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The same thrill, the same awe and mystery, comes again

and again when we look at any question deeply enough.

With more knowledge comes a deeper, more wonderful

mystery, luring one on to penetrate deeper still. Never

concerned that the answer may prove disappointing,

with pleasure and confidence we turn over each new

stone to find unimagined strangeness leading on to more

wonderful questions and mysteries – certainly a grand

adventure!

Richard Feynman (1908–1988), Nobel Prize in Physics 1965

Excerpt from a public address “About The Value of Science” given

at the 1955 autumn meeting of the National Academy of Sciences

Published in Feynman (1988)

Success is nothing more than going from failure to failure

with undiminished enthusiasm.

Winston Churchill
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Zusammenfassung

Kolassa, I.T. (2004). Kortikale Korrelate der Verarbeitung gefürchteter und furcht-

relevanter Reize. Befunde ereigniskorrelierter Potenziale bei Phobikern und Nicht-

Phobikern. Dissertation. Fakultät für Sozial- und Verhaltenswissenschaften. Friedrich-

Schiller-Universität, Jena.

Diese Arbeit untersucht die elektrokortikalen Korrelate der Verarbeitung gefürchteter

und furcht-relevanter Reize bei Spinnenphobikern und nicht-spinnenängstlichen Perso-

nen. Drei Studien wurden durchgeführt, an denen jeweils drei Gruppen von Versuchs-

personen teilnahmen: Spinnenphobiker, Sozialphobiker und Kontrollpersonen.

Experiment I befasste sich mit den elektrokortikalen Korrelaten der Verarbeitung

furcht-relevanter Reize im bildlichen emotionalen Stroop-Paradigma mit manuellem

Antwortmodus. Die Analyse der Reaktionszeiten zeigte keine emotionale Stroop-Inter-

ferenz bei Spinnenphobikern, die die Farbe von Spinnen identifizierten. Stattdessen

identifizierten Spinnenphobiker Spinnen generell schneller als Vögel oder Blumen, was

konsistent mit einem Aufmerksamkeitsbias für gefürchtete Reize ist. Jedoch identifi-

zierten Spinnenphobiker auch Blumen und Vögel signifikant schneller als Sozialpho-

biker und tendenziell schneller als Kontrollpersonen. Dies weist auf einen zusätzlichen

Hypervigilanz-Effekt bei Spinnenphobikern hin, welcher zu tendenziell schnelleren Ant-

worten bei Spinnenphobikern führte. Parietale spät-positive Komponenten (LPPs) wa-

ren spezifisch bei Spinnenphobikern erhöht, wenn sie ihr phobisches Objekt sahen. Diese

erhöhten LPPs wurden auf den stärker erregenden und unangenehmeren Charakter der

Spinnenbilder für diese Gruppe zurückgeführt. Eine späte frontale Positivierung wurde

zudem bei Spinnenphobikern bei der Farbidentifikation von Spinnen identifiziert. Diese

Positivierung trat nach der Antwort der Versuchspersonen auf und könnte als Korrelat

einer erhöhten attentiven Verweildauer von Spinnenphobikern auf dem gefürchteten

Objekt interpretiert werden. Alternativ ist es möglich, dass die Spinnenphobiker sich
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nicht nur auf die Farbe des Objekts konzentrierten, sondern das Bild auch emotio-

nal verarbeiteten, was zu der erhöhten Positivierung in diesem Latenzbereich führte.

Abschließend lässt sich sagen, dass die Ergebnisse früherer verbaler emotionaler Stroop-

Paradigmen nicht mit Bildreizen repliziert werden konnten, zumindest nicht beim Ge-

brauch eines manuellen anstelle eines verbalen Antwortmodus. Somit sollte die Frage

diskutiert werden, wie stark der Einfluss verbaler Verarbeitungsspezifitäten auf den

emotionalen Stroop-Effekt ist. Dennoch gab es einige Hinweise für einen Aufmerksam-

keitsbias bei Spinnenphobikern für ihr gefürchtetes Objekt, aber dieser Bias drückte

sich in einer schnelleren Detektion bedrohlicher Reize und nicht in einem emotionalen

Interferenzeffekt aus.

Experiment II untersuchte die neuronalen Korrelate der Verarbeitung schematischer

furcht-relevanter Reize im bildlichen emotionalen Stroop-Paradigma. Die schemati-

schen Spinnen- und Blumenbilder bestanden aus identischen grundlegenden visuellen

Elementen und stellten somit ideale Kontrollreize füreinander dar. Wiederum wurde

keine emotionale Stroop-Interferenz bei Spinnenphobikern gefunden. Stattdessen rea-

gierten alle Versuchspersonen signifikant schneller auf Spinnen als auf Blumen. Die

Ergebnisse legen nahe, dass schematische Spinnen furcht-relevante Merkmale beinhal-

ten, für die spezifische Merkmalsdetektoren beim Menschen sensitiv sind, egal ob diese

Personen phobisch sind oder nicht. Bei der Objektidentifizierung reagierten Spinnen-

phobiker generell schneller als Kontrollpersonen und Sozialphobiker, aber sie waren

besonders schnell bei der Identifikation von Spinnen. Somit ließen sich Hinweise für ei-

ne generelle Hypervigilanz sowie für einen Aufmerksamkeitsbias für gefürchtete Reize

bei Spinnenphobikern finden. Alle Versuchspersonen zeigten größere LPPs bei Spinnen

als bei Blumen, jedoch wurde kein zusätzlicher spezifischer Effekt für Spinnenphobiker

gefunden. Die erhöhten Amplituden bei Spinnen sind konsistent mit den unangeneh-

meren und erregenderen Einschätzungen der Spinnen, die in einer Pilotstudie bei allen

Versuchspersonen gefunden wurden. Allerdings bleibt zu erklären, warum Spinnen-

phobiker nicht noch höhere Amplituden für ihr gefürchtetes Objekt zeigten, wie es in

Experiment I gefunden wurde. Vermutlich sind schematische Spinnen weniger furchter-

regend als die realistischeren Spinnenbilder, die in Experiment I verwendet wurden.

Experiment III stellte eine erste Annäherung an eine Antwort auf die Frage dar, welche

Merkmale eine Spinne furcht-relevant machen. Um diese Frage zu untersuchen, wurden

3 Bilderserien à 7 Bildern konstruiert, die beginnend mit dem Bild einer schematischen

Blume (Ankerbild) sich langsam in eine Spinne verwandelten, indem sich die Umrisse

der Blütenblätter der Blume langsam öffneten und dadurch zu Spinnenbeinen wur-
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den. Die Versuchspersonen mussten entscheiden, ob sie in den einzelnen Reizen eher

eine “Spinne”, eine “Blume” oder “Weder/Noch” erkannten. Mit dem ersten Öffnen

der Blütenblätter der Blume wurden die Bilder von Spinnenphobikern als signifikant

unangenehmer und erregender eingeschätzt als von Kontrollpersonen und Sozialphobi-

kern. Der Unterschied zwischen den Gruppen nahm zu, je spinnenähnlicher die Bilder

wurden. Entsprechend kategorisierten Spinnenphobiker die ambiguen Bilder signifikant

häufiger als Spinne als Kontrollpersonen und Sozialphobiker, und ihre Reaktionszeiten

nahmen rasch ab, je spinnenähnlicher die Bilder wurden. Im Gegensatz dazu waren die

Reaktionszeiten der nicht-spinnenängstlichen Gruppen abhängig von der Eindeutigkeit

des Reizes, d.h. je eindeutiger der Reiz, desto schneller die Antwort. Die Ergebnisse die-

ser Studie liefern Hinweise für die Annahme, dass Spinnenphobiker eine stärkere Reiz-

generalisation oder aber einen interpretativen Bias aufweisen: sogar in ambiguen Reizen

sahen Spinnenphobiker eher eine Spinne. Überraschenderweise fanden sich jedoch keine

elektrokortikalen Entsprechungen für die Befunde auf der Verhaltensebene. Die ereig-

niskorrelierten Potenziale (EKPs) spiegelten einen starken Einfluss der Eindeutigkeit

der Reize (bzw. der Äquivokation) wider: die LPPs waren umso größer, je eindeutiger

die Reize. Des Weiteren beeinflusste die Ambiguität der Reize die Rückkehr der EKPs

zur Baseline: ambigue Bilder führten zu längeren Positivierungen. Abschließend lässt

sich sagen, dass es keinen Schwellenwert in der Blume/Spinne-Serie gab, ab dem die

Reize als Spinne wahrgenommen wurden. Stattdessen veränderten sich die Klassifika-

tionen eher kontinuierlich, wobei die Spinnenphobiker früher in der Blume/Spinne-Serie

begannen, eine Spinne in einer Stimuluskonfiguration zu sehen.

Stichwörter: Ambiguität, Angst, Aufmerksamkeit, Aufmerksamkeitsanomalie, Auf-

merksamkeitsbias, bildlicher Stroop, EEG, Eindeutigkeit, EKP, ereigniskorre-

lierte Potenziale, emotionale Interferenz, emotionaler Stroop, Erregung, Furcht,

furcht-relevant, neuronale Korrelate, Reizgeneralisation, schematische Reize, Spin-

nenphobie
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Abstract

Kolassa, I.T. (2004). Cortical Correlates of the processing of feared and fear-relevant

stimuli. Evidence from event-related potential studies comparing phobics and non-

phobics. Dissertation. Faculty of Social and Behavioral Sciences. Friedrich Schiller

University, Jena.

This thesis examines the electrocortical correlates of the processing of feared and fear-

relevant stimuli in spider phobics and non-phobic subjects. Three different experiments

were designed, in each of which three groups of subjects participated: spider phobics,

social phobics, and controls.

Experiment I examined the electrocortical correlates of the processing of fear-relevant

stimuli using a pictorial emotional Stroop paradigm with a manual response mode. Re-

action times showed no emotional Stroop interference in spider phobic subjects when

identifying the color of spiders. Instead, spider phobics identified spiders generally

faster than birds or flowers, which is consistent with an attentional bias for feared

stimuli. However, spider phobics were also significantly faster than social phobics and

tended to be faster than controls in identifying flowers and birds. This hints at an addi-

tional hypervigilance in spider phobics, which leads to a trend towards generally faster

responses in spider phobics. Parietal late positive components (LPPs) were specifically

enhanced in spider phobics when viewing their feared object. These enhanced LPPs

were interpreted as being due to the highly arousing and unpleasant character of spi-

der pictures for this group. In addition, a late frontal positivity was observed in spider

phobics but not in the control groups when subjects identified the color of spiders. This

positivity occurred after the subjects responded and may be interpreted as reflecting an

enhanced attentional dwell-time on the feared object in spider phobics. Alternatively,

it is possible that spider phobics did not only concentrate on the color of the stimuli

but also processed the picture emotionally, leading to the enhanced positivity in this
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latency range. In conclusion, the results of linguistic emotional Stroop paradigms in

anxiety patients were not replicable with pictorial stimuli, at least when using a man-

ual response mode instead of a verbal one. Thus, the question of how strongly verbal

processing specificities influence emotional Stroop effects will need to be addressed in

future studies. Still, there was evidence for an attentional bias in spider phobics for

their phobic object, but this bias was expressed as a more ready detection of threat

rather than as an emotional interference effect.

Experiment II examined the neuronal correlates of the processing of schematic fear-

relevant stimuli in a pictorial emotional Stroop paradigm. Schematic pictures of spiders

and flowers comprised identical basic visual elements, making them ideal control stimuli

for each other. Again, no emotional Stroop interference in spider phobics was found.

Instead, all subjects identified spiders significantly faster than flowers. This suggests

that schematic spiders exhibit fear-relevant features to which feature detectors are

specifically tuned in all humans, whether phobic or not. In the object identification

task, spider phobics were generally faster than controls and social phobics, but they

were particularly fast in the identification of spiders. Thus, there was again evidence

for a general hypervigilance and an attentional bias for the feared object in spider

phobics. All subjects showed larger LPPs in response to spiders compared to flowers,

but no additional spider phobia-specific effects were found. This effect was consistent

with the higher valence and arousal ratings for spiders in all subjects, but it remains

to be explained why spider phobics did not show even larger amplitudes for their

feared object, as was found in Experiment I. Presumably, schematic spiders were not

as frightening as the more realistic spider pictures used in Experiment I.

Experiment III was a first approach to explore the question as to which properties

make a spider fear-relevant. 3 flower/spider series with 7 pictures each were designed

which, starting from the picture of a schematic flower, gradually turned into a spider

by shifting the outlines of the petals, turning them into spider’s legs. The subjects

had to decide whether each stimulus was more similar to a “spider”, a “flower” or

“neither/nor”. With the first opening of the outlines of the petals of the flower anchor,

spider phobics rated the pictures as significantly more unpleasant and arousing than

controls and social phobics. This difference increased the more pictures became similar

to spiders. Accordingly, spider phobics rated ambiguous pictures significantly more

often to be similar to a spider than controls and social phobics, and their reaction

times decreased the more pictures became spider-like. In contrast, in the groups who

did not fear spiders reaction times depended on the ambiguity of the picture, i.e. the
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more unequivocal, the faster the response. In conclusion, this study found further

support for the conjecture that spider phobics show a stronger stimulus generalization

or an interpretive bias: even with ambiguous stimuli, spider phobics were more likely

to see a spider. Surprisingly, no electrophysiological correspondence to the behavioral

effects were found. ERPs reflected a major influence of equivocation: LPPs were larger,

the more unequivocal the picture. Furthermore, ambiguity influenced the return of

ERPs to baseline: more ambiguous pictures led to prolonged positivities. Finally, no

threshold in the flower/spider series was found beyond which stimuli were perceived

as spiders. Instead, the classifications changed in a rather continuous manner, with

spider phobics starting earlier in the flower/spider series to see a spider in a stimulus

configuration.

Keywords: ambiguity, anxiety, arousal, attention, attentional bias, emotional Stroop,

emotional interference, equivocation, ERP, event-related potentials, fear, fear-

relevant, neuronal correlates, pictorial Stroop, schematic stimuli, spider phobia,

stimulus generalization
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1. Introduction

1.1. Fear and Phobias, Anxiety and Anxiety

Disorders

Anxiety and fear are closely related, but anxiety is distinguished from fear. First,

fear relates to a specific feared object, while anxiety is thought of as objectless, more

general and longer-lasting. Second, while fear is a reaction to real danger, anxiety is

often viewed as a reaction to an anticipated or imagined threat. Third, fear is elicited

in situations that can still be coped with. Anxiety results when coping attempts fail,

i.e. when the situation is perceived as uncontrollable (Öhman, 2000a, 2000b).

Admittedly, it is easier to distinguish between fear and anxiety in theory than in

practice. Tables 1.1 and 1.2 illustrate the difference between fear and anxiety listing

their common and distinctive features according to Rachman (1998). Öhman (2000a,

2000b) proposes similar distinctions between fear and anxiety which will be elaborated

in more detail in the following sections.

Fear It has been proposed that we might be biologically “prepared” to easily learn

to fear potentially dangerous stimuli, e.g. spiders/snakes, angry faces, closed spaces

(Öhman, 1986; Seligman, 1971). Fear therefore is a perfectly normal and desirable

reaction to secure survival in the face of real (actual or anticipated) danger and has

been reinforced by evolution.

Fear has several components: the subjective feelings, the peripheral physiological re-

sponses, and the overt behavior. The detection of a potential threat results in freezing

or immobility and enhanced attentiveness toward the environment and the potential

threat stimulus. This is accompanied by a vagally mediated deceleration of the heart
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rate. When an imminent threat is encountered, the sympathetic nervous system be-

comes activated, which leads to heart rate acceleration, an increase in blood pressure,

and circulating catecholamines from the adrenal medulla. Active fight or flight follows.

Several fears can be distinguished, depending on the eliciting situation: fear of physical

stimuli, fear of animals, and social fears.

Fears of physical stimuli can be elicited by simple intense stimuli of any sensory modal-

ity (e.g. extreme noise or heat leading to tissue damage or inducing pain), but also by

complex events (such as lightning and thunder) or evolutionarily relevant situations

(such as heights, small enclosures, wide-open spaces, and light or darkness for noctur-

nal or diurnal species, respectively).

Fears of animals : From an evolutionary perspective, it makes sense that potential

prey species fear their predators, but there is also widespread fear of other potentially

poisonous animals, such as snakes, spiders, or insects. These fears may be better

represented as fear of and disgust for contamination rather than as fear of the animal

itself (Öhman, 2000b).

Social fears are attributed by evolutionary psychology to the dominance structure in

social groups, with fear being part of the submissiveness shown by the dominated group

members when confronting a dominant conspecific. In humans (and other primates)

it denotes a fear of being negatively evaluated, of “losing face” in front of the group

(Öhman, 2000b).

Moderating factors of fear are closeness of the feared object (the closer the feared stim-

ulus, the stronger the fear response), movement of the stimulus (approaching objects

elicit more fear than stationary objects or objects moving away), and predictability

and/or controllability of the feared stimulus. When the situation is too uncontrollable

for active attempts to cope (e.g. escape or avoidance), fear is replaced by anxiety, and

when the organism eventually gives up and becomes helpless, anxiety is replaced by

depression (Öhman, 2000a, 2000b).

Pathological Fears: Phobias When fears become excessive and interfere with nor-

mal adaptive functioning, they turn into phobias. For instance, excessive fear of spiders

is called spider phobia, and excessive fear of social situations that involve evaluation

by others is called social phobia.

Individuals with phobias of small animals respond to phobia-relevant stimuli with both

fear and disgust. Heightened sensitivity to general disgust elicitors has been hypothe-
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� Anticipation of danger or discomfort

� Tense apprehensiveness

� Elevated arousal

� Negative affect

� Uneasiness

� Future-orientation

� Accompanying bodily sensations

Table 1.1.: Similarities between fear and anxiety according to Rachman (1998)

Fear Anxiety

Specific focus of threat Source of threat is elusive

Understandable connection between
fear and threat

Uncertain connection between anxiety
and threat

Usually episodic Prolonged

Circumscribed tension Pervasive uneasiness

Identifiable threat Can be objectless

Provoked by threat cues Uncertain onset

Declines with removal of threat Persistent

Offset is detectable Uncertain offset

Circumscribed area of threat Without clear borders

Imminent threat Threat seldom imminent

Quality of an emergency Heightened vigilance

Bodily sensations of an emergency Bodily sensations of vigilance

Rational quality Puzzling quality

Table 1.2.: Differences between fear and anxiety according to Rachman (1998)
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sized as a potential diathesis factor in the etiology of these phobias (de Jong & Mer-

ckelbach, 1998; Sawchuck, Lohr, Westendorf, Meunier, & Tolin, 2002). The disease-

avoidance model of small animal phobias articulated the idea that fear-relevant, but

non-predatory, animals may be avoided for protection from infection and contamina-

tion rather than from being attacked and physically harmed (Matchett & Davey, 1991;

for further elaboration see Sawchuck, Lohr, Tolin, Lee, & Kleinknecht, 2000).

Anxiety As explained above, anxiety is not an immediate reaction to a specific elic-

iting stimulus but is more general, longer lasting, and even anticipatory. Furthermore,

the threat is often only imagined. Finally, the situation is perceived as uncertain and

uncontrollable, and is therefore accompanied by unpleasant feelings of foreboding.

As for fear, several types of anxiety can be distinguished: situational vs. free-floating

anxiety, somatic overreactivity vs. cognitive anxiety, and trait vs. state anxiety. With

the exception of the distinction between trait vs. state anxiety, the concepts are not

relevant in the context of this thesis and will not be elaborated here (cf. Öhman,

2000a). Trait anxiety is a habitually elevated anxiety. The affected persons never

feel completely free of apprehension and worry. State anxiety on the other hand is a

momentarily enhanced anxiety at a certain point in time (e.g. during a panic attack).

Anxiety Disorders It is important to distinguish normal anxiety in everyday life

from clinical anxiety, which is more intense, recurrent, and persistent. In addition, the

intensity of clinical anxiety is clearly above what is reasonable given the objective dan-

ger. Therefore, it tends to paralyze individuals, leaving them unable to cope with their

situation. Examples of clinically relevant anxiety disorders are Panic Disorder, Gen-

eralized Anxiety Disorder, Posttraumatic Stress Disorder, and Obsessive-Compulsive

Disorder.

Anxiety Disorders According to DSM-IV

DSM-IV (American Psychiatric Association, 1994) does not follow the above distinction

between fear and anxiety exactly. It classifies all these disorders (phobias and anxiety

disorders in the sense described above) as anxiety disorders. However, among the

anxiety disorders, it differentiates between phobias (e.g. Agoraphobia, Social Phobia,

and Specific Phobia) and anxiety states (e.g. Generalized Anxiety Disorder and Panic

Disorder with or without Agoraphobia). Thus, the distinctions are similar in that they
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take into account the situational specificity of phobias and the long-lasting emotional

character of anxiety.

The preconditions for a diagnosis of an anxiety disorder according to DSM-IV are:

� The person must experience intense fear/anxiety of specific objects or situations

that is in no relation to the extent of the actual threat, i.e. the fear/anxiety is

exaggerated and situationally not appropriate or unreasonable.

� The feared object or situations are avoided or endured with great discomfort.

� The condition interferes significantly with the person’s normal routine, occupa-

tion, or social relationships.

Of the different anxiety disorders distinguished by DSM-IV, the specific anxiety dis-

orders (and here in particular spider phobia) as well as social phobia are of particular

importance in this thesis.

Definition of Terminology

Corresponding to the terminology introduced above, phobias are more closely related

to fear than to anxiety, i.e. spider and social phobia are excessive cue-specific fears.

However, social phobia is conceptually also related to anxiety disorders, as this term

has been used in this context. Actually, in the literature the terms “Social Anxiety Dis-

order” and “Social Phobia” are often used interchangeably and lack a clear distinction.

One could also speak of social anxiety disorder if one considers that whether a situa-

tional anxiety is called fear or anxiety depends on the controllability of the situation

(Öhman, 2000a, 2000b). If social phobics cannot avoid a feared situation (e.g. an oral

presentation), they often fail to master it. This again leads to feelings of helplessness.

As detailed above, Öhman predicts that this helplessness (uncontrollability of the sit-

uation) leads to depression. In fact, social phobia is highly comorbid with depression

(Merikangas et al., 1996; Schneier, Johnson, Hornig, Liebowitz, & Weissman, 1992;

Stein et al., 2001).

Finally, in this thesis the term fear-relevant stimulus refers to any stimulus capable

of eliciting a fear response in healthy controls. Examples of fear-relevant stimuli are

angry faces, snakes or spiders. Feared stimuli are stimuli that evoke a phobic response

in individuals with specific phobia. Thus, spiders are feared stimuli for spider phobics,

but not for snake phobics.
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1.1.1. Psychopathology of Spider Phobia

Characteristically, spider phobics display a persistent fear of spiders, an immediate

anxiety response upon exposure, and avoidance of spiders and situations in which

spiders can potentially be encountered. For DSM-IV criteria of Specific Phobia, see

Appendix A.

The physiological correlates of the fear response are characterized by a distinct sympa-

thetic excitation pattern: heart rate acceleration (Fredrikson, 1981; Hamm, Cuthbert,

Globish, & Vaitl, 1997; Sartory, Eves, & Foa, 1987), electrodermal response (Geer,

1966; Öhman & Soares, 1994), an increase in blood pressure (Globisch, Hamm, Es-

teves, & Öhman, 1999) and muscle tonus as well as vasoconstriction of peripheral

blood vessels (Prigatano & Johnson, 1974).

Novel stimuli normally elicit an orienting response, i.e. an initial heart rate decelera-

tion (bradycardia) (Pavlov, 1927; Sokolov, 1966). The heart rate decelerates even more

as the stimuli become more arousing or aversive (Lang, Bradley, & Cuthbert, 1997),

resembling the “fear bradycardia” widely observed in animals (Campbell, Wood, &

McBride, 1997). With a further increment in threat, the response changes from ori-

enting to defense, and the heart rate increases (Graham, 1979; Sokolov, 1963a, 1963b).

While in normal subjects unpleasant pictures rarely prompt a defense reaction, pho-

bics clearly show accelerated heart rates when viewing pictures of their phobic object,

i.e. they typically show a defense reflex which is characterized by a temporary cardiac

deceleration followed by an acceleration (e.g. Hamm et al., 1997).

For example, Hare and Blevings (1975) found that spider phobics showed a pronounced

heart rate acceleration and increases in skin conductance in response to a phobic ob-

ject, while controls showed a normal orienting response. Similarly, Fredrikson (1981)

reported enhanced heart rates and skin conductance in phobics in response to a phobic

object, and this fear reaction did not habituate over trials. Furthermore, Globisch et al.

(1999) showed that, except for the blood pressure change, even very brief presentations

(150 ms) of spider/snake pictures led to the characteristic autonomic response pattern

in phobic subjects.

Epidemiology Fredrikson, Annas, Fischer, and Wik (1996) found that animal pho-

bias (snakes or spiders) had a point prevalence of 12.1% in women and 3.3% in men,

and specific spider phobia was present in 5.6% of women and 1.2% of men. Animal fears

were more intense in younger than in older individuals, which is consistent with the
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results of Agras, Chapin, and Oliveau (1972), who found that the prevalence of animal

phobia slowly declines with age. The onset of animal phobias is typically in childhood

(Marks & Gelder, 1966, Öst, 1987). A gender difference in animal phobia has been

well documented: about 90% of all spider and snake phobics are women (Wittchen &

Perkonnig, 1996).

1.1.2. Psychopathology of Social Phobia

Social phobia is characterized by extreme fear of social interaction and performance

situations. The main symptom, which is also the main fear, is the expectation of

negative evaluation by others. For DSM-IV criteria of Social Phobia, see Appendix A.

People with social phobia fear that they will do or say something embarrassing while

others are watching, be negatively evaluated, or have their excessive anxiety symptoms

noticed. Anxiety symptoms are physiological (e.g. shaking, blushing, sweating) or be-

havioral (stuttering, poor eye contact, mumbling, nail biting, trembling voice) (Albano,

1995; Beidel & Turner, 1998). Because of these persistent fears, social interaction and

performance situations are either avoided or endured with intense discomfort, which

significantly interferes with occupational and private life. Typical feared interaction sit-

uations are approaching or leading conversations with strangers, members of the other

sex, or persons of authority, as well as conversations on the phone, or “hanging out”

with peers. Performance situations are situations in which one acts under observation

or appraisal, e.g. speaking, eating, drinking or writing in public, (oral) examinations,

or giving talks.

Social phobia is classified as either generalized, if the anxiety occurs in most social sit-

uations, or specific, if the anxiety occurs only in specific situations, e.g. public speaking

or eating in public. Newer theories propose a continuous transition from normal or sub-

clinical shyness to clinical social phobia. According to this view subclinical, specific,

and generalized social phobia form a quantitative continuum with avoidant personality

disorder at the extreme end (Stangier & Fydrich, 2002).

Social phobia often follows a chronic course and is associated with poor school and

work performance, school dropout, unemployment, alcohol abuse, and impaired social

relations (Davidson, Hughes, George, & Blazer, 1993; Liebowitz, Gorman, Fyer, &

Klein, 1985; Mullaney & Trippet, 1979; Turner, Beidel, & Larkin, 1986; Wittchen &

Beloch, 1996). People with social phobia are less often married and more likely to be

single (Müller, 2002).
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Epidemiology In a study by Wittchen, Stein, and Kessler (1999), prevalence rates

of social fears and social phobia in adolescents and young adults between 14 to 24

years of age were examined. Lifetime prevalence of social phobia was 9.5% in females

and 4.9% in males, with about one-third being classified as generalized social phobics.

Twelve-month prevalence was only slightly lower, indicating considerable persistence.

Persons with generalized social phobia reported an earlier age of onset, higher symptom

persistence, more comorbidity, more severe impairments, and higher treatment rates

than persons with non-generalized social phobia. In the United States, the National

Comorbidity Survey (Magee, Eaton, Wittchen, McGonagle, & Kessler, 1996) found

12-month and lifetime prevalence rates of social anxiety disorder of 7.9% and 13.3%,

respectively. Heimberg, Stin, Hiripi, and Kessler (2000) reported lifetime prevalence

rates between 5% and 15% in the US. The mean age of onset is between 10 and 17

years (Lieb & Müller, 2002). Rates of social phobia are consistently found to be higher

among women than men (risk factor 1.5 to 2 times higher), higher in younger than in

older age cohorts, and inversely associated with socioeconomic status (Magee et al.,

1996). Presumably, the lower socioeconomic status is a consequence of the disorder,

but the causal relation is not yet clear.

Comorbidity There is consistent evidence that social phobics have a higher risk

than non-social phobics of major depression and dysthymia, other anxiety disorders

(especially simple phobia, agoraphobia and panic disorder), substance abuse (alcohol,

drugs and nicotine), and eating disorders (Merikangas et al., 1996; cf. Lieb & Müller,

2002; Rapaport, Paniccia, & Judd, 1995). These disorders seem to occur mostly sec-

ondarily to social phobia, but this conclusion should be drawn with caution. Due to

the retrospective assessments used in most studies no final conclusions concerning the

temporal relation can be drawn. However, in a prospective, longitudinal epidemiolog-

ical study of adolescents and young adults aged 14-24 years, Stein et al. (2001) found

that social anxiety disorder during adolescence or young adulthood is an important

predictor of subsequent depressive disorders.

1.1.3. Why Should One Study Specific Phobia of Animals?

Specific phobias are the most prevalent of all anxiety disorders, and a significant pro-

portion of sufferers are severely disabled by them. Yet, specific phobias tend to be

less disruptive and disabling, are associated with less comorbidity, and can be treated

faster and easier than other anxiety disorders.
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Because highly effective treatments of animal phobia exist (Öst, 1989; Öst, Salkovskis,

& Hellström, 1991; Thorpe & Salkovskis, 1997b), it is sometimes forgotten that this

progress is a result of intensive research over decades. Animal phobias have played a

particular role in the evolution of the psychological theories of anxiety and its effec-

tive treatment. Behavior therapy, for example, developed for the most part from early

research on animal phobias (Jones, 1924; Wolpe, 1958). The extension of this early

work has been particularly important in the development of cognitive-behavioral treat-

ments (Hawton, Salkovskis, Kirk, & Clark, 1989). Research about animal phobias will

definitely continue to make a major contribution to the understanding of the nature

of fear and the psychopathology of phobias and anxiety disorders, in particular in the

light of the progress made in recent years in the field of electrocortical brain research

and neuroimaging.

The advantage of studying the processing of fear-relevant stimuli in spider phobia

seems obvious: first, spider phobia is a well defined anxiety disorder in which the

phobic object – the spider – is quite clear and therefore easy to depict, e.g. in the

form of pictures or videos. On the other hand, it is comparatively difficult to confront,

e.g. a person with social phobia with a feared, social phobia-specific stimulus in a

laboratory situation. Second, because of the high prevalence rates and the even higher

prevalence of subclinical spider fears, it is relatively easy to recruit spider phobics.

Finally, while social phobia, for example, is often highly comorbid with depression or

avoidant personality disorder (Merikangas et al., 1996; Schneier et al., 1992; Stein et

al., 2001), it is relatively easy to find spider phobics without any comorbid disorder.

One might wonder why social phobics were also included in the studies if the primary

phobia under investigation was spider phobia. This was done for two reasons: first,

social phobics represented a clinical control group in addition to the healthy control

group. While the spider phobics should experience a higher level of arousal when

exposed to spider stimuli, this was comparable to a higher arousal in the social phobics

due to the experimental situation itself. Second, several studies on social phobia were

conducted in our laboratory, which are not discussed in this thesis. In those studies,

the processing of facial expressions in social phobics was investigated with similar

paradigms as the ones described in this thesis. Spider phobics then served as clinical

control group for the social phobics. Therefore, spider phobics and social phobics served

as clinical control groups for each other.
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1.2. Evolution and Phobias

1.2.1. The Unequal Distribution of Fears

It is a consistent finding that specific fears and phobias are unequally distributed. In

the general population, some fears (e.g. of spiders and snakes) are far more prevalent

than others (e.g. of cars, airplanes, electricity), although the danger from the latter is

actually higher. However, the fear-relevant stimuli with high phobia prevalence have

in common that they threatened prehistoric man during the course of evolution: they

are “ancestral” stimuli.

Two different evolutionary theories account for this phenomenon: the first assumes that

phobias of ancestral stimuli are innate fears that require no learning (e.g. conditioning).

This non-associative approach emphasizes, for example, the spontaneous developmental

fears of children (e.g. the visual cliff phenomenon). The second approach holds that

humans are prepared to easily learn to fear ancestral stimuli.

Both approaches will be described in the following sections. For an extensive review of

evolutionary models of phobia and their criticism see Merckelbach and de Jong (1997).

1.2.2. Innate Fears: The Non-Associative Account

Animal fears, among other specific fears, are highly prevalent among younger children

(Öst, 1987). Mild fears which are common among young children (MacFarlane, Allen,

& Honzik, 1954) often seem to appear and disappear spontaneously with a predictable

course (Marks, 1987). In most children, these fears represent transitory phenomena. It

is plausible to argue that in a subgroup of these children, specific fears do not wane with

the passage of time, but instead become chronic phobias that persist into adulthood

(Merckelbach, de Jong, Muris, & van den Hout, 1996).

Importantly, this non-associative account assumes that developmental fears do not rely

on aversive learning experiences but are innate fears. Specific phobias seen in adult

patients echo these early, innate fears (Menzies & Clarke, 1995). But why are we not

all spider phobics in this case? Menzies and Clarke (1993, 1995) emphasize the role

of habituation: poor habituators may remain fearful of innate fear cues. Eventually,

their developmental fears might become chronic and take the form of a specific phobia.

This theoretical account would explain why patients with specific phobias often cannot

remember aversive experiences with the feared object, but frequently report that they
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have always been afraid (Menzies & Clarke, 1993, 1994, 1995). However, for a critical

comment on this theory, see Mineka and Öhman (2002a).

1.2.3. Preparedness Theory

In 1971, Seligman introduced his preparedness hypothesis, according to which the

unequal distribution of fears is caused by an evolutionary predisposition which facilitates

the acquisition of fears by Pavlovian conditioning. This preparedness hypothesis would

explain why highly aversive experiences that do not relate to our biological inheritance

(e.g. car accidents) only rarely produce phobias (Rachman, 1977).

Seligman’s theory leads to four important predictions: first, phobias concern mostly

phylogenetically relevant stimuli, i.e. stimuli that were dangerous to pretechnological

men. Second, fear of these stimuli is easily acquired. Third, since phobic fears have

biological significance they are non-cognitive, and finally, they are relatively resistant

to extinction.

The first prediction is difficult to prove. However, retrospective studies of phobic

subjects indicate that a majority of phobias involves stimuli that can be interpreted

as dangerous to pretechnological man (Silva, 1988; Silva, Rachman, & Seligman, 1977;

Zafiropoulou & McPherson, 1986).

The second prediction has been tested using the illusory correlation paradigm intro-

duced by Tomarken, Mineka, and Cook (1989). In this experiment, subjects are shown

slides of phylogenetically relevant stimuli (e.g. spiders or snakes) and phylogenetically

irrelevant stimuli (e.g. flowers or mushrooms). Each presentation is followed either by

an aversive outcome (an electric shock) or one of two neutral outcomes (a neutral tone

or nothing at all). All cue-outcome combinations occur equally often. After the exper-

iment, subjects are asked to estimate the association between phylogenetically relevant

cues and aversive outcomes which they generally overestimate (de Jong & Merckel-

bach, 1991; de Jong, Merckelbach, & Arntz, 1995; Kennedy, Rapee, & Mazurski, 1997;

Tomarken et al., 1989).

Furthermore, evidence for the easier acquisition of fears of ancestral stimuli comes from

studies examining the acquisition of fears in rhesus monkeys. Mineka and colleagues

(Mineka, 1987; Cook & Mineka, 1993; Mineka & Cook, 1993) designed two different

videotapes. One displayed a wild-reared monkey (a “model”) showing fear towards a

phylogenetically relevant stimulus (i.e. a snake). The other displayed a model showing

identical fear towards a phylogenetically irrelevant stimulus (i.e. a flower). They then
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showed these videotapes to laboratory-reared monkeys (“observers”) with no prior fear

of snakes and found that observers acquired an extremely persistent fear of snakes after

they had observed models reacting fearfully to snakes. On the other hand, observers

that had seen models exhibiting identical fears of flowers failed to acquire a fear of

flowers.

Concerning the third and fourth prediction, Öhman and associates found that con-

ditioned skin conductance responses to phylogenetically relevant cues are harder to

extinguish than those to phylogenetically irrelevant cues (Öhman, 1986; Öhman, Dim-

berg, & Öst, 1985; Öhman, Fredrikson, & Hugdahl, 1978). Furthermore, extinction of

conditioned responses to phylogenetically irrelevant cues was speeded up by cognitive

instructions that no more shocks will be applied and by removal of shock electrodes.

