, 13, 5, 14, 15, 16, 17, 18, 19, 20, 21, 22),

H0
2 = (23, 24, 25, 0, 13, 26, 27, 28, 29, 30, 31, 32),

H0
3 = (33, 34, 35, 36, 1, 25, 37, 38, 39, 40, 41, 42),

H0
4 = (36, 43, 44, 45, 46, 2, 47, 48, 49, 50, 51, 52),

H
1
2
0 = (29, 37, 38, 8, 6, 28, 53, 54, 55, 1, 25, 0),

H
− 1

2
0 = (32, 30, 10, 11, 20, 21, 13, 5, 0, 56, 57, 58), (4.85)

H
− 1

2
1 = (42, 40, 51, 52, 9, 10, 1, 2, 36, 59, 60, 61),

H1
0 = (62, 53, 54, 63, 64, 65, 66, 67, 68, 6, 28, 19),

H1
1 = (55, 69, 70, 71, 72, 54, 73, 74, 75, 47, 38, 8),

H−1
0 = (76, 77, 60, 61, 56, 57, 30, 10, 42, 78, 79, 80),

H̃0 = (23, 33, 36, 3, 14, 12, 62, 63, 55, 61, 76, 58),

H̃1 = (24, 34, 43, 46, 4, 13, 53, 72, 69, 59, 77, 56).

We use this list of h-cubes (with their enumeration) to prove the properties of the
model in bounded grid.

Equilibria of the 81-velocity model

Let us re-denote the above set of h-cubes of the 81-velocity model as

H(i+1) := H0
i , i = 0, . . . , 4; H(6) := H̃0, H(7) := H̃1, H(8) := H

1
2
0 , H(9) := H

− 1
2

0 ,

H(10) := H
− 1

2
1 , H(11) := H1

0 , H(12) := H1
1 , H(13) := H−1

0 . (4.86)

Following the equation (4.47), for f ∈ E81 we denote

fH(k) := r(k)
(
κ

(k)
0+, κ

(k)
1+, κ

(k)
2+, κ

(k)
0−, κ

(k)
1−, κ

(k)
2−, κ

(k)
3+, κ

(k)
4+, κ

(k)
5+, κ

(k)
3−, κ

(k)
4−, κ

(k)
5−

)
, k = 1, . . . , 13,

(4.87)

where κ
(k)
1+ = κ

(k)
0+κ

(k)
2+, κ

(k)
4+ = κ

(k)
0−κ

(k)
3+, κ

(k)
5+ = κ

(k)
2+κ

(k)
3+ and κ

(k)
i− = 1

κ
(k)
i+

, i =

0, . . . , 5.

Then the equilibria f ∈ E|vz=0 restricted to the cut H(k)|vz=0 (Fig. 4.5) are given by

fH(k)|vz=0
= r(k)

(
κ

(k)
0+, κ

(k)
1+, κ

(k)
2+, κ

(k)
0−, κ

(k)
1−, κ

(k)
2−

)
, k = 1, . . . , 7, (4.88)

where κ
(k)
1+ = κ

(k)
0+, κ

(k)
2+ and κ

(k)
i− = 1

κ
(k)
i+

, i = 0, 1, 2.

We prove following lemma as lemma-A.1 in appendix-A.
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Lemma 4.15 The equilibria f ∈ E|vz=0 restricted to the 0-level cut of the 81-velocity
model (as given by the equation (4.88)) is a smooth four-dimensional manifold.

We mention here that in a h-cube H (Fig. 4.2), we can find four hexagons, eight
triangles and six squares.

Proposition 4.16 Suppose f ∈ EH .
(i) If three components of f restricted to any three nodes of any one of the four
hexagonal-sections of H are given together with another component of f restricted
to a node which does not belong to this same hexagonal-section, then the rest eight
unknown components of f can be uniquely determined in terms of the given four
components.

(ii) If the three components of f restricted to any one of the eight triangular-
sections of H are given together with another component of f restricted to a nodes
of the hexagonal-section which is parallel to that triangular section, then all the rest
eight unknown components of f can also be uniquely determined in terms of the given
four components.

Proof: Following the equation (4.47), for f ∈ EH we have

f = r(κ0+, κ1+, κ2+, κ0−, κ1−, κ2−, κ3+, κ4+, κ5+, κ3−, κ4−, κ5−), (4.89)

where κ1+ = κ0+κ2+, κ4+ = κ0−κ3+, κ5+ = κ2+κ3+, κi− = 1/κi+, i = 0, . . . , 5
(i) For any three of (f0, f1, f2, f3, f4, f5) are given, r, κ0+, κ2+ can be uniquely deter-
mined. Then for a given equilibria from any (f6, f7, f8) or (f9, f10, f11), the parameter
κ3+ can also determined. Similar arguments holds for other cases.
(ii) This is an equivalent case of (i). ¤

Using the above proposition, we proved the following lemma.

Lemma 4.17 The set E of equilibria of 81-velocity model (basic model) is a smooth
five dimensional manifold.

Proof : The equilibria f ∈ E is given by (4.87). In the proof of the lemma 4.15, it

has been shown in appendix-A (lemma A.1) that (r(k), κ
(k)
0+, κ

(k)
2+, k = 1, . . . , 7) can

be uniquely parameterized by quadrupel (κ
(1)
0+, κ

(1)
2+, r(1), r(2)) and the the equilibria

fH(k)|vz=0
is a smooth four-dimensional manifold. Now we investigate further for the

rest f ∈ EH(k)|vz 6=0
and we will show that, in addition to the quadrupel, it requires one

more parameter ( κ
(1)
3+) to describe all of f ∈ E . As shown in the equation (4.47), the

equilibria f ∈ EH(1) can be described by
{

(κ
(1)
0+, κ

(1)
2+, κ

(1)
3+, r(1))

}
where it requires an

additional parameter κ
(1)
3+ with the set

{
(κ

(1)
0+, κ

(1)
2+, r(1), r(2))

}
. Thus fH(k)|vz=0

∪ fH(1)
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can be uniquely determined by the five unknowns
{

(κ
(1)
0+, κ

(1)
2+, κ

(1)
3+, r(1), r(2))

}
. That

is, for the given values of this five parameters, fH(k)|vz=0
∪ fH(1) are known quantities.

Now we will show that the rest of the components of f ∈ E can also be deter-
mined by the above five parameters only. With this end, we observe in H(8) =
(29, 37, 38, 8, 6, 28, 53, 54, 55, 1, 25, 0) that the three component of f ∈ EH(8) re-
stricted to the three nodes (1, 25, 0) of a triangular-section is already obtained to-
gether with a equilibria restricted to the node (6) which belongs to the hexagonal-
section parallel to the triangular-section . Thus by proposition 4.16 (ii), f ∈ EH(8)

are all obtained also in terms of the above five parameters. Then, similarly, the
proposition 4.16 (ii) also holds successively for
H(9), H(10), H(2), H(3), H(4), H(5), H(11), H(12), H(13). It is thus seen that f ∈ EH(k) , k =

1, . . . , 13 can be determined by five unknowns
{

(κ
(1)
0+, κ

(1)
2+, κ

(1)
3+, r(1), r(2))

}
. ¤

Thus we define the notion of basic extension and regular collision model as follows.

Definition 4.18 Let (Hb, γ) and (H′
b, γ

′) be two collision models.
(a) (H′

b, γ
′) is called a basic extension of (Hb, γ), if there is a basic ”l-level” h-cube

(Definition 4.14) H l /∈ Hb such that
(i) the set of basic h-cubes of H′

b is obtained from those of Hb by adding H l and

consequently by adding either a pair ( H l+ 1
2 , H l−1) or (H l− 1

2 , H l+1) (or both the
pairs),
(ii) two consecutive vertices of H l are already contained in the grid generated by
Hb,
(iii) γH0 > 0.

We note that such a basic-extension also provides at least one larger (of radii 2h)

h-cube H̃ l. The three nodes of the bottom-triangular (top-triangular) section and

four consecutive nodes of the horizontal hexagonal-section of H l+ 1
2

(
H l− 1

2

)
and four

consecutive nodes of the horizontal hexagonal-section of H̃ l are already in Hb. One
of the top (bottom)-triangular node of H̃ l coincide with top (bottom)-triangular

node of H l+ 1
2

(
H l− 1

2

)
.

(b) (H′
b, γ

′) is called a (non-trivial) extension of (Hb, γ), if for some n ≥ 1, there
exists a sequence

(Hb, γ) = (H(0)
b , γ(0)), (H(1)

b , γ(1)), · · · , (H(n)
b , γ(n)) = (H′

b, γ
′) (4.90)

such that (H(k+1)
b , γ(k+1)) is a basic extension of (H(k)

b , γ(k)). In this case we write

(Hb, γ) < (H′
b, γ

′) (4.91)

(c) A collision model (Hb, γ) is called regular if it is an extension of the 81-velocity
model (basic model).
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Proposition 4.19 Let (Hb, γ) be a regular collision model. Then
(i) the set E of equilibria is a smooth 5-dimensional manifold,
(ii) the set of collision invariants is spanned by mass, momenta and kinetic energy.

Proof: (i): The proof follows by induction over the number of basic extensions.
The statement is true for 81-velocity model (see lemma 4.17). By induction hy-
pothesis we assume that it also holds true for a collision model (H′

b, γ
′). Let (Hb, γ)

is obtained from (H′
b, γ

′) by a basic extension by adding the set of basic h-cubes{
H l, H l+ 1

2 , H l−1
}

or
{
H l, H l− 1

2 , H l+1
}

or both the sets (Definition 4.18). Let E ′
and E be the respective sets of equilibria. From our assumption E ′ is a smooth
5-dimensional manifold, we have to prove that E is also a smooth 5-dimensional
manifold. To this end, we show that f ∈ E can be uniquely determined if its restric-
tion f ′ to the smaller grid H′

b is given. From corollary 4.13, f ∈ E implies that f ′ ∈ E ′
and fH is an equilibrium solution for H = H l, H l+ 1

2 , H l−1 or for H = H l, H l− 1
2 , H l+1

or in both the cases. We have to show that these fH (for H = H l, H l+ 1
2 , H l−1 or for

H = H l, H l− 1
2 , H l+1 or in both the cases) can be uniquely determined in terms of

the given f ′ ∈ E ′.
From the definition 4.18 of basic extension

1. The three bottom-triangular(top-triangular) nodes with four consecutive hor-

izontal hexagonal-section nodes of H l+ 1
2

(
H l− 1

2

)
are already in H′

b and thus by

proposition 4.16, f
l+ 1

2
H

(
f

l− 1
2

H

)
uniquely determined from the given f ′ ∈ E ′.

2. Four consecutive hexagonal-section nodes of the larger (of radii 2h) h-cube H̃ l

are already in H′
b and one of the top (bottom)-triangular node of H̃ l coincide

with top (bottom)-triangular node of H l+ 1
2

(
H l− 1

2

)
; thus by proposition 4.16

(i) f eHl is obtained. Then we find that equilibria at four hexagonal-section

nodes (two from H′
b and two via H̃ l) and two top (bottom)-section nodes(

that coincides with hexagonal-section nodes of H l+ 1
2 (H l− 1

2 )
)

of H l is known
and thus by proposition 4.16 (i), fHl can be uniquely determined from the
given f ′ ∈ E ′.