This was not the case for phylogenetically relevant cues (see review of Öhman & Hug-

dahl, 1979).

In addition, Öhman and Soares (1993, 1994) showed that phylogenetically relevant

stimuli that are presented subliminally (i.e. outside conscious awareness) can elicit a

fear response in form of a skin conductance response. In one experiment (Öhman &

Soares, 1993), non-phobic subjects reacted with a skin conductance response to back-

wardly masked pictures of snakes or spiders when these pictures were previously paired

with an aversive shock. In contrast, phylogenetically irrelevant stimuli that had been

paired previously with an aversive shock and which were presented subliminally failed

to elicit a conditioned response. In a second study (Öhman & Soares, 1994), spider-

fearful, snake-fearful, and control subjects were shown pictures of spiders, snakes, flow-

ers, or mushrooms for 30ms. Stimuli were masked backwardly at stimulus offset. The

authors claim that under these conditions, subjects are not able to identify the slides

better than by guessing. Nonetheless, spider fearful and snake-fearful subjects showed

skin conductance responses to their specific feared object whereas controls showed no

physiological reaction to the fear-relevant slides. These findings have been interpreted

as evidence for a rough, preattentive processing of phylogenetically relevant stimuli

which is sufficient to elicit a fear response.

Merckelbach and de Jong (1997) criticize some assumptions of the preparedness theory.

First, they argue that there is evidence that humans do easily develop fears of objects

that have only recently in the history of our species started to pose a threat. For

example, a substantial proportion of car accident survivors develops a phobia related

to driving a car (Kuch, Cox, Evans, & Shulman, 1994). Second, they argue that

researchers have idiosyncratic views of what constitutes a phylogenetically relevant
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stimulus. While, for example, Regan and Howard (1995) considered slides of dogs

and cats as phylogenetically relevant, Dawson, Schell, and Banis (1986) used these

pictures as neutral filler stimuli. Delprato (1980) also claims that it is doubtful whether

mushrooms, used for example by Öhman and coworkers, are actually phylogenetically

irrelevant stimuli: “considering the fact that approximately 100 species of poisonous

mushrooms have been identified in USA alone. . . , it is reasonable to suspect that

mushrooms have posed a greater threat to the survival of the human species than have

spiders and snakes combined” (p. 89).

In conclusion, there are arguments supporting an innate origin of fears as well as

arguments favoring a preparedness to easily learn to fear certain ancestral stimuli.

The discussion remains unsolved. Decisive evidence might come from future studies

investigating the processing of fear-relevant stimuli in toddlers.

1.3. Cognitive Biases in Anxiety Disorders

The areas of empirical study of biases in anxiety disorders can be broadly categorized

as biases affecting the three general stages of information processing (1) attention and

the encoding of information; (2) elaboration and interpretation; and (3) storage and

retrieval from memory (Cameron, 1997; Mathews & MacLeod, 1987). Each of these

biases, the attentional bias, the interpretive bias and the memory bias, will be briefly

described in turn.

Cognitive biases have been assumed to play an important role in the causation and

maintenance of anxiety disorders as well as of depression. However, the biases described

in the literature do not apply equally to all anxiety disorders, as will become obvious in

the following overview. There is evidence that anxiety disorders differ as to how threat-

ening information is processed. Since the focus of this thesis is on the attentional bias

in animal phobia, the other biases will be described only briefly to give an impression of

the complexity of research in this field. For more detailed overviews of cognitive biases

in anxiety disorders see, e.g. Mathews and Mackintosh (1998), MacLeod and Math-

ews (1991b), McNally (1996), Merckelbach et al. (1996) and Williams, Mark, Watts,

MacLeod, and Mathews (1997).

Attentional Bias Phobics are characterized by an attentional bias towards fear-

relevant, threatening stimuli. Their attention is involuntarily drawn to feared stimuli,

and these stimuli are processed with high selectivity and priority.
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Unlike voluntary attention which is ‘top-down’ or ‘goal-directed’ in the sense that atten-

tion is deliberately directed to outside events by inner intentions, involuntary attention

is elicited relatively automatically by ‘bottom-up’ or ‘stimulus-driven’ processes, for ex-

ample, by abrupt visual onsets or by stimuli that differ substantially in one or more

visual attributes from their backgrounds (e.g. color, orientation, or motion). Invol-

untary attention is therefore characterized by the absence of an explicit intention to

attend (Eimer, Nattkemper, Schröger, & Prinz, 1996; Egeth & Yantis, 1997).

Two forms of involuntary attention can be distinguished: aspecific and specific involun-

tary attention (Prinz, 1983). Aspecific involuntary attention is elicited by stimuli that

contain sudden changes of physical attributes (level shifts) or rule deviations as, e.g.

deviations from a sequence of regular events. On the other hand, specific involuntary

attention is elicited by particular stimulus features that lead to a passive selection. This

selection occurs when stimulus features correspond with certain latent dispositions as,

e.g. general emotional mood, desires, or unconscious motives of the observer (Eimer et

al., 1996). Since in the latter case the distinction between an explicit intention and a

latent disposition is unclear, there is a smooth boundary between specific involuntary

and specific voluntary attention.

On this background the attentional bias observed in phobics can be characterized as an

example of specific involuntary attention when processing fear-relevant stimuli. This

bias has been observed in animal phobics, social phobics, patients with high trait

anxiety, patients with generalized anxiety disorder, and persons with posttraumatic

stress disorder (Williams et al., 1997). To investigate the attentional bias in phobia

several paradigms have been developed, which will be described in detail in section

1.3.1.

Interpretive Bias One example of a judgemental bias is the covariation bias,

which describes the tendency of phobics to overestimate the occurrence of fear-relevant

stimuli with aversive consequences (an illusionary correlation). This effect has been

studied by the paradigm introduced by Tomarken et al. (1989), as described in sec-

tion 1.2.3.

In a study with spider phobics, de Jong, Merckelbach, Arntz, and Nijman (1992)

found that covariation bias was reduced after behavior therapy. Spider phobics saw

three different types of slides: feared slides (spiders), fear-relevant slides (weapons),

and neutral slides (flowers). Slides were randomly paired with either a shock, a tone,

or nothing at all. As found previously, untreated phobics strongly overestimated the
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covariation between spider slides and shock whereas treated phobics did not show a

covariation bias. Furthermore, untreated subjects were more confident about their

contingency estimates than treated subjects.

Another example for an interpretive bias is the negative interpretation bias, which

has been found in particular in social phobics. Several studies showed that individuals

with social phobia are more likely to misinterpret (ambiguous) social situations as more

threatening and to draw more negative inferences from the available social stimuli than

controls (Amir, Foa, & Coles, 1998a, 1998b; Stopa & Clark, 2000). For an extensive

review of information processing in social phobia, see Heinrichs and Hofmann (2001).

Memory Bias People with anxiety disorders are plagued by disturbing unwanted

thoughts. PTSD patients suffer from involuntary retrieval of traumatic memories in

the form of intrusive thoughts, nightmares, and flashbacks. Panic patients experience

thoughts about impending insanity or heart attacks during a panic attack. Patients

with generalized anxiety disorder envision a multitude of possible threats. Thus, at

least in some anxiety disorders it seems that information about threats is easily acces-

sible. Therefore, pathological anxiety seems to be associated with a memory bias for

threatening information.

Explicit and implicit memory biases have been investigated in anxiety disorders. How-

ever, explicit memory biases for threat have not been found consistently in all anxiety

disorders. In a recent review, Coles and Heimberg (2002) concluded that explicit mem-

ory biases are confirmed in patients with panic disorder (Becker, Rinck, & Margraf,

1994; Cloitre, Shear, Cancienne, & Zeitlin, 1994), and to some extent also for patients

with obsessive-compulsive disorder and posttraumatic stress disorder. For example,

Vietnam veterans show enhanced recall of negative emotional words related to their

traumatic experience (Vrana, Roodman, & Beckham, 1995). However, no explicit

bias was found in social phobia or generalized anxiety disorder (Mogg, Mathews, &

Weinman, 1987). In contrast, some degree of support for implicit memory biases was

demonstrated for each of the above mentioned anxiety disorders (for review see Coles

& Heimberg, 2002).

For specific phobias, for instance spider phobia, the results are even more contradictory.

Whereas Watts and Coyle (1992) did not find a memory bias in terms of an enhanced

recall of spider-related materials in spider phobics, others found lowered or even en-

hanced memory for spider-related material in spider phobics (see Cameron, 1997 for

an overview).
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In conclusion, the different biases can be found in varying degrees in the different

anxiety disorders. In animal phobias, attentional and interpretive (covariation) biases

are well-documented, while the existence of memory biases in phobic patients is still

questionable.

1.3.1. Attentional Bias in Phobia: Unconscious Preattentive

Mechanisms in the Activation of Phobic Fear

Researchers have devised different paradigms to study the attentional bias in phobia:

these are detection, interference, and facilitation paradigms.

Detection Paradigms An example of a detection paradigm is the visual search

paradigm. Öhman, Flykt, and Esteves (2001) exposed normal, randomly sampled sub-

jects to matrices of pictures of fear-relevant stimuli (snakes and spiders) and neutral

objects (flowers and mushrooms). In half of all cases, all stimuli in the matrix were

of the same category, in the other half one stimulus was of a deviant category. Sub-

jects were faster to find a fear-relevant stimulus (spider or snake) among flowers and

mushrooms than vice versa. Furthermore, a larger matrix size prolonged the search for

fear-irrelevant stimuli more than for fear-relevant stimuli.

In the same series of experiments, Öhman et al. (2001) investigated whether this effect

was enhanced in spider- and snake-fearful subjects compared to non-fearful controls.

This time, phobic and control subjects were selected by means of spider and snake pho-

bia questionnaires (Klorman, Weerts, Hastings, Melamed, & Lang, 1974). Again, sub-

jects were overall faster in identifying snakes and spiders against backgrounds of flowers

and mushrooms than vice versa. Whereas it took longer to identify fear-irrelevant tar-

gets if more distractors were present, identifying fear-relevant targets was independent

of matrix size. Also, subjects determined the absence of a deviant target among fear-

relevant stimuli more quickly than among fear-irrelevant stimuli. This effect was more

evident with the small than with the large matrix. Similar to controls, fearful partic-

ipants were faster to identify fear-relevant targets they did not fear (e.g. a spider for

a snake-fearful participant) than fear-irrelevant targets. However, the effect of fear-

relevance was enhanced in fearful participants confronted with feared stimuli: they

identified their feared stimulus (e.g. a snake for a snake-fearful participant) even faster.

Öhman et al. (2001) argued that these results fit the clinical observation that phobic

individuals tend to scan their environment for feared stimuli. Spider phobics, for
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example, often examine the room for spiders or spider webs.

Similar results have been found for other fear-relevant stimuli, namely angry faces.

Öhman, Lundqvist, and Esteves (2001) found that schematic angry faces were detected

faster than happy or sad faces among neutral or emotional distractor faces. In addition,

Gilboa-Schectman, Foa, and Amir (1999) observed that social phobics were faster than

controls in detecting threatening angry faces in a visual search paradigm.

In conclusion, results indicate that fear-relevant stimuli are picked up faster than fear-

irrelevant stimuli by healthy controls. This effect is even stronger in phobics. In

addition, there is evidence that the faster detection of fear-relevant stimuli does not

diminish with increasing number of fear-irrelevant background stimuli. As Öhman

(1997, p. 367) notes, “these results indicate that fear-relevant stimuli were picked up

independent of their position in the perceptual field in a process reminiscent of a ‘pop-

out’ effect of preattentive origin.”

Facilitation Paradigms The attentional probe or dot-probe paradigm are examples

of facilitation paradigms. Interference tasks assume that the presence of a threat cue

disrupts performance for a primary task because the threat cue captures attention.

Facilitation paradigms, on the other hand, are based on the assumption that attention

shifts to the position of a threat cue, which leads to facilitated processing of following

stimuli presented in the same location.

In the dot-probe paradigm, a threatening word and a neutral word are simultaneously

presented on the screen and followed after 500ms by a target dot in one of the stimulus

locations. Anxious individuals are faster to detect the target when it appears in the

threatening word’s location, presumably because their attention has been drawn to the

threatening word. MacLeod, Mathews, and Tata (1986) showed that GAD patients are

faster to respond to dots replacing threat words and slower to respond to dots replacing

neutral words. These results were replicated by Mogg, Mathews, and Eysenck (1992).

Furthermore, Asmundson and Stein (1994) reported similar results with generalized

social phobics who responded faster to probes following social threat words than to

probes following neutral and physical threat words.

Pictorial versions of the dot-probe task (Mogg et al., 2000) and masked versions of the

dot-probe task have been developed (Mogg, Bradley, & Williams, 1995). For example,

the latter study found evidence for a preconscious attentional bias in anxious subjects:

their spatial attention shifted to the location of supraliminally as well as subliminally

presented negative words.
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Figure 1.1.: Classical Stroop Paradigm Figure 1.2.: Emotional Stroop Paradigm

However, this attentional bias could not be demonstrated consistently in all anxiety

disorders. Wenzel and Holt (1999), for example, applied the dot-probe paradigm to

individuals with specific phobias (spider and blood/injury phobia). Attentional deploy-

ment towards spider-related, blood-related, positive, negative, and neutral words was

examined. Results showed that individuals with specific phobias did not demonstrate

an attentional bias towards phobia-related stimuli relevant to their particular fears.

Wenzel and Holt concluded that semantic-based information processing paradigms may

not be sufficiently potent to demonstrate biased performance towards threatening stim-

uli in individuals with mild specific phobias who are otherwise healthy.

Interference Paradigms One of the most common paradigms besides the dot-

probe paradigm used to study anxiety and attention is the emotional Stroop paradigm

(MacLeod, 1991; Wells & Matthews, 1994; Williams, Mathews, & MacLeod, 1996)

which was derived from the classical Stroop paradigm (Stroop, 1935). Both will be

explained in detail in the following sections.

1.3.2. Emotional Stroop Interference as a Measure of

Attentional Bias

The Stroop effect is one of the most robust phenomena studied in psychology, and

the Stroop color-word interference task is also one of the most widely used experimental

tasks in cognitive psychology. For a comprehensive review of half a century of research

on the Stroop effect, see MacLeod (1991).

In 1935, Stroop reported that it took subjects longer to name the color of the ink that

color words were written in and that subjects made more errors if ink and color were

incongruent (e.g. the word “red” written in green ink, the correct answer being “green”,
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see Figure 1.1) than if they had to name the color of colored squares. When naming

the color of incongruent color words, cognitive interference occurs, i.e. the processing

of one stimulus feature interferes with the simultaneous processing of a second stimulus

attribute. The so-called inverse Stroop effect means that it also takes subjects longer

to read a color word if it is written in an incongruent color. However, this color word

reading interference is generally smaller than the color naming interference (Warren

& Marsh, 1979). On the other hand, facilitation can be observed, i.e. color naming

latencies are shorter if color and word are congruent, e.g. “green” written in green.

The magnitude of Stroop facilitation is generally much smaller than that of Stroop

interference (MacLeod, 1991).

There are two general classes of explanations of the Stroop interference phenomenon:

the first class focuses on the stimulus encoding stage of processing, the second on

response competition. The first account assumes that the irrelevant dimension interferes

with stimulus encoding for incongruent stimuli and speeds perceptual processing for

congruent stimuli (Hock & Egeth, 1970).

The second and more traditional explanation, first suggested by Stroop (1935), assumes

simultaneous processing of color and word information, resulting in two competing

naming responses. If both responses are incompatible, reaction time is slowed; if they

are the same, response selection is facilitated (Cohen, Dunbar, & McClelland, 1990;

Sugg & McDonald, 1994; Virzi & Egeth, 1985; Warren & Marsh, 1979). This account is

proposed in two rather similar versions: the relative speed of processing theory assumes

that color and verbal information are processed in parallel but at different speeds

(a “horse race”). The automaticity view emphasizes that word processing is more

automated than color processing and thus requires less attention – reading a word is

seen as obligatory, while naming its color is not (see MacLeod, 1991).

The emotional Stroop paradigm (see Figure 1.2) is a modified version of the orig-

inal Stroop task and has become a popular measure of attentional biases. In this

paradigm, the color of words or pictures which vary in personal emotional significance

has to be identified either verbally or manually, e.g. by pressing a corresponding but-

ton. In earlier studies, the colored words were presented on cards and response times

were measured with stopwatches. There was one card for each word set under inves-

tigation (i.e. at least one “phobia-related” and one “neutral” set). With the advances

in computer technology, studies began to use computers for stimulus presentation and

recording of voice onset time. The computerized design had several advantages: first,

stimuli could be presented in a mixed randomized design and not only in a blocked de-

27



Introduction

sign. Second, computerized registration of voice onset time was more reliable and less

susceptible to experimental artifacts, in particular Rosenthal effects (i.e. experimenter

expectancy effects; Rosenthal, 1966).

The phenomenon that threatening stimulus attributes impair the processing of non-

threatening stimulus characteristics has been called emotional interference. The differ-

ence in color-naming times between anxiety-related and neutral stimuli – the emotional

Stroop effect – provides a measure of the attentional bias. Anxiety patients show se-

lectively longer color naming latencies for anxiety-relevant words. For an overview, see

Williams et al. (1997).

Selective attentional biases have been observed in a variety of anxiety disorders, e.g. in

patients with generalized anxiety disorder (GAD) for GAD-related, speech-related, and

positive words and in social phobics for speech-related words (Becker, Rinck, Margraf,

& Roth, 2001). Mathews and MacLeod (1985) found that patients who worried mostly

about physical harm were particularly slow in color naming physical threat words,

whereas patients worrying about social threat were especially slow in naming social

threat words. Similar results were reported by Hope, Rapee, Heimberg, and Dombeck

(1990) with panic patients who were slowed by physical threat cues, but not by social

threat words, whereas the opposite held for social phobics. Finally, several studies

found emotional interference in PTSD patients when naming the color of trauma-

related words (e.g. McNally, Kaspi, Reiman, & Zeitlin, 1990; McNally, English, &

Lipke, 1993). Emotional Stroop interference in animal phobics will be described in

Section 1.3.3.

Mechanisms Underlying Emotional Stroop Interference Several explanations

for the origin of the emotional interference effect have been proposed (see Williams et

al., 1996, 1997 for an extensive overview). One of the best-established theories assumes

the existence of a processing channel with limited capacity (MacLeod & Mathews,

1991a). The phobic stimulus category automatically takes up processing resources in

this channel and thus impedes rapid identification of the stimulus attribute which has

to be primarily identified. For example, in spider phobia, attention is automatically

directed to threatening stimulus material (word content or picture of a spider), and

this interferes with the main task (i.e. color naming) (Merckelbach et al., 1996). Thus,

the interference effect is generally presumed to reflect some form of attentional bias

towards threatening material (Cameron, 1997).

More recently, it has been proposed that anxiety delays the disengagement of attention
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from a threat rather than facilitating attentional shifts towards threatening stimuli

(Derryberry & Reed, 2002; Fox, Russo, & Dutton, 2002). Thus, the cause of emotional

interference in the Stroop paradigm can also be explained by a difficulty in shifting

attention from the irrelevant threat dimension to the relevant color dimension. This

explanation also accounts for the results in the dot-probe paradigm. Reaction times are

slower if a target stimulus appears in a neutral-cued spatial location than in a threat-

cued location. One explanation is that anxiety patients have difficulty in shifting their

attention away from the threat-cued location to the neutral-cued location (Derryberry

& Reed, 2002). Similar suggestions come from a study by Yiend and Mathews (2001)

with high-trait anxious subjects.

Effects of Treatment on Attentional Bias Several studies using the emotional

Stroop paradigm have shown that attentional biases in anxiety patients commonly dis-

appear following treatment, as in social phobia (Mattia, Heimberg, & Hope, 1993),

obsessive-compulsive disorder (Foa & McNally, 1986), and generalized anxiety disorder

(Mathews, Mogg, Kentish, & Eysenck, 1995; Mogg, Bradley, Millar, & White, 1995).

Similarly, the attentional bias in spider phobia can be reduced by desensitization or

cognitive behavior therapy (e.g. Lavy & van den Hout, 1993; Watts, McKenna, Shar-

rock, & Trezise, 1986). Yet, so far results of studies remain inconclusive (Thorpe &

Salkovskis, 1997b).

For example, Watts et al. (1986) showed that desensitization treatment reduced the

amount of interference in a linguistic card Stroop paradigm in treated spider phobics

compared to an untreated group. However, according to Thorpe and Salkovskis (1997b)

this study had several problems in statistics and study design. Similarly, Lavy and van

den Hout (1993) found a reduction of attentional bias for pictorial and linguistic spider-

related stimuli after an in vivo exposure treatment according to Öst (1989). However,

the untreated controls were not spider phobics, making any interpretation of the study

difficult. Finally, Thorpe and Salkovskis (1997b) tested spider phobics before and after

a one-session cognitive behavioral therapy for spider phobia. Treatment was highly

effective in reducing spider fear and in accordance with this, emotional Stroop inter-

ference observed before treatment was significantly reduced after treatment. However,

in the untreated group a comparable reduction in Stroop interference was observed.

The authors concluded that the emotional Stroop task is an ambiguous measure of

fear-related cognitive processes.

Thus, there is some evidence that the attentional bias in anxiety patients disappears
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or at least decreases with treatment. However, in particular the reported studies with

spider phobics can be criticized in various ways so that final conclusions can not yet

be drawn.

1.3.3. Emotional Stroop Interference in Animal Phobics

A number of studies have investigated emotional Stroop interference in animal phobics.

The general study design is to present a colored neutral or phobic word or object.

The subjects’ task is to identify the color of the stimulus. In general, an emotional

interference effect is observed when animal phobics have to identify the color of a feared

animal. However, results are far from consistent and difficult to integrate, as detailed

below.

Several parameters of the experimental design have to be considered if one tries to

integrate the varying results of different emotional Stroop paradigms. Were linguistic

or pictorial stimuli used? Were stimuli “integrated” (e.g. colored spider pictures) or

“non-integrated” (e.g. spider pictures superimposed on colored circles)? Were they

presented on cards or by computer? Was a vocal or a manual response mode used?

The following paragraphs give an overview on the factors influencing the outcome of

an emotional Stroop interference design.

Linguistic vs. Pictorial Stroop Paradigm Earlier studies using the emotional

Stroop paradigm mostly relied on verbal stimuli (e.g. Watts et al., 1986; Martin, Horder,

& Jones, 1992). One of the first studies showing emotional Stroop interference in spider

phobics was a study by Watts et al. (1986). Using a linguistic emotional Card-Stroop

paradigm, they found significant emotional interference in spider-avoidant subjects

when color naming spider words, i.e. spider phobics showed longer reaction times for

color naming spider words compared to neutral and emotional words. These results

were replicated by Martin et al. (1992), who compared spider-avoidant and control

children of different age groups (6–7; 9–10; 12–13 years of age) in a linguistic Card-

Stroop paradigm. Interference effects in color naming spider-related words were found

in spider-phobic children as young as 6–7 years. There was no significant difference in

the overall magnitude of this interference effect for the different age ranges.

In recent years, several studies have been conducted using pictorial stimuli (e.g. Con-

stantine, McNally, & Hornig, 2001; Kindt & Brosschot, 1997, 1999; Kindt, van den

Hout, de Jong, & Hoekzema, 2000; Lavy & van den Hout, 1993; Martin & Jones,
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1995; Merckelbach, Kenemans, Dijkstra, & Schouten, 1993). Obviously the advan-

tage of using pictures of spiders instead of words is a higher ecological validity (see

e.g. Lavy & van den Hout, 1993) – after all, spider phobics fear primarily spiders and

not spider-related words. One might therefore argue that pictures will offer a better

representation of real life stimuli and will lead to larger emotional interference effects.

However, to our knowledge, no study found larger interference for spider pictures than

for spider words, if any interference for spider pictures was found at all. The existing

literature is summarized below.

Lavy and van den Hout (1993) were among the first to report results of a pictorial

emotional Stroop paradigm. In their study, in addition to colored words, spider and

neutral pictures (chairs) were presented on colored circles. To prevent the selective

allocation of attention to a specific spatial area of the circle, spiders were placed at

different positions on the circles. The subjects’ task was to name the color of the

circles as quickly as possible. The results indicated that subjects were generally slower

in naming the color of linguistic stimuli than of pictorial stimuli. The hypothesized

attentional bias was found for pictorial and linguistic spider-related stimuli. However,

results did not show greater emotional interference for pictorial spiders but the opposite,

i.e. greater emotional interference for linguistic than for pictorial stimuli. On the other

hand, Kindt and Brosschot (1997) found similar interference for spider pictures and

spider-related words. Finally, Constantine et al. (2001) could not even find unequivocal

evidence for emotional Stroop interference in response to snake pictures in a study with

snake-fearful subjects.

Several studies have investigated the processing of phobia-related verbal and pictorial

stimuli in children. Their results complicate things even more. While Martin and

Jones (1995) found emotional interference for spider pictures in spider-phobic children

(4–5; 6–7; 8–9 years of age), Kindt and Brosschot (1999) and Kindt et al. (2000) could

not corroborate these results. Kindt et al. (2000), for example, found no attentional

bias for spider pictures in spider phobic children aged 8–11. However, for spider words

such a bias was a normal characteristic of children aged 8. In non-fearful children, this

bias decreased from age 8 to age 11, while it was maintained with age in the fearful

children. Kindt and van den Hout (2001) argue that all young children give priority

to threatening information and that selective attention to threatening stimuli is first

and foremost a normal phenomenon. However, as age increases, selective attention

in normal children decreases while it is maintained in spider phobic children. Kindt

and van den Hout suggest that not learning to inhibit the selective attention to fear-
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relevant stimuli, which is a normal characteristic of young children, leads to phobias in

adulthood. Yet, their arguments still do not explain first, why interference effects in

emotional Stroop paradigms were found in normal children only for linguistic stimuli

and not for pictorial stimuli, and second, why results of pictorial emotional Stroop

paradigms sometimes found evidence for emotional interference effects in spider phobic

children (Martin & Jones, 1995) and sometimes could not find such evidence (Kindt &

Brosschot, 1999; Kindt et al., 2000).

In summary, the results of the present studies are rather inconclusive. In spider phobics

emotional Stroop interference has been well-documented in linguistic emotional Stroop

paradigms. However, regarding pictorial emotional Stroop paradigms, if one result is

clear, it is that spider pictures do not result in larger interference effects than spider-

related words.

Integrated vs. Non-Integrated Stimuli Integrated stimuli combine the interfer-

ing characteristics (color and emotional picture/word) in one stimulus. For example,

colored words and colored pictures are integrated stimuli. On the other hand, in

non-integrated stimuli these interfering characteristics are presented in separate spatial

locations. For example, spider pictures or spider-related words superimposed on col-

ored circles are non-integrated stimuli. It is possible that it has a significant influence

on the results of an emotional Stroop paradigm whether integrated or non-integrated

stimuli are used. So far, no study using an emotional Stroop design directly compared

integrated and non-integrated pictorial stimuli. However, a few studies compared in-

tegrated and non-integrated verbal stimuli.

Kindt and Brosschot (1997), for example, compared spider phobic and control par-

ticipants in a Stroop paradigm with integrated and non-integrated verbal stimuli, on

the one hand, and non-integrated pictorial stimuli, on the other hand. They found a

similar bias for pictures and words in the spider phobic group, and to a smaller degree

also in the control group. Integrated word stimuli generally led to more interference

than non-integrated stimuli. However, this effect was not specific to spider phobics,

but also applied to controls.

Furthermore, in a study with spider phobic and control children, Kindt and Brosschot

(1999) found that integrated spider-related words led to more interference in both

groups, while non-integrated words led to an attentional bias in spider phobic children

only.
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To our knowledge, only two emotional Stroop studies so far used integrated pictures

of spiders. These are the Card-Stroop experiment by Martin and Jones (1995) and the

computerized Stroop experiment by Constantine et al. (2001). While the former found

evidence for emotional Stroop interference in children and adults, the latter could not

find such an interference effect. The other studies described above used non-integrated

pictures, e.g. spiders and chairs placed on colored circles.

In conclusion, there seems to be some evidence that integrated verbal stimuli lead

to more interference than non-integrated stimuli. However, in the two studies cited

above this effect was not specific for spider phobics. For integrated and non-integrated

pictures, there are no direct comparisons available.

Card vs. Computer Format While earlier studies mostly relied on the classical

card format of the Stroop task, in recent years the computer format has become more

common. In the card version of the Stroop task, several words or pictures (up to

40) of one stimulus category (either phobic or neutral) are presented on one card,

and the overall time it takes subjects to name the color of all stimuli on one card is

measured. This type of design is therefore also called a blocked design. A common

criticism of card Stroop paradigms is that interference effects might sum up across

stimuli. Spider phobics might become more and more distracted as they continue

color naming one spider after the other and might start ruminating about spiders. In

addition, it has been noted by Kindt, Bierman, and Brosschot (1997) that if stimuli of

the same emotional valence are presented on one card, this might enhance the emotional

impact of the individual stimuli. In contrast to the card version, the computer version

of the Stroop task also allows the mixed, single trial presentation of stimuli, i.e. the

randomized presentation of phobic and neutral stimuli. Furthermore, while in earlier

studies stopwatches were used to measure response times in the card Stroop designs,

accurate timing of stimulus presentation and response times became possible with

computerized designs.

It has been suggested that these two presentation types are not equivalent. For ex-

ample, Kindt et al. (1997) directly compared a computerized Card-Stroop (presenting

multiple stimuli on the screen) and a single-trial computerized Stroop task in a study

with spider-fearful and control children. They found a bias for spider words in spider-

fearful but also in control children regardless of the format used. However, they found

no correlation between the spider interference score in the card and the single-trial

computer format, which suggests that both may measure different mechanisms. In-
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deed, McNally, Amir, and Lipke (1996) demonstrated in Vietnam combat veterans

using trauma-related words that the card format led to stronger interference than the

single-trial format.

Vocal vs. Manual Response Mode The magnitude of Stroop facilitation and in-

terference on reaction times is generally larger when vocal instead of manual responses

are used (MacLeod, 1991; Redding & Gerjets, 1977). Even though reliable Stroop

interference effects have also been demonstrated with manual responses (Keele, 1972;

Logan, Zbrodoff, & Williamson, 1984; Roe, Wilsoncroft, & Griffiths, 1980; Schmit &

Davis, 1974; Virzi & Egeth, 1985) so far – to our knowledge – all emotional Stroop stud-

ies with animal phobics used vocal and not manual response modes. However, using

vocal responses is problematic when event-related potentials are recorded simultane-

ously, since facial muscle movements accompanying speech production could introduce

significant artifacts.

1.3.4. Inconsistencies in Studies Investigating the Attentional

Bias in Animal Phobics

Not all studies found evidence for an attentional bias in phobics. Constantine et al.

(2001), for example, investigated the attentional bias in snake phobics with a picto-

rial emotional Stroop paradigm. They designed integrated stimuli by placing a color

filter over the pictures, tinting them blue, green, red, and yellow. Snake-fearful and

control subjects had to name the color of threatening pictures (snakes), positive pic-

tures (rabbits), and neutral pictures (cows) presented in a computerized single-trial

design. Results showed that snake-fearful and non-fearful subjects had longer response

latencies for emotional stimuli (rabbits as well as snakes) relative to neutral stimuli

(cows). A subgroup analysis (n = 5!) of the most intensely snake-fearful individuals

exhibited additional interference for snake pictures beyond that evoked by rabbit pic-

tures. Obviously, this result has to be interpreted with caution given the small number

of subjects. However, results support the emotionality hypothesis according to which

subjects selectively process any personally emotional cue, regardless of its valence (e.g.

Martin, Williams, & Clark, 1991).

Furthermore, some studies using other paradigms than the emotional Stroop or the

visual dot-probe also could not find consistent evidence for an attentional bias in animal

phobics. Merckelbach et al. (1993), for example, designed a task in which slides of
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spiders or flowers were presented together with horizontal and vertical bars. One half

of the slides, e.g. the upper, displayed a spider or a flower, the other half, e.g. the

lower, displayed a horizontal or vertical bar. Subjects were instructed to identify the

bars (vertical or horizontal) as fast as possible and to ignore accompanying pictures

(spider or flower). No evidence for an attentional bias for fear-relevant pictorial stimuli

in spider-fearful subjects was found. Instead, a general increase of reaction times in

spider phobics was reported that increased over the trials. The authors argued that

fear-relevant pictures might have induced a state of anxious arousal that interfered with

reaction time performance on both fear-relevant and neutral trials. In this study, it is

problematic that the spider-fearful group had a mean SPQ score of only 15 (SD=2.8).

The authors argue that this corresponds to the 75th percentile in Norway. Still, results

may have been different if the authors had recruited subjects in the 90th percentile.

Finally, Lavy, van den Hout, and Arntz (1993) used a pictorial flanker task to study the

attentional bias in spider phobics. Slides with three pictures were constructed so that

one picture was in the middle position and two flanked it. Pictures could be phobic

(spiders) or neutral (sheep and ducks). Thus the following slide constructions were

possible: NNN, PNP, NPN, PPP (N = neutral, P = phobic). Spider phobics were

not slower in responding to PNP-slides compared to NNN-slides, i.e. no attentional

bias in favor of the phobic flankers was found. However, phobics showed a facilitated

response to the NPN-slides, i.e. when the spider was presented in the center of the

slide. After two sessions of in vivo exposure treatment the facilitated response was

significantly removed. The response to PNP-slides did not change significantly as a

result of treatment.

Because of the inconsistent results, various authors have questioned the adequacy of

the emotional Stroop paradigm as an index of attentional bias in phobics (Merckelbach

et al., 1993; Thorpe & Salkovskis, 1997a, 1997b). However, it seems that a systematic

study of influencing parameters, i.e. verbal vs. linguistic Stroop, integrated vs. non-

integrated stimuli, vocal vs. manual reactions etc. as well as age of participants (children

vs. adults) would be necessary before final conclusions can be drawn.

1.3.5. Models Accounting for the Attentional Bias in Phobias

Several models have been proposed to account for the attentional bias in phobias. They

can be divided into cognitive and neuroscientific theories.
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Cognitive models explain the attentional bias by acquired dysfunctional cognitive

mechanisms – dysfunctional schemata – which lead to the selective processing of threat-

related, schema-congruent stimuli (Beck, Emery, & Greenberg, 1985). Cognitive mod-

els do not assume that the attentional bias is simply a by-product of an emotional

disorder. Instead, they ascribe to it a vital role in the causation and maintenance of

anxiety disorders, but also in other emotional disorders such as depression. Beck’s

cognitive theories have been very influential, leading to effective treatments in anxiety

and depression, namely cognitive behavioral therapy.

Neuroscientific theories assume that specialized neural systems for the processing

of fear-relevant stimuli evolved during evolution since rapid detection of fear-relevant

cues was critical for survival. In an evolutionary sense, fleeing a situation that turns

out to be harmless (i.e. a false positive) is less costly than failing to flee a dangerous

situation (i.e. a false negative). Whereas the latter situation may result in death

the former only leads to wasted energy (LeDoux, 1990). Mineka (1992) has termed

this cautiousness of evolution “evolutionary conservatism”. It is assumed that these

specialized neural systems are developed particularly strongly in phobics.

One influential evolutionary model is the information processing theory of Öhman

(1993, 1997), see also Mineka and Öhman (2002b), Öhman and Wiens (2002). This

model is given its neuroscientific counterpart in the two-way processing model of

LeDoux (1996). Both theories agree in the following points:

� It takes time until we consciously perceive a stimulus, and it takes even longer

to think about what we see, decide what to do, and act.

� Consciously thinking over the situation before defensive actions are initiated

would take too long in dangerous situations like the attack of a predator.

� Thus, it is likely that we have been equipped throughout evolution with parallel

processing sensory systems that continuously scan the environment for potential

dangers.

� As soon as a potential threat is located on a preattentive level, the defense system

is activated.

� Conscious, higher level processing mechanisms can adjust responses by evaluating

the situation in interaction with memory and context information.
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Figure 1.3.: Öhman’s model according to
Öhman, 1993

Figure 1.4.: LeDoux’s model according to
LeDoux, 1996

In addition, both theories agree that the amygdala plays a central role in the fear

system (Öhman, 1993; LeDoux, 1996).

Öhman’s Model – an Evolutionary Perspective

Öhman’s model (1993) is based on the preparedness theory by Seligman (1971) de-

scribed in Section 1.2.3. Since the early detection and avoidance of dangerous stimuli

and situations was undoubtedly an evolutionary advantage to early primates, Öhman

postulates that evolution favored the development of several systems in the brain which

detect potential threats. These systems should be tuned to specific features of recur-

rent threats to which hominids were exposed during evolution. This screening occurs

at a preattentive level. As soon as a specific threat feature has been detected, an

orienting response occurs and a defense reaction is prepared. Thus, we are tuned to

process fear-relevant stimuli with high priority, and this processing bias is biologically

prepared. It follows from this argument that stimulus configurations which are reliably

associated with phobias should be particularly effective in activating fear.