3. the three triangular-section nodes (two from H′
b and one via H l+ 1

2

(
H l− 1

2

)
)

and two hexagonal section nodes (via H̃ l) of H l−1(H l+1) is known and thus by
proposition 4.16 (ii), fHl−1(fHl+1) can be uniquely determined from the given
f ′ ∈ E ′ ¤.

(ii) This follows from corollary 4.23 below ¤.
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4.3.2 Linearizations

For a regular collision model (Hb, γ) denote by

Gb :=
⋃

α:Hα∈Hb

=:
{
zβ | β ∈ Ib

}
, (4.92)

the set of all grid points related to Hb, indexed by some finite set Ib. We define the
following elements (similar to (4.28)) of RIb ,

l1 := (1)β∈Ib
, vx := (zβ,x)β∈Ib

vy := (zβ,y)β∈Ib
vz := (zβ,z)β∈Ib

(4.93)

and in addition

Ekin :=
1

2
(|zβ|2)β∈Ib

(4.94)

Furthermore we define
E := span(l1,vx,vy,vz,Ekin) (4.95)

The restriction of the vectors (4.95) to single h-cube H in Hb are marked with a
lower index H and

EH := span(l1H , (vx)H , (vy)H , (vz)H) (4.96)

Lemma 4.20 Let φ ∈ R81 be a scalar function on the grid of 81-velocity model and
H(i), i = 1, . . . , 13 denotes the h-cubes of the 81-velocity model given by the equation
4.86. If φH(i) ∈ EH(i) , i = 1, . . . , 13, then φ ∈ E.

Proof: Suppose φ ∈ R81 such that φH(i) ∈ EH(i) , i = 1, . . . , 13. We construct
another function ψ ∈ E as

ψ = β0 l1 + β1vx + β2vy + β3vz + β4Ekin

which coincides with φ in the nodes 0, 1, 2, 6, 25. This problem is uniquely solvable,
since the restrictions of the vectors l1,vx,vy,vz,Ekin to these points are linearly
independent. We have to show that ψ = φ. Elementary calculations show that

(Ekin)H(i) ∈ span( l1,vx,vy,vz), i = 1, . . . , 13.

We conclude that

φH(i) ∈ span( l1,vx,vy,vz), i = 1, . . . , 13.

We observe that ψH(1) coincides with φH(1) at four nodes (0, 1, 2, 6) of H(1). But
since the restrictions to l1,vx,vy,vz at these four points are linearly indepen-
dent, therefore, ψH(1) = φH(1) . Similar arguments holds for H(i) successively for
i = 8, 9, 10, 11, 12, 13, 6, 7, 2, 3, 4, 5. Thus, ψH(i) = φH(i) for all i ¤

We generalize this result for any regular collision model as in the following.
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Lemma 4.21 Let (Hb, γ) be a regular collision model. E := span( l1,vx,vy,vz,Ekin)
and EH := span

(
l1H , (vx)H , (vy)H , (vz)H

)
. Then φ ∈ E if and only if φH ∈ EH for

all H ∈ H+.

Proof: ” =⇒ ”: Let

φ = α0 l1 + α1vx + α2vy + α3vz + α4Ekin (4.97)

and for H ∈ Hb, we denote the center of H by cH = (cH,x, cH,y, cH,z). Applying
the projection operator PH and denoting by vH,i = cH + wi, |wi|2 = 1, the twelve
vertices of H yields

PHEkin =
1

2
(v2

x,i + v2
y,i + v2

z,i)
12
i=0

=
1

2
(|wi|2 + |cH |) l1 + cH,x(wx,i)

12
i=0 + cH,y(wy,i)

12
i=0 + cH,z(wz,i)

12
i=0

∈ span
(

l1H , (vx)H , (vy)H , (vz)H

)
(4.98)

and

PHφ = PH(α0 l1 + α1vx + α2vy + α3vz + α4Ekin)

= α0 l1H + α1(vx)H + α2(vy)H + α3(vz)H + α4PHEkin

∈ span
(

l1H , (vx)H , (vy)H , (vz)H

)
. (4.99)

” ⇐= ”: The proof follows by induction over the number of basic extensions. From
previous lemma, the statement is true for 81-velocity model. We assume that the
statement holds true for the collision model (H′

b, γ
′). Let us suppose that by adding

a basic hexagon H l, and consequently, either a pair ( H l+ 1
2 , H l−1) or (H l− 1

2 , H l+1)
or both the pairs, to (H′

b, γ
′), we obtain collision model (Hb, γ). The extension

automatically provide at least one larger (of radii 2h) h-cube H̃ l. Let φ be such that

φH ∈ span
(

l1H , (vx)H , (vy)H , (vz)H

)
for all H ∈ H+. (4.100)

By φ′ we denote the restriction of φ onto H′
b and then by induction hypothesis we

obtain
φ′ = α0 l1′ + α1v

′
x + α2v

′
y + α3v

′
z + α4E

′
kin (4.101)

We have to prove that

φ = α0 l1 + α1vx + α2vy + α3vz + α4Ekin (4.102)

From the definition of basic extension it follows that three bottom-triangular (top-

triangular) nodes, four consecutive hexagonal-section nodes of H l+ 1
2

(
H l− 1

2

)
and four

consecutive hexagonal-section nodes of H̃ l are already inH′
b. Since four nodes (three

from its hexagonal section one from else) of H l+ 1
2

(
H l− 1

2

)
say, zi, zi+1, zi+2, zi+3 are

already in H′
b, thus,

φ(zi+j) = φ′(zi+j) = α0+α1vx(zi+j)+α2vy(zi+j)+α3vz(zi+j), j = 0, . . . , 3 (4.103)
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Furthermore, there are quantities αH
0 , αH

1 , αH
2 , αH

3 such that

φ(zi+j) = αH
0 + αH

1 vx(zi+j) + αH
2 vy(zi+j) + αH

3 vz(zi+j), j = 0, . . . , 3 (4.104)

But since the restrictions to l1,vx,vy,vz at such four nodes are linearly independent,
thus

αH
i = αi, i = 0, 1, 2, 3. ¤

Let e ∈ E be a equilibrium for a regular collision model (Hb, γ). Define the diagonal
matrix D as

D = diag(eβ | β ∈ Ib) (4.105)

Inserting the ansatz
f = e + εD

1
2 φ (4.106)

into (4.73) and neglecting terms quadratic in ε yields the linearized kinetic equation.
From corollary (4.13) we know that for any H ∈ H, the restriction eH is an equi-
librium solution of the twelve-velocity model on H. The restriction of the linearize
operator L to H is denoted by LH . Suppose ψ is a test function on Gb. Then ac-
cording to the weak formulation (4.73) of the nonlinear collision operator, the weak
formulation of the full linearized operator L on (Hb, γ) is

〈ψ,Lφ〉 =
∑

H∈Hb

γH

11∑
i=0

ψ(πH
i )(LHφH)i =

∑
H∈Hb

γH〈PHψ, LHPHφ〉 (4.107)

and thus
L =

∑
H∈Hb

γHP T
HLHPH (4.108)

where, PH ∈ R12×|Gb| is the matrix defined by

(PH)i,j =

{
1, if i ≤ 11 and j = πH

i

0, else
(4.109)

Theorem 4.22 L is a symmetric operator, its null space is five-dimensional and
given by

N(L) = D− 1
2 E = D

1
2 span(l1,vx,vy,vz,Ekin) (4.110)

and all of its non-zero eigenvalues are negative.

proof: Since all LH are symmetric and non-positive, therefore L is symmetric and
non-positive. Thus the equation

xT LX = 0 (4.111)

is valid iff xT
HLHxL = 0 for all H ∈ H+. Because of Lemma 4.21 and Proposition

4.11, this is true iff x ∈ D
1
2 span(l1,vx,vy,vz,Ekin).¤
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Corollary 4.23 The set of collision invariants of the nonlinear Boltzmann operator
is spanned by l1,vx,vy,vz,Ekin.

Proof: The invariance of l1,vx,vy,vz,Ekin follows from mass, momentum and en-
ergy conservation of the local collision event. Suppose ψ is a collision invariant ,
i.e.

〈ψ, J [f ]〉 = 0 (4.112)

for all non-negative densities on f . Choosing a small perturbation from equilibrium,
f = e + εφ, equation (4.112) yields

ε〈ψ, D
1
2 LD− 1

2 φ〉+O(ε2) = 0 (4.113)

for 0 < ε ≤ ε0, from which follows

〈LD
1
2 ψ, D− 1

2 φ〉 = 0 (4.114)

Since this has to hold for all φ, theorem (4.22) yields ψ ∈ span(l1,vx,vy,vz,Ekin). ¤

4.4 Layer-wise construction of symmetric model

The 81-velocity model which has been introduced in the previous section is not sym-
metric about the origin but useful only to prove the basic properties with minimum
efforts. In order to obtain symmetry about a origin we need to extend the model
always in a circular-layer-wise manner which is described in the following.

At each twelve vertices of a regular basic h-cube H0 = (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11),
we attach another twelve regular basic h-cubes successively so that any two h-cubes
has only one common nodes. Then we obtain a 120-velocity model, say, M0 origi-
nated at (0, 0, 0) which can be known as a one-layer model.

Thus a one-layer (a 120-velocity) model is a composition of thirteen regular basic
h-cubes Hi, i = 0, . . . , 12 and the list of the centers of these regular basic h-cubes
at three different levels (Definition 4.14) (1-level, 0-level, and (−1)-level) are given
as follows.

C0 =
{

(0, 0, 0), (2, 0, 0), (1,
√

3, 0), (−1,
√

3, 0), (−2, 0, 0), (−1,−
√

3, 0), (1,−
√

3, 0)
}
∈ cut-p

C1 =
{(

1,− 1√
3
,
2
√

6

3

)
, (−1,− 1√

3
,
2
√

6

3
),

(
0,

2√
3
,
2
√

6

3

)}
∈ cut-p

C−1 =
{(

− 1,
1√
3
,−2

√
6

3

)
,
(
1,

1√
3
,−2

√
6

3

)
,
(
0,− 2√

3
,−2

√
6

3

)}
∈ cut-p
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Fig. 4.6 Horizontal hexagonal cuts of the basic h-cubes
of a one-layer (120-velocity) model.

These thirteen regular basic h-cubes belong to ’class-A’ defined in section 1. From
now we exclude the (±1/2)-level regular basic h-cubes from the list of basic h-cubes
and we identify these regular basic h-cubes as item-1. Following the proposition 4.4,
we identify the class-A and class-B h-cubes in three items where item-2 belongs to
class-B and the other two items belong to class-A.