Öhman distinguishes several modules within the processing system: the feature de-

tectors, the significance evaluator, the expectancy system, and the arousal system (see

Figure 1.3):

1. Feature detectors screen the incoming information for specific threat cues (e.g.

high intensity or biologically prepared stimulus characteristics). This primary

processing occurs preattentively, and stimuli are processed in parallel. As soon

as crucial threat characteristics have been detected, defensive mechanisms are

triggered, e.g. autonomic arousal increases. In addition, biologically relevant
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stimuli are selected for preferential treatment by the significance evaluation sys-

tem (Öhman, 1993).

2. The significance evaluator assesses stimuli still preattentively for relevance, an-

alyzing stimuli for their full meaning. This processing is still not accessible to

consciousness. While the feature detectors operate by filtering stimuli for biologi-

cally important features, the significance evaluator works “top-down” or schema-

driven. It is set by the expectancy system to look for particular categories of

input (Öhman, 1993).

3. The evaluation of stimuli regarding their threat value is influenced by the ex-

pectancy system, which stores a network of earlier learning experiences and emo-

tional memories. By biasing the significance evaluator to respond to information

matching currently activated memory nodes, the expectancy system can influence

stimulus processing already on a preattentive level. In addition, the expectancy

system provides the context for interpreting new stimuli to the conscious per-

ception system. In this dual role, the expectancy system can thus prime early

detection and processing of incoming stimuli related to expected dangers, giving

rise to attentional bias effects (Mathews & Mackintosh, 1998; Öhman, 1993).

4. After significance evaluation has marked a potential threat, the information is

passed to the conscious perception system. Then, attention is quickly oriented

towards the threatening stimulus: an orienting response has been triggered. The

conscious perception system has two functions: first, it appraises the meaning

of the incoming information, evaluating it in interaction with emotional memo-

ries stored in the expectancy system and the current arousal level. If such an

appraisal signals danger, further autonomic arousal occurs, which sets the signif-

icance evaluator into a more sensitive mode, increasing its output (Mathews &

Mackintosh, 1998). Second, the conscious perception system selects an action to

cope with the perceived threat (Öhman, 1993).

Öhman (1979) ascribes to the orienting reaction a key role in the transfer of informa-

tion from unconscious to conscious processing levels, i.e. from preattentive to attentive

processing stages. He describes it as the “gateway to consciousness” or the “call for

processing resources” which always occurs when the preattentive levels need support

(Öhman, 1979; Öhman, Esteves, Flykt, & Soares, 1993). The orienting response either

occurs because the stimulus is novel and thus no matching representation in mem-

ory can be found or because it implies consequences that cannot be dealt with at
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preattentive levels (see also Öhman, 1997). This transfer of control from preattentive

to attentive levels is accompanied by an increase in arousal which in turn leads to a

sensitization of the evaluator system (a kind of a heightened state of alert).

In a more recent elaboration of his model (Öhman, 1992, 1997; Öhman & Wiens,

2002), Öhman argues that orienting reflexes can be elicited from evolutionarily threat-

ening stimuli after only preattentive processing by a direct route from the significance

evaluator to the arousal system. Öhman and Soares (1993) coupled nonmasked presen-

tations of fear-relevant or neutral stimuli with electric shocks in a study with nonfearful

subjects. In the subsequent extinction phase, in which the stimuli were masked and

could only be processed preattentively, only those subjects conditioned to fear-relevant

stimuli retained a significant conditioned skin conductance response, while those condi-

tioned to neutral stimuli did not. Other studies have replicated this pattern of results

(Soares & Öhman, 1993a, 1993b).

Öhman’s model permits the various anxiety disorders to be viewed as resulting from

different emphases within the same information-processing structures. Phobias, for

example, are assumed to result from the automatic activation of the arousal system by

specific features located by the feature detectors (Öhman, 1993). For instance, Öhman

and Soares (1994) reported that fear-relevant and neutral stimuli did not elicit a preat-

tentive orienting response in phobics and controls in a backward masking paradigm. In

contrast, snake and spider phobics did show an orienting response to their feared ob-

jects. Thus, this study offers evidence for a preattentively triggered orienting response

to feared stimuli in phobics.

Öhman’s model offers a detailed framework for understanding the processing of fear-

relevant stimuli. However, there are still some open questions. How exactly do phobics

differ from healthy people in their processing of feared stimuli? Are their feature detec-

tors more sensitive for specific features of feared stimuli? Is their arousal system more

strongly activated preattentively by feared stimuli? Or are their significance evaluators

biased towards a more ready detection of threat, possibly tuned by memories stored in

the expectancy system? Finally, the question remains unsolved whether phobics’ pro-

cessing anomalies are innate or learned, and if learned, by what mechanisms. Öhman

considers it possible that biologically prepared learning (conditioning) may be decisive

for phobias (Öhman, 1993; Öhman et al., 1985). Future studies will have to address

these questions.
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LeDoux’s Model – the Neuropsychological Counterpart

LeDoux (1996) also assumes that the brains of primates possess a complex, innate fear

system. Its task is to screen the environment, to reliably detect potential treats, and to

initiate appropriate responses. In this way, the probability to survive dangerous situa-

tions is maximized. According to LeDoux, the limbic system, with the amygdala as a

central structure, might be a possible neuronal correlate of the preattentive surveillance

and assessment system.

LeDoux distinguishes two parallel processing routes that work with different speed and

precision: a direct, fast subcortical route and a slower cortical route (Figure 1.4). The

subcortical route runs from the sensory nuclei of the thalamus directly to the lateral

nucleus of the amygdala. It allows a first rough processing of incoming stimuli and

thus the detection of potential threats as well as the initiation of appropriate defense

reactions. The cortical route runs from the thalamus over the cortex to the amygdala

and includes higher cognitive structures which allow a precise, but relatively slow,

stimulus analysis. This processing is influenced by memory and context information.

The higher cortical route is able to modulate and correct the processing of the lower

route (e.g. by activating or inhibiting the amygdala) and allows the voluntary control

and selection of behavior responses.

Recently, some evidence for the existence of the two processing routes postulated by

LeDoux was published by Junghöfer, Bradley, Elbert, and Lang (2001). They investi-

gated primary and secondary visual areas in the early processing of affective pictures

taken from the IAPS (International Affective Picture System; Lang, Bradley, & Cuth-

bert, 1999). In a so-called Rapid Serial Visual Presentation (RSVP) paradigm they

exposed subjects to a series of high- and low-arousing pictures presented in rapid se-

quence. Presentation time was 200ms in one and 333ms in another experiment. In

both experiments, stimuli were presented without an interstimulus interval. This fast

succession of pictures was suggested to lead to a “conceptual masking” of pictures: each

stimulus is immediately replaced by a semantically new stimulus. As was shown pre-

viously (Intraub, 1999; Potter, 1976; Potter & Levy, 1969), when stimuli are presented

in this fast succession, subjects can identify the picture content, but their recognition

memory of the stimuli is little better than chance. As Intraub (1999) notes, “the sub-

jective experience is . . . one of grasping and losing large amounts of information within

moments” (p. 66). Junghöfer et al. (2001) were able to show that even at this early

conceptual processing level there are distinct differences in the neuronal processing

of high- and low-arousing stimuli. High-arousing stimuli led to a stronger occipital
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Figure 1.5.: Example pictures used in the study by Vuilleumier et al. (2003)

negativity than low-arousing stimuli. This negativity started about 150ms after stim-

ulus onset and reached its maximum about 260ms post-stimulus. The discrimination

between emotionally high- and low-arousing stimuli in a time range in which informa-

tion processing is still preconscious could provide some evidence for the existence of

a fast processing route from the thalamus over the amygdala to the visual cortex, as

postulated by LeDoux (1996).

Further support for the two routes postulated by LeDoux comes from a fMRI study

by Vuilleumier, Armony, Driver, and Dolan (2003). They were able to show that high

and low spatial frequency information in visual images are processed by distinct neural

channels. Subjects were shown pictures of faces that contained either broad spatial

frequency information (i.e. normal images) or just the high or low spatial frequency

elements. Example pictures are depicted in Figure 1.5. The task of the subjects was

to identify the gender of the faces. Results showed that activation of the fusiform face

area was greater with broad and high spatial frequency stimuli than with low-frequency

faces, regardless of emotional expression. In contrast, amygdala activation in response

to fearful facial expression was greater for normal or low-frequency faces than for high-

frequency faces. Thus, their results showed a dissociation between activation of the

amygdala and the extrastriate visual cortex depending on spatial frequency ranges.

Whereas the fusiform cortex was activated more by fine-grained high spatial frequency

information, the amygdala was activated more by coarse low spatial frequency cues.

According to Vuilleumier et al. (2003), these results support the existence of a subcorti-

cal pathway processing coarse low spatial frequency information and a second cortical
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route processing high spatial frequency information. The subcortical pathway starts

with the magnocellular cells on the retina, and goes via the pulvinar to the amygdala

(Schiller, Malpeli, & Schein, 1979; Leventhal, Rodieck, & Dreher, 1985; Berson, 1988).

It might provide fast but coarse processing of low spatial frequencies and might there-

fore convey global configurational information. It allows a fast screening for danger

signals and fear-related information independent of the attentional focus, i.e. also in

the visual periphery (Livingstone & Hubel, 1988). Moreover, the subcortical route is

also crucial for processing stimuli in motion (Merigan & Maunsell, 1993) and might

even underlie the visual abilities of newborn infants who can detect coarse facial and

emotional cues in the absence of a mature cortical visual system (Johnson & Vecera,

1993). Presumably this pathway also plays a role in blindsight (Vuilleumier et al.,

2003; Sahraie, Weiskrantz, Trevethan, Cruce, & Murray, 2002). For example, Morris,

DeGelder, Weiskrantz, and Dolan (2001) found evidence that a blindsight subject (GY)

discriminated emotional facial expressions in his blind field. In contrast, the cortical

pathway starts with the parvocellular cells on the retina from where it projects chiefly

to the ventral stream (Livingstone & Hubel, 1988; Merigan & Maunsell, 1993). It al-

lows high resolution and detailed processing of high-frequency visual information, but

processing is slower than in the subcortical pathway (Vuilleumier et al., 2003).

Finally, support for LeDoux’s theory that emotional stimuli can capture attention

even preattentively via the subcortical route comes from a study by Vuilleumier and

Schwartz (2001). They found that patients with unilateral neglect and visual extinc-

tion, who usually remain unaware of contralesional stimuli, more frequently detected

emotional stimuli (schematic spiders) than neutral pictures (schematic flowers) on the

contralesional side. This suggests that while mechanisms of spatial attention are im-

paired in neglect patients due to parietal lesions, intact visual pathways to the ventral

temporal lobe and the amygdala might still mediate distinct mechanisms of emotional

attention.

1.4. The Neuronal Basis of the (Emotional) Stroop

Interference

Since little is known about the neuronal underpinnings of the emotional Stroop in-

terference, research on the classical color-word Stroop task provides a useful heuristic

for a first approach to this topic. Yet, it should be noted that it cannot be assumed
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that the same mechanisms are at work in emotional Stroop interference as in standard

Stroop interference (see Wells & Matthews, 1994).

1.4.1. Brain Regions Involved in Color-Word Stroop

Despite nearly 70 years of research, the nature of Stroop interference is still not com-

pletely understood. A number of functional imaging and event-related potential studies

have attempted to identify the neuronal basis of Stroop interference. First, results of

functional imaging studies (fMRI and PET) will be described in the following sections,

and afterwards the focus will be placed on event-related potential (ERP) studies.

Functional Imaging Studies It is well established that attentional selection en-

hances activity within brain regions specialized for processing the stimulus or stimulus

attribute to which attention is directed (e.g. Corbetta, Miezin, Dobmeyer, Shulman,

& Petersen, 1991). However, surprisingly, several PET studies found no increase in

activation of color perception regions, i.e. V4, when subjects named the color of incon-

gruent color-word stimuli (e.g. Bench et al., 1993; George et al., 1994; Pardo, Pardo,

Janer, & Raichle, 1990; Taylor, Kornblum, Lauber, Minoshima, & Koeppe, 1997).

In general, functional imaging studies suggest that multiple, broadly distributed brain

regions contribute to Stroop performance. Among other regions, the dorsolateral pre-

frontal cortex (DLPFC), the anterior cingulate cortex (ACC), and the parietal cortex

have been repeatedly found to be activated in incongruent color-word conditions of the

Stroop task compared to neutral word conditions (fMRI studies: Banich et al., 2000;

Leung, Skudlarski, Gatenby, Peterson, & Gore, 2000; MacDonald III, Cohen, Stenger,

& Carter, 2000; Milham et al., 2001; Peterson et al., 1999; PET studies: Bench et al.,

1993; Carter, Mintun, & Cohen, 1995; Pardo et al., 1990).

The ACC is involved in a wide range of cognitive tasks (Botvinick, Braver, Barch,

Carter, & Cohen, 2001), e.g. tasks which are difficult or performed under high-load

conditions, such as divided attention or dual tasks (Corbetta et al., 1991; D’Esposito

et al., 1995); tasks in which a large number of errors of commission are made, such as

the Go/No-go and Eriksen task (Botvinick, Nystrom, Fissel, Carter, & Cohen, 1999;

Casey et al., 1997; Kiehl, Liddle, & Hopfinger, 2000); tasks which require the selection

of responses in an undetermined context, such as stem completion or voluntary/random

movements (Buckner et al., 1995; Frith, Friston, Liddle, & Frackowiak, 1991; Jueptner,

Frith, Brooks, Frackowiak, & Passingham, 1997); and tasks which involve response
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inhibition and response competition, such as the Stroop task (Barch et al., 2001; Carter

et al., 1995, 2000; Pardo et al., 1990). Although the specific function of the ACC

remains unclear, its role in cognitive and selective attentional tasks is well-established,

and most interference research has concentrated on this structure.

It has been proposed that the ACC detects conflicts between incompatible potential

responses (Botvinick et al., 2001; Carter et al., 1998; MacDonald III et al., 2000).

MacDonald III et al. (2000), for example, investigated the role of the ACC and the

DLPFC with a task-switching version of the Stroop paradigm. Before each trial, sub-

jects were given the instruction either to read the word (which is considered a more

automatic response) or to name the color (which requires greater control). After a de-

lay, the stimulus was presented. The ACC was more active in response to incongruent

compared to congruent color-naming trials, which is consistent with a role in conflict

monitoring. Also, the subjects with the largest Stroop interference effect also tended

to have more ACC activation. Consistent with other studies that found DLPFC ac-

tivity in tasks that require maintenance and manipulation of information in working

memory, they found larger activity in DLPFC during task preparation for color-naming

compared to word-reading trials. Thus, the DLPFC may be involved in representing

and maintaining the attentional demands of a task.

The anterior cingulate cortex can be divided into two major subdivisions which are

functionally and cytoarchitecturally distinct (Devinsky, Morrell, & Vogt, 1995; Vogt,

Finch, & Olson, 1992; cf. also Bush et al., 1998; Bush, Luu, & Posner, 2000). These are

the dorsal cognitive division (ACcd) and the rostral-ventral affective division (ACad).

The cognitive subdivision is activated by cognitively demanding tasks that involve

stimulus-response selection in the face of competing streams of information, e.g. Color

Stroop and Stroop-like tasks (e.g. Bush et al., 1998). On the other hand, the affective

subdivision is activated by affect-related tasks, e.g. in the emotional counting Stroop

(Whalen et al., 1998), in which the number of words (neutral or negative) that appear

on a screen has to be counted and reported by pressing a button.

The cognitive subdivision of the ACC is part of a distributed attentional network with

reciprocal interconnections with the lateral prefrontal cortex, the parietal cortex, and

premotor and supplementary motor areas. Various functions have been ascribed to it,

among them executive functions by influencing sensory or response selection, competi-

tion monitoring, error detection, and complex motor control (cf. Bush et al., 2000). In

contrast, the affective subdivision is involved in assessing the salience of emotional and

motivational information and the regulation of emotional responses. It is connected
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with the amygdala, periaqueductal gray, nucleus accumbens, hypothalamus, anterior

insula, hippocampus, and orbitofrontal cortex and projects to autonomic, visceromotor,

and endocrine systems (cf. Bush et al., 2000).

To summarize the results, it may be said that incongruent color words do not lead

to a larger activation of color perception areas (V4). Areas which were consistently

found to be more activated in incongruent as compared to congruent color words are

the ACC, the DLPFC, and parietal areas. The ACC plays a key role in research on

Stroop interference due to its role in conflict monitoring. It can be divided into a

cognitive subdivision (ACcd), involved in stimulus response competition tasks like the

classical Stroop task, and an affective subdivision (ACad), which is activated by affect-

related tasks like the emotional counting Stroop task. The ACC should therefore also

be investigated in studies of emotional Stroop interference.

Event-Related Potential Studies An ongoing debate is whether interference oc-

curs early, during stimulus processing, or late, in the form of response competition.

Duncan-Johnson and Kopell (1981) examined P300 latency in a Stroop task and found

no evidence of a delay in P300 latency for incongruent as compared to congruent

stimuli. They concluded that Stroop interference must primarily arise from response

competition at the output stage rather than stimulus evaluation processes. Grapperon,

Vidal, and Leni (1998) and Ilan and Polich (1999) replicated these results. Finding no

relationship between reaction time and P300 latency, they also concluded that Stroop

interference occurs after the stimulus has been evaluated. In accordance with this as-

sumption, Grapperon et al. (1998) found a premotor negativity for incongruent stimuli

which was only present in the color naming and not in the word reading condition.

This premotor negativity occurred 400–205ms before the subjects responded.

Rebai, Bernard, and Lannou (1997) recorded ERPs while subjects performed a modi-

fied Stroop task. Subjects were shown congruent or incongruent color words and had

to either mentally name the color or mentally read the word (covert Stroop design).

For the mental color naming condition, Rebai et al. (1997) reported an enhanced N400

at midline frontal and central sites for discordant words. The N400 is accepted as an

indicator of semantic-context mismatch (Kutas & Hillyard, 1980). They proposed that

the response the subject has to make when color-naming discordant stimuli is incon-

gruent with the stimulus context and therefore a N400 is elicited. For the word reading

condition, this enhanced N400 was not found. However, ERPs were significantly more

positive in the P300 time window [250ms; 350ms] for discordant than for concordant
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color words. This effect was most pronounced on central and parietal sites. They in-

terpreted this enhanced P300 wave when reading discordant color words as some kind

of surprise or enhanced attention effect.

West and Alain (1999) also investigated ERPs in a manual Stroop task. ERPs were an-

alyzed with all electrodes referenced to an average reference. Results showed a robust

Stroop effect in both the response latency and response accuracy data, i.e. not only did

subjects show significantly longer reaction times for incongruent as compared to congru-

ent, neutral, and word identification trials, but they also committed significantly more

errors in incongruent trials. Several modulations of ERPs for incongruent as compared

to other trials were observed. First, incongruent trials led to an attenuated bilateral

positivity peaking at 500ms over the lateral fronto-polar region, which was attributed

to conflict detection. Second, for incongruent trials a negative fronto-central and posi-

tive fronto-polar slow wave was observed, beginning at about 500ms and persisting over

the remainder of the trial. This effect was interpreted to represent conflict resolution

processes in the ACC. Third, a decreased left parietal positivity (peak ∼ 522ms post-

stimulus) and a greater left temporo-parietal positivity (peak ∼ 650ms post-stimulus)

was found for incongruent relative to congruent trials. West and Alain argued that

on incongruent trials, conflict detection (phasic fronto-polar positivity) and resolution

processes (fronto-central slow wave) may be activated to modulate processing of in-

formation in the perceptual color pathway (left temporo-parietal modulation). The

Stroop effect was explained by the time required to activate the color pathway to a

level sufficient to guide a response.

Liotti, Woldorff, Perez, and Mayberg (2000) examined the influence of verbal (covert

and overt) vs. manual response modalities on reaction times and ERPs. They observed

a very robust Stroop color-word interference effect in both the vocal version and the

manual version of the task. Of course, for the covert vocal condition no reaction times

were available. Again, ERPs were referenced to an average reference. For incongruent

trials, they found a medial-dorsal negativity between 350–500ms post-stimulus. The

effect had a distinct scalp topography for the verbal (covert and overt) and manual

versions of the task, with an anterior-medial focus for overt or covert speech and a

broader medial-dorsal distribution for the manual task. Dipole analysis suggested two

independent generators of this activity in the ACC, more dorsal in the verbal task

and more posterior in the manual task. The authors presumed that the activity in

the ACC in incongruent trials was related to the need of suppressing or overriding

the processing of the incongruent word meaning, i.e. they interpreted it as evidence of
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conflict processing and resolution in the ACC. Although the observed interference effect

was in the time range of the N400 as in the Rebai et al. (1997) study (covert design)

and also had a similar scalp distribution, the authors argued that a N400 interpretation

appeared unlikely for several reasons, one being the different scalp distribution of the

interference effect for vocal and manual responses. A second finding of the study was a

prolonged positivity between 500–800ms post-stimulus over the left superior temporo-

parietal scalp for incongruent relative to congruent trials. This effect was evident in

all three versions of the task and presumably reflects additional activation of word

meaning regions (possibly Wernicke’s region) in incongruent trials.

Atkinson, Drysdale, and Fulham (2003) examined various ERP components in a manual

classical Stroop (identify color) and reverse Stroop (identify word) task. They found

Stroop interference for incongruent and facilitation for congruent stimuli. In addition,

they found a reverse Stroop interference for reading incongruent color words. However,

they failed to replicate the midline frontal and central negative modulation 300–500ms

post-stimulus and later found by other studies reported above (Liotti et al., 2000;

Rebai et al., 1997; West & Alain, 1999) and purported by some to be an N400 for

the incongruent condition. Furthermore, for the P300 at midline central and parietal

sites, Atkinson et al. found a greater amplitude for congruent and incongruent than

neutral trials but no difference between congruent and incongruent trials. P300 latency

data also showed no difference between the three conditions. The authors concluded

that the lack of difference between congruent and incongruent conditions implies that

both are processed much the same until motor output stage. Thus, interference must

be a consequence of response competition at the output stage. Furthermore, they

found significant amplitude and latency differences for the parietal P300 component

between the color identification and word identification task, supporting the notion

that P300 latency reflects stimulus evaluation time (Duncan-Johnson & Kopell, 1980;

Ilan & Polich, 1999) and that evaluating a stimulus for a word response takes longer

than evaluating the same stimulus for a color response.

In conclusion, so far no component modulation has been reported to be consistently

related to the Stroop effect. Task and stimulus variations might play an important role

in the different results and need to be investigated systematically. The results reported

by Duncan-Johnson and Kopell (1981), Grapperon et al. (1998), Ilan and Polich (1999),

and Atkinson et al. (2003) indicate that Stroop interference is not reflected in a delay of

P300 latency, which is generally assumed to reflect stimulus evaluation time (Duncan-

Johnson, 1981; Czigler & Szenthe, 1988). This points to response competition rather
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than stimulus processing as the source of interference. In addition, P3 amplitude has

been found only in one study (Rebai et al., 1997) as being larger for discordant than

for concordant color word stimuli. Thus, P3 amplitude also does not seem to be an

electrophysiological correlate of the classical Stroop interference. Furthermore, late

frontal and temporo-parietal components occurring near or at response latency have

been thus far the most promising ERP indices of Stroop interference. Finally, there

is some evidence that the left hemisphere generally shows more interference-related

effects than the right hemisphere, which is consistent with the dominant role of the left

hemisphere in verbal processing (MacLeod, 1991).

1.4.2. What Do We Know About Emotional Stroop

Interference?

Only few studies have investigated the neuronal correlates of emotional Stroop inter-

ference (Compton et al., 2003; George et al., 1994; George et al., 1997; Isenberg et al.,

1999; Whalen et al., 1998).

A PET study by Isenberg et al. (1999) found enhanced amygdala activity for color

naming threatening as compared to neutral words. In an fMRI study, Whalen et al.

(1998) investigated the role of the ACC in an emotional counting Stroop paradigm.

In this paradigm, the number of words (neutral or negative) that appear on a screen

has to be counted and reported by pressing a button. Although Whalen et al. did not

find a reaction time increase for negative as compared to neutral words, they found

the ventral affective division (ACad) of the ACC to be more activated for negative vs.

neutral words during initial presentation blocks. In contrast, George et al. (1997) did

not find any ACC activation in an emotional Stroop task.

More recently, Compton et al. (2003) compared the classical color-word Stroop with

an emotional word Stroop task. Subjects had to identify the color of a word as fast

as possible by pressing a button while ignoring word content. The authors suggested

that both tasks may draw upon overlapping brain regions when they share common

processing components. The dorsolateral prefrontal cortex (DLPFC), for example, was

engaged regardless of whether the task involved emotional or non-emotional distractors,

i.e. negative words or incongruent color words. This region seems to be important for

maintaining an attentional set in the presence of a salient distractor. Similarly, the left

lateral orbitofrontal cortex was significantly activated in response to negative emotional

words as compared to neutral words, and there was also a small (but non-significant)
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area of activation for incongruent color words vs. neutral words. The authors suggested

that this area is involved in the inhibition of salient responses.

Color-naming negative emotional words led to increased bilateral occipito-temporal

activity and decreased right amygdala activity. On the other hand, color-naming color-

incongruent words led to increased activity in the left superior parietal lobe as well as

decreased activity in the parahippocampal gyrus.

These results extend prior reports of increased activity in visual-processing areas when

subjects view emotional pictures (Lane, Chua, & Dolan, 1999; Lane et al., 1997; Lang,

Bradley, & Cuthbert, 1998). The greater involvement of right occipito-temporal re-

gions, especially in response to high-arousal vs. low-arousal negative words, is consis-

tent with the notion that the right hemisphere has an emotional surveillance function

that is especially sensitive to signals of threat (Bear, 1983; Nitschke, Heller, & Miller,

2000).

However, there are some limitations to the interpretation of the results of Compton et

al. (2003). The emotional Stroop task did not produce the same degree of interference

as the color-word Stroop task, limiting the comparability of the tasks. In fact, Compton

et al. did not find any significant behavioral difference between negative and neutral

words unless they analyzed only the first 16 trials of each word type. In this analysis

high-arousal negative words did lead to significantly slower reaction times than matched

neutral words.

In conclusion, a small number of PET and fMRI studies (but no EEG studies) have

investigated the neuronal correlates of emotional Stroop interference. The results of

these studies are rather inconsistent regarding the regions which were found to be

more activated on negative/threatening compared to neutral trials. Some studies found

the ACC to be more strongly activated for threatening compared to neutral stimuli

(Whalen et al., 1998), but other studies could not replicate these results (George et

al., 1997). Some studies did not even find emotional Stroop interference in reaction

times but still reported differences in activated brain regions (Compton et al., 2003).

In addition, all studies investigating the neuronal underpinnings of emotional Stroop

interference so far examined only healthy subjects but no clinical samples. Thus,

these studies still shed no light on how anxiety patients differ from healthy controls in

emotional Stroop paradigms and, most importantly, which brain regions underlie the

emotional Stroop interference observed in these patients.
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1.5. The Processing of Emotional and

Fear-Relevant Stimuli

Fear-relevant stimuli are a special case of emotional stimuli. Thus, this section will

summarize what is known about the processing of emotional stimuli and will then deal

with the processing of fear-relevant ones. A brief overview of functional imaging and

event-related potential studies in this field will be given.

1.5.1. Results of Functional Imaging Studies

In general, fMRI studies found more extensive activity in the visual cortex when sub-

jects viewed emotional compared to neutral pictures, with larger differences in the

right compared to the left hemisphere (e.g. Dolan et al., 1996; Lang et al., 1998). This

suggests that the visual cortex is differentially activated as a function of emotional

arousal, and that the larger positive electric potentials found for arousing as compared

to neutral pictures (see section 1.5.2) may be at least partially generated by differential

activity in the visual cortex.

Studies with Animal Phobics Several PET studies have investigated the pro-

cessing of fear-relevant stimuli in phobic patients (Fredrikson et al., 1993; Fredrikson,

Fischer, & Wik, 1997; Fredrikson, Wik, Annas, Ericson, & Stone-Elander, 1995; Jo-

hanson et al., 1998; Rauch et al., 1995; Wik et al., 1993; Wik, Fredrikson, & Fischer,

1997).

Fredrikson et al. (1993) were among the first to report elevated rCBF in the visual

associative cortex of snake phobics who viewed phobic as compared to neutral and

aversive stimuli. Furthermore, they found cortical and thalamic rCBF to be correlated,

suggesting that the thalamus is a relay station for phobic stimulus processing and

affect. The results were replicated with spider phobics (Fredrikson et al., 1995). The

latter study also found reduced relative rCBF in the hippocampus, the prefrontal,

orbitofrontal, temporopolar, and posterior cingulate cortices.

Johanson et al. (1998) examined activity in frontal areas while spider phobic subjects

watched videos of living spiders or control videos (nature scenery). Subjects who

showed severe panic during spider exposure had marked rCBF decreases in the frontal

cortex, particularly in the right hemisphere. Those subjects who were frightened but

did not panic during spider exposure showed a consistent right frontal rCBF increase
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during spider exposure. The authors suggest that these differences in frontal activity

are related to the experience and cognitive control of phobic anxiety.

A recent fMRI study by Paquette et al. (2003) investigated the influence of cognitive-

behavioral therapy (CBT) on brain activation patterns in spider phobics. Before treat-

ment, spider phobics showed significant activations of the right dorsolateral prefrontal

cortex, the parahippocampal gyrus, and the visual associative cortex when viewing spi-

ders as compared to butterflies. After CBT, the activation in the dorsolateral prefrontal

cortex and the parahippocampal gyrus disappeared. However, additional activations

of the superior parietal lobule and the right inferior frontal gyrus were observed. The

authors interpreted these activities as indicating a higher state of visual vigilance.

However, this study has severe limitations: the control group was scanned only once,

and the study lacked a spider phobic control group receiving no CBT, i.e. a waiting

control group.

To summarize, the elevated rCBF in the visual cortex of phobics in response to their

feared object (Fredrikson et al., 1993, 1995) is in line with studies reporting more

extensive activation of the visual cortex when viewing highly emotional (arousing)

stimuli (e.g. Dolan et al., 1996; Lang et al., 1998). The activity of frontal areas in

phobics might depend on the cognitive control of anxiety when viewing a feared object

(Johanson et al., 1998). So far, no study has convincingly demonstrated how brain

activations in response to feared objects change after cognitive-behavioral treatment

of phobia.

1.5.2. Results of Event-Related Potential Studies

It has been repeatedly shown that the amplitude and scalp topography of the P300 is

significantly influenced by the emotional content of stimuli. ERP studies consistently

found higher parietal cortical positivity (P3 and later components) in response to emo-

tional stimuli, both pleasant and unpleasant, as compared to neutral ones (Cuthbert,

Schupp, Bradley, Birbaumer, & Lang, 2000; Diedrich, Naumann, Maier, Becker, &

Bartussek, 1997; Johnston, Miller, & Burleson, 1986; Keil et al., 2001, 2002; Laurian,

Bader, Lanares, & Oros, 1991; Mini, Palomba, Angrilli, & Bravi, 1996; Palomba, An-

grilli, & Mini, 1997; Radilovà, 1982; Radilovà, Figar, & Radil, 1983, 1984; Schupp et

al., 2000).

Lifshitz (1966) and Begleiter, Gross, and Kissin (1967) were among the first to assess

the influence of emotional visual stimuli on ERPs. Later on, Radilovà (1982) observed
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that unpleasant visual stimuli led to more positive P3 waves than neutral ones and

that erotic slides led to larger P3 amplitudes than non-erotic slides such as flowers,

landscapes, etc. (Radilovà et al., 1983, 1984). This supported the conclusion that

higher emotionality of visual stimuli in general leads to higher P3 amplitudes. Further

support for this assumption comes from studies by Johnston and colleagues (Johnston,

Burleson, & Miller, 1987; Johnston et al., 1986). In their 1986 study, subjects watched

pleasant (babies, opposite and same sex models), unpleasant (dermatological diseases)

and neutral (ordinary people) slides. They found evidence for multiple late positive

components: P3 and P4 as well as a slow wave. P3 and P4 were larger for emotional

(pleasant and unpleasant) as opposed to neutral stimuli. Similarly, Mini et al. (1996)

using pleasant, unpleasant and neutral pictures from the International Affective Picture

System (IAPS: Center for the Study of Emotion and Attention, 1995) also found more

cortical positivity to emotional than neutral slides within the latency ranges 300–400ms

and 400–500ms. This pattern of sustained positivity has been interpreted as indicative

of deeper processing of the emotional information (Palomba et al., 1997). Specifically,

Lang et al. (1997) proposed that it reflects motivational engagement and a commitment

of attentional resources to the picture viewing task.

Recently, this greater magnitude of parietal late positive deflection has been attributed

more to the arousal of the stimuli, rather than to their emotional valence. This in-

terpretation has already been proposed by Yee and Miller (1987), who reported larger

P300 amplitudes to unpleasant slides than to pleasant ones but pointed out that the

unpleasant slides could be “viewed as more [affectively] intense” and that the difference

may reflect the “emotional intensity” of the stimuli rather than their valence.

In correspondence with this interpretation, Schupp et al. (2000) suggested that the

crucial variable influencing late positive components is arousal rather than valence.

They used three different categories of pictures from the IAPS: positive, negative and

neutral pictures. The valence of the three categories differed significantly. The pleasant

and unpleasant pictures did not differ in arousal, but were significantly more arousing

than the neutral pictures. High-arousing (pleasant and unpleasant) affective pictures

elicited larger LPPs than low-arousing (neutral) pictures. LPPs did not differ between

pleasant and unpleasant slides. However, attributing the entire LPP effect to arousal

rather than valence would be premature, since Schupp et al. (2000) lacked positive

and negative low-arousing pictures, which would have been necessary to draw such a

conclusion from their paradigm. A basic problem of the arousal and valence dimensions

is that they are not independent but follow a U-shaped relation, i.e. highly positive
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and highly negative stimuli are in general also evaluated as more arousing (Lang et al.,

1997). Thus, separating the effects of valence and arousal does not seem to be feasible.

Hemispheric Specialization in the Processing of Emotional Stimuli There

is considerable evidence for a functional hemispheric specialization in the regulation

of affect. For example, Laurian et al. (1991) recorded ERPs while subjects viewed

neutral, happy or angry facial expressions. They found the largest difference in P3

amplitudes between emotional and neutral target stimuli over the right centroparietal

area. They interpreted their results as supporting the right hemisphere superiority in

the processing of emotional stimuli.

However, Kayser et al. (1997) noted that left-hemispheric activity may have been con-

founded with motor potentials since subjects responded with their right hand. This

possibly could have reduced differences in P3 amplitudes between emotional and neu-

tral conditions over the left hemisphere, leading to a right hemisphere advantage. To

rule out this possibility, Kayser et al. (1997) recorded ERPs while subjects watched

negative (dermatological diseases) or neutral pictures (after cosmetic surgery) in a vi-

sual half-field paradigm. This paradigm required no discriminative or motor response.

They found effects of emotional content on ERP components N2, early P3, late P3,

and slow wave. However, hemispheric asymmetries were restricted to N2 and early

P3, with maximal effects over the right parietal region. The N2-P3 amplitude was

increased for negative and reduced for neutral stimuli over right-hemispheric recording

sites. They interpreted this finding as supporting a hemispheric lateralization of the

processing of emotional stimuli.

In conclusion, a right hemispheric superiority is generally reported in response to emo-

tional stimuli, particularly in response to threat (Etcoff, 1989; Kayser et al., 1997;

Laurian et al., 1991; Silberman & Weingartner, 1986; Van Strien & Hejit, 1995; Van

Strien & Morpurgo, 1992).

Studies with Animal Phobics Few studies so far have investigated ERPs in animal

phobics who view their feared objects. Gutberlet and Miltner (1999) showed that the

presentation of fear-relevant stimuli (spiders and snakes) led to enhanced P3 amplitudes

for the feared object in the corresponding specific phobia group, i.e. spider phobics

showed enhanced P3 amplitudes for spiders but not for snakes, and snake phobics for

snakes but not for spiders.
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A follow-up study with spider phobics replicated these results (Gutberlet & Miltner,

2001). Additionally, in this study the influence of cognitive-behavioral therapy accord-

ing to Öst (1989, 1996; Öst et al., 1991) on electrophysiological variables and ERPs was

investigated. Results showed significant changes in electrodermal activity and heart

rates before and after treatment. While before treatment, spider phobics showed a

defense reaction in response to spiders, after treatment a normal orienting response

was observed. However, the enhanced P3 amplitude in spider phobics in response to

spiders was observed before and after treatment. Presumably, despite therapy, spider

phobics evaluated spiders still as more arousing than control objects.