1. item-1: In this item, the list of centers of the (±1/2)-level regular h-cubes of
radii h are given by 1

1Here the (x, y)-coordinates of the centers are the center points of the six triangles of the 0-
level section of the Fig. 4.6 and the z-coordinates are due to the next upper q-cuts and lower
p-cuts. This one-layer model also contains three other mid section (non-horizontal) as shown in
the Fig. 4.7 as cut-b, cut-c, and cut-d and we can also find six similar centers for each of these
three non-horizontal cuts. However, it is verified that the centers of this item-1 corresponding to
the non-horizontal cuts are coincide with those belongs to C

1
2 , C−

1
2 of the horizontal cut. Thus

considering here the h-cubes only due to the horizontal cut includes all possible h-cubes of this
item.
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C
1
2 =

{(
1,

1√
3
,

√
6

3

)
,
(
− 1,

1√
3
,

√
6

3

)
,
(
0,− 2√

3
,

√
6

3

)}
∈ cut-q

C− 1
2 =

{(
1,− 1√

3
,−
√

6

3

)
,
(
− 1,− 1√

3
,−
√

6

3

)
,
(
0,

2√
3
,−
√

6

3

)}
∈ cut-r

2. item-2: In this item, there are twelve h-cubes H̃i, i = 1, . . . , 12 of radii 2h with
center at the twelve nodes (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11) of the central regular
basic h-cube H0.

3. item-3: There is a h-cube of radius 3h with center at the center of the central
regular basic h-cube H0.

The co-ordinates of the twelve nodes of the regular h-cubes of these three items can
be obtained by using the formula given by equation (4.17).

Now for further extension of this 120-velocity model M0, we add twelve further 120-
velocity model M j, j = 1, . . . , 12 with origin at the centers of the twelve exterior
basic h-cubes of M0, then the composition of thirteen 120-velocity model,

M =
⋃
j,H

M j, j = 0, . . . , 12 (4.115)

can be called a two-layer model and so on. In the two-layer model, in addition to the
basic h-cubes, we have to collect the h-cubes of all the three items mention above
for each 120-model M j, j = 0, · · · , 12 and the further large h-cubes of these three
items of radii 2h, 4h, 5h respectively.

4.4.1 The 120-velocity model

Fig. 4.6 shows the mid horizontal cuts of the basic h-cubes of a 120-velocity model.
The list of all 32 regular h-cubes of the 120-velocity model is given in the appendix-B
and are denoted by H(i), i = 0, . . . , 31.

Theorem 4.24 The 120-velocity model is a regular collision model. In particular,
the space of collision invariants is spanned by mass, momenta and kinetic energy.

Proof: The 120-velocity model is obtained by subsequent basic extension of 81-
velocity model ¤

In order to describe equilibria for the 120-velocity model, we present the four cuts
of the 120 velocity model, along the hexagonal-sections (0,1,2,3,4,5), (0,10,9,3,7,6),
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(1,10,11,4,7,8) and (6,5,11,9,2,8) of the central basic h-cubes H(0), as in the Fig. 4.7.
We call these cuts as ’Cut-a’, ’Cut-b’, ’Cut-c’ and ’Cut-d’ respectively. Each four
cuts contains 30-nodes but some of which are common. The 24 nodes of radii

√
5

which do not belong to the cuts are
(19,22,27,30,38,41,49,52,57,60,67,70,73,76,82,85,89,92,97,100, 107,109,113,114).

The statement of Theorem 4.25 describing the equilibria for a 120-velocity model
is easily readable if we go through the four cuts of the Fig. 4.7. e.g. In cut-a, the
node 15 lies in the direction in between the nodes 0, 5 for which the bulk-velocity
parameters are κ0+, κ2− respectively. Then the bulk velocity parameter for the node
15 reads as the product κ0+κ2− and for the node 16 the bulk-velocity parameter
obtained by multiplying further with κ0+ and reads as κ2

0+κ2− and so on. The
kinetic energy parameter µ is also easily readable due to the corollary 4.26.
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Fig. 4.7 Four cuts of the 120-velocity model
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Theorem 4.25 Suppose f ∈ E120 and

(f0, f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11)
> =

z(κ0+, κ1+, κ2+, κ0−, κ1−, κ2−, κ3+, κ4+, κ5+, κ3−, κ4−, κ5−)> (4.116)

with z, κ0+, κ2+, κ3+ > 0 arbitrary quantities satisfying κ1+ = κ0+κ2+, κ4+ =
κ0−κ3+, κ5+ = κ2+κ3+. Then the equilibria of the 120-velocity model is given as
follows.
(a) At the nodes of the ’cut-a’, the equilibria at (53, 15, 14, 26, 36, 46) of radius

√
3

are given as

(f53, f15, f14, f26, f36, f46)
> = zµ(κ1−κ2−, κ2−κ0+, κ0+κ1+, κ1+κ2+, κ2+κ0−, κ0−κ1−)>,

(4.117)
at the next outer nodes of radius

√
7 the equilibria are

(f63, f16)
>=zµ3κ2−κ0+(κ2−, κ0+)>, (f13, f23)

> = zµ3κ0+κ1+(κ0+, κ1+)>,

(f25, f33)
>=zµ3κ1+κ2+(κ1+, κ2+)>, (f35, f43)

> = zµ3κ2+κ0−(κ2+, κ0−)>, (4.118)

(f45, f54)
>=zµ3κ0−κ1−(κ0−, κ1−)>, (f56, f64)

> = zµ3κ1−κ2−(κ1−, κ2−)>,

and at the extreme outer nodes they are

(f12, f24, f34, f44, f55, f65)
> = zµ4(κ3

0+, κ3
1+, κ3

2+, κ3
0−, κ3

1−, κ3
2−)>. (4.119)

(b) At the nodes of the ’cut-b’, the equilibria at (18, 20, 96, 51, 47, 75) of radius
√

3
are given as

(f18, f20, f96, f51, f47, f75)
> = zµ(κ3+κ0+, κ0+κ4−, κ4−κ3−, κ3−κ0−, κ0−κ4+, κ4+κ3+)>,

(4.120)
at the next outer nodes of radius

√
7 the equilibria are

(f72, f17)
>=zµ3κ3+κ0+(κ3+, κ0+)>, (f21, f105)

> = zµ3κ0+κ4−(κ0+, κ4−)>,

(f110, f103)
>=zµ3κ4−κ3−(κ4−, κ3−)>, (f99, f50)

> = zµ3κ3−κ0−(κ3−, κ0−)>, (4.121)

(f48, f83)
>=zµ3κ0−κ4+(κ0−, κ4+)>, (f86, f79)

> = zµ3κ4+κ3+(κ4+, κ3+)>,

and at the extreme outer nodes they are

(f12, f111, f102, f44, f87, f78)
> = zµ4(κ3

0+, κ3
4−, κ3

3−, κ3
0−, κ3

4+, κ3
3+)>. (4.122)

(c)At the nodes of the ’cut-c’, the equilibria at (28, 32, 108, 61, 59, 81) of radius
√

3
are given as

(f28, f32, f108, f61, f59, f81)
> = zµ(κ5+κ1+, κ1+κ4−, κ4−κ5−, κ5−κ1−, κ1−κ4+, κ4+κ5+)>,

(4.123)
at the next outer nodes of radius

√
7 the equilibria are

(f90, f29)
>=zµ3κ5+κ1+(κ5+, κ1+)>, (f31, f106)

> = zµ3κ1+κ4−(κ1+, κ4−)>,

(f112, f118)
>=zµ3κ4−κ5−(κ4−, κ5−)>, (f115, f62)

> = zµ3κ5−κ1−(κ5−, κ1−)>, (4.124)

(f58, f84)
>=zµ3κ1−κ4+(κ1−, κ4+)>, (f88, f94)

> = zµ3κ4+κ5+(κ4+, κ5+)>,
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and at the extreme outer nodes they are

(f24, f111, f119, f55, f87, f95)
> = zµ4(κ3

1+, κ3
4−, κ3

5−, κ3
1−, κ3

4+, κ3
5+)>. (4.125)

(d) At the nodes of the ’cut-d’, the equilibria at (74, 68, 69, 101, 42, 37) of radius
√

3
are given as

(f74, f68, f69, f101, f42, f37)
> = zµ(κ5+κ3+, κ3+κ2−, κ2−κ5−, κ5−κ3−, κ3−κ2+, κ2+κ5+)>

(4.126)
at the next outer nodes of radius

√
7 the equilibria are

(f93, f80)
>=zµ3κ5+κ3+(κ5+, κ3+)>, (f77, f66)

> = zµ3κ3+κ2−(κ3+, κ2−)>,

(f71, f116)
>=zµ3κ2−κ5−(κ2−, κ5−)>, (f117, f104)

> = zµ3κ5−κ3−(κ5−, κ3−)>, (4.127)

(f98, f40)
>=zµ3κ3−κ2+(κ3−, κ2+)>, (f39, f91)

> = zµ3κ2+κ5+(κ2+, κ5+)>,

and at the extreme outer nodes they are

(f78, f65, f119, f102, f34, f95)
> = zµ4(κ3

3+, κ3
2−, κ3

5−, κ3
3−, κ3

2+, κ3
5+)>. (4.128)

Finally the equilibria at the nodes at a distance
√

5 (which do not belongs to the four
cuts) are given as

(f19, f22, f27, f30,f38, f41, f49, f52, f57, f60, f67, f70, f73, f76, f82, f85, f89, f92, f97, f100, f107, f109, f113, f114)>

= zµ2(κ2
0+κ5+, κ2

0+κ5−, κ2
1+κ3+, κ2

1+κ3−, κ2
2+κ4+, κ2

2+κ4−, κ2
0−κ5+, κ2

0−κ5−,

κ2
1−κ3+, κ2

1−κ3−, κ2
2−κ4+, κ2

2+−κ4−, κ2
3+κ1+, κ2

3+κ1−, κ2
4+κ2+, κ2

4+κ2−,

κ2
5+κ0+, κ2

5+κ0−, κ2
3−κ1+, κ2

3−κ1−, κ2
4−κ2+, κ2

4+−κ2−, κ2
5−κ0+, κ2

5−κ0−)>. (4.129)

Proof: By using the list of all h-cubes H(i), i = 0, . . . , 31 of the 120-velocity model
as given in appendix B, the statement of the theorem can be verified as follows.
(a) In the proof of Lemma A.1, denoting

(κ
(1)
0+, κ

(1)
1+, κ

(1)
2+, κ

(1)
0−, κ

(1)
1−, κ

(1)
2−) = (κ0+, κ1+, κ2+, κ0−, κ1−, κ2−),

r(1) := z and r(2) := µ2zκ
(1)
2−

2
, the 23 components of equilibria

f0, f1, f2, f3, f4, f5, f63, f15, f53, f64, f65, f12, f13, f14, f16, f23, f24, f25, f26, f33, f34, f35, f36

(which are the components restricted to the corresponding cut of the 81-velocity (ba-
sic) model) are obtained as stated in the theorem. Using the formula (4.45-a) of
lemma 4.8 for H(15), we have

f46f14

f5

=
f25f5

f14

,

which yields
f46 = zµκ0−κ1−.

Now we see that three equilibria from each hexagons (3, 36, 43, 44, 45, 46) and
(53, 4, 46, 54, 55, 56) are already obtained. Therefore again using the
formula (4.45-a),

π0π2

π1

=
π1π3

π2

=
π2π4

π3

=
π3π5

π4

=
π4π0

π5

=
π5π1

π0

,



112 Discrete Boltzmann equation in R3

we obtained the equilibria at the rest nodes (43, 44, 45, 54, 55, 56) as stated in the
theorem.