It could be objected that in all the paradigms described above an affective oddball

paradigm was implicitly constructed. If spider phobics view pictures of highly unpleas-

ant and arousing stimuli, i.e. spiders, presented together with neutral and positive

stimuli, they could classify the stimuli as “non-phobic” and “phobic” stimuli. “Non-

phobic” stimuli would be grouped together as one category, and spiders would stand

out – a classical oddball effect, leading to larger P3 amplitudes.

To rule out this argument, Krieschel (2003) created an oddball paradigm in which the

probability of stimuli was systematically varied. In two different conditions, subjects

saw pictures of spiders and flowers or spiders and birds. Each pair of stimuli was

presented at a ratio 1:4 (which corresponds to the classical oddball paradigm: 20%

deviant stimuli, 80% standard stimuli). Subjects had to count either the deviant or

the standard stimuli. The factors Task (counted, not counted), Probability (deviant

or standard stimuli) and Condition (spiders–flowers; spiders–birds) led to 8 different

conditions. Results showed that the variation of the P3 amplitude was not completely

explained by the factors Probability and Task. The emotional relevance of stimuli also

had a significant influence on P3 amplitude, which resulted in specifically higher P3

amplitudes in spider phobics when viewing pictures of spiders.

To summarize, the enhanced P3 amplitudes in animal phobics in response to their

feared object (Gutberlet & Miltner, 1999, 2001; Krieschel, 2003) are in accordance

with the larger parietal cortical positivities in response to highly emotional (arousing)

stimuli (e.g. Schupp et al., 2000). The argument that the enhanced P3 amplitude in

phobics for their feared object is merely due to an affective oddball effect could be

ruled out (Krieschel, 2003). Finally, it still remains unclear why P3 amplitudes were

still enhanced after treatment of phobia, even though peripheral physiological measures

normalized. Whether this effect could be due to spider phobics’ still elevated arousal

ratings of feared stimuli even after therapy has to be investigated in future studies.
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1.6. The Late Positive Complex: Multiple P3

Components

Since the P3 and related components are the focus of this thesis, the next sections

explain factors influencing these amplitudes.

Probably no electrocortical component has received as much attention from researchers

as the P3 component. Since its discovery by Sutton, Zubin, and John (1965), various

different P3 components (P3a, P3b, P3 Vertex, P3 No-Go, slow wave, . . . ) have been

described. Today, there is general agreement that there is no one unique P3, but

probably multiple P3s which are independent and dissociable. Ruchkin, Sutton, and

Mahaffey (1987) wrote:

”With the accumulation of human brain event-related potential (ERP)

data, it has become apparent that there are a number of endogenous late

positive components, different in their scalp distribution, latency, duration,

and psychological correlates. Components may occur alone or may overlap

spatially and temporally. This group of components is sometimes referred

to as the late positive complex. The most widely studied member of the

late positive complex is the long latency (300–600ms) parietal P300. Its

amplitude can be relatively large with respect to other late positivities, and

it is therefore generally the most readily observed. In much of the earlier

literature, the P3 and P300 nomenclature is used, but in the more recent

literature, it is commonly referred to as P3b (Squires, Squires, & Hillyard,

1975) so as to explicitly distinguish it from other late positivities in the

same time region.”

As noted above by Ruchkin et al., the P3 component investigated in this thesis is often

also referred to as the P3b component. Its maximal amplitude is centro-parietal with a

latency between 300–600ms. The P3b is generally elicited by events that are relevant

for the subject for some reason. Tasks eliciting a P3b include, among others, oddball

paradigms, signal detection paradigms, comparisons of two stimuli, and discrimination

learning (for more information see Roesler, 1982; Trimmel, 1990). The relevance and

amount of information extracted from the eliciting event, rather than its physical

properties, are key determinants of P3b (Sutton et al., 1965). However, the P3b can

also be elicited by the absence of a stimulus, when absence conveys relevant information
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to the subject (Sutton, Tueting, Zubin, & John, 1967). In the following sections, to

simplify matters, the P3b will be referred to as P3.

Neurochemical Substrates and Neuroanatomical Generators of P3 Recently,

the neurochemical substrates of P3 were elucidated (see Frodl-Bauch, Bottlender, &

Hegerl, 1999). The neurotransmitter glutamate, which is the most important excita-

tory neurotransmitter in the brain, appears to play a major role in P3 generation. In

fact, P3 is most likely caused by a direct excitatory postsynaptic effect of glutamatergic

neurotransmission. Important modulators of excitatory postsynaptic potentials (EP-

SPs) triggered by glutamate are cholinergic and GABAergic influences. While cholin-

ergic neurotransmission increases P3 amplitude and decreases P3 latency, GABAergic

influences reduce P3 amplitude and prolong P3 latency.

The P3 seems to be a composite of activity arising from different generators in the brain

(Verleger, 1997). While early studies suggested the importance of medial temporal lobe

structures (hippocampus, parahippocampal gyrus, amygdala) for P3 generation (e.g.

Halgren et al., 1980; Okada, Kaufman, & Williamsen, 1983; Wood et al., 1984), more

recent studies hint at neuronal generators in the parietal and temporo-parietal cortical

areas (see Frodl-Bauch et al., 1999 for more information). For several reasons, the

limbic system probably has little influence on the generation of the scalp-recorded P3.

One reason is, for example, that deep structures such as the hippocampus are unlikely

to be direct generators of the large 10–20µV P3 potentials recorded on the scalp

(Lutzenberger, Elbert, & Rockstroh, 1987), and there is further evidence substantiating

this assumption (see Frodl-Bauch et al., 1999).

1.6.1. Influences on P3 Amplitude

As a result of studying the P3 in a wide variety of behavioral paradigms, a large number

of hypothetical constructs have been suggested to account for the observed variations

in P300 amplitude. The most common are attention, probability, uncertainty reduction

or equivocation, processing demands, task relevance, stimulus value, and salience. In a

comprehensive review, Johnson (1986) summarized various influences on P3 amplitude

and developed a triarchic model of P3 amplitude.
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Johnson’s (1986) Triarchic Model of P3 Amplitude

According to Johnson, variables that account for the P3 amplitude can be classified

into three dimensions: subjective probability, stimulus meaning, and information trans-

mission.

The variables on the subjective probability and stimulus meaning dimensions have in-

dependent and additive contributions to overall P3 amplitude. The amplitude contri-

butions of both these dimensions, however, are modulated by a multiplicative relation

with the proportion of transmitted stimulus information. The model is summarized by

the following equation:

P3 Amplitude = f

(
T ×

( 1

P
+ M

))
T denotes information transmission, i.e. the proportion of stimulus information received

by a person. P denotes the subjective probability of a stimulus. Finally, M denotes the

effect of stimulus meaning.

Transmission Information transmission stands for the proportion of stimulus informa-

tion received by a person relative to the total amount of information the subject

could possibly receive about the stimulus. Thus, the transmission variable will

assume values between 0 and 1. Information transmission is dependent on two

categories of experimental variables: first, on those creating equivocation, e.g.

stimulus discriminability, and second, on those affecting the allocation of at-

tention, e.g. ignore or attend instructions. Increased uncertainty in identifying

the eliciting event (equivocation – information loss) reduces P3 amplitude (e.g.

Fitzgerald & Picton, 1982; Johnson & Donchin, 1978; Ruchkin & Sutton, 1978).

Probability The amplitude of the P3 follows an inverse relation with stimulus probabil-

ity, i.e. the P3 is larger for low probability events and smaller for high probability

events. This inverse relation between P3 amplitude and the probability of an

event’s occurrence has been well documented (e.g. Duncan-Johnson & Donchin,

1977; Sutton et al., 1965; Tueting, Sutton, & Zubin, 1970). Stimulus probability

is influenced by a priori probability and by subjective probability, i.e. the latter

takes human judgment into account. Thus, the P3 amplitude is largest if the

stimulus occurs unexpectedly and infrequently.

Meaning The meaning dimension consists of three independent variables: task com-

plexity, stimulus complexity, and stimulus value. Johnson argues that probability
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is unrelated to the meaning or significance of an event and that the variables on

the meaning dimension therefore must be independent of those on the subjective

probability dimension.

1. Task complexity refers to the demands of a task. Simple counting tasks, for

example, are less demanding than reaction time tasks (Johnson, 1986). The

more complex a task, the smaller is the decrease in P3 amplitude as a result

of habituation (Lew & Polich, 1993). Thus, it seems that the P3 amplitude

is directly related to the extent to which a stimulus must be processed.

2. Stimulus complexity refers to the perceptual demands of a stimulus. Some

stimuli have more relevant features than others and thus require more pro-

cessing for identification and categorization. Verbaten (1983) found larger

P3 amplitudes for visual stimuli with more intricate patterns.

3. Stimulus value emphasizes the subjective meaning or significance of a stim-

ulus for a person. Stimulus value can be manipulated, e.g. by monetary re-

wards. Several studies manipulating monetary rewards found larger P3 am-

plitudes for high-value stimuli as compared to low-value stimuli (cf. Johnson,

1986). Similarly, feared stimuli have a different stimulus value for phobics

as compared to controls.

1.6.2. Influences on P3 Latency

The latency of the P3 is influenced by task difficulty. Task difficulty and complexity

of stimulus evaluation are related. With more complex stimulus displays, stimulus

evaluation and processing time increases, and P3 latency is prolonged (e.g. Czigler &

Szenthe, 1988; Duncan-Johnson, 1981).

However, a review by Verleger (1997) suggested that P3 latency might not only depend

on stimulus-processing time, but might also be influenced by the timing of response

selection. He argues that the areas that contribute to P3 not only integrate perception,

but also contribute to response selection. Therefore, it would not be plausible to

assume that P3 latency was free from components that refer to response selection. He

concludes that the P3 latency is not a sharp diagnostic tool to separate the processing

of the stimulus itself from the processes related to the response. In contrast, Coles,

Smid, Scheffers, and Otten (1995) argue that P3 latency is independent of the processes

associated with response selection and execution. For example, although manipulations
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of stimulus-response incompatibility have a large effect on reaction time, they have little

if any effect on P3 latency (McCarthy & Donchin, 1981; Magliero, Bashore, Coles, &

Donchin, 1984; Ragot, 1984). Furthermore, a study by Smid, Mulder, Mulder, and

Brands (1992) found that an increase in response selection difficulty failed to influence

P3 latency, while it resulted in an increase in reaction time. On the other hand, when

the difficulty of stimulus identification increased, P3 latency increased.

In sum, while there is disagreement about the influence of response-related processes

on P3 latency, it is widely accepted that P3 latency provides a measure of the relative

timing of evaluation processes (Coles et al., 1995). One could assume that the P3

latency therefore is an ideal measure for the electrophysiological processes underlying

Stroop interference. However, as discussed in Section 1.4, Stroop interference in the

color-word Stroop task is not associated with a delay in P3 latency (Duncan-Johnson

& Kopell, 1981). If indeed P3 latency is a marker of stimulus evaluation time, then

this result would suggest that the interference occurs somewhere downstream from the

system responsible for stimulus evaluation, i.e. in the system responsible for response

selection and execution.

1.6.3. Theoretical Interpretations of the P3

Major theoretical interpretations of the P3 amplitude are that it indexes the updating

of working memory (context-updating theory, Donchin, 1981), that it reflects the clo-

sure of a cognitive epoch (Verleger, 1986, 1988), or that it represents controlled, effort

demanding cognitive processes (theory of controlled processing, Roesler, 1982).

The context-updating theory assumes that the P3 component is associated with

updating or reorganizing working memory contents (Donchin, 1981; Donchin & Coles,

1988). The amplitude of the P3 is proportional to the amount of updating/change in

working memory.

The cognitive closure theory assumes that the P3 marks the closure of a cognitive

epoch and that its amplitude is a measure of the deactivation of the parietal “tertiary

zone” (Verleger, 1986, 1988). This refers to Luria’s (1973) distinction between pri-

mary, secondary and tertiary areas in his hierarchical model of the perception system.

Primary areas are modality specific and project to secondary association areas, which

again project to tertiary modality-independent areas located in the parietal cortex.

The theory of controlled processing (Roesler, 1982) presumes that a P3 is elicited

when controlled instead of automatic processes are necessary, i.e. when stimulus evalu-
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ation leads to the conclusion that a new, capacity demanding stimulus processing has

to be initiated. The amplitude of the P3 reflects the amount of capacity necessary for

this process. From this account the hypothesis can be drawn that the amplitude of the

P3 would be greater for larger processing efforts.

Whatever the theoretical interpretation of the P3, there is abundant evidence for a

modulation of P3 amplitude by the emotional content of stimuli, as reviewed in sec-

tion 1.5.2. The interpretations of the P3 as reflecting deeper processing of emotional

information, motivational engagement, or the commitment of attentional resources, to-

gether with the ERP studies with spider phobics described above fit Johnson’s (1986)

model well, since it also accounts for an influence of stimulus meaning.

In conclusion, the P3 amplitude is a valid indicator of emotional processing of fear-

relevant stimuli in both phobics and non-phobics.

1.7. The Aims of This Thesis

The aims of this thesis were to study behavioral measures and electrophysiological

correlates of the processing of fear-relevant stimuli in general and specifically of feared

stimuli in spider phobics. In particular, reaction times, heart rates, and event-related

potentials were investigated. Furthermore, in an exploratory study, the question as to

which properties make a spider feared or fear-relevant was addressed.

Experiment I investigated the electrocortical correlates of the attentional bias in spi-

der phobics by means of a pictorial emotional Stroop paradigm. While previous

emotional Stroop studies mostly relied on verbal stimuli, in this study pictorial

stimuli were used because of their higher ecological validity. In addition, manual

instead of verbal responses were recorded to avoid artifacts due to speech-related

movements in the simultaneous recording of ERPs.

The aims of this study were first, to replicate the results of previous studies in-

vestigating emotional Stroop interference in spider phobics and to identify the

electrocortical correlates of the neuronal processes underlying this interference.

Second, spider phobics, social phobics, and controls were compared in their pro-

cessing of feared and fear-relevant stimuli, respectively. The focus of research lay

on the amplitude of P3 and related components because of the well-documented

influence of emotionally arousing stimuli on components in this latency range.
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Experiment II aimed to replicate the results of Experiment I with schematic pictures

of spiders and flowers. Schematic stimuli have several advantages as compared

to non-schematic stimuli: they are simpler and unequivocal, and they show less

variance than non-schematic pictures, e.g. they are not confounded with factors

like spider size, species, or hairiness. In addition, it is easier to construct a

control condition consisting of the same basic visual elements as the schematic

spider pictures. The flower pictures we used in this study contained exactly the

same basic visual elements as the spider pictures and were therefore ideal control

pictures. All other parameters were the same as in Experiment I.

Experiment III explored the question as to which properties make a spider feared

or fear-relevant. In a first approach to this question, the influence of Gestalt

properties was investigated by varying the configurational position of the legs of

a schematic spider in relation to its body, turning the schematic spider into a

flower in seven steps. Spider phobics, social phobics, and controls had to classify

each picture into the categories “spider”, “flower”, or “neither/nor”.

One aim of this study was to identify crucial elements which cause a stimulus to

be identified as a spider. Furthermore, the question was addressed whether spider

phobics differ from control groups in their behavioral and electrocortical responses

to ambiguous stimuli, possibly as a result of a stimulus generalization effect or an

interpretive bias. Therefore, differences in valence and arousal ratings, reaction

times, classification frequencies, and ERPs between spider-fearful and non-fearful

subjects when viewing spider-like, ambiguous, and non-spider-like stimuli were

investigated.
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2. Experiment I – Pictorial

Emotional Stroop Paradigm

2.1. Introduction: Aims and Hypotheses

So far, apart from the recent fMRI study by Compton et al. (2003), no study has inves-

tigated the neuronal correlates of the emotional Stroop interference in spider phobics.

Instead, studies concentrated on color naming latencies.

This study aimed to elucidate the hitherto neglected electrocortical correlates of the

processing of feared and fear-relevant stimuli. To this end, a pictorial emotional Stroop

paradigm with integrated stimuli was designed. Pictures instead of words were used

because of their higher ecological validity. Öhman’s theory (described in section 1.3.5)

also predicts that spider pictures, not words, are special fear-relevant cues to which

preattentive feature detectors are sensitive. However, previous pictorial Stroop stud-

ies with spider phobics found mixed results ranging from no unequivocal interference

over less interference to similar interference for spider pictures as compared to words.

Furthermore, the computerized studies which found evidence for emotional Stroop in-

terference used non-integrated spider pictures but when integrated pictures were used

the results were inconclusive. Therefore, another aim of this study was to further

investigate emotional Stroop interference with integrated pictorial stimuli. To avoid

artifacts due to speech-related muscle movements in the simultaneous recording of

ERPs, manual reaction times instead of verbal responses were recorded, although the

latter is more common in emotional Stroop experiments.

Three groups of subjects participated in the study: spider phobics, social phobics, and

controls. The social phobics served as a clinical control group for the spider phobic

group. Subjects saw colored pictures of spiders, birds, and flowers. Their task was
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either to identify the color of the object or to name the object itself. In addition to

reaction times, heart rates and ERPs were recorded. The focus of ERP analyses lay

on parietal late positive components, since previous studies found that highly pleasant

and unpleasant stimuli led to larger P3 amplitudes than neutral stimuli. This effect

has been interpreted as an effect of stimulus valence, but more recently as an effect of

stimulus arousal. However, it has to be noted that the arousal and valence dimensions

are not independent but follow a U-shaped relation, i.e. highly positive and highly

negative pictures are in general also evaluated as more arousing (Lang et al., 1997).

In a pilot study, subjects rated a subset of the spider and bird stimuli used in this

experiment for valence and arousal, using the Self-Assessment Manikin (SAM; Lang,

1980). Spiders were rated by all subjects as significantly more unpleasant and more

arousing than birds. In addition, spider phobics rated spiders as significantly more

unpleasant and more arousing than controls and social phobics. See Section 2.2.3 for

the analysis. Thus, the stimuli were suitable for eliciting specific responses in subjects.

We expected the following results:

Reaction Times

� We anticipated to find specific emotional interference in spider phobics but

not in controls and social phobics, expressed as longer reaction times for the

color identification of spiders compared to neutral pictures.

� Furthermore, we hypothesized to find a general facilitation effect for fear-

relevant stimuli. According to Öhman, fear-relevant stimuli are processed

with high selectivity and priority, and this should apply not only to spider

phobics but to all subjects. Thus, faster reaction times for the identification

of spiders should be found in general.

� However, this facilitation effect should be particularly pronounced in spider

phobics. Therefore, we expected an additional specific facilitation effect in

spider phobics when identifying spiders as compared to social phobics and

controls.

Heart Rates

� For flowers and birds a normal orienting response was expected in all groups,

i.e. the heart rate should briefly decelerate and then slowly return to baseline.
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� Deceleration increases progressively as unpleasant pictures are judged more

arousing. Therefore, social phobics and controls should show higher heart

rate decelerations for spiders as compared to flowers or birds.

� However, this pattern does not characterize the response of phobic subjects

to pictures of their phobic object. After an initial small deceleration of the

heart rate, spider phobics should show heart rate accelerations in response

to spiders (defense reaction).

Event-related Potentials

� Since spiders are generally more arousing than birds, they should lead to a

larger positivity in the P3 latency range compared to neutral objects. Thus,

we expected to find in all subjects a general arousal effect for spiders on late

positive potentials.

� Since spiders are particularly arousing for spider phobics, the arousal effect

should be particularly pronounced for them, i.e. they should show even

larger amplitudes in the P3 latency range for their phobic object. We thus

anticipated a specific arousal effect for spiders on late positive potentials in

spider phobics.

� Frontal areas, in particular the ACC, play a role in conflict monitoring. The

cognitive subdivision of the ACC (ACcd) has been found to be involved

in stimulus response competition tasks, such as the Stroop task, while the

affective subdivision (ACad) is activated by affect-related tasks such as the

emotional counting Stroop task. We therefore expected a frontal interference

component representing the neuronal correlates of the emotional Stroop in-

terference in spider phobics. However, because of the lack of previous studies

in this field of research, this research question was more exploratory.

2.2. Methods

2.2.1. Subjects

Altogether, 57 subjects (mean age 23 yrs, SD 3.4 yrs; age range: 19–32 yrs) participated

in the study: 19 spider phobics (9 male, 10 female), 19 social phobics (10 male, 9

female), and 19 normal controls (10 male, 9 female). There was no significant difference
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between the groups regarding age (Kruskal-Wallis Test: χ2
df=2 = 5.43; p = 0.07) or

gender (Pearson χ2
df=2 = 0.14; p = 0.93). However, there was a tendency for social

phobics to be older than spider phobics. 54 of the subjects were right-handed and 3

left-handed, as measured by the Edinburgh handedness questionnaire (Oldfield, 1971).

Subjects were recruited by newspaper advertisement and within the university student

population. All participants provided informed consent, and the procedures were ap-

proved by the ethics committee of the University of Jena. Subjects received 6 Euro

per hour for their participation. In addition, spider phobics could participate in a one

day spider phobia therapy (Öst, 1989). Social phobics could participate in a 10 session

group training of social competences (Hinsch & Pfingsten, 2002).

In a preliminary interview participants were screened with the Structured Clinical

Interview for DSM-IV (SCID; Wittchen, Wunderlich, Gruschwitz, & Zaudig, 1997).

To be accepted for the study, subjects had to have no current or previous history of

other major disorders according to DSM-IV except for a diagnosis of Spider Phobia for

the spider phobic group and a diagnosis of Social Phobia for the social phobic group.

Furthermore, subjects completed the following tests:

� Spider Questionnaire (SPQ; Klorman et al., 1974)

� Social Phobia and Anxiety Inventory (SPAI; Fydrich, 2002)

� Beck Depression Inventory (BDI; Hautzinger, Bailer, Worall, & Keller, 1995)

� State Trait Anxiety Inventory (STAI, trait version; Laux, Glanzmann, Schaffner,

& Spielberger, 1981)

Normal controls were selected if they had less than 45 points on the SPAI and less

than 7 points on the SPQ. It has to be noted that the German SPAI score can be

transformed into the original SPAI score (Turner et al., 1989) by dividing by 22 and

multiplying by 32.

All spider phobics fulfilled the diagnostic criteria of Spider Phobia according to DSM-

IV. In addition, female spider phobics had to have 20 points or more on the SPQ and

male spider phobics 16 points or more. According to Klorman et al. (1974), for women

SPQ scores of 21 or more and for men scores of 15 or more correspond to the 95th

percentile. Additionally, all spider phobics had to score below 45 points on the SPAI.

Social phobics were accepted if they received a diagnosis of Social Phobia according to

DSM-IV and a SPAI value above 60 as well as a SPQ value smaller than 7. Furthermore,
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Group SPQ SPAI SPAI (orig.) BDI STAI

Spider Phobics: Mean 20.89 30.18 43.90 4.79 33.32
SD 2.87 10.48 15.25 4.67 7.86

Social Phobics: Mean 2.58 87.18 126.81 9.42 50.47
SD 1.95 12.49 18.17 7.09 6.61

Controls: Mean 2.47 23.05 33.53 2.68 30.79
SD 1.78 11.61 16.89 2.71 5.92

Kruskal-Wallis Test: χ2
df=2 37.75 38.63 38.63 12.22 32.81

p-value 0.0005 0.0005 0.0005 0.002 0.0005

Table 2.1.: Mean questionnaire values per group (SD=Standard Deviation); results of
Kruskal-Wallis Test (χ2 and p-values); Note: The German SPAI score can
be transformed into the original SPAI score (Turner et al., 1989) by dividing
through 22 and multiplying with 32

they were not allowed to have a current diagnosis of major depression or a history of

a major depressive episode.

The BDI values were measured in order to find out whether the social phobics had ele-

vated scores on a depression scale. The STAI was administered to investigate whether

spider phobics also had enhanced general trait anxiety.

Mean values and standard deviations (SDs) for each test and each group are depicted

in Table 2.1. The Kruskal-Wallis test showed that groups differed significantly on SPQ

(p = 0.0005), SPAI (p = 0.0005), BDI (p = 0.002), and STAI (p = 0.0005) (see Table

2.1 for exact χ2 values). Subsequent single comparisons with nonparametric Mann-

Whitney-U Test (two-tailed) showed that controls and spider phobics differed only

significantly in SPQ scores (U = 0; p = 0.0005). However, controls and social phobics

differed significantly in SPAI values (U = 0; p = 0.0005), BDI values (U = 65.5;

p = 0.001), and STAI values (U = 6.5; p = 0.0005). Furthermore, social phobics and

spider phobics differed significantly on the SPAI (U = 0; p = 0.0005), SPQ (U = 0;

p = 0.0005), BDI (U = 104.5; p = 0.03), and STAI (U = 20.5; p = 0.0005).

It is well known that depression is highly comorbid with social phobia (Merikangas

et al., 1996; Schneier et al., 1992; Stein et al., 2001). Although we did not include

social phobics with a clinically significant depression into the study, the social phobics

we did include scored on average higher on the BDI than controls and spider phobics,

thus leading to significant differences between the groups in BDI scores. To select

a sample of social phobics with BDI scores comparable to controls would have been

problematic since – besides the difficulty in recruiting subjects – one would select a
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Figure 2.1.: Pictorial emotional Stroop paradigm with integrated stimuli

specific subtype of social phobics, who would probably also show less symptom severity.

Given that social phobics only served as an additional clinical control group and were

not the group of main interest, these differences in BDI should not compromise the

interpretation of the results of this study. Furthermore, social phobics’ BDI scores were

elevated but not clinically significant (mean BDI score = 9.42; SD = 7.09). Yet, in

order to estimate the influence of depression, for all ANOVAs calculated, additional

ANCOVAs (Analysis of Covariances) with BDI values as a covariate were calculated.

Additionally, for social phobics correlations of dependent variables and BDI scores were

calculated. Since no consistent significant influences of depression on results were found

and since the relationship of depression to social phobia was not the focus of this thesis,

ANCOVA results will not be discussed in the following results section. The results of

the ANCOVAs can be found on the CD-ROM accompanying this dissertation.

2.2.2. Paradigm

The experiment consisted of two blocks preceded by a training phase for each task. In

each block 90 pictures of spiders, flowers and birds (30 of each) were presented. 45

pictures had been colored red, the others blue (for example pictures see Figure 2.1 and

Appendix C.1). In one block subjects had to identify the color of the object (blue, red),
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in the other block subjects had to identify the object itself (spider, flower, bird) by

pressing the appropriate button on a button box with the index finger of their dominant

hand. Each block started with a practice task in which 6 stimuli were shown. Subjects

could repeat the practice trials as long as they felt it to be necessary in order to learn

to press the button without looking at the button box. Each stimulus was shown for

1 s with a variable interstimulus interval of 2–3 s (2 s plus an exponential distribution

with mean 500ms, truncated at 1 s, as generated by ERTS).

Each stimulus was presented only once. The order of the stimuli was pseudo-randomized

with the following conditions: the same color was only allowed up to four times in a

row and the same type of object only up to two times in a row. This was done to avoid

expectations which color or object would be presented next. The order of the two

conditions and the sequence of keys which had to be pressed to classify the stimulus

were randomized across subjects.

2.2.3. Subjective Ratings of Valence and Arousal

For a different study, a subgroup of the subjects rated the affective valence and arousal

of a subset of the pictures, using the Self-Assessment Manikin (SAM; Bradley & Lang,

1994; Lang, 1980), a pictographic assessment instrument. The SAM is largely culture-

free and has been used in various emotion studies. In this study an adapted version of

this scale was used. For more details, see Appendix B. Affective valence was rated on a

9-point scale ranging from 0 = highly unpleasant to 8 = highly pleasant. Physiological

arousal was also rated on a 9-point scale ranging from 0 = not at all arousing to 8 =

highly arousing.

54 subjects rated the pictures according to their emotional valence and physiological

arousal: 18 spider phobics (9 male, 9 female), 18 social phobics (9 male, 9 female), and

18 controls (9 male, 9 female). Mean age was 23, SD 3.5, age range 19–32 years.

For both valence and arousal ratings a 3 × 2 ANOVA was calculated with between

factor Group and repeated measures factor Object (spider, bird). Mean valence and

arousal ratings and standard deviations for each object are depicted separately for each

group in Figure 2.2.

The analysis of valence ratings yielded main effects of Group (F(2,51) = 8.49; p =

0.001) and of Object (F(1,51) = 159.44; p = 0.0005), and a significant interaction of

Group × Object (F(2,51) = 19.98; p = 0.0005).
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Figure 2.2.: Mean valence (left) and arousal ratings (right) and SDs for spiders and
birds for each group

The main effect of Object indicated that all groups rated spiders as significantly more

unpleasant than birds. Subsequent t-tests comparing valence ratings of spiders and

birds for each group confirmed this finding (all p-values ≤ 0.0005).

To further analyze the interaction Group × Object, subsequent ANOVAs were cal-

culated for each object. Results showed that valence ratings of birds did not differ

significantly between groups, but the differences in valence ratings of spiders between

groups were highly significant (F(2,53) = 20.36; p = 0.0005). Tukey honestly signif-

icant difference (HSD) post hoc tests revealed that spider phobics rated spiders as

significantly more arousing than controls (p = 0.0005) and social phobics (p = 0.0005).

Similarly, the analysis of arousal ratings showed main effects of Group (F(2,51) =

10.32; p = 0.0005) and of Object (F(1,51) = 121.83; p = 0.0005), and a significant

interaction of Group × Object (F(2,51) = 17.24; p = 0.0005).

The main effect of Object was further analyzed by subsequent t-tests. They revealed

that all groups showed significantly higher arousal ratings for spiders than for birds

(controls: p = 0.001; social phobics and spider phobics: p = 0.0005).

The interaction Group × Object was further analyzed by subsequent oneway ANOVAs

calculated separately for spiders and birds. The analysis showed no significant differ-

ence between groups in arousal ratings for birds. However, there were highly significant

differences in arousal ratings between groups for spiders (F(2,53) = 17.48; p = 0.0005).

Post hoc tests (Tukey HSD) revealed that spider phobics rated pictures of spiders as

significantly more arousing than controls (p = 0.0005) and social phobics (p = 0.002).

In conclusion, all subjects rated spiders as more unpleasant and more arousing than
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birds. However, spider phobics rated the spider pictures as significantly more un-

pleasant and more arousing than controls and social phobics. Thus, the pictures were

suitable to elicit the specific reactions in each group.

2.2.4. Assessment of EEG and Other Psychophysiological

Variables

After arrival in the lab, the scalp of the subjects was first cleansed with 70% iso-

propanol, and afterwards the hair was dried with a towel. The position of Cz was

defined by bisecting the distance between nasion and inion, as well as the distance be-

tween the two preauricular points. Starting with Cz as a reference point the electrode

cap (Easy-Cap, Falk Minow Services, Herrsching-Breitbrunn, Germany) was put on

the subject’s head and attached to a band around the chest. Then the hair under the

electrode adapters was parted, and the skin was prepared with slightly abrasive prepa-

ration cream for EEG (Every, GVB-geli MED, Bad Segeberg, Germany). With blunt

syringes the electrode gel (ECI electrode-gel�, Electro-Cap International Inc., Eaton,

Ohio, USA) was injected in the electrode adapters, and 62 Ag/AgCl electrodes with

8 mm diameter were attached to the cap according to an extended version of the inter-

national 10-10 system (see Figure 2.3). The ground electrode was placed between Fz

and FCz on the forehead, and the reference electrode was Cz. All electrode impedances

were kept below 5 kΩ.

Vertical and horizontal electrooculograms (VEOG and HEOG) were measured for later

correction of eye movements and blink artifacts. VEOG was measured bipolarly by

channel FP1 and an Ag/AgCl electrode (E220N, In Vivo Metric, Healdsburg, California,

USA) with 4mm diameter placed beneath the left eye. HEOG was recorded bipolarly

by channels F9 and F10. To facilitate artifact rejection during analysis EEG data,

an electromyogram (EMG) was measured by 2 baby electrodes (GE Medical Systems,

Solingen, Germany) with 5mm diameter. For EMG recording Elefix EEG Paste was

used (Nihon, German branch office, Bad Homburg v.d.H.).

The electrocardiogram (ECG) was measured by 2 precordial Ag/AgCl electrodes (V3,

V4) according to Wilson et al. (1944). A reference electrode (V3R) was placed on the

corresponding right side of V3, and a ground electrode was attached to the right waist.

For electrode placement compare Figure 2.4. Electrode sites were cleansed with alcohol

(70% isopropanol) to reduce impedances and prepared with ECG preparation cream

(Arbo®Prep, Tyco Healthcare GmbH, Neustadt, Germany). To control for possible
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Figure 2.3.: Electrode placement according to the extended international 10-10 system

effects of respiration on heart rate (sinus arrhythmia), respiration was measured by an

elastic belt around the chest which contained a piezoelectrical element.

During the recording session subjects sat in a comfortable chair in a sound-attenuated,

electrically shielded room (Industrial Acoustics Company GmbH, Niederkrüchten, Ger-

many). Stimuli were shown on a 20 inch Sony monitor (resolution 800×600) placed

1.1m in front of the subject’s eyes. The stimuli were presented by a computer using

ERTS (Experimental Runtime System, Version 3.18, BeriSoft, Frankfurt, Germany).

EEG was recorded with a 62-channel EEG montage (see Figure 2.3). Two Synamp

amplifiers (NeuroScan, Inc.) were used for EEG and EOG acquisition. All signals were

sampled continuously in AC-mode at a rate of 500Hz (gain = 1000, filters: high pass =

0.05 Hz, low pass = 70Hz). Data acquisition was performed by an Intel PC (500MHz)

with NeuroScan software (Acquire 4.1-1, Neurosoft 1999). Furthermore, EMG, ECG,

and respiration were recorded using bioamplifiers (16 bit AD interface) operated by

DASYLab 5.0 software (Data Acquisition System Laboratory, Mönchengladbach, Ger-

many). Amplification of EMG was 0.2mV/V, high-pass filter 5.3Hz, low-pass filter

150 Hz. Heart beats were amplified by 0.5mV/V and filtered high-pass at 0.53Hz and

low-pass at 30Hz. Amplification of respiration data was set to 5mV/V, and data were

high-pass filtered at 10Hz and low-pass filtered at 1Hz.
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Figure 2.4.: Standard positions of the 12 precordial electrodes (Malmivuo and Plonsey,
1995: “12-Lead ECG System”)

2.2.5. Analyses of Dependent Variables

Analysis of Performance and Reaction Times in the Stroop Task

All trials were excluded from further analysis in which no reaction occurred, the answer

was wrong, or the reaction time was below 200ms. Mean reaction times (RTs) were

calculated for each subject and for each condition, i.e. Task (identify color, identify

object) × Object (spider, bird, flower). Data analysis was performed with EXCEL 2002

(Microsoft Inc.) and JMP 5.01 (SAS Institute Inc.).

The screening for outliers (data points deviating more than 3 standard deviations from

the group mean) and extreme values (highly influential data points) was done with

JMP 5.01 and SPSS 11.5 (Statistical Package for the Social Sciences, SPSS Inc.).

Analysis of Heart Rates

Heart rates (HRs) were analyzed in an interval of [−500ms; 3000ms] around stimulus

onset with Brain Vision Analyzer 1.04 (Brain Products GmbH, München, Germany).

By visual inspection of the data it was assured that respiration was not stimulus-locked.

In this case, the influence of respiration on heart rate (respiratory sinus arrhythmia)
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is balanced by averaging. Heart rates were determined by R-wave detection and sub-

sequent conversion into bpm (beats per minute) in intervals of 500ms. The interval

[−500 ms; 0ms] served as baseline. HR changes were computed by subtracting the

baseline heart rate from the heart rate in each time interval after stimulus presenta-

tion. Averaging these heart rates per time interval over stimuli is valid (see Graham,

1978).

One subject (male spider phobic) was excluded from the analysis of heart rate because

of electrode failure. Therefore, heart rate data of 56 subjects were further analyzed.

Analysis of Event-Related Potentials

The EEG data was filtered (low pass = 30Hz, 24 dB/oct; high pass = 0.1Hz, 24 dB/oct;

50Hz notch), segmented [−200ms; 900ms], corrected for eye blinks (Gratton, Coles,

& Donchin, 1983), and screened for artifacts using Brain Vision Analyzer 1.04. The

averages for each condition and for each subject were baseline corrected using the

[−200 ms; 0ms] period as a baseline and then rereferenced to the averaged linked

earlobes. Data of one subject (male social phobic) was excluded from further analysis

because of extreme alpha activity.

A temporal Principal Components Analysis (PCA) was performed on the data set

to reduce its dimensionality and disentangle overlapping ERP components. While

screening the data it already became apparent that there must be at least two positive

components: one between 250 and 400ms and one between 400 and 600ms. Thus, the

aim of the PCA was to find further evidence for the existence of these two positive

components. The input to the temporal PCA consisted of all the averages for each

condition and for each of the 21 electrodes F3, Fz, F4, FC3, FCz, FC4, C3, Cz, C4,

CP3, CPz, CP4, P3, Pz, P4, PO3, POz, PO4, O1, Oz, and O2 for each subject. Time

condense factor was five, i.e. only every fifth data point was included in the analysis

to reduce the amount of data and therefore processing time. The PCA was calculated

by analyzing covariances among time points for all conditions and subjects. To find a

factor solution a VARIMAX rotation was used. First, the factor analysis was performed

with eigenvalue 1 as limit, then the number of factors was limited to six as a compromise

between taking all relevant factors into account and keeping complexity manageable.

The six factors identified are depicted in Figure 2.5. Factor 1 accounted for 61.5%

of total variance, factor 2 for 14.5%, factor 3 for 5.7%, factor 4 for 3.6%, factor 5 for

3.3%, and factor 6 for 1.8%. Of importance are factors 2 and 5 which can be interpreted
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Figure 2.5.: Results of Principal Components Analysis (PCA)

Figure 2.6.: Mean component values over subjects for factors 2 (left) and 5 (right)
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as a positive component between 200–400ms (P3) and a second positive component

between 400–600ms (P4). Spatial distributions of these two factors are depicted in

Figure 2.6. The posterior spatial distribution of these two components fits very well

with the interpretation as P3 and P4 components. Factor 1 (a slow wave) and factors

3, 4, and 6 are of no relevance for the further analysis of the study and are therefore

not further elaborated in this context.

Thus, the PCA confirmed the existence of multiple late positive components: P3 and

P4. For further analysis, peaks were detected semiautomatically with Pz as a reference

channel. Peak detection was performed for P3 in the time interval [250ms; 400ms] and

for P4 in the interval [400ms; 600ms]. Mean P3 and P4 amplitudes were exported for

leads F3, Fz, F4, C3, Cz, C4, P3, Pz, P4, O1, Oz, and O2.

In addition to P3 and P4 amplitude, a late frontal component was analyzed. Therefore,

mean amplitudes in the time interval of [500ms; 700ms] were exported for electrodes

F3, Fz, and F4.

Further statistical analysis and data screening for extreme values and outliers was

performed with JMP 5.01 and SPSS 11.5. As for heart rate and reaction time analyses,

data values were classified as outliers and excluded from further analysis when they

deviated 3 or more standard deviations from the group mean. Apart from the subject

excluded because of severe alpha activity as mentioned above, no further subjects had

to be excluded as outliers. Thus, the data of 56 subjects was included in the statistical

analysis.

2.3. Results

Preconditions for ANOVAs are: normal distributions, homogeneity of variances, and

specifically for repeated measures designs sphericity. With respect to non-normality the

F statistic is robust: the effect on type I error rate of even strongly kurtotic or skewed

distributions is negligible, even for quite small n (Stevens, 1996, 1999). Concerning

the second assumption, homogeneity of variances, the F statistic is robust for unequal

variances if group sizes are equal or approximately equal (ratio largest/smallest group

≤ 1.5; Stevens, 1996, 1999). Data screening showed in general no severe violations

of the preconditions of normal distributions and homogeneity of variances, and group

sizes were approximately equal, which makes the F statistic robust for small inhomo-

geneities. To correct for violations of sphericity, Greenhouse-Geisser (ε) corrections

were used (Greenhouse & Geisser, 1958).

76



Experiment I – Pictorial Emotional Stroop Paradigm

Figure 2.7.: ANOVA design for the analysis of reaction times

2.3.1. Performance and Reaction Times in the Stroop Task

There was neither a significant difference between groups in missing responses (Kruskal-

Wallis Test: χ2
df=2 = 4.81; p = 0.09), nor in wrong responses (Kruskal-Wallis Test:

χ2
df=2 = 4.3; p = 0.12), or in total mistakes (missings & errors; Kruskal-Wallis Test:

χ2
df=2 = 0.52; p = 0.77). Overall, subjects failed to react in 2.26% of all trials, and

incorrect responses were observed in 1.66% of all trials.

To examine the influence of task and picture type on reaction times, a 3×2×3 ANOVA

with between factor Group and repeated measures factors Task (identify color, identify

object) and Object (spider, flower, bird) was performed. Figure 2.7 depicts the ANOVA

design and Figure 2.8 the mean reaction times and standard deviations for each group

in the different conditions.

Analysis revealed main effects of Task (F(1,54) = 103.97; p = 0.0005) and of Object

(F(2,108) = 4.72; p = 0.01; ε = 0.94), as well as significant interactions of Group × Task

(F(2,54) = 4.09; p = 0.02), Group × Object (F(4,108) = 2.98; p = 0.025; ε = 0.94), and

Task × Object (F(2,108) = 7.4; p = 0.001; ε = 0.99). The two-way interaction Group ×
Task × Object was also significant (F(2,108) = 2.95; p = 0.02; ε = 0.99).

The main effect of Task is clearly visible in Figure 2.8: reaction times were significantly

faster when subjects had to identify the color of a stimulus than when the object itself

had to be classified. Subsequent ANOVAs calculated separately for each group showed

that this effect was highly significant in all groups (all p-values ≤ 0.0005) despite the

significant interaction of Group × Task. A further analysis of the interaction Group
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Figure 2.8.: Mean reaction times and SDs for the color (left) and object (right) identi-
fication of spiders, flowers and birds for each group

× Task revealed that there were no differences in reaction times between groups in

the color identification task, but there were significant group differences in the object

identification task (F(2,54) = 4.85; p = 0.01). Tukey HSD post hoc tests showed

that spider phobics responded significantly faster than social phobics in the object

identification task (p = 0.01), while the comparison ‘spider phobics–controls’ failed to

be significant (p = 0.1) but can be interpreted as a tendency.

The significant main effect of Object cannot be interpreted without considering the

significant interaction Group × Object. Subsequent ANOVAs were calculated sepa-

rately for each group and revealed no difference for controls and social phobics in RTs

between spiders, birds and flowers. However, for spider phobics there was a main effect

of Object (F(2,36) = 6.78; p = 0.01; ε = 0.59). Simple contrasts showed a significant

difference for the comparisons ‘spider–bird’ (p = 0.04) and ‘spider–flower’ (p = 0.009).

However, this effect also has to be interpreted in the light of the significant interactions

Task × Object and Group × Task × Object. Again, subsequent ANOVAs calculated

separately for each group revealed no significant interaction of Task × Object for

controls and social phobics. However, spider phobics showed a significant interaction

of Task × Object (F(2,36) = 11.7; p = 0.0005; ε = 0.91) . While they did not show any

significant difference in RT for identifying the color of spiders, birds and flowers, they

showed a significant RT difference in the object identification condition (F(2,36) = 12.26;

p = 0.0005; ε = 0.77). Simple contrasts showed that both comparisons ‘spider–bird’

(p = 0.001) and ‘spider–flower’ (p = 0.002) were significant, i.e. they identified spiders
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Figure 2.9.: ANOVA design for the analysis of heart rate changes in response to stim-
ulus presentation

significantly faster than birds or flowers.

Finally, groups were directly compared on their RTs in response to spiders. Groups

did not differ in their RTs for identifying the color of spiders. However, spider phobics

were significantly faster in their identification of spiders than controls (p = 0.001) and

social phobics (p = 0.0005).

2.3.2. Heart Rates

There were no differences in baseline heart rates [−500ms; 0ms] between groups (one-

way ANOVA: F(2,53) = 0.23; p = 0.8).

The heart rate data in the time interval [0ms;3000ms] was submitted to a 3 × 2 ×
3 × 6 ANOVA with between factor Group and repeated measures factors Task (iden-

tify color, identify object), Object (spider, bird, flower), and Time (time intervals

t1 =[0ms; 500ms], t2 =[500ms; 1000ms], t3 =[1000ms; 1500ms], t4 =[1500ms; 2000ms],

t5 =[2000 ms; 2500ms], t6 =[2500ms; 3000ms]). The ANOVA design is depicted in Fig-

ure 2.9, and Figure 2.10 shows the time course of heart rate changes per group and for

each condition in beats per minute (bpm).

Heart rates showed the typical pattern of an orienting response, i.e. a brief deceleration

and a slow return to baseline. This was confirmed by the main effect of Time (F(5,265) =

35.2; p = 0.0005; ε = 0.34), but no further significant effects were found. In particular,

the relevant interactions Group × Object × Time (F(20,530) = 0.73; p = 0.8; ε = 0.22)
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Figure 2.10.: Mean heart rate changes (in bpm) and SDs in response to spiders (top
row), birds (center row), and flowers (bottom row) in the color (left) and
object (right) identification task
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and Group × Task × Object × Time (F(20,530) = 0.78; p = 0.59; ε = 0.31) failed to be

significant.

However, as can be seen in Figure 2.10, the variances in the spider phobic group were

higher than those of the two other groups when identifying the color of a spider or

the spider itself. This observation was substantiated by the results of the Levene

test for unequal variances. For the identify color condition the Levene test showed

significant differences in variances for t4 (F(2,53) = 4.93; p = 0.01) and t5 (F(2,53) = 3.62;

p = 0.03) and for the identify object condition for t5 (F(2,53) = 3.04; p = 0.056) and

t6 (F(2,53) = 3.29; p = 0.045). Therefore, the precondition of equal variances for

calculating an ANOVA was violated, making the heart rate data difficult to interpret.

However, since the group sizes were almost equal, the F statistic is robust for unequal

variances (Stevens, 1996, 1999).

In a further analysis the factor Gender (male, female) was included in the above

ANOVA design. Besides a main effect of Time (F(5,250) = 36.27; p = 0.0005; ε = 0.32),

there were various significant interactions with Group and Gender. The interactions

Group × Gender (F(2,50) = 3.63; p = 0.03), Object × Group × Gender (F(4,100) = 2.47;

p = 0.07; ε = 0.76), Task × Object × Group × Gender (F(4,100) = 3.56; p = 0.01;

ε = 0.98), Object × Time × Group × Gender (F(20,500) = 2.24; p = 0.06; ε = 0.24), and

even the four-way interaction Task × Object × Time × Group × Gender (F(20,500) =

2.03; p = 0.06; ε = 0.31) were significant or almost significant. These results hint at

a strong influence of gender on results, although again the Levene tests indicated that

variances were unequal in some time intervals between groups.

Therefore, subsequent ANOVAs were calculated separately for each Object. The anal-

ysis of heart rates in response to spiders yielded a significant interaction of Time ×
Group × Gender (F(10,250) = 3.46; p = 0.02; ε = 0.32). While male spider phobic sub-

jects showed a brief deceleration of heart rate and then an acceleration when viewing

spiders, female subjects showed a pronounced deceleration (see Figure 2.11). Such a

difference between men and women was not present in the other groups. Furthermore,

spider phobic subjects did not show such a gender difference for flowers or birds.

Thus, heart rates of spider phobics showed a specific response to their phobic object, but

only when the factor Gender was included in the analysis. While a defense reaction

was observed in male spider phobics, a pronounced orienting reaction was found in

female spider phobics. Still, variances in the phobic group for spiders were very high,

and these results have to be interpreted with caution.
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Figure 2.11.: Mean heart rate changes (in bpm) and SDs in response to spiders for male
and female controls (top row), social phobics (center row), and spider
phobics (bottom row)
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Figure 2.12.: Event-related potentials on electrode Pz for both color (left) and object
(right) identification for each group. Top row: ERPs for spiders and birds;
bottom row: ERPs for spiders and flowers

2.3.3. Event-Related Potentials

Event-related potentials on electrode Pz in response to spiders, birds and flowers are

depicted for each group and for both tasks in Figure 2.12.

For the analysis of P3 and P4 amplitude a 3×2×3×3×4 ANOVA with between factor

Group and repeated measures factors Task (identify color, identify object), Object

(spider, bird, flower), Laterality (left, central, right), and Row (Frontal: F, Central: C,

Parietal: P, Occipital: O) was conducted. The design of the ANOVA is depicted in

Figure 2.13.

P3 Amplitude Analysis revealed main effects of Row (F(3,159) = 106.85; p = 0.0005;

ε = 0.46) and of Laterality (F(2,106) = 33.29; p = 0.0005; ε = 0.89) as well as a

significant interaction of Row × Laterality (F(6,318) = 29.12; p = 0.0005; ε = 0.53). As

can be seen in Figure 2.14, P3 amplitude was maximal over parietal sites. Therefore,
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Figure 2.13.: ANOVA design for the analysis of P3 and P4 amplitudes

the factor Row was excluded from all further analyses, and all following analyses were

based only on parietal sites.

A second ANOVA based only on data of P3, Pz and P4 was calculated. Main effects of

Laterality (F(2,106) = 19.54; p = 0.0005; ε = 0.82), of Task (F(1,53) = 12.33; p = 0.001),

and of Object (F(6,106) = 32.77; p = 0.0005; ε = 0.97) were found. Furthermore, the

interactions Object × Laterality (F(4,212) = 15.27; p = 0.0005; ε = 0.79), Task ×
Laterality (F(2,106) = 10.82; p = 0.0005; ε = 0.8), Group × Object (F(4,106) = 8.84;

p = 0.0005; ε = 0.97), and Task × Object (F(2,106) = 5.86; p = 0.004; ε = 1) were

highly significant.

A more detailed analysis of the main effect of Laterality (compare Figure 2.14) with

simple contrasts showed that P3 amplitudes were significantly larger over right vs. cen-

tral sites (p = 0.01) and over the right vs. the left hemisphere (p = 0.0005). However,

this effect was dependent on Task, as the significant interaction Task × Laterality

showed. The right hemisphere advantage was highly significant in the object iden-

tification task (comparison ‘central–right’: p = 0.0005; ‘central–left’: p = 0.0005).

However, in the color identification task amplitudes were not significantly larger over

right as compared to central sites, while the comparison right vs. left hemisphere was

also significant (p = 0.0005).

P3 amplitudes were significantly larger for color than for object identification (main

effect of Task). However, this effect has to be interpreted together with the significant

interaction of Task × Object which indicated that P3 amplitudes differed in response

to spiders, birds and flowers depending on task. Subsequent ANOVAs calculated sepa-
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Figure 2.14.: Mean P3 amplitudes and SDs for frontal (top left), central (top right),
parietal (bottom left), and occipital (bottom right) sites for each group

rately for each task indicated that the main effect of Object was present in both tasks

but the difference in P3 amplitude due to task, i.e. the smaller P3 amplitude for iden-

tify object than identify color, was reduced for spiders compared to birds and flowers.

In other words, P3 amplitudes in response to spiders were more similar for both tasks

than P3 amplitudes in response to birds and flowers.

The main effect of Object and the significant interaction of Group × Object were

analyzed by subsequent ANOVAs calculated separately for each group. These analyses

indicated that the main effect of Object was mainly due to spider phobics: they showed

a highly significant main effect of Object (F(2,36) = 37.71; p = 0.0005; ε = 0.85),

whereas controls showed a slightly less significant main effect of Object (F(2,36) = 6.83;

p = 0.003; ε = 1), and social phobics did not show such an effect (F(2,34) = 1.93;

p = 0.17; ε = 0.86). Simple contrasts revealed that spider phobics showed significantly
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Figure 2.15.: Mean P3 amplitudes and SDs for the color (left) and object (right) iden-
tification of spiders, birds and flowers for each group

larger P3 amplitudes when viewing spiders compared to birds (F(1,18) = 48.64; p =

0.0005) and compared to flowers (F(1,18) = 46.52; p = 0.0005). For controls only the

contrast ‘spider–flower’ was significant (F(1,18) = 13.63; p = 0.002). Although it seemed

that social phobics and controls showed at least a trend towards larger amplitudes for

spiders than for birds and particularly for flowers (see Figure 2.15), other effects than

the contrast ‘spider–flower’ for controls did not reach significance.

Furthermore, groups were directly compared in their amplitude in response to spiders.

The results of subsequent ANOVAs with pairwise comparisons showed that spider

phobics showed significantly larger P3 amplitudes in response to spiders than social

phobics (p = 0.04), while the difference between spider phobics and controls failed to be

significant (p = 0.14), but still can be interpreted as a tendency. In fact, when object

and color identification were analyzed separately, spider phobics showed significantly

larger P3 amplitudes than controls (p = 0.05) and social phobics (p = 0.02) in the

object identification task.

Next, the significant interaction of Object × Laterality was analyzed in more detail

(compare Figure 2.16). Subsequent ANOVAs were calculated separately for each ob-

ject. Simple contrasts indicated that birds and flowers led to significantly larger P3 am-

plitudes over the right vs. the left hemisphere (Birds: p = 0.0005; Flowers: p = 0.0005)

and over right vs. central sites (Birds: p = 0.02; Flowers: p = 0.0005). P3 amplitudes

in response to spiders were also significantly larger over the right compared to the left

hemisphere (p = 0.001); however, there was no significant difference in P3 amplitude

between central sites and the right hemisphere.
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Figure 2.16.: Mean P3 amplitudes and SDs for spiders (upper row), birds (center row),
and flowers (bottom row) depending on Laterality for each group
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Figure 2.17.: Mean P4 amplitudes and SDs for frontal (top left), central (top right),
parietal (bottom left), and occipital (bottom right) sites depending on
Laterality for each group

Finally, correlations of SPQ values and mean P3 amplitude in response to spiders

independent of task and laterality were calculated. For spider phobics a significant

correlation of r = .47 (p = 0.04) was found, which indicated that higher SPQ values

resulted in larger P3 amplitudes for spiders.

P4 Amplitude P4 amplitude was analyzed analogously to P3 amplitude, and the

analysis yielded similar results. Compare Figure 2.13 for the ANOVA design.

There were main effects of Row (F(3,159) = 151.75; p = 0.0005; ε = 0.52) and of

Laterality (F(2,106) = 27.85; p = 0.0005; ε = 0.95), and a significant interaction of Row

× Laterality (F(6,318) = 36.68; p = 0.0005; ε = 0.62). As can be seen in Figure 2.17,

P4 amplitude was maximal over parietal sites, and therefore all further analysis will

concentrate on this region. The factor Row was excluded from further analysis.
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Figure 2.18.: Mean values and SDs of P4 amplitudes for the color (left) and object
(right) identification of spiders, birds and flowers for each group

The reduced ANOVA yielded the following results: there were main effects of Laterality

(F(2,106) = 20.66; p = 0.0005; ε = 0.95), of Task (F(1,53) = 41.09; p = 0.0005), and of

Object (F(2,106) = 17.22; p = 0.0005; ε = 0.9), and significant interactions of Group ×
Object (F(4,106) = 5.31; p = 0.001; ε = 0.9), and Object × Laterality (F(4,212) = 18.98;

p = 0.0005; ε = 0.83). The mean P4 amplitudes in response to each object and for

both tasks are shown in Figure 2.18.

The main effect of Laterality was further analyzed using simple contrasts. They re-

vealed that P4 amplitude was significantly larger over the right compared to the left

hemisphere (F(1,53) = 18.66; p = 0.0005).

The main effect of Task (F(1,53) = 41.09; p = 0.0005) indicated that in all groups object

identification led to larger P4 amplitudes than color identification.

The main effect of Object should be interpreted together with the significant interaction

of Group × Object. Subsequent ANOVAs calculated separately for each group revealed

that this main effect of Object was only present in spider phobics (F(2,36) = 15.19;

p = 0.0005; ε = 0.79), but not in social phobics and controls. Spider phobics showed

significantly larger P4 amplitudes for spiders compared to flowers (p = 0.001) and

compared to birds (p = 0.0005). However, in social phobics the main effect of Object

only narrowly failed to be significant (F(2,34) = 3.1; p = 0.059; ε = 0.98). This

tendency was mainly due to the difference in P4 amplitude between spiders and flowers

(p = 0.03).

Furthermore, groups were directly compared in their amplitude in response to spiders.

The results of subsequent ANOVAs with pairwise comparisons showed that spider
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phobics showed significantly larger P4 amplitudes in response to spiders than social

phobics (p = 0.03) and controls (p = 0.05).

The interaction Object × Laterality is depicted in Figure 2.19. Subsequent ANOVAs

were calculated separately for each Object. Simple contrasts showed that there were

generally larger P4 amplitudes over the right compared to the left hemisphere (birds:

p = 0.0005; flowers: p = 0.001; spiders: p = 0.007). The comparisons ‘central–right’

were not significant for flowers and birds but for spiders (p = 0.001). Thus, while birds

and flowers led to equally large amplitudes over central sites and the right hemisphere,

spiders led to larger P4 amplitudes over central sites.

Finally, correlations of SPQ values and P4 amplitudes in response to spiders indepen-

dent of task and laterality were calculated. A significant correlation of SPQ with mean

P4 amplitude in response to spiders was found for the spider phobic group (r = .57;

p = 0.01).

Frontal Positivity A large positivity in spider phobics beginning around 500ms

post-stimulus when identifying the color of spiders is clearly visible in Figure 2.20. The

mean amplitudes in the time interval [500ms; 700ms] were analyzed with a 3×2×3×3

ANOVA with between factor Group and repeated measures factors Task (identify color,

identify object), Object (spider, bird, flower), and Laterality (left, central, right).

Results showed main effects of Laterality (F(2,106) = 4.82; p = 0.0005; ε = 0.97), of

Task (F(1,53) = 12.01; p = 0.001), and of Object (F(2,106) = 27.85; p = 0.0005; ε = 1).

Furthermore, there were significant interactions of Object × Laterality (F(4,212) = 13.4;

p = 0.0005; ε = 0.87), of Task × Object (F(2,106) = 4.12; p = 0.02; ε = 0.95), and of

Group × Object (F(4,106) = 4.18; p = 0.004; ε = 1).

The main effect of Laterality was further analyzed with simple contrasts, which showed

a significant difference between left and right hemisphere (p = 0.0005) and between

central sites and the right hemisphere (p = 0.0005). As can be seen in Figure 2.21, this

pattern was similar for all objects. The significant interaction of Object × Laterality

resulted from a significant difference between left and central sites for flowers (p = 0.01),

which was not observed for birds and spiders.

The interaction Group × Object was further analyzed by subsequent ANOVAs cal-

culated separately for each Group. They showed that the main effect of Object was

present in all groups (CG: F(2,36) = 4.43; p = 0.03; So: F(2,34) = 5.55; p = 0.009; Spi:

F(2,36) = 19.97; p = 0.0005). Simple contrasts revealed that in all groups spiders led to
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Figure 2.19.: Mean values and SDs of P4 amplitudes for spiders (top row), birds (central
row), and flowers (bottom row) depending on laterality for each group
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Figure 2.20.: Event-related potentials on electrode Fz for the color (left) and object
identification (right) for each group. Top row: ERPs for spiders and
birds; bottom row: ERPs for spiders and flowers

a significantly higher positivity than birds and flowers (comparison ‘spider–bird’: CG

p = 0.003; So p = 0.006; Spi p = 0.0005; ‘spider–flower’: CG p = 0.01, So p = 0.03,

Spi p = 0.0005). However, the effect was more pronounced for spider phobics, which

explains the significant interaction of Group × Object. Therefore, separate ANOVAs

for each object were calculated. Simple contrasts showed that spider phobics differed

significantly from controls in their mean amplitudes in response to spiders (p = 0.01).

The comparison ‘spider phobics–social phobics’ failed to be significant (p = 0.12) but

can be interpreted as a tendency.

The main effect of Task and of Object as well as the significant interaction of Task ×
Object were further analyzed by subsequent ANOVAs calculated separately for each

task. These analyses revealed that the main effect of Object was present in both

tasks (identify color: F(2,106) = 16.01; p = 0.0005; identify object: F(2,106) = 20.71;

p = 0.0005). Both times, spiders led to a significantly larger positivity compared to

birds (identify color: p = 0.001; identify object: p = 0.0005) and compared to flowers
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Figure 2.21.: Mean amplitudes and SDs of the late frontal positivity in the time interval
of [500ms; 700ms] for spiders (top row), birds (center row), and flowers
(bottom row) depending on laterality for each group
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Figure 2.22.: Mean amplitudes and SDs of the late frontal positivity in the time interval
of [500ms; 700ms] for the color (left) and object (right) identification of
spiders, birds and flowers for each group

(identify color: p = 0.0005; identify object: p = 0.0005). Figure 2.22 depicts mean

amplitudes and standard deviations in the latency range [500ms; 700ms] in response

to spiders, birds and flowers for each task and each group.

However, this analysis also revealed that the interaction Group × Object was only

present for color but not for object identification. The above ANOVA did not yield this

result since the larger positivity in spider phobics in response to spiders was also present

in the object identification task, but to a lesser extent than in the color identification

task. Thus, while all subjects showed an enhanced frontal positivity for spiders when

they had to allocate their attention to the object itself, only spider phobics showed this

effect when allocating attention to the color of a spider. For the color identification task,

the comparisons ‘spider–flower’ (p = 0.0005) and ‘spider–bird’ (p = 0.001) were highly

significant in spider phobics. Furthermore, pairwise comparisons revealed that spider

phobics differed significantly from controls (p = 0.001) and social phobics (p = 0.02)

when identifying the color of spiders. However, in the object identification task there

was no significant difference between spider phobics and the control groups for spiders.

Finally, correlations of mean amplitude in response to spiders independent of Task and

Laterality with SPQ scores were calculated. In contrast to the results found for P3

and P4 amplitude, there was no significant correlation of SPQ with mean amplitude

to spiders for spider phobics.
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2.4. Discussion

This section will summarize the main results of this study and discuss possible causes

for the failure to find Stroop interference. Furthermore, the ERP findings will be

integrated with the results of previous studies. Finally, suggestions for future studies

will be provided.

2.4.1. Summary of Results

Reaction Times

� This study could not find any evidence of a specific emotional interference

effect in spider phobics when identifying the color of spiders.

� It also did not find evidence of a general facilitation effect for fear-relevant

stimuli: neither social phobics nor controls responded faster to spiders than

to birds or flowers.

� However, a specific facilitation effect in spider phobics could be confirmed:

spider phobics identified spiders significantly faster than social phobics and

controls. Yet, it has to be noted that spider phobics also identified birds

and flowers significantly faster than social phobics, and they also tended to

be faster than controls in this task.

Heart Rates

� Non-spider-fearful groups showed a normal orienting reaction in response to

spiders, birds and flowers.

� Although non-spider-fearful subjects rated spiders as more arousing, this

had no influence on heart rates.

� However, spider phobics showed a specific response to spiders which was

dependent on gender. While male spider phobics showed a defense reaction,

i.e. brief deceleration and then acceleration of heart rate (Lang et al., 1997),

female spider phobics showed a pronounced orienting response.

However, since variances were very high in the phobic group, these data have to

be interpreted with caution.
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Event-Related Potentials: P3

� The hypothesis of a general arousal effect of spiders on P3 amplitude could

only partially be confirmed. While controls showed significantly higher am-

plitudes for spiders compared to flowers, no such effect was present in social

phobics.

� The results of this study provide evidence for a specific arousal effect on P3

amplitudes in spider phobics. Spider phobics showed significantly larger P3

amplitudes for spiders than for birds or flowers. This effect was independent

of task, i.e. it did not matter whether they had to allocate their attention

towards the color of the object or the object itself.

� Furthermore, this study found evidence for a greater involvement of the

right hemisphere in the processing of visual stimuli as compared to the left

hemisphere. In addition, while flowers and birds led to larger P3 amplitudes

over right vs. central sites, spiders led to equal amplitudes over right and

central sites.

Event-Related Potentials: P4 Similar effects were found for P4 amplitude:

� There was some evidence for higher P4 amplitudes in social phobics for

spiders compared to flowers, but this effect narrowly failed to be significant.

� Spider phobics showed significantly higher P4 amplitudes in response to

spiders compared to birds or flowers. Again, this effect was independent of

task.

� Furthermore, this study found generally larger P4 amplitudes over the right

compared to the left hemisphere for all objects. In addition, P4 amplitudes

were largest centrally for spiders.

Although spiders did not lead to generally larger P3 and P4 amplitudes in all

subjects, it can be concluded that for P3 in controls and for P4 in social phobics

there was at least a tendency towards higher amplitudes for spiders compared to

flowers.

Finally, evidence for an association between severity of spider phobia and magni-

tude of P3 and P4 amplitudes in response to spiders was found, as shown by the

significant correlations of both amplitudes with SPQ values in spider phobics.
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Event-Related Potentials: Late Frontal Positivity

� The lack of emotional interference in spider phobics precluded the investi-

gation of the neuronal correlates of emotional Stroop interference which we

hypothesized to be located in frontal areas.

� Yet, in the color identification task, a larger frontal positivity 500–700ms

post-stimulus was observed in spider phobics viewing spiders compared to

flowers and birds. This frontal positivity was not present in social phobics

and controls.

� In the object identification task, on the other hand, all subjects showed a

larger frontal positivity in this latency range when shown spiders compared

to flowers and birds. This effect was somewhat more pronounced in spider

phobics.

Thus, after responding, all subjects showed larger frontal positivities when di-

rectly allocating their attention to the more aversive spider object. Spider pho-

bics showed this positivity even when their attention was directed towards the

color of the spider, while controls and social phobics did not show such an effect.

2.4.2. Possible Causes for the Absence of Stroop Interference

The most striking result of this study was the unexpected absence of Stroop inter-

ference: spider phobics were not slower when identifying the color of spiders than for

flowers and birds. In this section, possible explanations for this result are discussed.

One could argue that Stroop interference was not found because the spider phobic sub-

jects were not sufficiently spider phobic. However, this argument seems unconvincing,

since spider phobics did show spider phobia-specific responses in reaction times, heart

rates and ERPs. Furthermore, mean SPQ values in other studies investigating Stroop

interference effects were comparable (e.g. Lavy & van den Hout, 1993) or even lower

(e.g. Kindt & Brosschot, 1997) than 21 as in this study.

It is possible that different formats of the emotional Stroop task are not psychome-

trically equivalent instruments. For example, Kindt, Bierman, and Brosschot (1996)

reported a noted lack of convergent validity for card vs. computer Stroop, and other

studies reported that different effects can be observed with blocked vs. randomized de-

signs (Ballesteros, Reales, & Manga, 2000; Holle, Neely, & Heimberg, 1997; Richards,
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French, Johnson, Naparstek, & Williams, 1992; Waters & Feyerabend, 2000). In par-

ticular, Holle et al. (1997), Richards et al. (1992), and Waters and Feyerabend (2000)

reported that Stroop effects present in a blocked condition design can be greatly di-

minished or even absent in an unblocked design.

One explanation for this discrepancy between blocked and unblocked designs might

be so-called carry-over effects, which have been investigated by Waters, Sayette, and

Wertz (2003) in an emotional Stroop study with smokers. Smoking words, matched

neutral words, and filler words were presented in a mixed sequence in four different col-

ors. Subjects’ task was to color-name the words. Results showed that words appearing

after smoking-related items were responded to more slowly than words appearing after

neutral items. It was argued that smokers might have difficulty in disengaging atten-

tion from the semantic content of the smoking word (rumination effect), or that they

experience a conditioned response (e.g. conditioned withdrawal; Niaura et al., 1988).

Carry-over effects might explain why more studies using card Stroop or blocked designs

find Stroop effects (Waters et al., 2003). In blocked designs, interference caused by a

phobia-relevant word or picture influences the processing of the following word, which

is also a phobia-relevant word, and the effect sums up. Thus, carry-over effects may in-

crease the size of Stroop effects in blocked relative to unblocked designs. On the other

hand, in mixed designs carry-over effects would lead to increased reaction times to

neutral stimuli presented directly after feared ones, thus reducing Stroop interference.

This explanation could also account for the results of Constantine et al. (2001) and

Martin and Jones (1995), who both used a pictorial emotional Stroop design. While

Martin and Jones, using a pictorial card Stroop design with 40 pictures of one category

on each card, found an emotional interference effect for phobia-related pictures relative

to control pictures, Constantine et al. could not find such an effect with a mixed

pictorial computer Stroop design. Only when analyzing a subgroup of intensely snake-

fearful individuals (n = 5) of their population could they find evidence for additional

interference for snake pictures.

Likewise, it could make a large difference whether pictorial or linguistic stimuli are

used. No study so far reported larger interference effects for pictorial compared to

linguistic stimuli – a surprising result in light of the higher ecological validity of pictorial

stimuli. While Kindt and Brosschot (1997) found a comparable interference for pictorial

and linguistic stimuli in spider phobic children, Lavy and van den Hout (1993) found

only a smaller attentional bias for spider words compared to pictures in spider phobic

women, and Kindt and Brosschot (1999) even found no bias at all for pictorial stimuli
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in spider phobic children.

As discussed in the introduction, there is some evidence that integrated spider words

lead to more interference than non-integrated ones (Kindt & Brosschot, 1997). This

stands in contrast to the situation for pictorial stimuli, where evidence exists that

integrated pictures lead to no interference (Constantine et al., 2001), while a few stud-

ies found interference for non-integrated pictures (Kindt & Brosschot, 1997; Lavy &

van den Hout, 1993). The present study also did not find emotional interference for

integrated spider pictures. In contrast to the colored stimuli used in the present ex-

periment, the stimuli used by Kindt and Brosschot as well as Lavy and van den Hout

were spider photographs encircled by borders whose color participants had to name. In

such a paradigm, spider phobics could have difficulties in shifting their attention away

from the threatening spider to the color information presented in a different spatial

location, thus leading to emotional interference. In other words, delayed disengage-

ment effects (Derryberry & Reed, 2002) could play a major role in causing interference

effects. However, when integrated stimuli are used, such a shift of attentional spotlight

is not necessary since object and color information are presented in the same spatial

location, and consequently interference effects would not arise.

Finally, whether a verbal or a manual response mode is used in an emotional Stroop

design could also influence results. In the classical Stroop paradigm it is a common

result that interference is reduced when response modality is switched from oral to

manual (see MacLeod, 1991). For incongruent color words Redding and Gerjets (1977),

for example, found 177ms of interference when the response was oral but only 98ms

when the response was manual. The influence of oral vs. manual responses on emotional

Stroop interference and facilitation has not been systematically investigated so far.

It has been observed that interference effects often seem to reflect specificities of task

structure rather than task difficulty (McLeod, 1977, 1978; Kinsbourne & Hicks, 1978).

While simple explanations of interference effects postulate one common undifferentiated

reservoir of attentional resources which are allocated to the different tasks to be per-

formed, a structural account of capacity limitations assumes that specific information-

processing mechanisms exist, each with its own attentional reservoir (capacity). Mul-

tiple mechanisms can be engaged at the same time without interference occurring,

unless tasks which need to use the same mechanism compete for its specific resources

(Williams et al., 1997). Interference effects would arise if two tasks compete for atten-

tional capacity in the same processing pathway. It seems that in a linguistic emotional

Stroop paradigm with verbal response modality such interference effects occur, while
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in a pictorial emotional Stroop paradigm with manual responses different processing

mechanisms are required which do not compete for attentional resources, and therefore

no interference occurs.

This raises the question whether emotional Stroop interference effects found so far

were mainly due to verbal processing specificities and the incompatibility of naming

the color of a spider-related word when the verbal processing pathway is occupied

with the spider-related content of the word. This may be a provocative hypothesis.

However, it is supported by the fact that pictorial stimuli never resulted in more Stroop

interference than verbal ones as well as the inconsistent results of studies reported so

far.

This argument is further substantiated by the finding that classical Stroop interference

was generally larger when an oral instead of a manual response mode was used. This

study was the first emotional Stroop study using a manual response mode, and it found

no evidence for an emotional Stroop interference effect. It seems plausible that visual

processing and manual reactions are more compatible than verbal processing and vocal

responses. Thus, the findings of this study point to a verbal source of interference in

classical Stroop paradigms, which is to some extent transferable to emotional Stroop

paradigms if linguistic stimuli and oral responses are used, but which is not present

when using pictorial stimuli and manual responses.

2.4.3. How Findings Fit in Previous Results

Reaction Times Despite the lack of emotional interference, this study found evi-

dence for facilitated processing of spiders in spider phobics in the object identification

task. This matches the findings of Öhman et al. (2001) in a visual detection paradigm

with spider phobics and snake phobics: phobic subjects were particularly fast in de-

tecting their feared stimulus in a matrix of neutral, fear-relevant, and feared stimuli.

Similarly, Gilboa-Schectman et al. (1999) reported faster detection of angry faces in a

visual search paradigm in social phobics than in controls. Thus, evidence for an atten-

tional bias in spider phobics for their feared object was found. However, the question

still remains whether this facilitated response is due to faster detection and processing

or to faster responses to fear-relevant stimuli.

Within the scope of Öhman’s model (cf. Section 1.3.5), this finding could be explained

by differences between spider phobics and controls on the level of the feature detectors

or of the significance evaluator and the expectancy system. Spider phobics’ feature

100



Experiment I – Pictorial Emotional Stroop Paradigm

detectors could be specifically tuned to spider-related features, facilitating the detection

of such features, selecting this information for preferential treatment by the significance

evaluators, and activating the arousal system. Alternatively, the significance evaluator,

which assesses stimuli for their full meaning, could be biased by the content of the

expectancy system to interpret spider stimuli as threats. Öhman himself suggests that

the crucial difference between phobics and non-phobics lies in the feature detectors

(Öhman, 1993, p. 527; Öhman & Soares, 1994), which could be especially sensitive to

spider-related information in incoming stimuli as a result of conditioning (Öhman &

Soares, 1993; Öhman, Dimberg, & Esteves, 1989).