(b), (c), (d) and rest: To determine these, first we denote the equilibria of
H(25) = (19, 27, 28, 8, 6, 18, 73, 74, 89, 1, 14, 0) by

fH(25) := r
(
a0, a0a2, a2,

1

a0

,
1

a0a2

,
1

a2

, a3,
a3

a0

, a2a3,
1

a3

,
a0

a3

1

a2a3

)
. (4.131)

The equilibria at (1,14,0,6) are already known as

r

a3

= zκ1+,

ra0

a3

= zµκ0+κ1+,

r

a2a3

= zκ0+,

r

a0a2

= zκ3+.

Solving the above four equations for the unknowns (r, a0, a2, a3) we obtained the
equilibria fH(25) . Similarly we obtained fH(i) successively for
i = 26, 27, 1, . . . , 9, 28, 29, 30, 10, 11, 12 as stated in the theorem. ¤

In the statement of the above theorem, z parameterize the density, λi = ln(κi), i =
0, . . . , 3 denote the eccentricities and are responsible for non-vanishing bulk velocity,
µ parameterize kinetic energy.

Corollary 4.26 Let f ∈ E be the equilibria of a 120-velocity model. If we denote the
i-th component equilibria as fi := zµmκ, and the corresponding radius ri :=

√
2n + 1

where r2
i = v2

x,i + v2
y,i + v2

z,i, then m = n.

proof: The proof follows from the theorem 4.25. 2

4.5 Model based on only binary collision law

In this section we exclude the ternary collision law from the local collision
operator defined by the equation (4.37) and establish that a 216-velocity model,
based on only binary collision law, is a basic regular collision model which
satisfies the basic requirements of the kinetic theory. We also prove that the basic
kinetic features: the conservation laws, the correct number of invariants as well as
the correct dimension of the equilibria, the properties of linearized collision operator

2The equilibria stated by the theorem 4.25 as well as by the corollary 4.26 can be (and has
been) used as a basis to determined the equilibria for the larger grid model.
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are satisfied for a regular collision model, based on only binary collision law, in a
bounded hexagonal grid in R3.

As we have already described in the previous section, a further extension of a 120-
velocity model can be obtained by composing further 120-velocity models with cen-
ters at the center of the twelve exterior h-cubes successively. In this manner, the
composition of two 120-velocity model is a 177-velocity model, the composition
of three 120-velocity model is a 216-velocity model, and then 255-velocity model,
· · · , composition of thirteen 120-velocity model is a 444-velocity model (a two-layer
model). We now denote the 120-velocity models by M and the set of all such ordered
120-velocity model by M.

In absence of ternary collision law, the local collision operator defined by equation
4.37 reduces to

JH [f ] = γbinJbin[f ], γbin > 0, (4.132)

and with this the space homogeneous Boltzmann equation on H is

∂tf = JH [f ] (4.133)

The global collision operator is defined by the corresponding weak formulation given
by the equation (4.24).

4.5.1 H-Theorem, Equilibrium solutions

Following the theorems 4.6 and 4.12, the H-Theorem for this case is the immediate
consequences of dropping out the ternary collision terms. Then from the H-Theorem
we have the following properties.

Proposition 4.27 f ∈ E is a equilibria if and only if

fπH
0
fπH

3
= fπH

1
fπH

4
= fπH

2
fπH

5
= fπH

6
fπH

9
= fπH

7
fπH

10
= fπH

8 πH
11

(4.134)

for all H ∈ H+.

Corollary 4.28 A vector f ∈ E is an equilibrium solution if and only if for all
M ∈M the 120-tupel fM is an equilibrium solution of the 120-velocity model.

In appendix-B , the propositions B.1, B.2, B.3 state the following properties of
equilibria.

Proposition 4.29 The equilibria f ∈ E|M0 of a 120-velocity model is an 11-dimensional
manifold.

Proposition 4.30 The equilibria f ∈ E|M0∪M1 of a 177-velocity model is a 7-dimensional
manifold.
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Proposition 4.31 The equilibria f ∈ E|M0∪M1∪M2 of a 216-velocity model is a 5-
dimensional manifold.

Remark 4.32 (i) In the proof of the proposition 4.31 in appendix-B, we have shown
that the equilibria f ∈ E|M0∪M1∪M2 of a 216-velocity model can be uniquely pa-
rameterized by the 5 parameters a0, a1, a2, a4, b0. Making all the subsequent
substitutions in the propositions 4.29, 4.30, 4.31 and re-denoting

a0 := zκ0+, a1 := zκ0−, a2 := zκ1+, a4 := zκ3+, b0 := zµ4κ3
0+,

we obtain the equilibria f ∈ E120 as stated in theorem 4.25 (in the model which in-
cludes the ternary collision law) and the equilibria f ∈ E216 is also characterized by
the parameters z, µ, κ0+, κ1+, κ2+, κ3+, κ4+, κ5+ with z, µ, κ0+, κ2+, κ3+ > 0 arbitrary
quantities satisfying κ1+ = κ0+κ2+, κ4+ = κ0−κ3+, κ5+ = κ2+κ3+ where z charac-
terizes density, µ characterizes kinetic energy and κ0+, κ2+, κ3+ are responsible for
non-vanishing moments.

(ii) We find that the corollary 4.26 also holds true for the equilibria f ∈ E216.

4.5.2 Regular collision model

In the case of the model based on only binary collision law, we are going
to define the notion of regular collision model and our basic model (a model with
minimum number of nodes which satisfy the physical requirements that the five
quantities, mass, (x,y,z)-momenta and kinetic energy are invariants) for this is 216-

velocity model, M̃ := M0∪M1∪M2 (M j ∈M, j = 0, 1, 2). Fig. 4.8 shows the mid

horizontal section of all the basic h-cubes of the 216-velocity model M̃ arranged in
three levels.

Remark 4.33 In the proof of the proposition B.3 in appendix-B, the five parame-
ters a0, a1, a2, a4, b0 describing the equilibria of 216-velocity model, are corresponding
to the nodes (0, 1, 3, 6, 12) which belong to the first two h-cubes H0, H1 only. There-
fore, if the equilibria restricted to the nodes (0, 1, 3, 6, 12) of a 216-velocity model
are given, then the rest components of the equilibria can be uniquely determined.

Thus we define the notion of the basic extension as well as the regular collision model
as in Definition 4.34.
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Fig. 4.8 Horizontal hexagonal cuts of the basic h-cubes of a 216-velocity
model

Definition 4.34 Let (Hb, γ) and (H′
b, γ

′) be two collision models.
(a) (H′

b, γ
′) is called a basic extension of (Hb, γ), if there are some regular basic

h-cubes H ′ /∈ Hb such that
(i) the set of basic h-cubes of H′

b is obtained from those of Hb by adding the H ′’s,
(ii) the new h-cubes H ′ belong to a new 216-velocity model M̃ ′ (as constructed in

Fig. 4.8) so that the first two h-cubes H ′0, H ′1 of M̃ ′ are already contained in the
grid generated by Hb,
(iii) γH′ > 0.

(b) (H′
b, γ

′) is called a (non-trivial) extension of (Hb, γ), if for some n ≥ 1 there
exists a sequence

(Hb, γ) = (H(0)
b , γ(0)), (H(1)

b , γ(1)), · · · , (H(n)
b , γ(n)) = (H′

b, γ
′) (4.135)

such that (H(k+1)
b , γ(k+1)) is a basic extension of (H(k)

b , γ(k)). In this case we write

(Hb, γ) < (H′
b, γ

′) (4.136)
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(c) A collision model (Hb, γ) is called regular if it is an extension of the 216-velocity
model (the basic model, Fig. 4.8).

Corollary 4.35 below follows from the H-Theorem.

Corollary 4.35 A vector f ∈ EHb
is an equilibrium solution for a regular collision

model (Hb, γ) if and only if ffM is an equilibrium solution for all 216-velocity model

M̃ contained in Hb.

Proposition 4.36 Let (H′
b, γ) be a regular collision model. Then the set E of equi-

libria is a smooth 5-dimensional manifold.

proof: The statement is true for a 216-velocity model (see prop. 4.31). We assume
that it holds true for a regular collision model (Hb, γ) and (H′

b, γ) is a basic extension

of (Hb, γ) by adding a 216-velocity model M̃ ′. Let E ′ and E be the respective sets of
equilibria. From our assumption E is a smooth 5-dimensional manifold, we have to
prove that E ′ is also a smooth 5-dimensional manifold. To this end, we show that
f ′ ∈ E ′ is uniquely determined if its restriction f to the smaller grid Hb is given.
From corollary 4.35, f ′ ∈ E ′ implies that f ∈ E and f ′fM ′ is an equilibrium in M̃ ′. From

the definition 4.34 of basic extension, the first two h-cubes of M̃ ′ are already in the
grid Hb and therefore, by remark 4.33 the equilibria f ′fM ′ can be uniquely determined

by the equilibria at the five nodes (0, 1, 3, 6, 12)fM ′ which are already known from
f ∈ E . ¤

Lemma 4.37 Let (Hb, γ) be a regular collision model and φ ∈ R|Hb| be a scalar
function on the grid Hb. Denote E := span

(
l1,vx,vy,vz,Ekin

)
and

EfM := span
(

l1fM , (vx)fM , (vy)fM , (vz)fM , (Ekin)fM)
. Then φ ∈ E if and only if

φfM ∈ EfM for all M̃ ∈ Hb.

proof: ” =⇒ ”: Let

φ = α0 l1 + α1vx + α2vy + α3vz + α4Ekin (4.137)

Applying the projection operator PfM
φfM = PfMφ = PfM(α0 l1 + α1vx + α2vy + α3vz + α4Ekin)

= α0 l1M̃ + α1(vx)fM + α2(vy)fM + α3(vz)fM + α4(Ekin)fM
∈ span

(
l1fM , (vx)fM , (vy)fM , (vz)fM , (Ekin)fM)

. (4.138)

” ⇐= ”: The proof follows by induction over the number of basic extensions. We
assume that the statement holds true for the collision model (H′

b, γ
′). Let us suppose

that by adding a 216-velocity model M̃ ′, we obtain collision model (Hb, γ). Let φ
be such that

φfM ∈ span
(

l1M̃ , (vx)fM , (vy)fM , (vz)fM , (Ekin)fM)
for all M̃ ∈ Hb. (4.139)
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By φ′ we denote the restriction of φ onto H′
b and then by induction hypothesis we

obtain
φ′ = α0 l1′ + α1v

′
x + α2v

′
y + α3v

′
z + α4E

′
kin (4.140)

We have to prove that

φ = α0 l1 + α1vx + α2vy + α3vz + α4Ekin (4.141)

Suppose
φ := β0 l1 + β1vx + β2vy + β3vz + β4Ekin (4.142)

From the definition 4.34 of basic extension it follows that three are five nodes
(0, 1, 3, 6, 12)fM ′ which are already in H′

b. Since the restrictions to l1,vx,vy,vz,Ekin

at these five nodes are linearly independent, thus

βi = αi, i = 0, . . . , 4. ¤

4.5.3 Linearization

We recall L1, DH as defined in the section 4.2.3, PH as defined by equation (4.109)
and make the linearization ansatz

f = e + εD1/2φ, (4.143)

where e, D are defined as in the section 4.3.2. Then in absence of ternary collision
law, equation (4.69) reduces to

LH = D
− 1

2
H γ̂binL1D

− 1
2

H . (4.144)

For all 216-velocity model M̃ ∈ Hb, denote

L :=
∑

H∈Hb

P>
H LHPH (4.145)

L̃fM :=
∑

H∈fM P>
H γ̂bin L1PH , (4.146)

LfM :=
∑

H∈fM P>
H LHPH =

∑

H∈fM P>
H D

− 1
2

H γ̂binL1D
− 1

2
H PH

= D
− 1

2fM L̃fMD
− 1

2fM (4.147)

Proposition 4.38 LfM is symmetric and non-positive, its null space is five-dimensional
and is given by

N(LfM) = D
1
2fMspan

(
l1fM , (vx)fM , (vy)fM , (vz)fM , (Ekin)fM)

(4.148)



118 Discrete Boltzmann equation in R3

proof: Since all LH ∈ M̃ are symmetric and non-positive, therefore LfM is sym-

metric and non-positive. It can be verified that x>fM L̃fMxfM = 0 for all xfM ∈ S :=

{l1fM , (vx)fM , (vy)fM , (vz)fM , (Ekin)fM} and the vectors (l1)fM , (vx)fM , (vy)fM , (vz)fM , (Ekin)fM
are linearly independent. Thus

N(L̃fM) = span
(
l1fM , (vx)fM , (vy)fM , (vz)fM , (Ekin)fM)

(4.149)

via equation 4.147 yields

N(LfM) = D
1
2fMspan

(
l1fM , (vx)fM , (vy)fM , (vz)fM , (Ekin)fM)

¤ (4.150)

Theorem 4.39 L is symmetric and non-positive, its null space is five-dimensional
and is given by

N(L) = D
1
2 span

(
l1,vx,vy,vz,Ekin

)
(4.151)

Since all LH are symmetric and non-positive, therefore L is symmetric and non-
positive. Thus

x>Lx = 0

⇐⇒ x>HLHxH = 0, for all H ∈ H+

⇐⇒ x>fMLfMxfM = 0, for all M̃ ∈ Hb

Then by proposition 4.38, this is valid iff

xfM ∈ D
1
2fMspan

(
l1fM , (vx)fM , (vy)fM , (vz)fM , (Ekin)fM)

Then by lemma 4.37, this is true iff

x ∈ D
1
2 span

(
l1,vx,vy,vz,Ekin

)

Corollary 4.40 The set of collision invariants of the nonlinear Boltzmann operator
is spanned by l1,vx,vy,vz,Ekin.

Proof: The invariance of l1,vx,vy,vz,Ekin follows from mass, momentum and en-
ergy conservation of the local collision event. Suppose ψ is a collision invariant,
i.e.

〈ψ, J [f ]〉 = 0 (4.152)

for all non-negative densities on f . Choosing a small perturbation from equilibrium
by the ansatz f = e + εφ equation (4.152) yields

ε〈ψ, D
1
2 LD− 1

2 φ〉+O(ε2) = 0 (4.153)

for 0 < ε ≤ ε0, from which follows

〈LD
1
2 ψ, D− 1

2 φ〉 = 0. (4.154)

Since this has to hold for all φ, therefore, we conclude from Theorem (4.39) that
ψ ∈ span(l1,vx,vy,vz,Ekin) ¤
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4.5.4 The 444-velocity model
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Fig. 4.9 Horizontal hexagonal cuts of the basic h-cubes of a 444-velocity
model

The 444-velocity model is obtained by a composition of thirteen 120-velocity model
which can be known as a two-layer model as already mentioned in section 4.4. First
we consider a 120-velocity model M0 with origin at (0, 0, 0). Then our 444-velocity
model is obtained by adding twelve other 120-velocity models M j, j = 1, . . . , 12 with
M0, having origins at the center of the twelve exterior h-cubes of M0. The horizontal
hexagonal cuts of the basic h-cubes is shown in the Fig. 4.9 at five different levels
(Definition 4.14). This two-layer model is the composition of 55 basic h-cubes which
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provides 52 further class-A h-cubes and 132 class-B h-cubes. The mesh generation,
enumeration and the listing of all h-cubes is done automatically.

Theorem 4.41 The 444-velocity model is a regular collision model for which the
space of collision invariants is spanned by ρ, ρvx, ρvy, ρvz, and Ekin.

proof: The 444-velocity model can be obtained by subsequent basic extension (as
defined in definition 4.34) of the basic 216-velocity model (as shown in Fig. 4.8).

Equilibria of the 444-velocity model:

Let f ∈ E444 be the equilibria of the 444-velocity model. Then by the corollary 4.28,
fM ∈ EM for all 120-velocity model M ∈ H444. By choosing the equilibria f ∈ E120

of the 120-velocity models (which has been given by theorem 4.25) as basis, we can
determine the equilibria of 444-velocity model. Denote the equilibria fM0 ∈ EM0 of
the central 120-velocity model (which has been given by theorem 4.25) by

fM0 := zµm|M0κ|M0 (4.155)

and the equilibria of the other twelve 120-velocity model by

fMj := zµm|Mj κ|Mj , j = 1, . . . , 12 (4.156)

Now we have to find the exponents m|Mj of µ and κ|Mj for j = 1, . . . , 12. From the
remark 4.33, since the corollary 4.26 is holds true for the basic 216-velocity model,
then by symmetry of the 444-velocity model, the corollary 4.26 also holds true for
the 444-velocity model. Thus by using the corollary 4.26 we can easily find the
exponent m|Mj of µ for j = 1, · · · , 12. From the construction of the 444-velocity
model, it is evident that

κ|Mj = κ|M0 × rj

where for j = 1, . . . , 12,

rj = κ2
0+, κ2

1+, κ2
2+, κ2

0−, κ2
1−, κ2

2−, κ2
3+, κ2

4+, κ2
5+, κ2

3−κ2
4−, κ2

5−

respectively. Then the equilibria f ∈ E444 is given by

f =
⋃
M

fM for all M ∈ {M0, . . . , M12}. (4.157)



Chapter 5

3D Numerical experiments

We present numerical results based on the hexagonal grid model in R3 by using the
120-velocity model (M1) and the 444-velocity model (M2), described in the previous
chapter. We mention here that the 120-velocity model is based on both binary and
ternary collision law whereas the 444-model is based on only binary collision law.

In the first section we compute the equilibria for both the models M1 and M2 and
compare the discrete equilibria with the corresponding maxwellian which leads to
calculate errors due to boundary cuts.

In the next section, we demonstrate the numerical solution of the Boltzmann equa-
tion. In the case of space homogeneous case, for maxwell molecule, we compare the
numerical solutions with the exact solution due to Wu and Krook [51] and perform
relaxation problem. For the space inhomogeneous case, we present the steady sate
solution for a standard test problem.

5.1 Discrete equilibria

We compute the equilibria e for the models M1 and M2 given respectively by The-
orem 4.25 and by equation (4.157). Figure 5.1(a,b) show the equilibria restricted to
the mid horizontal cut of the models M1,M2 respectively. In a constant temperature
(µ = 0.23), for both the models M1,M2, the first figures are showing equilibrium
distribution e for zero bulk velocities (i.e. for κ0+ = κ2+ = κ3+ = 1) but in the
second figures we consider κ2+ = 5, κ0+ = κ3+ = 1.
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Fig. 5.1 Equilibria restricted to the mid horizontal cut

We compare this discrete equilibria e with the corresponding maxwellian

m =
ρ

(2πT )3/2
exp(

−(v − v̄)2

2T
) (5.1)

by computing the error

err := ‖e−m‖1. (5.2)

In order to restrict the error err < 0.01, in the case of zero bulk velocity (κ0+ =
κ2+ = κ3+ = 1), we find the range of the temperature T as shown in the table 5.1.
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Model µ T
M1 0.19-0.24 0.61-0.69
M2 0.19-0.50 0.61-1.47

Table 5.1: For err < 0.01
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Fig. 5.2 Temperature T (µ) at zero bulk-velocity

Fig. 5.2 and Table 5.1 shows the temperature T corresponding to some given values
of µ, for the model M2.

µ 0.2 0.225 0.250 0.275 0.300 0.325 0.350 0.375 0.400 0.425 0.450 0.475 0.5
T 0.6325 0.678 0.727 0.778 0.833 0.89 0.95 1.02 1.09 1.165 1.246 1.333 1.427

Table 5.2: Temperature T (µ) at zero bulk-velocity

Now for the fixed temperature T (0.2) = 0.63 we observe the change of bulk-velocity
w.r.to κ0+, κ2+, κ3+. It is evident that
(i) vx < 0, = 0, > 0, according as κ0+ < 1, = 1, > 1 respectively.
(ii) vy < 0, = 0, > 0, according as κ2+ < 1/

√
κ0+, = 1/

√
κ0+, > 1/

√
κ0+

respectively.
(iii) vz < 0, = 0, > 0, according as κ3+ <

√
κ0+, =

√
κ0+, >

√
κ0+ respectively.

Thus, for required values of (vx, vy, vz), first fixing the value of κ0+ we can fix the
values of κ2+, κ3+.
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Fig. 5.3 Velocity components vx(κ0+), vy(κ2+), vz(κ3+).

Let us now first fix vy = vz = 0 by the above conditions (ii) and (iii) respectively,
and vary κ0+ ∈ [0.2, 15] then we obtain vx as shown by the first of the Fig. 5.3. Sim-
ilarly for varying κ2+ and κ3+ in the same domain we obtain the profiles respectively
for vy and vz as shown by the second and third of the Fig. 5.3. As the temper-
ature and bulk-velocity components are monotonically increasing with respect to
the corresponding parameters, thus for required temperature and bulk velocities
we can determine the corresponding parameters by the same method given by the
Algorithm 3.1 in the chapter 3.

5.2 Solution of the Boltzmann equation

As a demonstration of the solution of the space homogeneous Boltzmann equation
we present here (A) Comparison of the numerical solution with the exact solution
of the Boltzmann equation due to Krook and Wu [51], (B) The relaxation problem.

5.2.1 The space homogeneous case

(A) Comparison with Exact solution

The exact solution of the space homogeneous Boltzmann equation for mexwell
molecules is due to Wu and Krook [51] and is stated by the equation (3.3) in chapter
3. We compute the solution of the space homogeneous Boltzman equation with the
model M1 and M2 by using the fourth order Runge-Kutta scheme and this solution
fh is compared with the exact solution f for the two models.



Solution of the Boltzmann equation 125

20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

6

7

8
x 10

−4

time

e
rr

M
1
:120−velocity model

50 100 150 200 250 300 350 400
0

1

2

3

4

5

6

7

8
x 10

−4

time

e
rr

M
2
: 444−velocity model

Fig. 5.4 Comparison with exact solution.

Fig. 5.4 shows the relative error

err =
‖f − fh‖1

‖f‖1

(5.3)

for the models M1 and M2.