Reaction times were significantly longer for object than for color identification. This

effect is probably due to two factors: first, subjects had three possible choices for

object identification and only two for color identification. It is well established that

increasing the number of response alternatives prolongs reaction times since response

selection becomes more complex (Frith & Done, 1986). Second, color identification

might in general be a less complex task than object identification.

Finally, spider phobics were significantly faster than social phobics and showed a ten-

dency to be faster than controls in the object identification task, i.e. they identified

spiders particularly fast, but also identified birds and flowers significantly faster than so-

cial phobics and (non-significantly) faster than controls. This is in accordance with the

hypervigilance proposed by Beck et al. (1985) and elaborated by Eysenck (1991, 1992,

1997) for trait-anxious individuals. According to Beck et al. (1985), “The [anxious]

patient is hypervigilant, constantly scanning the environment for signs of impending

disaster or personal harm . . . The anxious patient selectively attends to stimuli that

indicate possible danger . . . ” (p. 31).

According to Eysenck, there are two ways in which individuals high in trait anxiety

show hypervigilance: general hypervigilance or distractability is demonstrated by a

propensity to attend to any task-irrelevant stimuli presented, and specific hypervig-

ilance is demonstrated by a tendency to attend selectively to threat-related rather

than neutral stimuli. Hypervigilance involves a high rate of environmental scanning,

a broadening of attention prior to the detection of a threat-related or task-relevant

stimulus, and a narrowing of attention when such a stimulus is being processed.

The hypervigilance effect should be particularly obvious in the object identification

task, since the color identification task is per se a less complex task accompanied by

faster responses than the object identification task, especially since there were three

possible answers for the object identification and only two for color identification. It
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is possible that spider phobics showed no further facilitation in the color identification

task due to hypervigilance because reaction times were already very fast in all subjects

in this task (a ceiling effect).

However, a problem with Eysenck’s theory is that spider phobics did not differ sig-

nificantly from controls in their trait anxiety (STAI) values. In the light of the STAI

results, one would have expected hypervigilance effects only for social phobics, who

showed significantly higher trait anxiety than spider phobics and controls, but who

were significantly slower than spider phobics and comparable to controls in the object

identification task.

In conclusion, hypervigilance provides a coherent explanation for the generally faster

object identification by spider phobics, but the non-elevated trait anxiety values in the

spider phobic group pose a problem for Eysenck’s assumption that high trait anxiety

is accompanied by hypervigilance.

Late Positive Potentials The results of this study – larger P3 and P4 amplitudes in

spider phobics when viewing spiders compared to flowers and birds – replicate previous

findings by Miltner and colleagues (Gutberlet & Miltner, 1999, 2001; Krieschel, 2003)

who found larger P3 amplitudes in animal phobics when viewing pictures of their feared

object.

A first explanation of these results is provided by studies investigating the influence

of affective valence and arousal on parietal late positive components in ERPs. Several

studies found evidence for larger late positive potentials (LPPs) for emotional compared

to neutral stimuli (e.g. Cuthbert et al., 1995, 2000; Johnston et al., 1986; Mini et

al., 1996; Palomba et al., 1997) and in particular larger LPPs for negative compared

to positive stimuli (e.g. Ito, Larsen, Smith, & Cacioppo, 1998). Furthermore, like

Johnston et al. (1986), this study found multiple P3s to emotional stimuli. The factor

solution was very similar to the one described by Johnston and colleagues who found

a P3 (maximal at 300ms), a P4 (maximal at 540ms), and a slow wave (maximal at

920ms). In their study, both P3 and P4 amplitudes varied with the emotional value

of the stimuli.

Following the arguments of Schupp et al. (2000), it might seem that the enhanced late

positive components (P3 and P4) in spider phobics when viewing pictures of spiders

reflect that such pictures are highly arousing for these subjects. However, as noted

before, attributing the entire LPP effect to arousal rather than valence in this way
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would be too strong a conclusion to draw, since valence and arousal are confounded

(Lang et al., 1997).

A second explanation, compatible with a main influence of arousal on LPPs, is provided

by Johnson’s model (cf. Section 1.6.1; Johnson, 1986). According to this model, the

larger emotional significance of spiders for spider phobics would result in larger P3

amplitudes, since it would increase the stimulus value and thus the meaning variable

in his model.

However, since all subjects rated spiders as more arousing and unpleasant than birds

and flowers in the pilot study, one would have expected larger P3 and P4 amplitudes

in response to spiders for social phobics and controls as well. A possible explanation is

that although spider pictures were evaluated as significantly more arousing than birds

or flowers, these ratings were still relatively low, yielding little influence on LPPs.

Besides, controls did show significantly larger P3 amplitudes and social phobics almost

significantly larger P4 amplitudes for spiders than for flowers. Thus, a general tendency

is obvious (cf. Figure 2.15).

A third explanation comes from two studies by Diedrich et al. (1997) and Naumann,

Becker, Maier, Diedrich, and Bartussek (1997), who found larger P3 amplitudes for

emotional stimuli even when the task distracted subjects’ attention from the emotional

content of the stimuli. They explained these results in the context of Öhman’s and

LeDoux’s theoretical models and assumed that according to Öhman, after emotional

stimuli have been processed automatically and preattentively, conscious cognitive in-

formation processes are initiated. These additional controlled processes lead to larger

P3 components (compare also Donchin & Coles, 1988; Roesler, 1982). Thus, according

to this theory, the larger amplitudes in response to spiders in spider phobics result from

additional conscious and controlled stimulus processing. However, this does not explain

why spider phobics showed larger amplitudes than the non-spider-fearful groups.

One important finding of the present study is that, independently of the task subjects

had to perform, larger LPPs were found for spider phobics when viewing pictures of

spiders. This is consistent with the studies by Diedrich et al. (1997) and Naumann

et al. (1997) in which subjects had to perform an emotion-focused task (judging the

subjective emotional valence of slides) or a structural task (counting the number of

lines inserted on each slide). These tasks are comparable with the object and color

identification tasks in the present study. Diedrich et al. and Naumann et al. found

larger P3 amplitudes for emotional stimuli (positive or negative), even when the task

distracted subjects’ attention from the emotional content of the stimuli. In accordance
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with this finding, spider phobics showed larger P3 and P4 amplitudes in the present

study, even if the task distracted them from the emotional content of the pictures.

Late Frontal Positivity The above-mentioned study by Diedrich et al. (1997) found

a positive-going wave at frontal electrode sites for emotion-focused processing begin-

ning 600ms after stimulus onset. This positivity was not present in the structural

processing task. There were no differences between neutral, negative or positive slides

in this frontal positivity. Yet, the results by Diedrich et al. lend some support to the

notion that the frontal positivity is associated with emotion-focused processes. This

matches the findings of the present study, in which subjects showed a larger frontal pos-

itivity 500–700ms post-stimulus for the object identification task, i.e. emotion-focused

processing. However, this neither explains the larger frontal mean amplitudes in all

subjects when identifying spiders as compared to flowers and birds, nor the higher

amplitudes in spider phobics identifying the color of spiders as compared to control

groups.

One possible explanation is that spiders are more emotional (i.e. more arousing and

more unpleasant) stimuli. It is possible that in an emotion-focused task highly emo-

tional stimuli capture attention for a longer time than less emotional stimuli. This

would explain why all subjects showed larger mean amplitudes for spiders in the ob-

ject identification task. However, when subjects had to identify the color of the object,

i.e. in the structural processing task, this positivity was only observed in spider phobics

identifying the color of spiders, but not in the other groups. It is possible that spider

phobics focused not only on the color of the spider but also processed the spider emo-

tionally, which led to the larger frontal positivity. Controls, on the other hand, only

focused on the color of the stimuli without being distracted by their emotional content.

This, however, is a purely hypothetic explanation which lacks empirical evidence but

could be investigated in future studies.

Since the late frontal positivity occurs after subjects’ response, another possible expla-

nation would be that spider phobics had difficulties in disengaging their attention from

spider stimuli, instead dwelling on the feared object they had just seen. Evidence for

such an explanation comes from studies with high and low trait anxious subjects: a

study by Yiend and Mathews (2001) suggested that the attentional biases associated

with anxiety could be due, at least in part, to differences in the ease of disengagement

from threat in high compared to low trait anxious individuals. This explanation also

matches the results of Derryberry and Reed (2002) and Fox et al. (2002), who suggested
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that emotional interference in Stroop and dot-probe paradigms may reflect delayed dis-

engagement from threat due to enhanced dwell-time on threat-related stimuli.

Fox et al. (2002), for example, showed that heightened trait anxiety resulted in in-

creased attentional dwell-time on emotional facial stimuli, relative to neutral faces.

Subjects were shown angry, happy or neutral schematic faces to the right or to the

left of a fixation cross for 250ms. 50ms after this face disappeared, a circle or a box

appeared either at the same location as the face (at the validly cued location) or on

the other side of the screen (at the invalidly cued location). Subjects had to categorize

this geometrical shape. High trait anxious subjects were slower to respond to invalidly

cued locations if the face had been emotionally valenced (angry or happy) as compared

to an emotionally neutral face. Thus, the presence of an emotionally valenced face

resulted in delayed disengagement in high trait anxious subjects.

The mean frontal positivity found in the present study could be an electrophysiological

indicator of the enhanced attentional dwell-time in spider phobics when identifying

the color of spiders. It could reflect activity in the ACC, which plays a major role in

cognitive and selective attentional tasks (cf. Section 1.4), e.g. conflict monitoring. Such

a hypothesis of increased attentional dwell-time reflecting ACC activation is supported

by the fact that the affective subdivision of the ACC has been found to be activated

in response to negative words in an emotional counting Stroop paradigm (Whalen et

al., 1998).

In conclusion, in the color identification task only spider phobics showed a larger frontal

positivity for spiders compared to neutral stimuli. Two alternative explanations are

possible: first, that in the color identification task, spider phobics could not focus

only on the color of the object but also processed this picture emotionally, while non-

fearful subjects performed only the structural processing task. Second, the late frontal

positivity could be interpreted as reflecting an enhanced attentional dwell-time on

spiders in spider phobics during the color identification task. Although the nature of

this component is still unclear, it could originate in the ACC, which is supposed to be

involved both in classical Stroop and in emotional counting Stroop experiments.

2.4.4. Suggestions for Future Studies

The influence of different experimental formats on Stroop interference is still unclear.

Therefore, future studies should systematically investigate the influence of verbal vs.

manual response modes as well as that of pictorial vs. linguistic stimuli. Furthermore,
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the effect of integrated vs. non-integrated pictorial stimuli should be systematically

investigated. It is possible that attentional bias effects arise only when at least two

pictures, presented in different spatial locations, compete for attention.

Waters et al. (2003) reported evidence for carry-over effects in an emotional Stroop

paradigm with smokers identifying the color of smoking-related words. It is not yet

clear whether such carry-over effects also influence the results of studies of the atten-

tional bias in anxiety disorders. However, such possible influencing factors should be

systematically investigated. Future studies could avoid contamination from carry-over

effects, as Waters et al. (2003) suggested, by presenting filler items after the phobia-

relevant stimuli, or by increasing intertrial intervals.

Furthermore, future studies should investigate whether the enhancement of P3 and P4

amplitudes in response to phobic stimuli is an effect only of the high arousal of these

stimuli for phobics or whether it is phobia-specific. A possible research design could

investigate ERPs in spider-fearful and non-fearful subjects in response to feared/fear-

relevant, neutral, and high-arousing pictures. The latter could depict, for example,

pictures of mutilations (high arousing negative) or erotic pictures (high arousing pos-

itive). One research question would be whether spider phobics show comparable P3

and P4 amplitudes to aversive pictures and spider pictures they rate equally arousing.

In addition, it would be interesting to investigate the influence of cognitive-behavioral

therapy (CBT) on the late positive components (P3/P4) and on the valence and arousal

ratings in spider phobics. One interesting question would be whether the valence

and arousal ratings normalize after CBT or whether they remain elevated in spider

phobics. If they remain elevated although spider phobia therapy was successful, this

could explain why Gutberlet and Miltner (2001) still found higher P3 amplitudes in

response to spiders even after CBT.

Future studies should also investigate whether the late frontal positivity investigated

in this study actually is an electrophysiological indicator of attentional dwell-time on

emotional stimuli and whether it reflects delayed disengagement from threatening stim-

uli in phobics. Yiend and Mathews (2001) and Fox et al. (2002) investigated delayed

disengagement from threatening stimuli in high and low trait anxious subjects using a

modified version of the attentional probe task. However, they only measured reaction

times and recorded no ERPs. An analogous design could investigate delayed disengage-

ment from feared and fear-relevant stimuli in spider-fearful and non-fearful subjects,

respectively, while recording ERPs.
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Finally, a further influencing factor could be the age of participants. Several authors

have argued that selective attention towards threat is a common feature among younger

children (Kindt & van den Hout, 2001; Merckelbach et al., 1996). Kindt and van

den Hout argued that as age increases, selective attention towards threat decreases in

nonanxious children, while it is maintained in anxious ones. Thus, emotional interfer-

ence in emotional Stroop paradigms could be a normal characteristic of young children

but decrease with age, while it is maintained in spider phobics. Possibly, a longitudinal

study might clarify these mechanisms.
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3. Experiment II – Pictorial

Emotional Stroop Paradigm

with Schematic Stimuli

3.1. Introduction: Aims and Hypotheses

So far, no study has investigated whether schematic pictures of spiders are sufficient

to provoke a fear reaction. However, if this could be proved, it would be important for

future studies on the attentional bias in spider phobia and would provide some clues to

the question as to which properties make a spider fear-relevant. Furthermore, no study

has yet investigated whether similar effects can be observed with schematic stimuli as

with non-schematic pictures in an emotional Stroop paradigm. This study investigated

the electrocortical correlates of the processing of schematic fear-relevant stimuli in a

pictorial emotional Stroop paradigm.

The advantages of schematic stimuli are obvious: they are simpler and unequivocal.

Schematic spiders show less variance and are not confounded with spider species, hairi-

ness or size. Finally, it is easier to design a control condition which is matched for

factors as color, size, and spatial frequency: if one shifts the angles of the legs of

a schematic spider image a schematic flower picture results and vice versa (cf. Ap-

pendix C.3). Thus, schematic pictures of flowers are ideal control stimuli for schematic

spider pictures, because they consist of the same basic visual elements as the spider

pictures.

This study aimed to replicate the results of the emotional Stroop experiment described

in Chapter 2 with schematic stimuli. More specifically, we wanted to compare the

results attained with non-schematic spider pictures to those of schematic spiders.
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Group SPQ SPAI SPAI (orig.) BDI STAI

Spider Phobics: Mean 20.61 30.53 44.41 4.94 33.50
SD 2.66 10.66 15.51 4.76 8.05

Social Phobics: Mean 2.58 87.18 126.81 9.42 50.47
SD 1.95 12.49 18.17 7.09 6.61

Controls: Mean 2.47 23.05 33.53 2.68 30.79
SD 1.78 11.61 16.89 2.71 5.92

Kruskal-Wallis χ2
df=2 36.41 38.40 38.40 12.06 32.41

p-value 0.0005 0.0005 0.0005 0.002 0.0005

Table 3.1.: Mean questionnaire values and SDs per group; results of Kruskal-Wallis
Test (χ2 and p-values)

A pictorial emotional Stroop paradigm with integrated schematic stimuli was designed.

Three groups of subjects participated in the study: spider phobics, social phobics, and

controls. Subjects saw schematic pictures of spiders and flowers, colored either red

or blue. The stimuli consisted of identical basic visual elements, making them ideal

control stimuli for each other. Subjects’ task was either to identify the color of the

stimulus or the object itself by pressing different buttons.

Our hypotheses were the same as for Experiment I, as detailed in Section 2.1.

3.2. Methods

3.2.1. Subjects

All subjects of Experiment I participated in this study, with the exception of one

female spider phobic. The analysis of the population parameters therefore changed

only slightly and in no significant way. For the sake of completeness, the entire analysis

is presented below.

56 subjects (mean age 23 yrs, SD 3.5 yrs; age range: 19–32 yrs) participated in the

study: 19 social phobics (10 male, 9 female), 18 spider phobics (9 male, 9 female), and

19 normal controls (10 male, 9 female). There was no significant difference between

groups regarding age (Kruskal-Wallis Test: χ2
df=2 = 5.58; p = 0.06) or gender (Pearson

χ2
df=2 = 0.03; p = 0.98). However, there was a tendency for social phobics to be

older than spider phobics. 53 of the subjects were right-handed and 3 left-handed as

measured by the Edinburgh handedness questionnaire (Oldfield, 1971).
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Figure 3.1.: Emotional Stroop paradigm with integrated schematic stimuli

The Kruskal-Wallis Test showed that groups differed significantly in all questionnaires.

See Table 3.1 for mean values and standard deviations for each test per group as

well as exact χ2 and p-values. Subsequent group comparisons with Mann-Whitney-

U Tests showed that social phobics differed significantly from controls in SPAI value

(U = 0; p = 0.0005) but also on the BDI (U = 65.5; p = 0.001) and the STAI (U = 6.5;

p = 0.0005). Controls and spider phobics differed only on the SPQ (U = 0; p = 0.0005).

Social phobics and spider phobics differed on the SPQ (U = 0; p = 0.0005), the SPAI

(U = 0; p = 0.0005), the BDI (U = 103; p = 0.04), and the STAI (U = 20.5;

p = 0.0005). Thus, again, social phobics scored on average higher on the BDI than

controls and spider phobics. In order to estimate the influence of depression on results

of social phobics, ANCOVAs with BDI values as a covariate as well as correlations of

dependent variables and BDI scores for social phobics were calculated. No consistent

significant influence of depression was found. The results are reported on the CD-ROM

accompanying this dissertation.

3.2.2. Paradigm

The experiment consisted of two blocks plus a training phase. In each block, 60 pictures

of schematic spiders and flowers (30 of each) were presented. Of the 30 flower pictures,

15 had been colored red and the other 15 blue, and the same applied to the spider
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pictures (see Figure 3.1). In one block, subjects had to identify the color (blue or red)

of the stimulus, in the other they had to identify the category of the object (spider

or flower). Subjects were instructed to react as quickly and as correctly as possible.

They indicated their selection by pressing one of two buttons on a button box with

the index finger of their dominant hand. Each block started with a practice task in

which 6 stimuli were shown. The subjects could repeat the practice task as long as

they thought it was necessary so that they could react without looking at the button

box. The stimuli were presented for 1 s with a variable interstimulus interval of 2–3 s

(2 s plus an exponential distribution with mean 500ms, truncated at 1 s, as generated

by ERTS).

The order of the two conditions as well as the sequence of keys which had to be pressed

to categorize the stimuli were randomized across subjects. Also, the order of the stimuli

in each block was pseudo-randomized with the following conditions: the same color was

only allowed four times in a row and the same object only two times in a row. This

was done to avoid expectations about which color or object would be presented next.

Stimuli The stimuli used in this study were similar to those used by Vuilleumier

and Schwartz (2001). There were 4 different schematic spider stimuli, differing in the

size of the spider body and the angularity of the spider legs, and 4 different schematic

flower stimuli, differing in the size of the interior of the flower and the angularity of

the petals. Flowers differed from spiders only insofar as four legs of the spiders were

reflected about a diagonal axis. In Appendix C.2 all stimuli are depicted.

3.2.3. Subjective Ratings of Valence and Arousal

The stimuli had been rated as to their affective valence and physiological arousal in the

context of another study, using the Self-Assessment Manikin (SAM; Bradley & Lang,

1994; Lang, 1980, see Appendix B).

56 subjects rated the pictures: 19 controls (10 male, 9 female), 19 spider phobics (8

male, 11 female), 18 social phobics (10 male, 8 female). Mean age was 23, SD 3.6, age

range 19–34 years. 44 of the subjects also participated in Experiment II. The additional

subjects were recruited according to the same criteria reported above.

For both valence and arousal ratings a 3 × 2 ANOVA was calculated with between

factor Group and repeated measures factor Object (spider, flower). Mean valence and
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Figure 3.2.: Mean valence (left) and arousal (right) ratings and SDs for spiders and
flowers for each group

arousal ratings with standard deviations for each object are depicted separately for

each group in Figure 3.2.

The analysis of valence ratings yielded main effects of Group (F(2,53) = 12.2; p =

0.0005), of Object (F(1,53) = 88.43; p = 0.0005) and a significant interaction of Group

× Object (F(2,53) = 11.7; p = 0.0005).

The main effect of Object indicated that all groups rated spiders as significantly more

unpleasant than flowers. Subsequent t-tests comparing each group in their valence

ratings for spiders and flowers confirmed this finding (controls: p = 0.04, social phobics:

p = 0.0005, spider phobics: p = 0.0005).

To further analyze the interaction Group × Object, subsequent ANOVAs were calcu-

lated for each object. They showed that the groups did not differ significantly in their

valence ratings for flowers, but the differences in their valence ratings for spiders were

highly significant (F(2,55) = 27.87; p = 0.0005). Tukey HSD post hoc tests revealed that

spider phobics rated spiders as significantly more arousing than controls (p = 0.0005)

and social phobics (p = 0.0005).

Similarly, the analysis of arousal ratings showed main effects of Group (F(2,53) =

13.78; p = 0.0005) and of Object (F(1,53) = 76.8; p = 0.0005), and a significant interac-

tion of Group × Object (F(2,53) = 13.34; p = 0.0005).

The main effect of Object was further analyzed by subsequent t-tests. They revealed

that all groups showed significantly higher arousal ratings for spiders than for flowers

(controls: p = 0.02; social phobics: p = 0.0005; spider phobics: p = 0.0005).
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The interaction Group × Object was further analyzed by subsequent one-way ANOVAs

calculated separately for spiders and flowers. The analysis showed no significant dif-

ference between groups in arousal ratings for flowers. However, there were highly

significant differences in arousal ratings between groups for spiders (F(2,55) = 22.41;

p = 0.0005). Post hoc tests (Tukey HSD) revealed that spider phobics rated pictures

of spiders as significantly more arousing than controls (p = 0.0005) and social phobics

(p = 0.0005).

In conclusion, all subjects rated spiders as more unpleasant and more arousing than

flowers. However, spider phobics rated the spider pictures as significantly more un-

pleasant and more arousing than controls and social phobics. Thus, the pictures are

suitable to elicit the specific reactions in each group.

3.2.4. Assessment of EEG and Further Psychophysiological

Variables

All recording parameters of EEG, heart rate, respiration etc. were the same as in

Experiment I, as detailed in Section 2.2.4.

3.2.5. Analyses of Dependent Variables

Analysis of Performance and Reaction Times in the Stroop Task

All trials in which no reaction occurred were excluded from further analysis, i.e. when

subjects pressed no button in response to a stimulus. Also, all trials were excluded in

which the reaction was wrong or the reaction time was below 200ms. Mean reaction

times were calculated for each subject for each condition, i.e. Task (Identify Color,

Identify Object) × Object (Spider, Flower). The data processing was performed with

EXCEL 2002 and JMP 5.01, and the data were screened for extreme values and outliers

(data points deviating more than 3 standard deviations from the group mean) using

JMP 5.01 and SPSS 11.5.

Analysis of Heart Rates

Heart rates (HRs) were analyzed in an interval of [−500ms; 3000ms] around stimulus

onset in intervals of 500ms using Brain Vision Analyzer 1.04. As in Experiment I, HR

changes were computed by subtracting the baseline heart rate [−500ms; 0ms] from the

heart rate in each time interval after stimulus presentation (cf. Section 2.2.5).
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Analysis of Event-Related Potentials

ERPs were analyzed as in Experiment I (cf. Section 2.2.5).

The EEG data was filtered (low pass = 30Hz, 24 dB/oct; high pass = 0.1Hz, 24 dB/oct;

50Hz notch), segmented [−200ms; 1000ms], corrected for blinks and eye movements

(Gratton et al., 1983), and screened for artifacts using the software Brain Vision Ana-

lyzer 1.04 (Brain Products GmbH, München, Germany). The mean averages for each

condition and for each subject were baseline corrected using the [−200ms; 0ms] period

as a baseline and then rereferenced to the averaged linked earlobes. Data of 4 subjects

(2 controls, 1 social phobic, and 1 spider phobic) were excluded from further analysis

because of extreme alpha activity and in one case because of atypical EEG structure.

As in Experiment I, a temporal Principal Components Analysis (PCA) was performed

on the data set to reduce its dimensionality and disentangle overlapping ERP com-

ponents. For a description of parameters compare Section 2.2.5. While screening the

data it already became apparent that there were at least two positive components:

one between 250–400ms and one between 400–600ms. The factor solution of the PCA

confirmed the existence of multiple late positive components.

The number of factors was limited to six as a compromise between taking all relevant

factors into account and keeping complexity manageable. They are depicted in Fig-

ure 3.3. Factor 1 accounted for 51.8% of total variance, factor 2 for 16.3%, factor 3 for

7%, factor 4 for 5.4%, factor 5 for 4%, and factor 6 for 3.2%.

Of particular importance are factors 2 and 5 which can be interpreted as a positive

component between 200–400ms (P3) and a second positive component between 400–

600 ms (P4). Spatial distributions of these two factors are depicted in Figure 3.4.

Again, the posterior spatial distribution of these two components fits very well with

the interpretation as a P3 and a P4 component. As can be seen in Figure 3.4, the

P3 component (factor 2) shows its maximum over the occipitoparietal lobe and the

P4 component (factor 5) over parietal sites. Factor 1 was interpreted as a slow wave,

which is commonly observed in P3 experiments. However, factor 1 as well as factors 3,

4, and 6 are of no relevance for the further analysis of the study and are therefore not

elaborated any more in this context.

Since both data screening and PCA hinted at the existence of multiple positive com-

ponents, namely P3 and P4, further data analysis was carried out separately for both

components, as in Experiment I (see Section 2.2.5).
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Figure 3.3.: Results of Principal Components Analysis (PCA)

Figure 3.4.: Mean component values over subjects for factors 2 (left) and 5 (right)
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Furthermore, it was analyzed whether a comparable late frontal positivity as in Ex-

periment I was present in spider phobics when identifying the color of spiders. Mean

amplitudes in the time interval of [500ms; 700ms] were exported for leads F3, Fz, and

F4.

Data screening for extreme values and outliers was performed as in Experiment I (see

Section 2.2.5). Two subjects (one male control, one male spider phobic) were classified

as outliers. The data of these subjects was excluded from further analysis. Thus, the

data of 50 subjects was included in the statistical analysis of ERPs (16 controls, 18

social phobics, and 16 spider phobics).

3.3. Results

For ANOVAs with repeated measurements Greenhouse-Geisser (ε) adjustments were

used to correct for violations of sphericity (Greenhouse & Geisser, 1958). See also the

introduction to the Results Section of Experiment I (Section 2.3) for a discussion of

the preconditions for ANOVAs.

3.3.1. Performance and Reaction Times in the Stroop Task

There was neither a significant difference in missing responses (Kruskal-Wallis Test:

χ2
df=2 = 0.001; p = 1), nor in wrong responses (Kruskal-Wallis Test: χ2

df=2 = 3.4;

p = 0.18), or in total mistakes (missings & errors; Kruskal-Wallis Test: χ2
df=2 = 1.7;

p = 0.43) between groups. Overall, subjects failed to react in 1.08% of all trials, and

incorrect responses were observed in 1.16% of all trials.

A 3× 2× 2 repeated measures ANOVA was calculated with the between factor Group

and the repeated measures factors Task (identify color, identify object) and Object

(spider, flower). Figure 3.5 depicts the ANOVA design, and Figure 3.6 shows mean

reaction times and standard deviations for each group and for each condition.

Results showed main effects of Group (F(2,53) = 3.67; p = 0.03), of Task (F(1,43) = 13.52;

p = 0.001), and of Object (F(1,53) = 9.36; p = 0.003). Furthermore, the interaction

Task × Object (F(1,53) = 15.02; p = 0.0005) was highly significant. However, the

interaction Group × Object (F(2,53) = 0.15; p = 0.87) and Group × Task × Object

(F(2,53) = 0.42; p = 0.66) failed to be significant.
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Figure 3.5.: ANOVA design for the analysis of reaction times

Figure 3.6.: Mean reaction times and SDs for each group in response to spiders and
flowers for color identification (left) and object identification (right)
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The main effect of Group was further analyzed by post hoc tests (Tukey’s HSD).

On the whole, spider phobics reacted significantly faster than controls (p = 0.03).

The comparison spider phobics vs. social phobics failed to be significant (p = 0.11)

but showed that spider phobics also tended to react faster than social phobics. In

Figure 3.6 it seems that reaction time differences between groups were largest for

the object identification task. Indeed, the interaction Task × Group (F(2,53) = 2.45;

p = 0.096) narrowly failed to be significant but can be interpreted as a tendency.

Subsequent ANOVAs calculated separately for each task showed that spider phobics

did not identify the color of an object significantly faster than controls or social phobics.

But when the task was to identify the object itself, they were significantly faster than

controls (p = 0.004) and social phobics (p = 0.004).

The main effects of Task and Object should be interpreted together with the interaction

of Task × Object. Overall, subjects responded faster when identifying the color of an

object (Mean RT: 501ms) than when identifying the object itself (Mean RT: 530ms).

However, while subjects showed no significant difference between spiders and flowers

in the color identification task (Mean RT: spiders 502ms; flowers 501ms), they showed

significantly faster reaction times for spiders than for flowers in the object identification

task (Mean RT: spiders 518ms; flowers 543ms). Thus, when the stimulus category

had to be identified, all subjects responded faster to spiders than to flowers, and spider

phobics did not deviate from this pattern, as the interactions Group × Object and

Group × Task × Object were not significant.

3.3.2. Heart Rates

There were no significant differences between groups in baseline heart rates, i.e. in the

interval [−500ms; 0ms] (one-way ANOVA: F(2,53) = 0.34; p = 0.71).

Heart rates in the interval [0ms; 3000ms] were analyzed with a 3×2×2×6 ANOVA with

between factor Group and repeated measures factors Task (identify color, identify ob-

ject), Object (spider, flower), and Time (the intervals t1 =[0ms; 500ms], t2 =[500ms; 1000ms],

t3 =[1000ms; 1500ms], t4 =[1500ms; 2000ms], t5 =[2000ms; 2500ms], t6 =[2500ms; 3000ms]).

Compare Figure 3.7 for the ANOVA design.

Again, there was a main effect of Time (F(5,265) = 29.53; p = 0.0005; ε = 0.31), but

no further significant effects. See Figure 3.8 for the time course of mean heart rate

changes (in bpm) per group for each condition.
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Figure 3.7.: ANOVA design for the analysis of heart rate changes

Figure 3.8.: Mean heart rate changes and SDs per time interval of 500ms for the color
(top row) and object (bottom row) identification of spiders (left) and flow-
ers (right) for each group
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Figure 3.9.: Mean heart rate changes and SDs per time interval of 500ms in response
to spiders for male and female controls (top row), social phobics (center
row), and spider phobics (bottom row)
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Figure 3.10.: Event-related potentials on electrode Pz. Comparison ‘spider–flower’ for
color (left) and object (right) identification for each group

To analyze whether there were again differences between male and female spider phobics

in response to spiders, the between factor Gender was included in the above ANOVA

design.

Besides a main effect of Time (F(5,250) = 29.2; p = 0.0005; ε = 0.31), there was

a significant interaction of Group × Gender (F(2,50) = 3.1; p = 0.05) and a nearly

significant interaction of Object × Gender (F(1,50) = 3.64; p = 0.06) as well as a

significant interaction of Task × Time × Group × Gender (F(10,250) = 2.78; p = 0.03;

ε = 0.4).

Therefore, subsequent analyses were calculated separately for flowers and spiders. For

flowers there was neither a main effect of Gender nor any significant interaction with

Gender or Group × Gender. However, for spiders there was a significant interaction of

Group × Gender (F(2,50) = 3.42; p = 0.04). Subsequent ANOVAs calculated separately

for each group revealed that while there were no significant differences between males

and females for controls and social phobics, there was a significant difference between

male and female spider phobics (p = 0.008). As can be seen in Figure 3.9, female

spider phobics showed a pronounced heart rate deceleration while male spider phobics

showed a brief deceleration and then a small acceleration.

3.3.3. Event-Related Potentials

Event-related potentials on electrode Pz in response to spiders and flowers are depicted

for each group and both tasks in Figure 3.10.
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Figure 3.11.: ANOVA design for the analysis of P3 and P4 amplitudes

For the analysis of P3 and P4 amplitude a 3 × 2 × 2 × 4 × 3 ANOVA was calculated

with between factor Group and repeated measures factors Task (identify color, identify

object), Object (spider, flower), Row (F, C, P, O), and Laterality (left, central, right).

The ANOVA design is depicted in Figure 3.11.

P3 Amplitude Besides other effects, there were main effects of Row (F(3,141) = 60.95;

p = 0.0005; ε = 0.43) and of Laterality (F(2,94) = 14.37; p = 0.0005; ε = 0.95), and a

significant interaction of Row × Laterality (F(6,282) = 34.86; p = 0.0005; ε = 0.68).

As can be seen in Figure 3.12, P3 amplitudes were maximal on parietal sites. Further

analyses were therefore conducted only for parietal sites, and the factor Row was

excluded.

The second ANOVA, based only on parietal P3 amplitudes, found main effects of

Laterality (F(2,94) = 25.43; p = 0.0005; ε = 0.85) and of Object (F(1,47) = 17.59; p =

0.0005). Furthermore, there were significant interactions of Task × Object (F(1,47) =

8.98; p = 0.004), Task × Laterality (F(2,94) = 3.62; p = 0.03; ε = 0.95), and Object ×
Laterality (F(2,94) = 12.29; p = 0.0005; ε = 0.88). The hypothesis-relevant interactions

Group × Object (F(2,47) = 0.3; p = 0.74) and Task × Object × Group (F(2,47) = 2.7;

p = 0.08) failed to be significant.

As can be seen in Figure 3.12, P3 amplitude on parietal sites was maximal centrally.

Simple contrasts showed a significant difference between central and right sites (p =

0.0005), but no significant difference between the right and the left hemisphere (p =

0.26).
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Figure 3.12.: Mean P3 amplitudes and SDs depicted for each group for frontal (top
left), central (top right), parietal (bottom left), and occipital (bottom
right) sites depending on laterality
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Figure 3.13.: Mean P3 amplitudes and SDs for the color (left) and object (right) iden-
tification of spiders and flowers for each group

The above ANOVA found no significant effect of Task but only a tendency for larger

P3 amplitudes for color compared to object identification (F(1,47) = 2.69; p = 0.11).

The main effect of Object showed that in all groups spiders led to larger P3 amplitudes

than flowers, and spider phobics did not differ from controls and social phobics in their

P3 amplitudes for spiders (compare Figure 3.13).

However, the effect of Object on P3 amplitudes depended on Task as the significant

interaction Task × Object indicated. Subsequent ANOVAs were calculated separately

for each Task and showed a significant difference between spiders and flowers for object

identification (F(1,47) = 20.36; p = 0.0005) but not for color identification. Schematic

spiders did not lead to significantly higher P3 amplitudes when their color had to be

identified, but P3 amplitudes were generally larger when a schematic spider had to be

identified than when a schematic flower had to be identified. The hypothesis-relevant

interaction Task × Object × Group narrowly failed to be significant, although it can

be interpreted as a tendency which resulted from the slightly reduced P3 amplitudes

in spider phobics when they had to identify the color of a spider (see Figure 3.13).

There was a significant interaction of Object × Laterality, which is depicted in Fig-

ure 3.14. For spiders and flowers P3 amplitudes were maximal on electrode Pz. How-

ever, only flowers led to slightly larger right vs. left hemispheric P3 amplitudes (p =

0.06), while for spiders there was no significant difference between the right and the

left hemisphere.
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Figure 3.14.: Mean P3 amplitudes and SDs for spiders (left) and flowers (right) per
group depending on laterality

Finally, correlations of SPQ values and mean amplitudes in response to spiders inde-

pendently of task and laterality were calculated. Spider phobics showed a significant

correlation of r = .59 (p = 0.017), indicating that higher SPQ values resulted in larger

P3 amplitudes in response to schematic spiders. Such an effect was not found for

controls or social phobics.

P4 Amplitude The analysis was performed with a 3×2×2×4×3 repeated measures

ANOVA with between factor Group and repeated measures factors Task, Object, Row,

and Laterality. Compare Figure 3.11 for the ANOVA design.

Again, besides other effects, there were main effects of Row (F(3,141) = 84.24; p =

0.0005; ε = 0.49) and of Laterality (F(2,94) = 7.23; p = 0.001; ε = 1), and a significant

interaction of Row × Laterality (F(6,282) = 34.34; p = 0.0005; ε = 0.68).