In both the cases we used the same temperature and as expected the error of M2

is much less than that of M1. In large time, the error of M2 is very near to zero
and for both the models the errors are quite comparable with error which has been
given by the equation 5.2 in the section 5.1.

(B) The Relaxation problem

Our test case here concerns the relaxation of a spatially homogeneous distribution
to its equilibrium. We consider a gas of identical hard sphere molecules so that, for
each h-cubes H, the collision frequency

γH = πd2 × diam(H)

where d is the diameter of the molecules. The given value of the diameter d is re-
lated to determine the viscosity coefficient as well as the mean-free-path as already
described by the equations (3.4), (3.5). We perform the relaxation of space homo-
geneous problem based on the 444-velocity model and verify the physical properties
of the numerical solution. We have chosen the initial density (Fig. 5.5(a) shows the
initial density restricted to the 0-level horizontal cut of the model) as the composi-
tion of two equilibria centered at two different points on the grid and of the same
width. Fig. 5.5(b) shows the solution at final sate restricted to the 0-level horizontal
cut and Fig. 5.6 shows the time evolution of the H-functional.
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Fig. 5.5 Relaxation problem based on the 444-velocity model.
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Fig. 5.6 Time evolution of entropy in the relaxation problem.

These results are completely consistent with the basic features of kinetic theory
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which has been described in chapter 4. i.e. Mass, momenta, kinetic energy are
invariants and the time evolution of the H-functional is monotonically decreasing.

5.2.2 Space inhomogeneous case

We present the solution of the space inhomogeneous Boltzmann equation based on
the 444-velocity model. We used hard sphere molecules and our test problem here
is the heat transfer problem between two parallel plates. We used the classical
operator-splitting method for the computation of the solutions which is consists of
splitting the equation into transport and collision steps. For the transport step we
used a finite difference scheme and for the collision step we used the fourth order
Runge-Kutta scheme.

Heat transfer between two parallel plates

We consider a hard sphere gas between two parallel infinite plates placed at a dis-
tance L and having uniform wall temperature T0 = 0.9 and T1 = 1.35 at x = −L/2
and x = L/2 respectively. We impose diffuse reflection boundary condition on both
the walls with density ρ = 1 and bulk-velocity ṽ = 0. In our calculation, the dis-
cretization parameter of the velocity space ∆v = 1, the Knudsen number Kn = λ/L,
where λ is the mean free path.
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Fig. 5.7 Heat transfer problem by the 444-velocity model.

Fig. 5.7 shows the temperature profile (the solid line) and the pressure distribution
(the dotted line). We know from the Navier-stokes theory that the temperature
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profile between the two plates is a straight line connecting the two wall temperatures
T0 and T1. However, due to the description of the considered gas by kinetic equation
and boundary conditions, we obtained the expected temperature jump as well as the
kinetic boundary layers. As we also know from the theory of steady Couette flow
(can be seen in [26], equation (2.3.6)) that the pressure is constant throughout the
spatial domain between the plates, we obtained almost a constant pressure profile
except little boundary effect. Thus we see that our 3D model is capable enough to
determine the behavior of the test problems.



Appendix A

On the equilibria for the 3D model
based on both binary and ternary
collision law

We present here a lemma describing the property of equilibria restricted to the
0-level horizontal cut of a 81-velocity model. The proof the lemma is shown by
symbolic calculation in maple.

Lemma A.1 The equilibria f ∈ E|vz=0 as presented by (4.88) of the 81-velocity
model is a smooth four-dimensional manifold.

Proof: The equilibria f ∈ Evz=0 is given by (4.88). We will show that (r(k), κ
(k)
0+, κ

(k)
2+, k =

1, . . . , 7) can be uniquely parameterized by quadrupel (κ
(1)
0+, κ

(1)
2+, r(1), r(2)). With

this end, we search for common nodes in any two hexagons and then equate the
densities at the common nodes and make all possible substitution for the rest of
(κ

(1)
0+, κ

(1)
2+, r(1), r(2)). We have as

5 ∈ H1 ∩H2,

κ
(2)
2+ =

r(1)

r(2)κ
(1)
2+

, (1.1)

0 ∈ H1 ∩H3,

κ
(3)
0+ =

r(3)

r(1)κ
(1)
0+

, (1.2)

13 ∈ H2 ∩H3, so solving r(2)κ
(2)
1+ = r(3)κ

(3)
1−,

κ
(3)
2+ =

κ
(1)
0+κ

(1)
2+

κ
(2)
0+

, (1.3)
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collision law

25 ∈ H3 ∩H4, solving r(4)κ
(4)
2− = r(3)κ

(3)
2+,

κ
(4)
0+ =

r(3)

r(1)κ
(2)
0+

, (1.4)

1 ∈ H1 ∩H4, solving r(4)κ
(4)
1− = r(1)κ

(1)
1+,

κ
(4)
2+ =

r(4)κ
(2)
0+

r(3)κ
(1)
0+κ

(1)
2+

, (1.5)

23 ∈ H3 ∩H6, solving r(5)κ
(5)
0+ = r(3)κ

(3)
0+,

κ
(5)
0+ =

r(3)2

r(1)r(5)κ
(1)
0+

, (1.6)

33 ∈ H4 ∩H6, solving r(5)κ
(5)
1+ = r(4)κ

(4)
0+,

κ
(5)
2+ =

r(4)κ
(1)
0+

r(3)κ
(2)
0+

, (1.7)

36 ∈ H4 ∩H6, solving r(5)κ
(5)
2+ = r(4)κ

(4)
0−,

r(5) =
r(1)κ

(2)
0+

2

κ
(1)
0+

, (1.8)

3 ∈ H1 ∩H6, solving r(5)κ
(5)
0− = r(1)κ

(1)
0−,

r(3) = r(1)κ
(2)
0+

2
, (1.9)

14 ∈ H2 ∩H6, solving r(5)κ
(5)
1− = r(2)κ

(2)
0−,

r(4) =
r(1)2κ

(2)
0+

4

r(2)κ
(1)
0+

2 , (1.10)

12 ∈ H2 ∩H6, solving r(5)κ
(5)
2− = r(2)κ

(2)
0+

r(2)κ
(2)
0+ = r(2)κ

(2)
0+, (1.11)

From (1.8), · · · , (1.10) we substitute r(5), r(3), r(4) in the equations (1.2), · · · , (1.7)

and we see that (r(k), κ
(k)
0+, κ

(k)
2+, k = 1, . . . , 5) is parameterized by (κ

(1)
0+, κ

(1)
2+, r(1), r(2))

with one additional parameter κ
(2)
0+. We proceed further,
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as 36 ∈ H4 ∩H5, solving r(6)κ
(6)
0+ = r(4)κ

(4)
0−,

κ
(6)
0+ =

r(1)2κ
(2)
0+

3

r(2)r(6)κ
(1)
0+

2 , (1.12)

2 ∈ H1 ∩H5, solving r(6)κ
(6)
2− = r(1)κ

(1)
2+,

κ
(6)
2+ =

r(6)

r(1)κ
(1)
2+

, (1.13)

24 ∈ H3 ∩H7, solving r(7)κ
(7)
0+ = r(3)κ

(3)
1+,

κ
(7)
0+ =

r(1)κ
(1)
2+κ

(2)
0+

3

r(7)
, (1.14)

34 ∈ H4 ∩H7, solving r(7)κ
(7)
1+ = r(4)κ

(4)
1+,

κ
(7)
2+ =

r(1)2κ
(2)
0+

5

r(2)2κ
(1)
0+

5
κ

(1)
2+

2 , (1.15)

43 ∈ H5 ∩H7, solving r(7)κ
(7)
2+ = r(6)κ

(6)
1+,

r(7) =
r(6)r(2)κ

(1)
0+

3
κ

(1)
2+

r(1)κ
(2)
0+

2 , (1.16)

46 ∈ H5 ∩H7, solving r(7)κ
(7)
0− = r(6)κ

(6)
1−,

r(6) =
r(1)2κ

(2)
0+

4

r(2)κ
(1)
0+

4 , (1.17)

4 ∈ H1 ∩H7, solving r(7)κ
(7)
1− = r(1)κ

(1)
1−,

κ
(2)
0+ =

√
r(1)r(2)κ

(1)
0+κ

(1)
2+

r(1)
, (1.18)

13 ∈ H2 ∩H7, solving r(7)κ
(7)
2− = r(2)κ

(2)
1+,

√
r(1)r(2)κ

(1)
0+ =

√
r(1)r(2)κ

(1)
0+, (1.19)

Thus by (1.16), (1.17) we can substitute r(6), r(7) from (1.12), · · · , (1.15) and then

by (1.18) we can substitute κ
(2)
0+’s from (1.3), · · · , (1.17). ¤





Appendix B

On the equilibria for the 3D
hexagonal model based on only
binary collision law

In this appendix, we study the dimension of the equilibria for the model (in R3)
based on only binary collision law. By making symbolic calculation in maple, first
we find that the equilibria of a 120-velocity model is a eleven-dimensional manifold,
then by using the equilibria of this 120-velocity as a basis, we find that the equilibria
of a 177-velocity model (which is the composition of two 120-velocity model) is a
seven-dimensional manifold and finally we find that the equilibria of a 216-velocity
model (which is the composition of three 120-velocity model) is a five-dimensional
manifold.

The list of basic, class-A and class-B h-cubes of a 120-velocity model M0 denoted
by M0

0 ,M0
A,M0

B is given by the array 2.1, 2.2, 2.3 respectively.

M0
0 : =





0 1 2 3 4 5 6 7 8 9 10 11
12 13 14 0 15 16 17 18 19 20 21 22
23 24 25 26 1 14 27 28 29 30 31 32
26 33 34 35 36 2 37 38 39 40 41 42
3 36 43 44 45 46 47 48 49 50 51 52

53 4 46 54 55 56 57 58 59 60 61 62
63 15 5 53 64 65 66 67 68 69 70 71
72 73 74 75 76 77 78 79 80 6 18 68
75 81 82 83 84 85 86 87 88 47 7 59
89 90 91 92 81 74 93 94 95 37 28 8
96 97 98 99 100 101 9 51 42 102 103 104

105 106 107 96 108 109 20 10 32 110 111 112
113 108 101 114 115 116 69 61 11 117 118 119

(2.1)
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M0
B : =





12 23 26 3 53 63 72 75 89 96 105 113
13 24 33 36 4 15 73 81 90 97 106 108
14 25 34 43 46 5 74 82 91 98 107 101
0 26 35 44 54 53 75 83 92 99 96 114

15 1 36 45 55 64 76 84 81 100 108 115
16 14 2 46 56 65 77 85 74 101 109 116
17 27 37 47 57 66 78 86 93 9 20 69
18 28 38 48 58 67 79 87 94 51 10 61
19 29 39 49 59 68 80 88 95 42 32 11
20 30 40 50 60 69 6 47 37 102 110 117
21 31 41 51 61 70 18 7 28 103 111 118
22 32 42 52 62 71 68 59 8 104 112 119

(2.2)

M0
A : =





19 27 28 8 6 18 73 74 89 1 14 0
8 37 38 49 47 7 81 82 92 36 2 3

68 6 7 59 57 67 76 85 75 4 5 53
22 20 10 11 69 70 15 5 0 108 109 113
11 9 51 52 60 61 4 46 3 100 101 114
32 30 41 42 9 10 1 2 26 97 107 96
12 24 34 44 55 65 78 87 95 102 111 119

(2.3)

where each row of the array’s represent a h-cube
H := (πH

0 , πH
1 , πH

2 , πH
3 , πH

4 , πH
5 , πH

6 , πH
7 , πH

8 , πH
9 , πH

10, π
H
11). Let H(k), k = 0, . . . , 31, de-

note all the 32 h-cubes of the 120-velocity model, the first one in the array (2.1),. . . ,
the bottom one in the array (2.3) respectively.

Proposition B.1 The equilibria f ∈ E|M0 of a 120-velocity model is an 11-dimensional
manifold.

proof: Suppose f ∈ E|M0 . Then from proposition 4.27, we have

f
πH(k)
0

f
πH(k)
3

= f
πH(k)
1

f
πH(k)
4

= f
πH(k)
2

f
πH(k)
5

= f
πH(k)
6

f
πH(k)
9

= f
πH(k)
7

f
πH(k)
10

= f
πH(k)
8

f
πH(k)
11

for H(k) ∈ M0
0 ∪M0

A ∪M0
B for each k = 0, . . . , 30. (2.4)

Now, we make the ansatz

f
πH(k)
0

: = a
(k)
0 , f

πH(k)
3

:= a
(k)
1 , f

πH(k)
1

:= a
(k)
2 , f

πH(k)
2

:= a
(k)
3 , f

πH(k)
6

:= a
(k)
4 ,

f
πH(k)
7

:= a
(k)
5 , f

πH(k)
8

:= a
(k)
6 and consequently (2.5)

f
πH(k)
4

:=
a

(k)
0 a

(k)
1

a
(k)
2

, f
πH(k)
5

:=
a

(k)
0 a

(k)
1

a
(k)
3

, f
πH(k)
9

:=
a

(k)
0 a

(k)
1

a
(k)
6

,

f
πH(k)
10

:=
a

(k)
0 a

(k)
1

a
(k)
7

, f
πH(k)
11

:=
a

(k)
0 a

(k)
1

a
(k)
8

.

There are common nodes among H(k)’s. e.g. πH(0)

0 = πH(1)

3 implies a
(1)
1 = a

(0)
0 ,

πH(0)

1 = πH(3)

4 implies a
(2)
2 = (a

(2)
0 a

(2)
1 )/a

(0)
2 and so on. Implementing such ansatz suc-

cessively in maple, it is seen that all the parameters a
(k)
i , i = 0, . . . , 6; k = 0, . . . , 30,
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can be uniquely determined by the set of the eleven parameters:{
a

(0)
0 , a

(0)
1 , a

(0)
2 , a

(0)
4 , a

(1)
0 , a

(1)
2 , a

(1)
3 , a

(1)
4 , a

(1)
5 , a

(2)
0 , a

(2)
6

}
.

Finally, re-denoting a
(0)
i := ai, a

(1)
i := bi, a

(2)
i := ci, f = (fi)

119
i=0 is obtained in terms

of the eleven parameters
{

a0, a1, a2, a4, b0, b2, b3, b4, b5, c0, c6

}
as

f =
[

a0, a2,
a2
√

a1√
a0

, a1,
a0a1

a2
,

√
a1a

3
2
0

a2
, a4,

√
a0a1a4
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,
a2a4

a0
,
a0a1

a4
,
a

3
2
0

√
a1

a4
,
a2
0a1

a2a4
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b0a0
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b0a0

b3
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a2

√
a1b0a4
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,
b0a0

b4
,
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√
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√
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√
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√
b0

a2a4
,
b0a1

c0
,
a0a

3
1c0

a4
2

,
b0a

3
1

a3
2

,
a0a

2
1b0

a2
2b3

,

√
b0a

3
2
1 a4

a2
2

,
b5a

5
2
1

√
b0

a0a2
2

,
a2
2b0a1a

2
4

a4
0c6

,
a

5
2
1 a0

√
b0

a2
2a4

,
a

3
2
1 a2

0

√
b0

a2
2b5

,

a3
1a

5
0c6

a6
2a

2
4

,
a1a

3
0c0

a4
2

,
a2
1a

2
0b2

a4
2

,
a

3
2
1 a

3
2
0 b0

a3
2

,
b

3
2
0 a2

4

√
a1

b4a2
2

,
a4
√

a0a1

√
b0

a2
2

,
a4
0

√
a1c6

a4
2

√
b0

,
a

3
2
1 a3

0b4

a2
2a

2
4

√
b0

,
a1a

5
2
0

√
b0

a2
2a4

,

a1b0

√
a1b0

a0c6
,

b
3
2
0 a2

2a
2
4√

a1a3
0c0

,

√
b0a2a

2
4√

a1a2
0

,

√
b0a

2
2a

2
4

b3
√

a1a2
0

,

√
a1a

2
4c0

a2
2

√
b0

,

√
b0a

2
4

√
a1

a0a2
,

√
b0
√

a1a
2
4b3

a2
2a0

,
b0a

3
4

a3
0

,
b0a

4
4

a3
0b5

,

b
3
2
0 a4

2a
4
4√

a1a7
0c6

,
a2
4b2
√

a1

a2
0

√
b0

,
a2a

2
4

√
b0a1

a
7
2
0

,
a

3
2
1 b

3
2
0 a2

2a
2
4

a5
0c0

,
a

3
2
1 a2

4b
3
2
0

a3
0b2

,
a2
4a1

√
b0

a
3
2
0 a2

,
a1a

2
4b4

a3
0

,
a

3
2
1 a3

4b0

a
9
2
0

,
a1a

2
4c6

a2
2a0

,

√
b0a

2
2a

2
4√

a1a3
0

,

b
3
2
0 a4

2a
2
4√

a1a5
0b2

,

√
a1

√
b0a

2
2a

2
4b3

a5
0

,
a2
2

√
b0
√

a1a
2
4

a4
0

,
b

3
2
0 a2

2a
4
4√

a1a5
0b4

,

√
a1

√
b0a

2
2a

2
4b5

a5
0

,
a3
2a

3
4b0

a6
0

,
a

3
2
1 a3

0c0

a2
2

√
b0a2

4

,
a2

√
b0a

3
2
1

a2
4

,

b3a
5
2
1

√
b0

a0a2
4

,
a

5
2
1 b

3
2
0 a2

2

a2
0a

2
4c0

,
a

5
2
1

√
b0a0

a2a2
4

,
a

3
2
1

√
b0a

2
0

a2
4b3

,
a3
1b0

a3
4

,
a2
1a0b0

a2
4b5

,
a

5
2
1 a2

2b
3
2
0

a2
4a

2
0c6

,
b

3
2
0 a2

2

√
a1

a2
4c0

,
a2
2b

3
2
0

√
a1

a2
4b2

,
a2
√

a0a1

√
b0

a2
4

,

a
3
2
1 a3

0b2

a2
2a

2
4

√
b0

,

√
b0a1a

5
2
0

a2a2
4

,
a2
1a

2
0b4

a4
4

,
b0a

3
2
1 a

3
2
0

a3
4

,
a2
1a

6
0c6

a4
2a

4
4

,

√
b0a

3
2
1 a3

0

a2
2a

2
4

,
a2
0a

5
2
1

√
b0

a2
2a

2
4

,
b

3
2
0 a

5
2
1 a2

0

a2
2a

2
4b2

,
a

5
2
1

√
b0a

3
0b3

a4
2a

2
4

,
b

3
2
0 a

5
2
1 a2

0

a2
2a

2
4b4

,

√
b0a

5
2
1 a3

0b5

a2
2a

4
4)

,
b0a

3
1a

3
0

a3
2a

3
4

]
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The list of the basic h-cubes of the next two 120-velocity models with centers at the
center of H(1) and H(2) respectively is given as in the following array.

M1
0 : =





12 13 14 0 15 16 17 18 19 20 21 22
120 121 122 12 123 124 125 126 127 128 129 130
131 132 133 23 13 122 134 135 136 137 138 139
23 24 25 26 1 14 27 28 29 30 31 32
0 1 2 3 4 5 6 7 8 9 10 11

63 15 5 53 64 65 66 67 68 69 70 71
140 123 16 63 141 142 143 144 145 146 147 148
149 150 151 72 152 153 154 155 156 17 126 145
72 73 74 75 76 77 78 79 80 6 18 68

157 158 159 89 73 151 160 161 162 27 135 19
105 106 107 96 108 109 20 10 32 110 111 112
163 164 165 105 166 167 128 21 139 168 169 170
171 166 109 113 172 173 146 70 22 174 175 176

(2.7)

M2
0 : =





23 24 25 26 1 14 27 28 29 30 31 32
131 132 133 23 13 122 134 135 136 137 138 139
177 178 179 180 24 133 181 182 183 184 185 186
180 187 188 189 33 25 190 191 192 193 194 195
26 33 34 35 36 2 37 38 39 40 41 42
0 1 2 3 4 5 6 7 8 9 10 11

12 13 14 0 15 16 17 18 19 20 21 22
157 158 159 89 73 151 160 161 162 27 135 19
89 90 91 92 81 74 93 94 95 37 28 8

196 197 198 199 90 159 200 201 202 190 182 29
203 204 205 206 97 107 30 41 195 207 208 209
210 211 212 203 106 165 137 31 186 213 214 215
105 106 107 96 108 109 20 10 32 110 111 112

(2.8)

The node enumeration of M1
0 and M2

0 is the same as M0
0 , i.e πM1

0 = 12, . . . , πM1

119 =
176 and πM2

0 = 23, . . . , πM2

119 = 112. M0∪M1 is a 177-velocity model and M0∪M1∪
M2 is a 216-velocity model.

Proposition B.2 The equilibria f ∈ E|M0∪M1 of a 177-velocity model is a 7-dimensional
manifold.

proof: Suppose f ∈ E|M0∪M1 be an equilibrium solution of the 177-velocity model
M0 ∪M1. Then by corollary 4.28 fM0 and fM1 are the equilibrium solution for M0

and M1 respectively. Let F (a′,b′,c′) denote the equilibria fM1 of the 2nd 120-velocity
model (M1), where F (a,b,c) is the equilibria fM0 of the first 120-velocity model (M0)
given by equation (2.6). Then the composition M0∪M1 contains 11 new parameters
a′i, i = 0, . . . , 4; b′j, j = 0, 2, 3, 4, 5; c′k, k = 0, 6. By exploiting the fact that there
are some common h-cubes between M0 and M1, the new eleven parameters as well
as bj, j = 2, . . . , 5 can be eliminated as follows.
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H0
|M1 = H1

|M0 and so F
(a′,b′,c′)
0,··· ,11 = F

(a,b,c)
12,...,14,0,15,...,22 respectively. Therefore

a′0 = F
(a,b,c)
12 , a′2 = F

(a,b,c)
13 , a′1 = F

(a,b,c)
0 , a′4 = F

(a,b,c)
17 (thus all a′ ’s are eliminated)

b3 =
a′2

√
a′1√

a′0
, b5 =

√
a′0a

′
1a
′
4

a′0
, and (2.9)

F
(a′,b′,c′)
8 = F

(a,b,c)
19 =⇒ b4 =

a2

√
a1b0a4b0

b2a0a1

.