As can be seen in Figure 3.15, P4 amplitudes were maximal centrally on parietal sites.

Thus, the factor Row was excluded from analysis, and all further calculations were

based on parietal sites only.

This reduced ANOVA revealed significant main effects of Laterality (F(2,94) = 25.35;

p = 0.0005; ε = 0.94), Task (F(1,47) = 41.63; p = 0.0005), and Object (F(1,47) = 7.8;

p = 0.008). Furthermore, there was a significant interaction of Task × Laterality

(F(2,94) = 13.84; p = 0.0005; ε = 0.92), but no significant interaction of Object ×
Laterality (F(2,94) = 0.44; p = 0.6; ε = 0.8).

Pairwise comparisons showed that P4 amplitudes were maximal centrally (comparison

‘left–central’: p = 0.0005; ‘right–central’: p = 0.0005) and that there was no significant
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Figure 3.15.: Mean P4 amplitudes and SDs for each group for frontal (top left), cen-
tral (top right), parietal (bottom left), and occipital (bottom right) sites
depending on laterality

Figure 3.16.: Mean P4 amplitudes and SDs for spiders (left) and flowers (right) de-
pending on laterality for each group
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Figure 3.17.: Mean P4 amplitudes and SDs for the color (left) and object (right) iden-
tification of spiders and flowers for each group

difference between the right and the left hemisphere (p = 0.83). Mean P4 amplitudes

and standard deviations in response to spiders and flowers depending on laterality are

depicted in Figure 3.16.

Furthermore, the main effect of Task (F(1,47) = 41.63; p = 0.0005) showed that P4

amplitudes were significantly larger for object than for color identification (see Fig-

ure 3.17).

In addition, the main effect of Object (F(1,47) = 7.8; p = 0.008) indicated that spiders

generally led to larger P4 amplitudes than flowers. As can be seen in Figure 3.17, all

subjects showed higher P4 amplitudes in response to spiders as compared to flowers,

and this effect was not specific for spider phobics. Correspondingly, the interactions

Group × Object and Group × Task × Object were not significant.

Finally, correlations of SPQ values with mean P4 amplitudes in response to spiders

were calculated independently of task and laterality. For spider phobics a significant

correlation of r = .53 (p = 0.04) was found.

Frontal Positivity The late frontal positivity in the time interval [500ms; 700ms]

was analyzed by a 3 × 2 × 2 × 3 ANOVA with between factor Group and repeated

measures factors Task, Object, and Laterality. Event-related potentials on electrode

Fz in response to spiders and flowers for both tasks and each group can be seen in

Figure 3.18. Mean amplitudes and standard deviations are depicted in Figure 3.19.
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Figure 3.18.: Event-related potentials on electrode Fz: comparison ‘spider–flower’ for
color (left) and object (right) identification for each group

Figure 3.19.: Mean frontal amplitudes and SDs in the time interval [500ms; 700ms] for
the color (left) and object (right) identification of spiders and flowers for
each group
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Results showed main effects of Task (F(1,47) = 19.24; p = 0.0005), Object (F(1,47) =

14.58; p = 0.0005), and Laterality (F(2,94) = 17.67; p = 0.0005; ε = 0.99). Simple

contrasts revealed that mean frontal positivity was larger over right compared to central

(p = 0.0005) and compared to left sites (p = 0.0005). Furthermore, object identification

led to a larger positivity in this time interval than color identification. Also, the main

effect of Object indicated that spiders led to a larger positivity in this time range than

flowers. However, there were no significant interactions of Group × Object or Group ×
Task × Object. Thus, an enhanced frontal positivity in spider phobics when identifying

the color of spiders, as observed in Experiment I, could not be found.

3.4. Discussion

In this section, the main results of this study will be summarized and the findings of

Experiment I and the present study will be compared. Finally, suggestions for future

studies will be given.

3.4.1. Summary of Results

Reaction Times

� Reaction times showed no specific emotional Stroop interference in spider

phobics when identifying the color of schematic spiders.

� Instead, in the object identification task, all subjects identified spiders sig-

nificantly faster than flowers, which is consistent with the hypothesis of a

general facilitation effect for spiders.

� The specific facilitation effect in spider phobics was confirmed: spider pho-

bics identified spiders significantly faster than controls and social phobics.

However, it must be noted that spider phobics also identified flowers signif-

icantly faster than controls and social phobics.

Heart Rates

� Analysis of heart rates showed an orienting response in all groups in response

to flowers and spiders.
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� Although spiders are generally more arousing than flowers (as shown in the

pilot study), spiders did not lead to a larger heart rate deceleration than

flowers in social phobics and controls.

� Furthermore, no spider phobia-specific effects were found unless gender was

included in the analysis. Female spider phobics showed a pronounced ori-

enting reaction in response to spiders which was not observed in male spider

phobics. In particular, no defense reaction was observed.

Event-Related Potentials: P3

� Analysis of ERPs showed significantly larger parietal P3 amplitudes in all

subjects when identifying spiders as compared to flowers. This effect was

not present in the color identification task. Thus, a general arousal effect of

spiders on P3 amplitudes was partially confirmed.

� Spider phobics did not differ in P3 amplitudes in response to spiders from

control groups. Thus, no additional specific arousal effect on P3 amplitudes

was found in spider phobics.

� For both spiders and flowers, P3 amplitudes were maximal centrally over

parietal sites, with no significant differences between the right and the left

hemisphere.

Event-Related Potentials: P4

� P4 amplitudes were larger in response to spiders in all subjects indepen-

dently of the task they performed. Thus, a general effect of arousal on P4

amplitudes was found.

� Again, spider phobics did not show enhanced P4 amplitudes in response

to spiders compared to controls and social phobics, i.e. no specific arousal

effect on P4 amplitudes in spider phobics was found.

� For both spiders and flowers, P4 amplitudes were maximal centrally over

parietal sites, with no significant differences between the right and the left

hemisphere.

Finally, the significant correlations of P3 and P4 amplitudes with SPQ values

in spider phobics provide evidence for an association between severity of spider

phobia and magnitude of P3 and P4 amplitudes in response to spiders. This

parallels the results in Experiment I.
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Event-Related Potentials: Late Frontal Positivity Finally, this study did not find

evidence for an enhanced frontal positivity in spider phobics when viewing pic-

tures of spiders.

3.4.2. Comparisons of Findings in the Emotional Stroop

Paradigm with Schematic and Non-Schematic Pictures

Reaction Times As in the emotional Stroop paradigm with non-schematic pictorial

stimuli, this study could not find evidence of emotional Stroop interference in spider

phobics. Possible explanations for this finding were already discussed in Section 2.4.2.

As in Experiment I, this result again raises the question how strongly Stroop interfer-

ence depends on verbal processing specificities, i.e. on the combination of verbal stimuli

and a verbal response mode.

In Experiment I, spider phobics showed a specifically facilitated response for non-

schematic pictures of spiders, while in Experiment II, all subjects showed faster reaction

times for schematic spiders compared to flowers. The latter finding supports the theory

of Öhman (1993) that fear-relevant stimuli are processed with high selectivity and

priority in all subjects, whether phobic or not. In Section 2.4.3, a possible explanation

for the result of Experiment I was suggested, in accordance with Öhman (1993): feature

detectors in spider phobics might be set to filter incoming stimuli preferentially for

spider-related features. This would also account for the finding in Experiment II that

spider phobics identified schematic spiders even faster than social phobics and controls.

However, two open questions must still be answered to account for the findings of

Experiments I and II: first, why did social phobics and controls not also show facilitated

responses for non-schematic spiders but only for schematic spiders? Second, why did

spider phobics also identify non-schematic flowers and birds significantly faster than

social phobics and, as a tendency, faster than controls, and similarly, why did they also

identify schematic flowers faster than social phobics and controls?

Concerning the first question, one possible interpretation of the reported data is that

“generalization” plays a role: schematic spider images might depict fear-relevant fea-

tures to which the feature detectors postulated by Öhman (1993) are tuned in all

humans independently of whether individuals are phobic or not. It appears possible

that spider phobics generalize better from the real-life spider to the spider schematic,

which could explain their faster reaction to spiders found in Experiment I.
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As an answer to the second question, the concept of hypervigilance in anxious indi-

viduals was already introduced in Section 2.4.3. It would explain why spider phobics

responded generally faster than controls and social phobics in Experiment II, and it

would be consistent with the non-significant tendency of spider phobics to identify all

objects faster than controls and social phobics in Experiment I. The differences between

Experiment I and II might be due to varying task difficulties of both experiments: while

Experiment I required a decision between three response alternatives (Spider, Flower,

Bird), Experiment II only required a choice between two possible responses (Spider,

Flower). The easier task might have potentiated the faster responses in spider phobics,

resulting in generally faster responses for schematic spiders and flowers.

Heart Rates In Experiment I and II, the analysis of heart rate data revealed normal

orienting reactions in response to neutral objects in all subjects, which was consistent

with our hypotheses. However, contradictory to our hypotheses the orienting response

was not more pronounced in social phobics and controls for the more arousing spider

stimuli than for the neutral stimuli, as was suggested by Lang et al. (1997).

In contrast to previous studies investigating heart rate changes in phobics in response

to their feared object (Fredrikson, 1981; Globisch et al., 1999; Hare & Blevings, 1975;

Krieschel, 2003), neither Experiment I nor Experiment II found evidence for a defense

reflex in spider phobics in response to spiders. However, when gender was included

in the analysis of heart rates, there was evidence that male and female spider phobics

showed specific, but distinct, peripherphysiological reactions to their feared object. In

Experiment I, male spider phobics showed a defense pattern of heart rate change, while

female spider phobics showed a pronounced orienting reaction in response to spiders.

In Experiment II, only female spider phobics showed a deviating response pattern, i.e.

a pronounced orienting reaction in response to pictures of spiders. Thus, the data

are consistent in that in both experiments female spider phobics showed a pronounced

orienting response to spiders, but inconsistent in that male spider phobics showed a

defense reaction in response to non-schematic spiders but not in response to schematic

spiders.

However, due to the high variances between subjects in Experiment I and because of

the small group sizes the heart rate data should be interpreted with caution. No final

conclusions as to whether differences between male and female spider phobics in their

response to the feared object exist should be drawn unless the data are replicated and

corroborated by further studies.
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Event-Related Potentials While Experiment I found significantly enhanced P3

and P4 amplitudes in spider phobics when viewing pictures of spiders independently of

task, Experiment II could not find evidence for a spider phobia-specific effect. Instead,

all subjects showed larger P3 and P4 amplitudes when identifying spiders compared to

flowers. It has to be noted that in Experiment I controls also had higher P3 amplitudes

for spiders compared to flowers, and social phobics had higher P4 amplitudes for spiders

compared to flowers. However, these effects were more of a tendency.

In Experiment II, the larger P3 and P4 amplitudes for schematic spiders than for

schematic flowers in all subjects fit the well documented finding that parietal late

positive components are influenced by the affective arousal of stimuli (e.g. Cuthbert

et al., 2000; Schupp et al., 2000), which is higher for schematic spiders than flowers

(see results of the pilot study). However, the results by Gutberlet and Miltner (1999,

2001) and Krieschel (2003), who found larger P3 amplitudes in spider phobics for their

feared object, could not be replicated with schematic spider stimuli. This finding still

has to be explained.

It is possible that although subjects rated schematic and non-schematic stimuli as

nearly equivalently aversive (arousal and valence dimension), the schematic stimuli

were not as frightening (or disgusting?) for the spider phobics as the non-schematic

pictures, which could explain the missing spider phobia-specific enhancements of LPPs.

This would also account for the missing late frontal positivity in spider phobics when

identifying the color of schematic spiders, which was hypothesized to be an indicator of

attentional dwell-time in the discussion of Experiment I. Perhaps the schematic stimuli

were not realistic enough, so that spider phobics did not dwell on them as they did

on the more realistic non-schematic pictures. Future studies will have to replicate the

results of the present study with schematic stimuli and will have to find answers for

the unexpected results.

3.4.3. Suggestions for Future Studies

Essentially, the suggestions for future studies of Experiment I also apply to the present

experiment, with the only difference that schematic stimuli would have to be used in

the proposed study designs. Furthermore, a comparison of the results of Experiment I

and II leads to some further unresolved questions:

In both experiments differences in heart rates between male and female spider phobics

in response to their feared object were observed. We know of no study which explored

134



Experiment II – Pictorial Emotional Stroop Paradigm with Schematic Stimuli

gender differences in spider phobics in the processing of feared stimuli. Therefore, it

would be interesting to replicate both experiments with larger samples of male and

female spider phobics to increase statistical power.

An explanation for the observed differences between male and female spider phobics

could be differences in the subjective emotional experiences of fear of spiders. For

example, it is possible that the high variances in heart rate data in Experiment I

were due to different subjective experiences of spiders, e.g. strong fear vs. disgust.

Recently, researchers have begun to consider the potential role of disgust in phobias,

especially in animal phobia (Vernon & Berenbaum, 2002). It could be important

to distinguish between fear and disgust, since the emotional reaction of disgust is

very different from a reaction of fear. For example, while disgust is associated with

nausea (Rozin & Fallon, 1987), the physical manifestation of fear is a pounding heart

(Roseman, Wiest, & Swartz, 1994). In particular, while heart rate deceleration is likely

to occur during a disgust response, heart rate acceleration is likely to occur during a fear

response (Levenson, 1992). Thus, the gender differences in spider phobics observed in

Experiment I and II could also be due to differences in emotional experiences (disgust

and/or fear) in response to spiders. Therefore, it seems promising to study the relation

between the subjective experience of the picture of a spider (fear vs. disgust) and

physiological responses to spiders.
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4. Experiment III – Which

Properties Make a Spider

Fear-Relevant? – A First

Approach

4.1. Introduction: Aims and Hypotheses

The third experiment was a first approach to investigate which properties make a

spider fear-relevant. In Öhman’s evolutionary model, which was described in detail in

Section 1.3.5, the existence of specific feature detectors has been postulated. These

detectors preferentially pick up elementary threat features and, if such a threat feature

is detected, automatically and still preattentively activate the arousal system and select

this feature for preferential treatment by the significance evaluation system (Öhman,

1993). However, as Öhman et al. (2001, p. 475) admit, “such elementary threat features

[. . . ] still remain to be specified.” Is it the typical sinusoidal shape of a snake that is

picked up by feature detectors? Is it the shape of the body of a spider, its protruding

legs, the angle in which the legs are positioned relatively to each other? Or is it not

the shape, but rather the movement of a spider or a snake that is detected by these

feature detectors? Or do the feature detectors respond to other features?

The feature detectors postulated by Öhman should presumably also respond to cer-

tain features of socially threatening stimuli, e.g. angry faces. Aronoff, Barclay, and

Stevenson (1988) studied “sign vehicles” (Ekman, 1982), i.e. specific characteristics

of facial displays which convey certain emotional expressions like threat. Therefore,

they studied masks of non-Western cultures and American samples for specific charac-

teristics that discriminate between threatening and non-threatening facial expressions.
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Starting out from the results of this study, they designed a set of diagonal, angular,

and curvilinear visual stimuli which subjects rated on three bipolar semantic differ-

ential scales according to Osgood, Suci, and Tannenbaum (1957): evaluation (e.g.

pleasant–unpleasant), potency (e.g. weak–strong), and activity (e.g. calm–excitable).

They concluded that the non-representational features of angularity and diagonality

in the visual stimulus convey the meaning of threat, i.e. the more angular or diagonal

pattern evoked a more negative, potent, and active subjective reaction in the observer

than did the more curvilinear pattern. On the other hand, babyishness and cuteness

in infants and facial attractiveness in young women all avoid sharp angles in preference

to more curvilinear forms (Cunningham, 1986; Berry & McArthur, 1985, 1986).

More recently, Lundqvist, Esteves, and Öhman (1999) were able to show that the

eyebrows are crucial in distinguishing between threatening and non-threatening facial

expressions. The shape of the mouth and the eyes are important for subsequent pro-

cessing. Therefore, it has been proposed that the
∨

-shaped eyebrows of a schematic

angry facial expression are a powerful determinant for negative evaluation of faces

and capture visual attention (Lundqvist et al., 1999; Lundqvist, 2003; Öhman et al.,

2001). In line with these results, Öhman et al. (2001) reported that faces with
∨

-

shaped eyebrows were more rapidly and accurately located in a visual search task than

faces with
∧

-shaped eyebrows (friendly faces). Tipples, Atkinson, and Young (2002)

could confirm the advantage of
∨

-shaped (angry and scheming expressions) compared

to
∧

-shaped eyebrows (happy and sad expressions). However, they could find no ad-

vantage for
∨

-shaped lines if they were presented in a non-facelike object. Similarly,

Lundqvist, Esteves, and Öhman (2004) found that single schematic facial features such

as the eyebrows or the mouth can communicate a relatively strong facial impression

on their own. Eyebrows were the single most important feature expressing threat in

schematic faces. However, the effect of single features was modulated by configuration.

Simple configurations of eyebrows and mouth significantly predicted the impression of

complete faces they were part of.

Thus, what conveys threat in facial displays has already been systematically investi-

gated. However, which properties make a spider fear-relevant, i.e. which visual features

of spiders convey threat and activate the feature detectors postulated by Öhman (1993)

has not yet been investigated. The present study attempted to fill the gap in this field

of research by investigating the influence of Gestalt properties on behavioral and elec-

trocortical measures in spider phobics and non-phobics, where Gestalt refers to the

perception of a whole as a result of the relation of its parts to each other (Goldstein,
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Figure 4.1.: The three different flower/spider series

1997)1.

For this purpose, three series of schematic flower/spider pictures were designed: flower

anchors differed with regard to the size of the interior of the flower and the angu-

larity of the outlines of the petals, while spider anchors differed with regard to body

size and angularity of spider legs (see Figure 4.1). Between the anchor pictures, the

configurational position of the legs of a schematic spider in relation to its body was

systematically varied. More specifically, each series contained seven pictures which,

starting from the picture of a flower, gradually turned into a spider by shifting the

angles of the outlines of the petals, turning them into spider’s legs. The anchor stimuli

of each series were similar to the spider and flower pictures used in Experiment II.

Three groups of subjects participated in this study: spider phobics, social phobics, and

controls. All subjects rated the stimuli according to their valence and arousal. In the

actual paradigm, subjects saw the stimuli detailed above and classified them into one of

the three categories “flower”, “spider” and “neither/nor” while ERPs were measured.

Dependent variables were valence and arousal ratings, reaction times, classification

1The term ‘Gestalt’ became important for the field of psychology by the investigations of von Ehren-
fels (1890). ‘Gestaltpsychology’ is a school of thought founded by Wertheimer (1912). Its central
postulate is that the whole is more than the sum of its parts.
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frequencies, and event-related potentials in response to each of the different stimuli.

In this setting, one could hypothesize that spider phobics show a ‘stimulus general-

ization effect’ or an ‘interpretive bias’, particularly for ambiguous stimuli. The term

stimulus generalization, which was introduced by Pawlow (1927), comes from learning

psychology and refers to the fact that a given response (conditioned or unconditioned)

can be elicited to some degree by a range of similar stimuli. The most famous example

of such a stimulus generalization effect is the experiment of Watson and Rayner (1920)

with Little Albert. At first, the eleven month old boy did not show any sign of fear of

a white rat. However, after five attempts of the child to reach for the rat which were

always paired with a loud bang, the boy did not only show fear symptoms at the mere

sight of the rat but also feared teddy bears.

In contrast, the term interpretive bias comes from cognitive psychology and was used

above to describe a bias in social phobics to interpret ambiguous social situations as

negative (compare Section 1.3). This study explored whether spider phobics showed

a similar generalization effect or interpretive bias for ambiguous stimuli, which should

be expressed in all dependent variables, as detailed below. Due to the lack of research

in this field, this question was more exploratory.

We expected the following results:

Valence and Arousal Ratings

� It was expected that, as in Experiment II, all subjects rate schematic spider

anchors as more aversive (arousing and unpleasant) than schematic flower

anchors.

� Furthermore, spider phobics should rate their feared object, i.e. spider an-

chors, as specifically more unpleasant and arousing than controls and social

phobics, as was already found in Experiment II.

� We hypothesized that spider phobics exhibit a stimulus generalization or

interpretive bias effect, which leads to more aversive ratings for ambiguous

pictures in the middle of the flower/spider series compared to social phobics

and controls.

Reaction Times

� We hypothesized to find a general facilitation effect for fear-relevant stimuli.

Since, according to Öhman, fear-relevant stimuli are processed with high
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selectivity and priority, all subjects should identify spider anchors faster

than flower anchors.

� It was expected that spider phobics show an additional specific facilitation

effect, i.e. faster reaction times for spider anchors and pictures they judged

to be similar to spiders than the other groups.

� The more ambiguous the stimuli, the more reaction times should increase,

because it takes subjects longer to decide which stimulus they perceive in

the presented configuration. In particular, the fastest reaction times were

expected for the unequivocal flower/spider anchor pictures.

� We expected that spider phobics respond faster to ambiguous pictures they

judge to be spider-like compared to controls and social phobics, expressing

stimulus generalization or interpretive bias effects.

Classifications

� The closer the position of a picture in the flower/spider series to an anchor

picture, the more often the individual picture should be classified as be-

longing to the corresponding anchor picture category, since it shares similar

features with this anchor.

� Pictures in mid-positions should be classified more often into the category

“neither/nor” due to their higher ambiguity.

� It was explored whether there were thresholds in the transition of a flower

into a spider and vice versa at which a switch in perception towards a flower

or a spider occurs.

� Finally, this study explored whether spider phobics differ from controls and

social phobics in their classification of the different stimuli, in particular of

the ambiguous ones as a result of a stimulus generalization or interpretive

bias.

Event-Related Potentials

� It was hypothesized that all subjects show larger LPPs in response to spider

anchors and spider-like pictures than in response to flower anchors due to

their higher emotionality (valence and arousal).

� We originally expected larger LPPs in spider phobics than in social phobics

and controls in response to spider anchor pictures as found in Experiment I
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for non-schematic spider pictures, although Experiment II showed no such

effect using schematic spider pictures.

� However, it was hypothesized that due to stimulus generalization or inter-

pretive bias, spider phobics would show larger LPPs than social phobics and

controls in response to ambiguous pictures they judged to be spider-like.

� Finally, according to Johnson (1986; see Section 1.6.1) information trans-

mission influences LPP amplitudes: with increasing uncertainty in identify-

ing the eliciting event, P3 amplitude is reduced. Thus, ambiguous pictures

should lead to smaller LPPs than the more unequivocal anchor pictures.

4.2. Methods

4.2.1. Subjects

34 subjects of Experiment I also participated in Experiment III, but 10 new subjects

were recruited to fill groups. Thus, altogether 44 subjects (mean age 23 yrs, SD 3.8 yrs,

age range: 19–34 yrs) participated in the study: 16 spider phobics (8 male, 8 female), 13

social phobics (6 male, 7 female), and 15 normal controls (9 male, 6 female). 42 subjects

were right-handed and 2 were left-handed as measured by the Edinburgh handedness

questionnaire (Oldfield, 1971). There was no significant difference between groups

regarding gender (Pearson χ2
df=2 = 0.59; p = 0.75). However, the Kruskal-Wallis Test

showed a significant difference between groups regarding age (χ2
df=2 = 8.66; p = 0.01).

Mean age of spider phobics was 22 yrs (SD = 3.3), of social phobics 26 yrs (SD = 4.6),

and of controls 23 yrs (SD = 2.4). Subsequent pairwise comparisons showed that social

phobics were significantly older than spider phobics (Mann-Whitney-U Test U = 41;

p = 0.005). However, since all subjects were in a relatively narrow age range (19–34

yrs) these age differences seem to be of minor importance.

Subjects were recruited by newspaper advertisement and within the university stu-

dent population. All participants provided informed consent, and the procedures were

approved by the ethics committee of the Friedrich Schiller University Jena. To be ac-

cepted for the study, subjects completed the same questionnaires and had to fulfill the

same criteria as in Experiment I and II. See Section 2.2.1 for a detailed description.

Kruskal-Wallis Tests showed that groups differed significantly in SPQ, SPAI and BDI.

See Table 4.1 for each test per group as well as exact χ2 and p-values. Subsequent
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Group SPQ SPAI SPAI (orig.) BDI STAI

Spider Phobics: Mean 20.31 31.54 45.88 4.81 33.75
SD 2.60 9.31 13.54 4.13 8.43

Social Phobics: Mean 2.23 88.13 128.19 8.62 51.31
SD 1.96 12.00 17.46 5.17 5.15

Controls: Mean 2.13 25.48 37.06 3.60 31.20
SD 1.73 12.16 17.69 3.44 6.82

Kruskal-Wallis Test: χ2
df=2 30.19 28.03 28.03 7.24 22.85

p-value 0.0005 0.0005 0.0005 0.03 0.0005

Table 4.1.: Mean questionnaire values and SDs per group; results of Kruskal-Wallis
Test (χ2 and p-values)

pairwise comparisons with the nonparametric Mann-Whitney-U Test showed that con-

trols differed from spider phobics in the SPQ (U = 0; p = 0.0005) and from social

phobics in the SPAI (U = 0; p = 0.0005), BDI (U = 42.5; p = 0.01), and STAI (U = 5;

p = 0.0005). Furthermore, social phobics and spider phobics differed significantly in

the SPQ (U = 0; p = 0.0005), SPAI (U = 0; p = 0.0005), BDI (U = 59; p = 0.05),

and STAI (U = 13.5; p = 0.0005). Thus, again social phobics had on average higher

BDI values than controls and spider phobics. However, all social phobics had BDI

scores below 16 and were thus in a clinically non-significant range. Therefore, unlike

in Experiment I and II, no ANCOVAs with BDI values as a covariate or correlations

of BDI and dependent variables were calculated.

4.2.2. Assessment of Valence and Arousal Ratings

Prior to the experiment, all stimuli were rated as to their affective valence and physi-

ological arousal using an adapted version of the self-assessment manikin scale (SAM;

Bradley & Lang, 1994; Lang, 1980; cf. Appendix B). The pictures were presented in

one of four different randomized orders for 10 s with an interstimulus interval of 12 s.

Subjects were instructed not to speak while the stimuli were being presented but to give

their valence and arousal ratings verbally after stimulus presentation. They practiced

the procedure with 3 training trials. For reference, a sheet of paper with the rating

scheme (cf. Appendix B) lay in front of the subjects.
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Figure 4.2.: The two phases A and B of the training task, which subjects could repeat
independently as often as necessary

4.2.3. Paradigm

Subjects’ task was to decide whether the stimuli detailed above were more similar to

a “spider”, a “flower”, or “neither/nor”.

Before the experiment started, participants performed two training tasks which they

could repeat as often as necessary. The first training task (phase A) consisted of 9

trials. Before each trial, the key sequence for the buttons mounted on the arm-rests

was shown for 4 s on the screen. Then one of the stimuli was presented on the screen

for 3 s, and subjects indicated their classification by pressing the appropriate key. They

were instructed to respond as quickly as possible.

After each classification the subject confirmed, again by pressing a button, whether

the response had been correct or incorrect. Since we were interested in the subjective

evaluation of stimuli there were no predefined right or wrong answers, but subjects

could still have pressed an unintended button by mistake and would now indicate that

they had made an error. This procedure was necessary for the later identification of
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Figure 4.3.: The first paradigm: random stimulus presentation

errors which otherwise would have been impossible.

The second training task (phase B) also consisted of 9 trials. However, this time no

key sequence was shown, and the confirmation screen was simplified to “Correct?” (see

Figure 4.2).

The sequence of keys which had to be pressed to classify the stimuli was randomized

across subjects. In case subjects forgot during the experiment which key stood for

which response category, a sheet of paper showing the correspondence between keys

and answer categories lay in front of them. However, to reduce movement artifacts,

subjects were instructed to look at this sheet only if absolutely necessary.

The experiment itself consisted of two paradigms: a random (see Figure 4.3) and an

ascending/descending (see Figures 4.4 and 4.5 as well as the discussion below) presen-

tation of stimuli. These two paradigms were chosen to investigate whether individual

stimuli were classified differently depending on stimulus context: in the random order

presentation, stimuli should be judged relatively independently of preceding stimuli,

while in the ascending/descending order paradigm, subjects could develop expectations

and persevering response tendencies.

Each stimulus was presented for 3 s, during which subjects gave their answer by press-

ing the appropriate key. In the interstimulus interval of 2 s ± 400ms (1600ms plus
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Figure 4.4.: The second paradigm: ascending/descending stimulus order

an exponential distribution with mean 400ms, truncated at 800ms, as generated by

ERTS), the question “Correct?” appeared on the screen, and subjects indicated by

pressing a button whether the answer given had been right or wrong.

Subjects always started with the random order paradigm, since we wanted to get the

unbiased response of subjects to each individual stimulus. The order of the stimuli

in this paradigm was pseudo-randomized so that no picture appeared twice in a row.

The following ascending/descending order paradigm was available in two versions: one

started with a flower anchor and went to the corresponding spider anchor, then switched

to the spider anchor of another series and returned to the corresponding flower anchor.

Then, again, the flower/spider series was switched. The other version started with the

spider anchor, went to the corresponding flower anchor, switched to the flower anchor

of another series and returned to the corresponding spider anchor and so on. Figure 4.5

illustrates the sequence of stimuli. Half of the subjects in each group started with the

spider anchor, the other half started with the flower anchor.

After a switch to a new flower/spider series in the ascending/descending order paradigm,

the new anchor picture was presented twice. The first presentation (which is called a

dummy picture here) was later discarded, and only the second was used for further

analysis. This was done to avoid a more pronounced orienting response due to the
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Figure 4.5.: Example of the succession of stimulus series in the ascending/descending
order paradigm

switch of flower/spider series.

To avoid fatigue in subjects, both paradigms were split into two blocks with a short

break between them. In both the random and the ascending/descending paradigm,

each picture of the three flower/spider series was presented 14 times.

4.2.4. Assessment of EEG

All parameters of EEG data acquisition were the same as in Experiment I. Compare

Section 2.2.4.

4.2.5. Analyses of Dependent Variables

Analysis of Relative Response Frequencies

Analyses were performed separately for both the random and the ascending/descending

order paradigm. All wrong responses, i.e. when subjects indicated that they made a

incorrect response, were excluded from further analysis. For each picture in each series

the relative response frequencies for each category (“spider”, “flower”, “neither/nor”)

were calculated, i.e. the number of classifications of this picture as a “spider”, a “flower”

or “neither/nor”, divided by the total number of correct answers to this picture by each
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subject. Then, the relative frequencies of the corresponding pictures in each series (e.g.

the three flower anchors) were averaged over the three different flower/spider series.

Analysis of Reaction Times

Before averaging, data were screened for outliers and extreme values. Values deviating

more than 2 standard deviations from the mean were excluded from analysis. In this

way, 4.95% of the correct trials were excluded. Mean reaction times in response to

each picture were calculated. Then, the reaction times of the corresponding pictures

in the three series were averaged.

Analysis of Event-Related Potentials

The EEG data were filtered (low pass = 30Hz, 24 dB/oct; high pass = 0.1Hz, 24 dB/oct;

50Hz notch), segmented [−200ms; 1300ms], corrected for blinks and eye movements

(Gratton et al., 1983), and screened for artifacts using the software Brain Vision An-

alyzer 1.04. Only those trials were included in the further analysis in which subjects

had indicated that their classification was correct. The mean averages for each condi-

tion and for each subject were baseline corrected using the [−200ms; 0ms] period as a

baseline and then rereferenced to the averaged linked earlobes.

While screening the data one could easily identify multiple late positive components,

which were most apparent for the intervals [300ms; 500ms] and [600ms; 800ms]. As

in Experiment I and II, temporal Principal Components Analyses (PCA) were calcu-

lated for the random order and ascending/descending order paradigm to confirm the

existence of multiple positive components. For a description of parameters compare

Section 2.2.5. First, the factor analyses were performed with eigenvalue 1 as limit,

then the numbers of factors were limited to seven as a compromise between taking all

relevant factors into account and keeping complexity manageable.

Random Order Paradigm The seven factors identified are depicted in Figure 4.6.

Factor 1 accounted for 54.2% of total variance, factor 2 for 14.5%, factor 3 for 6.5%,

factor 4 for 3.5%, factor 5 for 2.8%, factor 6 for 2.1%, and factor 7 for 1.7%.

In the latency range of 250ms to 850ms, at least four different late components were

identified: factors 2, 4, 6, and 7. Their spatial distributions are depicted in Figure 4.7.

Factor 7 occurred relatively early around 250ms, and its spatial distribution was more
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occipital. However, factors 2 and 4 had a clear posterior spatial distribution and factor

6 an extended fronto-centro parietal distribution. Factors 3 and 5 are of no relevance

for the further analysis of the study and are therefore not further elaborated in this

context.

The multiple late components found in the PCA fit the observations made while screen-

ing the data. There were pronounced late positive components in the time range of

250ms to 750ms, but individual variances were high, making P3 and P4 amplitude de-

tections very difficult. Furthermore, it is questionable whether such an analysis would

have been valid, considering the multiple overlapping components. Therefore, a differ-

ent strategy for analyzing the data was applied. Mean amplitudes were exported for

electrodes P3, Pz, and P4 in the time interval of [400ms; 600ms] for each subject and

each condition. Furthermore, the late latency ranges [600ms; 1000ms] were analyzed

by exporting mean amplitudes in time intervals of 100ms on electrodes P3, Pz, and P4.

Ascending/Descending Order Paradigm The results of the PCA for the as-

cending/descending order paradigm were very similar to those of the random order

paradigm. Seven factors were identified and are depicted in Figure 4.8. Factor 1 ac-

counted for 54.6% of total variance, factor 2 for 13.2%, factor 3 for 6.3%, factor 4 for

3.4%, factor 5 for 2.9%, factor 6 for 2%, and factor 7 for 1.7%.

The spatial distributions of factors 2, 4, 6, and 7, i.e. their mean component values,

are depicted in Figure 4.9. The spatial distributions of the different factors are very

similar to the random order paradigm, especially if one considers that factor 7 in the

random order paradigm corresponds to factor 6 in the ascending/descending paradigm

and vice versa. Factors 3 and 5 are not elaborated in this context because they are of

no further relevance.

Again, the findings of the PCA can be interpreted as supporting the existence of

multiple late positive components, and it was correspondingly difficult to identify the

different overlapping components in the individual ERPs. Therefore, as for the random

order experiment, mean amplitudes were exported at electrodes P3, Pz, and P4 in the

time interval [400ms; 600ms] and, in steps of 100ms, in the interval [600ms; 1000ms].
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Figure 4.6.: Random order paradigm: factor solution of Principal Components Analysis

Figure 4.7.: Random order paradigm: mean component values for factors 2 (top left),
4 (top right), 6 (bottom left), and 7 (bottom right)
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Figure 4.8.: Ascending/descending paradigm: factor solution of Principal Components
Analysis

Figure 4.9.: Ascending/descending paradigm: mean component values over subjects
for factors 2 (top left), 4 (top right), 6 (bottom left), and 7 (bottom right)
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4.3. Results

First, the results of valence and arousal ratings will be described. Then, relative clas-

sification frequencies and reaction times will be presented. Finally, the focus will lie on

event-related potentials. Again, Greenhouse-Geisser (ε) corrections were applied to ad-

just for violations of sphericity (Greenhouse & Geisser, 1958). See also the introduction

to Section 2.3 for a discussion of the preconditions for ANOVAs.

4.3.1. Valence and Arousal Ratings

Figure 4.10 depicts mean valence and arousal ratings of each picture averaged over

all three flower/spider series. Valence and arousal ratings were analyzed by a 3 × 7

ANOVA with between factor Group and repeated measures factor Picture. The factor

Picture denotes here the position of each picture in the series: 1, 2, 3, 4, 5, 6, and 7.

Picture 1 is the flower anchor, picture 7 the spider anchor. First, ANOVA results of

valence ratings will be described, then the results of arousal ratings will be presented.

Valence Ratings Consistent with our hypotheses there were main effects of Group

(F(2,41) = 21.24; p = 0.0005) and of Picture (F(6,246) = 31.47; p = 0.0005; ε = 0.44),

as well as a significant interaction of Group × Picture (F(12,246) = 8.08; p = 0.0005;

ε = 0.44).

Subsequent ANOVAs calculated separately for each group revealed no significant effect

of Picture for controls but highly significant effects for social phobics (F(6,90) = 32.73;

p = 0.0005; ε = 0.51) and for spider phobics (F(6,72) = 8.16; p = 0.0005; ε = 0.37).