Again H4
|M1 = H0

|M0 and so F
(a′,b′,c′)
3,36,43,...,52 = F

(a,b,c)
0,...,11 respectively. Therefore

F
(a′,b′,c′)
36 = F

(a,b,c)
1 =⇒ b′2 =

a′2
2b′0a

′
1

a′0
2a2

, F
(a′,b′,c′)
43 = F

(a,b,c)
2 =⇒ b′3 =

a′1
2b′0a

′
2
2

a′0
3F

(a,b,c)
2

,

F
(a′,b′,c′)
44 = F

(a,b,c)
3 =⇒ b′0 =

a′0
3F

(a,b,c)
3

a′1
3 , F

(a′,b′,c′)
47 = F

(a,b,c)
6 =⇒ b′4 =

b′0a
′
1a
′
4
2

a′0
2F

(a,b,c)
6

F
(a′,b′,c′)
48 = F

(a,b,c)
7 =⇒ b′5 =

a′1
2b′0a

′
4
2

a′0
3F

(a,b,c)
7

(thus all b′ ’s are eliminated)

(2.10)

Now we eliminate c′0, c′6 and b2 from H3
|M1 = H2

|M0 and so F
(a′,b′,c′)
26,33,...,36,2,37,...,42 =

F
(a,b,c)
23,...,26,1,14,27,...,32 respectively. Therefore

F
(a′,b′,c′)
26 = F

(a,b,c)
23 =⇒ c′0 =

a′2
4b′0

a′0
3F

(a,b,c)
23

, F
(a′,b′,c′)
33 = F

(a,b,c)
24 =⇒ b2 =

(b3
0a

3
1a

2
0)

1
4 a2

a0a1

F
(a′,b′,c′)
39 = F

(a,b,c)
29 =⇒ c′6 =

a′2
6b′

3
2
0 a′4

2
√

a′1
a′0

8F
(a,b,c)
29

(2.11)

Equating the other common nodes between M0 and M1 we obtain identity. Thus we
see that all the new 11 parameters a′i, b

′
i, c

′
i as well as bj, j = 2, . . . , 5 are eliminated.

Thus the remaining parameters are only ai, i = 0, 1, 2, 4; b0, c0, c6 and f ∈ E|177 is a
7-dimensional manifold.

Proposition B.3 The equilibria f ∈ E|M0∪M1∪M2 of a 216-velocity model is a 5-
dimensional manifold.

proof: Suppose f ∈ E|M0∪M1∪M2 be an equilibrium solution of a 216-velocity model
M0∪M1∪M2. Then by corollary 4.28 fM0 , fM1 , fM2 are the equilibria in M0, M1 M2

respectively. Let F (a′,b′,c′) denote the equilibria fM1 and F (ã,b̃,c̃) denote the equilib-
ria fM2 , where F (a,b,c) is the equilibria fM0 given by equation (2.6). Then the
composition M0 ∪ M1 ∪ M2 contains 33 parameters ai, i = 0, 1, 2, 4; bj, j =
0, 2, 3, 4, 5; ck, k = 0, 6; a′i, i = 0, 1, 2, 4; b′j, j = 0, 2, 3, 4, 5; c′k, k = 0, 6 and

ãi, i = 0, 1, 2, 4; b̃j, j = 0, 2, 3, 4, 5; c̃k, k = 0, 6. But in proposition B.2, it is
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already shown that M0 ∪M1 reduced the first 22 parameters to the 7 parameters
ai, i = 0, 1, 2, 4; b0, c0, c6 .

We observe further that H0
|M2 = H2

|M0 and so F
(ã,b̃,c̃)
0,...,11 = F

(a,b,c)
23,...,26,1,14,27,...,32 respectively.

Therefore

F
(ã,b̃,c̃)
0 = F

(a,b,c)
23 =⇒ ã0 = F

(a,b,c)
23 , F

(ã,b̃,c̃)
1 = F

(a,b,c)
24 =⇒ ã2 = F

(a,b,c)
24 ,

F
(ã,b̃,c̃)
3 = F

(a,b,c)
26 =⇒ ã1 = F

(a,b,c)
26 , F

(ã,b̃,c̃)
2 = F

(a,b,c)
25 =⇒ c0 =

(b3
0a

3
1a

2
0)

5
4 a2

2

a4
0a

4
1b

3
0

,

F
(ã,b̃,c̃)
6 = F

(a,b,c)
27 =⇒ ã4 = F

(a,b,c)
27 , F

(ã,b̃,c̃)
8 = F

(a,b,c)
29 =⇒ c6 =

a3
2b

3
4
0 a4

a
7
2
0 a

1
4
1

,

Thus ã’s and c0, c6 are eliminated.

Now H5
|M2 = H0

|M0 gives F
(ã,b̃,c̃)
53,4,46,54,...,62 = F

(a,b,c)
0,...,11 respectively, and so we have

F
(ã,b̃,c̃)
53 = F

(a,b,c)
0 =⇒ c̃0 =

b̃0ã1

a0

, F
(ã,b̃,c̃)
46 = F

(a,b,c)
2 =⇒ b̃3 =

F
(a,b,c)
2 ã2

2

ã2
1

,

F
(ã,b̃,c̃)
55 = F

(a,b,c)
4 =⇒ b̃0 =

F
(a,b,c)
4 ã3

2

ã3
1

F
(ã,b̃,c̃)
58 = F

(a,b,c)
7 =⇒ b̃5 =

F
(a,b,c)
7 ã0ã

2
2

ã
5
2
1

√
b̃0

,

F
(ã,b̃,c̃)
59 = F

(a,b,c)
8 =⇒ c̃6 =

ã2
2b̃0ã1ã

2
4

ã4
0F

(a,b,c)
8

.

From H6
|M2 = H1

|M0 we have

F
(ã,b̃,c̃)
64 = F

(a,b,c)
15 =⇒ b̃2 =

F
(a,b,c)
15 ã4

2

ã2
0ã

2
1

F
(ã,b̃,c̃)
66 = F

(a,b,c)
17 =⇒ b̃4 =

b̃
3
2
0 ã2

4

√
ã1

ã2
2F

(a,b,c)
17

Thus all ã’s, b̃’s ,c̃’s are also eliminated. All other matching nodes gives identity.
Therefore, the equilibria f ∈ E|M0∪M1∪M2 can be uniquely parameterized by the 5
parameters a0, a1, a2, a4, b0. ¤
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Zusammenfassung der Dissertationsschrift

In kompakter Form werden die Hauptergebnisse der diskreten Boltzmann-Gleichung
basierend auf hexagonalen Elementen vorgestellt. Zwecks Lösung dieses Problems
mittels des hexagonalen diskreten Geschwindigkeitsmodells, werden im R2 automa-
tisch beliebig große Sechseckgitter generiert. Zur Identifikation jeder Sechseck-
struktur wird gezeigt, dass der Mittelpunkt eines beliebigen regulären Hexagons
entweder in die Mitte eines Basishexagons fällt oder ein Gitterknoten ist. Wir be-
weisen, dass bei Zugrundelegung des binären Stoßgesetzes der globale Stoßoperator
in einem beschränkten Sechseckgitter in R2 nur eine künstliche Invariante besitzt,
die auch aufgezeigt wird. Wir formulieren ein N -Schicht-Modell zum Aufstellen von
generellen Formeln für alle möglichen regulären Hexagons auf dem Gitter GN dieser
Schicht und beweisen damit ihre Existenz. Dazu bestimmen wir den numerischen
Aufwand (flops) zur Auswertung des Boltzmann Stoßoperator im N -Schicht-Modell.

Weiterhin entwickeln wir die kinetische Theorie der diskreten Boltzmann-Gleichung
für eine hexagonale Diskretisierung in R3. Das hexagonale Stoßmodell in R3 wird
vorgestellt und das lokale Stoßmodell dazu ist ein 12-Geschwindigkeitsmodell
entsprechend den 12 Ecken eines Kubischen Oktahedron (’hexagonaler Kubus’ bzw.
’h-Kubus’). Die Berücksichtigung nur des binären Stoßgesetzes in dem lokalen Stoß-
modell führt hier auf drei künstlichen Invarianten. Aber bei Einbeziehung des Drei-
Teilchen-Stoßgesetzes wird das Auftreten dieser künstlichen Invarianten vermieden.
Wir beweisen, dass das 3D-hexagonale Modell die grundlegenden Eigenschaften der
klassischen kinetischen Theorie erfüllt. Schließlich zeigen wir noch, dass dieses 3D-
Modell der genannten Theorie auch mit dem 2-Teilchen-Stoßgesetz ab dem 216-
Geschwindigkeitsmodell genügt.

Wir präsentieren die Konstruktionen der Gleichgewichtsverteilung für das allgemeine
2D N -Schicht-Modell und für das 3D-Modell, wobei die Gleichgewichtsverteilung
sich auf die Parameter von Masse, Momenten und kinetischen Energie beziehen.
Wir geben dazu numerische Ergebnisse für das 2D als auch 3D hexagonale Modell
an.



Abstract

We present briefly the main results of a discrete Boltzmann equation based on
hexagons. In order to solve the Boltzmann equation by a hexagonal discrete veloc-
ity model, we generate a hexagonal grid in R2 which provides the basic as well as
all possible larger hexagons (on which the local collision models are based) auto-
matically. To identify all these regular hexagons, we prove that the centers of all
regular hexagons constructed by the nodes of the hexagonal grid on R2, is either a
center of the regular basic hexagons or a node of the grid. We also prove that if
we only include binary collision law, then the global collision operator based on any
size of bounded hexagonal grid in R2 provides only one spurious invariant and this
only spurious invariant is identified. We give notion of a N -layer model which is
conducive to find general formulae for all possible regular hexagons contained in the
grid GN of the N -layer model and we prove the existence of all these regular hexagons
in the grid GN . We determine the computational costs (in floating point operation)
for the evaluation of the Boltzmann collision operator based on the N -layer model.

We develop the kinetic theory of a discrete Boltzmann equation based on hexagonal
discretization of R3. A hexagonal collision model in R3 is introduced and the local
collision model in R3 is a twelve-velocity model corresponding to the twelve vertices
of a cub-octahedron (we call ’hexagonal cube’ or abbreviated as ’h-cube’). The
inclusion of only binary collision law in the local collision model produces three
spurious invariants. Thus ternary collision law is imposed to avoid the spurious
invariant. We prove that the 3D hexagonal model satisfies the basic features of the
classical kinetic theory. Finally, we prove that the basic kinetic features are satisfied
for the 3D hexagonal model based on only binary collision law and for this our basic
regular collision model is a 216-velocity model.

We present constructions of the equilibrium distribution for the 2D (for the general-
ized N -layer model) and the 3D hexagonal model where the equilibria is described
by the parameters characterizing mass, momenta and kinetic energy. We present
numerical results based on both 2D and 3D hexagonal collision model.
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