Pairwise comparisons showed that social phobics rated the flower anchor (picture 1)

as significantly more pleasant than all other pictures (all p-values ≤ 0.007), but there

were no further significant differences between pictures 2 to 7. Spider phobics also

rated the flower anchor as significantly more pleasant than all other pictures (all p-

values ≤ 0.0005). From picture 2 to picture 7 they rated the stimuli as increasingly

more aversive. Furthermore, at picture 4 there was another significant turning point

of valence ratings towards more unpleasant ratings (comparisons of picture 3 with all

following pictures: all p-values ≤ 0.005). As can be seen in Figure 4.10, picture 7, the

spider anchor, was rated as most aversive by spider phobics. However, the difference

in valence ratings between picture 6 and 7 failed to be significant (p = 0.09), which

indicates that pictures 6 and 7 were nearly equivalently aversive, although there was a

tendency for picture 7 to be rated more aversive.
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Figure 4.10.: Mean valence (left) and arousal (right) ratings and SDs for all pictures,
averaged over the three Flower/Spider series

Group differences were analyzed by further ANOVAs calculated separately for each

picture. They showed that groups did not differ significantly in their valence ratings

for picture 1, the flower anchor, but for all other pictures (all p-values ≤ 0.0005). This

means that beginning with the first opening of the petals of the flower anchor there

were significant differences in valence ratings between groups. Post hoc tests revealed

that social phobics and controls never differed significantly in their ratings, but all

comparisons between spider phobics and controls were highly significant starting with

picture 2 (all p-values ≤ 0.0005). In addition, all comparisons between spider phobics

and social phobics were significant, beginning with picture 2 (p = 0.02) and becoming

more and more significant (picture 3: p = 0.002; pictures 4 to 7: p = 0.0005).

Arousal Ratings For arousal ratings, ANOVA revealed main effects of Picture

(F(6,72) = 28.31; p = 0.0005; ε = 0.41) and of Group (F(2,41) = 18.31; p = 0.0005),

as well as a significant interaction of Group × Picture (F(12,246) = 7.69; p = 0.0005;

ε = 0.41). Mean arousal ratings and standard deviations are depicted in Figure 4.10.

Subsequent ANOVAs were calculated separately for each group and revealed that social

phobics (F(6,72) = 7.63; p = 0.001; ε = 0.48) and spider phobics (F(6,90) = 23.12;

p = 0.0005; ε = 0.37), but not controls, showed a main effect of Picture. Controls

at most showed a tendency for higher arousal ratings for pictures 2 to 7 compared to

picture 1. Pairwise comparisons indicated that social phobics rated the flower anchor

(picture 1) as significantly less arousing than all other pictures (all p-values ≤ 0.01),

but there were no further significant differences in arousal ratings between pictures 2

to 7. Spider phobics, on the other hand, also rated the flower anchor (picture 1) as less

arousing than all other pictures, but they rated pictures 2 to 7 as increasingly more
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Figure 4.11.: ANOVA design for the analysis of reaction times

arousing. The spider anchor (picture 7) was rated most arousing. Furthermore, the

unequivocal spider pictures 6 and 7 were rated as significantly more arousing than the

ambiguous picture 4 (comparison ‘4–6’: p = 0.05; ‘4–7’: p = 0.02).

Finally, to analyze group differences, separate ANOVAs were calculated for each pic-

ture. Although spider phobics showed heightened arousal ratings for picture 1 (flower

anchor), this difference was not significant (F(2,41) = 2.74; p = 0.08) but can be inter-

preted as a tendency. However, from picture 2 to picture 7 there were highly significant

group differences (all p-values ≤ 0.0005). This means that starting at picture 2, the

first opening of the petals of the flower, there were significant group differences in

arousal ratings. Post hoc comparisons showed that social phobics and controls did not

differ significantly in their arousal ratings for any picture. However, the difference be-

tween spider phobics and controls was highly significant from picture 2 to picture 7 (all

p-values ≤ 0.0005). Also, all comparisons between social phobics and spider phobics

were significant, beginning with picture 2 (p = 0.003) and then becoming increasingly

more significant (all p-values ≤ 0.001).

4.3.2. Performance and Reaction Times

Overall, subjects indicated having made a mistake in 4.1% of all trials in the random

order paradigm and in 3.81% of all trials in the ascending/descending order paradigm.

Analysis of reaction times was performed with a 3 × 2 × 7 ANOVA with between

factor Group and repeated measures factors Order (random, ascending/descending)
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Figure 4.12.: Mean reaction times and SDs for random (left) and ascending/descending
(right) stimulus presentation

and Picture (pictures 1 to 7). The ANOVA design is depicted in Figure 4.11, and

mean reaction times and standard deviations in response to each picture in the series

are shown in Figure 4.12.

Results showed main effects of Order (F(1,41) = 96.31; p = 0.0005), of Picture (F(6,246) =

50.09; p = 0.0005; ε = 0.42), and of Group (F(2,41) = 8.27; p = 0.001). Furthermore,

there were significant interactions of Group × Picture (F(12,246) = 6.58; p = 0.0005;

ε = 0.42) and of Order × Picture (F(6,246) = 6.33; p = 0.0005; ε = 0.68). The two-way

interaction Group × Order × Picture was not significant (F(12,246) = 1.73; p = 0.09;

ε = 0.68).

The main effect of Order indicated that mean reaction times were longer in the random

paradigm than in the ascending/descending paradigm. The main effect of Picture

indicated that ambiguous stimuli (pictures 2, 3, 4, 5) led to significantly longer reaction

times than more unequivocal stimuli (pictures 1, 6, 7). However, both effects cannot be

interpreted without considering the significant interaction of Order × Picture. While

in the random paradigm reaction times were particularly prolonged for pictures 2 to 5,

this effect was less pronounced for pictures 2 and 3 (the slightly opened petals of the

flower) in the ascending/descending paradigm.

Furthermore, spider phobics responded overall significantly faster than controls (Tukey

HSD: p = 0.001) and social phobics (Tukey HSD: p = 0.03). However, this effect has

to be interpreted together with the significant interaction of Group × Picture. This

effect will be further analyzed in the following sections. The following analyses were

performed separately for the random and ascending/descending order paradigm.
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Random Order Paradigm To analyze the interaction Group × Picture further,

subsequent ANOVAs were calculated separately for each group. Each group showed a

highly significant main effect of Picture (spider phobics: F(6,84) = 19.55; p = 0.0005;

ε = 0.45; social phobics: F(6,72) = 18.12; p = 0.0005; ε = 0.37; controls: F(6,90) =

15.79; p = 0.0005; ε = 0.45). Pairwise comparisons revealed that all groups showed a

significant increase in reaction time from picture 1 to picture 2 (all p-values ≤ 0.0005).

Similarly, they all showed a significant reduction in reaction times from picture 5

to picture 6 (all p-values ≤ 0.0005) and from picture 6 to picture 7 (all p-values ≤
0.0005). While controls and social phobics showed further increases in reaction times as

stimuli became increasingly ambiguous, the reaction times of spider phobics decreased

as stimuli became increasingly spider-like. However, only pictures 6 (p = 0.05) and 7

(p = 0.001) yielded faster reaction times in spider phobics than the unequivocal flower

anchor (picture 1). For social phobics and controls there was no significant difference

in reaction times between the flower and the spider anchor (picture 1 vs. 7).

Finally, separate ANOVAs for each picture were calculated to analyze group differences,

i.e. to answer the question in response to which pictures spider phobics were signifi-

cantly faster than controls and social phobics. Results showed no significant group

differences for the more flower-like pictures 1 and 2, but for all other pictures (3 to 7;

all p-values ≤ 0.03). While controls and social phobics never differed significantly from

each other, there were significant differences between spider phobics and controls from

picture 3 on in that spider phobics were significantly faster than controls. This effect

was most pronounced for pictures 6 and 7 (p = 0.0005). Social phobics differed from

spider phobics beginning with picture 4. Differences for pictures 6 and 7 (p = 0.01 and

p = 0.04, respectively) were not as pronounced as between spider phobics and controls.

Ascending/Descending Order Paradigm As for the random order paradigm, an

ANOVA was calculated separately for each group. The main effect of Picture was

observed in each group (spider phobics: F(6,84) = 15.23; p = 0.0005; ε = 0.46; social

phobics: F(6,72) = 23.8; p = 0.0005; ε = 0.31; controls: F(6,90) = 11.7; p = 0.0005;

ε = 0.37). Pairwise comparisons revealed that all subjects showed a significant increase

in reaction times with the first opening of the petals of the flower anchor (picture 1

vs. 2; all p-values ≤ 0.001). Furthermore, all groups showed a significant decrease in

reaction time from the still ambiguous picture 5 to the relatively unequivocal picture

6 (all p-values ≤ 0.005) and from picture 6 to picture 7 (all p-values ≤ 0.0005). In

addition, spider phobics showed faster responses for the spider anchor than for the
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flower anchor (p = 0.001). In contrast, social phobics were slower to respond to the

spider anchor than to the flower anchor (p = 0.03), and controls showed no difference

in reaction times between the anchor pictures.

Finally, separate ANOVAs for each picture were calculated. Starting with picture 3,

spider phobics responded significantly faster than controls. The most significant dif-

ference between controls and spider phobics was observed for the spider pictures 6 and

7 (both comparisons p = 0.0005). Spider phobics were significantly faster than social

phobics from picture 4 on (all p-values ≤ 0.01). However, in the ascending/descending

order paradigm, in contrast to the random order paradigm, social phobics responded

faster than controls to picture 1 and 2, but no further significant differences between

controls and social phobics were observed.

4.3.3. Classification Frequencies

Figure 4.13 shows the percentage of “spider”, “flower” and “neither/nor” classifications

for each picture in the stimulus series for the random and ascending/descending order

paradigm.

It can be seen that in both paradigms, spider anchor pictures were rated by all subjects

as a “spider” and the flower anchor pictures were classified by all subjects as a “flower”.

With the opening of the petals of the flower pictures were rated increasingly more

frequently as “neither/nor” or “spider-like”. In the random order paradigm, controls

and social phobics classified pictures 2 and 3 (the slightly opened petals of the flower)

rarely as “spider-like”, while spider phobics rated these stimuli in 30–40% of trials as

“spider-like”. Furthermore, spider phobics classified picture 4 in more than 50% of trials

as “spider-like” while controls and social phobics did not so until picture 5. Pictures 6

and 7 were classified by all subjects in more than 80% of cases as “spider-like”.

In the ascending/descending order paradigm, the results were similar, but the differ-

ences between spider phobics and the control groups were even more pronounced. For

example, while control groups rarely rated pictures 2, 3 and 4 as being “spider-like”,

spider phobics did so much more often. Social phobics and controls rated picture 5 in

about half of the trials as “spider-like”, while spider phobics did so in about 80% of all

trials. The ratings of pictures 6 and 7 were again rather similar in all groups.

A modified mixed nonlinear Rasch model was used to analyze the response tendencies

of each group. See Appendix D for a detailed description of the simple and the mixed

Rasch model and the additional assumptions taken here to analyze the data set. The
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Figure 4.13.: Classification frequencies for each picture and each group. Upper picture:
random paradigm, lower picture: ascending/descending paradigm
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fitting of model parameters was performed with the nonlinear mixed models procedure

(PROC NLMIXED) of SAS Version 8 (SAS Institute Inc.; see Wolfinger, 1999).

In Figure 4.14 the x-axis depicts the latent trait to see a spider in a picture, i.e. the

tendency to classify a picture as belonging to the category “spider”. The y-axis displays

the probability (P ) to recognize a spider in a picture, which is calculated as P =

“Spider”/“No Spider” when “No spider” = “Flower” or “Neither/Nor”. Furthermore,

the item response curve for each picture is displayed in the graphic. The model sets

the mean latent trait to see a spider in a given picture for the control group to αCG = 0

and calculates whether social phobics and spider phobics deviate significantly in their

mean latent traits αSo and αSpi from the control group.

For the random presentation of stimuli, spider phobics showed a significantly stronger

tendency to classify a stimulus as a spider than controls (αSpi = 2.51; p = 0.01).

Social phobics did not differ significantly from controls in their response tendencies

(αSo = 0.08; p = 0.94).

When pictures were presented in ascending/descending order, the difference between

spider phobics and controls was even more pronounced (αSpi = 4.13; p = 0.0001), while

social phobics again did not differ significantly from controls (αSo = −0.78; p = 0.38).

4.3.4. Event-Related Potentials

Event-related potentials on electrode Pz in response to each picture averaged over

all three flower/spider series are depicted in Figure 4.15 for each group and both

paradigms. It can be seen that ERPs in response to unequivocal pictures returned

relatively fast to baseline while ambiguous pictures led to more sustained positivity.

In Figure 4.16, spider phobics, social phobics, and controls are compared in their event-

related potentials on electrode Pz in response to the flower anchor (picture 1) and the

spider anchor (picture 7) in the random order paradigm. No differences between groups

are obvious. ERPs in the ascending/descending order paradigm were similar and are

therefore not shown here.

Mean amplitudes at parietal sites (electrodes P3, Pz and P4) were analyzed in two

latency ranges: in the interval [400ms; 600ms] and in the interval [600ms; 1000ms].

ERPs in the latter interval were analyzed in steps of 100ms.
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Figure 4.14.: Item response curves for the modified mixed Rasch model (random order
top; ascending/descending order bottom). The x axis measures the latent
trait θj of subject j – the higher it is, the more likely is subject j to classify
any stimulus as a spider. The dotted lines show the estimated mean latent
trait in each of the three groups. Each curve corresponds to one of the
seven pictures, with picture 1 being the flower and picture 7 the spider
anchor. The y axis shows the probability of subject j to identify item
k as a spider. See Appendix D for a detailed description of the mixed
Rasch model used.
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Figure 4.15.: ERPs on electrode Pz in response to each picture in the random (left)
and ascending/descending order paradigm (right) for controls (top row),
social phobics (central row), and spider phobics (bottom row)
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Figure 4.16.: ERPs on electrode Pz for the flower anchor (left) and the spider anchor
(right)

Figure 4.17.: ANOVA design for the analysis of ERPs on electrodes P3, Pz and P4 in
the time interval of [400ms, 600ms]
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Mean Amplitudes in the Time Interval [400ms; 600ms]

A 3×2×7×3 ANOVA with between factor Group and repeated measures factors Order,

Picture and Laterality was calculated. The ANOVA design is depicted in Figure 4.17.

There were main effects of Order (F(1,41) = 15.88; p = 0.0005), Picture (F(6,246) =

4.49; p = 0.0005; ε = 0.57), and Laterality (F(2,82) = 40.76; p = 0.0005; ε = 0.84).

Furthermore, there were significant interactions of Order × Picture (F(6,246) = 2.9;

p = 0.015; ε = 0.83) and of Picture × Laterality (F(12,429) = 4.22; p = 0.001; ε = 0.43).

The main effect of Order indicated that mean amplitudes were larger in the random

than in the ascending/descending paradigm. However, there was an additional inter-

action of Order × Picture. The flower anchor (picture 1) and the spider pictures (6

and 7) led to significantly larger mean amplitudes in the random than in the ascend-

ing/descending paradigm (all p-values ≤ 0.0005). Mean amplitudes for pictures 2 to 5

were generally larger in the random than the ascending/descending paradigm, but this

difference was not significant or narrowly failed to be significant.

Since the factor Order had a main influence on results, further analyses were calculated

separately for both paradigms.

Random Order Paradigm The ANOVA revealed main effects of Picture (F(6,246) =

6.91; p = 0.0005; ε = 0.74) and Laterality (F(2,82) = 37.14; p = 0.0005; ε = 0.82) as

well as a significant interaction of Picture × Laterality (F(12,492) = 4.33; p = 0.0005;

ε = 0.54), but no group differences.

Mean amplitudes in the time interval [400ms; 600ms] were significantly larger at mid-

line than over the left and right hemisphere (both comparisons p = 0.0005).

Figure 4.18 depicts mean amplitudes and standard deviations in response to each pic-

ture for each group. It can be seen that mean amplitudes for this time interval were

largest in response to the flower and the spider anchor pictures. Pairwise comparisons

revealed that there was a significant decrease in mean amplitudes from picture 1 to

picture 2 (p = 0.001), i.e. with the first opening of the petals of the flower, mean

amplitudes decreased significantly. Furthermore, there was a non-significant trend

towards even smaller mean amplitudes in response to picture 3 (comparison picture

‘2–3’: p = 0.07). On the other hand, there was a significant increase in mean ampli-

tudes from the ambiguous picture 5 to the unequivocal spider pictures 6 (p = 0.003)

and 7 (p = 0.004). Finally, the flower anchor picture led to significantly larger ampli-
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Figure 4.18.: Mean amplitudes and SDs for each picture for the time interval [400ms;
600ms] for the random (left) and ascending/descending order paradigm
(right)

tudes than picture 6 (p = 0.04), while the amplitude for the flower anchor only showed

a tendency to be larger than for picture 7 (p = 0.07).

Ascending/Descending Order Paradigm For the ascending/descending order

paradigm there was a main effect of Laterality (F(2,82) = 42.47; p = 0.0005; ε = 0.87)

and a significant interaction of Picture × Laterality (F(12,492) = 2.46; p = 0.03;

ε = 0.47), but no main effect of Picture nor an interaction of Group × Picture.

Mean amplitudes in the interval [400ms; 600ms] were larger centrally as compared to

the right and left hemisphere (both comparisons p = 0.0005). The interaction Picture

× Laterality resulted from slightly higher mean amplitudes over the right compared to

the left hemisphere for pictures 1 and 2. However, pairwise comparisons showed that

this difference was not significant.

Mean Amplitudes in the Time Interval [600ms; 1000ms]

For this late time interval a 3 × 2 × 4 × 7 × 3 ANOVA with between factor Group

and repeated measures factors Order (random, ascending/descending), Time (the in-

tervals [600ms; 700ms], [700ms; 800ms], [800ms; 900ms], [900ms; 1000ms]), Picture

(Pictures 1 to 7), and Laterality (left, central, right) was calculated. The ANOVA

design is depicted in Figure 4.19.

There were main effects of Order (F(1,41) = 8.26; p = 0.006), Time (F(3,123) = 178.82;

p = 0.0005, ε = 0.41), Laterality (F(2,82) = 12.35; p = 0.0005, ε = 0.76), and Picture
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Figure 4.19.: ANOVA design for the analysis of event-related potentials in the time
interval of [600ms; 1000ms]

(F(6,246) = 27.73; p = 0.0005, ε = 0.51). Among various other interactions there were

significant interactions of Order × Picture (F(6,246) = 2.24; p = 0.05, ε = 0.82) and of

Order × Picture × Time (F(18,738) = 10.24; p = 0.0005, ε = 0.49).

A more detailed analysis of the interactions Order × Picture and Order × Picture

× Time revealed that the anchor pictures led to significantly larger mean amplitudes

in the random than in the ascending/descending paradigm in the first time interval

[600 ms; 700ms]. A consistent difference in all time intervals between both paradigms

was that pictures 2 and 3, the slightly opened petals of the flower, led to a slower return

to baseline in the random than in the ascending/descending stimulus presentation.

Random Order Paradigm The ANOVA calculated with the data of the random

order paradigm only revealed main effects of Time (F(3,123) = 184.14; p = 0.0005; ε =

0.4), of Laterality (F(2,82) = 7.52; p = 0.003; ε = 0.72), and of Picture (F(6,246) = 19.38;

p = 0.0005; ε = 0.55). Furthermore, the interactions Time × Picture (F(18,738) = 12.74;

p = 0.0005; ε = 0.39) and Picture × Laterality (F(12,492) = 8.97; p = 0.0005; ε = 0.58)

were highly significant. However, there were no significant interactions of Group ×
Picture or Group × Time × Picture.

A more detailed analysis of the main effects of Time and of Laterality showed that

mean amplitudes were smaller the more time progressed, and they were in general

significantly larger at midline than over the right or left hemisphere (comparisons

‘central–right’: p = 0.0005, ‘central–left’: p = 0.0005).
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Figure 4.20.: Mean Amplitudes and SDs in each time interval, for each picture in the
random order paradigm

Figure 4.21 depicts mean amplitudes for each picture of the series. Ambiguous pictures

led to higher mean amplitudes than unequivocal pictures. There was a significant

increase in mean amplitudes from picture 1 to picture 2 (p = 0.0005) and a significant

decrease from picture 5 to picture 6 (p = 0.03) and from picture 6 to picture 7 (p =

0.0005). In addition, the comparison of the spider with the flower anchor picture

showed that spiders led to significantly larger mean amplitudes in this very late time

interval than flowers (p = 0.01).

Finally, the interactions Picture × Laterality and Time × Picture were analyzed in

more detail. The laterality effect was most pronounced for pictures 2 to 5, i.e. the

ambiguous pictures, and was not or less significant for the more unequivocal pictures

1, 6, and 7. Regarding the interaction Time × Picture, it can be seen in Figures 4.15

and 4.20 that ERPs returned more slowly to baseline for ambiguous pictures (2–5)

than for unambiguous pictures (1,6,7). The differences in mean amplitudes in response

to ambiguous and more unequivocal pictures were more pronounced for the late time

intervals ([700ms; 800ms], [800ms; 900ms], [900ms; 1000ms]) than for the earlier time

interval [600ms; 700ms].

Ascending/Descending Order Paradigm Similar effects were found for the as-

cending/descending order paradigm. There were main effects of Time (F(3,123) =

132.66; p = 0.0005; ε = 0.43), Laterality (F(2,82) = 17.6; p = 0.0005; ε = 0.81),

and Picture (F(6,246) = 23.61; p = 0.0005; ε = 0.65). Furthermore, there were signifi-

cant interactions of Time × Picture (F(18,738) = 3.6; p = 0.0005; ε = 0.36), Laterality
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Figure 4.21.: Mean amplitudes and SDs for each picture for the time interval [600ms;
1000ms] for the random (left) and ascending/descending order paradigm
(right)

× Picture (F(12,492) = 4.92; p = 0.0005; ε = 0.57), and Time × Laterality × Picture

(F(36,1476) = 2.07; p = 0.03; ε = 0.27). However, there was no significant interaction of

Group × Picture.

The main effect of Time indicated that mean amplitudes decreased significantly with

each time interval, i.e. the activation returned to baseline. Subsequent analyses of the

main effect of Laterality showed that mean amplitudes were largest over midline (com-

parisons ‘central–left’: p = 0.0005; ‘central–right’: p = 0.0005). However, this effect

has to be interpreted together with the significant interaction of Picture × Laterality.

Subsequent analyses showed that the central enhancement was most pronounced for

the ambiguous pictures, followed by pictures 6 and 7, but not for picture 1. Here, only

the comparison ‘left–central’ was significant (p = 0.0005).

Further analyses of the main effect of Picture showed that ambiguous stimuli (pictures

2 to 5) led to significantly larger mean amplitudes in this time interval than unequivocal

pictures (pictures 1, 6, and 7). Figure 4.21 depicts mean amplitudes for each picture

and for each group in the time interval [600ms; 1000ms]. There was a significant

increase in mean amplitude beginning with the first opening of the petals of the flower

anchor picture (comparison picture 1 vs. 2: p = 0.0005) and a significant decrease in

mean amplitudes from picture 5 to picture 6 (p = 0.005) and from picture 6 to picture

7 (p = 0.0005). In contrast to the random paradigm, the spider anchor did not lead

to significantly larger mean amplitudes in this time interval than the flower anchor

(p = 0.1).

For each picture the course of activation was very similar in all time intervals. Once
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Figure 4.22.: Mean Amplitudes and SDs in each time interval for each picture in the
ascending/descending paradigm

again, ERPs returned more slowly to baseline for ambiguous pictures than for unam-

biguous anchor pictures (cf. Figures 4.15 and 4.22). The interaction of Time × Picture

was analyzed in further detail by calculating separate ANOVAs for each time interval.

The differences in mean amplitudes between pictures 5 and 6 were not as pronounced

in the time interval [600ms; 700ms] as in the later time intervals ([700ms; 800ms],

[800 ms; 900ms], [900ms; 1000ms]). However, this effect seems of minor importance.

4.4. Discussion

4.4.1. Summary of Results

Valence and Arousal Ratings Results showed that with the first opening of the

petals of the flower anchor, spider phobics rated the pictures as significantly more

unpleasant and arousing than controls and social phobics. This difference increased

the more pictures became similar to spiders. Spider phobics rated the last pictures in

the series (pictures 6 and 7) as most aversive (unpleasant and arousing).

However, controls did not differentiate in their valence and arousal ratings between the

different pictures in the series. At the most, there was a tendency to rate the flower

anchor as more pleasant and less arousing. In contrast, social phobics rated the flower

anchor as significantly more pleasant and less arousing than all other pictures. They

also did not differentiate in their ratings between pictures 2 to 7.

168



Experiment III – Which Properties Make a Spider Fear-Relevant? – A First Approach

Reaction Times Results in the random and the ascending/descending paradigm

were similar. In the non-spider-fearful groups reaction times depended on the ambiguity

of the picture, i.e. the more unequivocal, the faster the response. Correspondingly,

reaction times were fastest for the unambiguous flower and the spider anchor pictures.

In spider phobics, on the other hand, reaction times also increased from the unequivocal

flower picture 1 to picture 2 and then decreased the more pictures became spider-like.

In addition, spider phobics responded significantly faster to the spider than the flower

anchor, while social phobics and controls did not show such an additional facilitation

effect for the unequivocal spider anchor.

Subjects responded significantly faster in the ascending/descending than in the random

order paradigm. Additionally, reaction times were on average longer for pictures 2

and 3, the first opening of the outlines of the petals of the flower, when presented

randomized than when presented ascending/descending. This was probably due to

expectancy effects and the continuation of response tendencies.

Classification Frequencies Neither in the random nor in the ascending/descending

order paradigm did controls and social phobics differ in their tendency to classify a stim-

ulus as a “spider”. In contrast, spider phobics showed a significantly stronger tendency,

i.e. a latent trait, to see a “spider” in a stimulus than controls. This effect was present

in both paradigms but was even more pronounced in the ascending/descending stim-

ulus presentation. The differences in classification frequencies between spider phobics

and controls were due to the tendency of spider phobics to see in ambiguous pictures,

which controls rated more often as similar to a flower or “neither/nor”, a “spider-like”

stimulus.

Event-Related Potentials: [400ms; 600ms] In the random order paradigm, ERPs

reflected a major influence of equivocation: mean amplitudes in the latency range

[400ms; 600ms] were larger the more unequivocal the pictures. Furthermore, the com-

parison of the unequivocal flower and spider pictures (pictures 1, 6, and 7) showed that

the flower anchor (picture 1) led to significantly larger mean amplitudes than picture

6 and to non-significantly larger amplitudes than picture 7, which can be interpreted

as a tendency. This effects hints at a main effect of Gestalt: presumably, because of

the closed form of the flower anchor in contrast to the more open form of pictures 2 to

7, this picture might have stood out, leading to a Gestalt oddball effect.
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In the ascending/descending paradigm in the interval [400ms; 600ms] no differences in

mean amplitudes between the different groups or the different pictures were found.

The conflicting findings on mean amplitudes in this time range in the two different

paradigms suggest that the experimental design has a crucial influence on results.

For instance, the influence of equivocation, i.e. incomplete information transmission,

was less pronounced in the ascending/descending than in the randomized stimulus

presentation.

Event-Related Potentials: [600ms; 1000ms] The analysis of the late latency

range [600ms; 1000ms] showed that ambiguity influenced the return of ERPs to base-

line: more ambiguous pictures led to prolonged positivities. This applied to both the

random and the ascending/descending paradigm. In both paradigms, the flower and

spider anchor pictures returned fastest to baseline. In the random paradigm, the flower

anchor even returned significantly faster to baseline than the spider anchor. This effect

narrowly failed to be significant in the ascending/descending paradigm.

Furthermore, pictures 2 and 3, the slightly opened petals of the flower, led to larger

mean amplitudes in this time range as well as a slower return to baseline in the ran-

dom than in the ascending/descending paradigm. This finding fits well with the longer

reaction times observed for both pictures in the random as compared to the ascend-

ing/descending paradigm. Presumably subjects respond faster to these stimuli if they

are presented in an ascending/descending order because of continuing response tenden-

cies in the latter paradigm, and this is also reflected in ERPs.

4.4.2. Original Hypotheses and Results

Valence and Arousal Ratings

� It could not be confirmed that all subjects rate schematic spiders as sig-

nificantly more aversive than flowers. The valence and arousal ratings of

controls did not differ at all for the different pictures, and social phobics

rated only the flower anchors as significantly more pleasant and less arous-

ing than all the other pictures.

� On the other hand, it could be confirmed that spider phobics rate the spider

anchor picture as more unpleasant and more arousing than controls and

social phobics.

170



Experiment III – Which Properties Make a Spider Fear-Relevant? – A First Approach

� There was evidence for a stimulus generalization or an interpretive bias

effect in spider phobics: beginning with the first opening of the petals of the

flowers, spider phobics rated stimuli as significantly more unpleasant and

arousing than controls and social phobics.

The finding that controls did not rate schematic spiders as more unpleasant and

more arousing than schematic flowers is in contrast to Experiment II, where it

was found that controls also rated schematic spider pictures as significantly more

aversive than flowers. In addition, social phobics rated only the flower anchor as

more pleasant and less arousing than all other pictures in Experiment III and did

not differentiate between the other pictures in the series. Thus, it seems possible

that the context in which stimuli are presented influences valence and arousal

ratings.

Reaction Times

� It could not be confirmed that all subjects responded faster to spiders than

to flowers, as found in Experiment II.

� This pattern only applied to spider phobics: they responded significantly

faster to the spider than to the flower anchor. Thus, a specific facilitation

effect in spider phobics could be confirmed.

� Consistent with our hypotheses, reaction times increased with increasing

ambiguity of stimuli and were fastest for the unequivocal anchor pictures.

Surprisingly, this effect was more pronounced in controls and social phobics

than in spider phobics.

� Although the reaction times in spider phobics slightly increased with the first

opening of the petals of the flower, i.e. when stimuli became more ambigu-

ous, reaction times rapidly decreased the more stimuli became spider-like.

Surprisingly, the faster responses of spider phobics were already present for

picture 3 (the widely opened petals of the flower) which controls and so-

cial phobics rarely judged to be similar to a spider but spider phobics rated

in about 37% to 41% of trials (ascending/descending and random order

paradigm, respectively) to be “spider-like”. These findings support a stim-

ulus generalization or interpretive bias effect, which also finds its expression

in faster reaction times even for ambiguous pictures spider phobics judged

to be “spider-like”.
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Figure 4.23.: A first answer to the question as to which properties are essential for the
perception of a spider: the red border surrounds the stimuli which were
classified in most trials as “spiders” by all subjects. The green border
outlines the stimuli which were rated in a large proportion of trials as
“spider-like” by spider phobics. The tendency to see a spider in a stimulus
increased from left to right, which is expressed by the increasing slope of
the green and red triangles below the pictures

Classification Frequencies

� The analysis of classification frequencies confirmed that stimuli were rated

more often as “spider-like” or “flower-like” the closer their position in the

flower/spider series to the corresponding anchor picture was.

� It was confirmed that pictures in mid-positions were largely classified as

belonging to the category “neither/nor”. In controls and social phobics,

“neither/nor” classifications were observed most frequently for picture 4

(the most ambiguous picture), but also frequently for pictures 3 and 5.

However, spider phobics deviated from this pattern in that their proportion

of “neither/nor” classifications for these mid-position pictures was smaller

than their proportion of classifications as “spider-like” stimuli.

� A clear threshold in the series beyond which stimuli were perceived as “spi-

ders” was not obvious. Classifications changed in a rather continuous man-
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ner. Picture 5 was the first picture in the series which was classified as

a “flower” in only a negligible number of trials and as a “spider” in more

than half of all trials in the random order paradigm. Figure 4.23 depicts all

pictures of the flower/spider series and shows which pictures were rated in

a large proportion of trials by controls and social phobics as “spider-like”

(red border).

� In the mixed nonlinear Rasch model, it was found that spider phobics showed

a stronger latent trait to classify a picture as a “spider” than controls. This

is expressed by their rating ambiguous pictures to a larger proportion as

being “spider-like” than controls.

Figure 4.23 shows which stimuli were rated to a large proportion as “spiders”

by spider phobics and by social phobics and controls. As detailed above, a case

can be made for dividing the stimuli into three sets: picture 1 was classified as a

“flower” by all subjects; pictures 2–4 (outlined in green) were rated “spider-like”

by spider phobics in a large number of trials, but only rarely by social phobics

and controls; and pictures 5–7 (outlined in red) were classified as “spiders” both

by spider phobics in most trials and by social phobics and controls in a large

number of trials.

Concerning the problem which properties are essential to the perception of a

stimulus as a spider, the question thus arises which configurational properties

differentiate pictures 2–4 from pictures 5–7. A first explanation might come from

the laws of Gestalt psychology: open shapes make the individual perceive a visual

pattern as incomplete, and our minds tend to close small gaps and complete

unfinished forms. This is known as the Gestalt law of closure (Helson, 1933).

Possibly, subjects connected the open outlines in pictures 2–4 to form petals and

thus flowers. What is common to pictures 5, 6 and 7 is that the outlines of the

flower’s petals are clearly separate. Thus, the law of closure should not apply

any more to these stimuli, and connecting the outlines in such a way as to form

petals might not be possible any more. Instead, in pictures 5–7, in each quadrant

around the spider body two lines bend in similar directions. Up to picture 7,

these two lines form two spider legs in each quadrant.

Thus, the common features of the pictures within the red border in Figure 4.23

provide first clues for an answer to the question as to which properties make a

spider fear-relevant. It has to be noted, however, that the present study aimed

to be exploratory and that the above suggestions are only a first approach to
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answering the above question in a more descriptive way. Obviously, much more

research is necessary to arrive at conclusions.

However, one clear result of the present study is that there is evidence to suggest

that spider phobics show a stimulus generalization or an interpretive bias ef-

fect, since they exhibited a stronger tendency (latent trait) to classify ambiguous

stimuli as being spider-like than controls, evaluated them more negatively, and

also showed faster responses to these stimuli than controls. Whether the present

findings in spider phobics are due to a stimulus generalization effect or a more

cognitive interpretive bias remains open, but this question should be pursued by

future studies.

Event-Related Potentials

� The hypothesis of larger LPP amplitudes in response to spider anchors com-

pared to flower anchors failed to be confirmed. No significant difference was

found in the ascending/descending order paradigm, and in the random order

paradigm, there was even a tendency for LPPs to be higher in response to

the flower anchor than to the spider anchor.

� As in Experiment II, no specific spider phobia-related enhancements of LPPs

in response to spider anchors were found.

� In spite of behavioral evidence for stimulus generalization or interpretive

bias effects in spider phobics, no electrocortical correlates of this effect in

the form of larger LPPs in response to ambiguous pictures spider phobics

judged to be spider-like were found.

� However, the results supported that information transmission had a ma-

jor influence on LPPs: the unequivocal pictures 1, 6 and 7 led to larger

LPPs than the ambiguous pictures 2–5 in the random order paradigm in

the interval [400ms; 600ms].

In addition, all pictures presented in the random paradigm led to larger

LPPs than in the ascending/descending order paradigm. This is consistent

with transmission of less new information in the ascending/descending order

paradigm, when subjects could predict what stimulus came next, than in

the random order paradigm.

Thus, the results of ERPs fit very well with the model by Johnson (1986) in that

information transmission strongly influences amplitudes in the P3 latency range.

174



Experiment III – Which Properties Make a Spider Fear-Relevant? – A First Approach

Johnson’s model assumes that unequivocal pictures lead to larger LPPs than more

ambiguous pictures. This could be completely confirmed in this experiment.

Johnson also postulates an influence of stimulus probability on P3 amplitude. In

this study, probability enters the picture in two ways:

� On the one hand, subjective probability was higher in the ascending/descending

paradigm than in the random one, since subjects knew what stimulus to ex-

pect next. This should cause higher amplitudes in the random paradigm,

as we in fact found. This effect overlaps with the influence of information

transmission and therefore already appeared above.

� On the other hand, the stimuli used in this paradigm contained only 3

pictures with a closed Gestalt, the flower anchor pictures, while all other

pictures had an open Gestalt. Thus, it is possible that subjects classified

the stimuli as “open/closed” and exhibited an oddball effect, i.e. a higher

amplitude for the flower anchor.

In fact, this could explain the tendency for higher amplitudes in response

to flowers compared to unequivocal spider pictures in the random order

paradigm. This effect is contrary to the original hypothesis and the results

found in Experiment II. One plausible explanation is that such a Gestalt

oddball effect was larger than the influence of stimulus arousal.

For spider phobics, an affective oddball effect may have had an influence

in addition to the above Gestalt oddball effect. They may have classified

the stimuli in negative “spider-like” and neutral “non-spider-like” stimuli

(the flower anchors), with the latter occurring less frequently, i.e. as odd-

ball stimuli. Such an effect might have caused higher LPPs in response to

flower anchors, which might have compensated the larger LPPs for spider-

like pictures in spider phobics. This might account for the absence of spider

phobia-specific effects on ERPs.

These effects could not be completely investigated with the paradigms used

in this study. However, they may form possible starting points for further

research.

Finally, Johnson’s model also assumes that stimulus meaning influences P3 am-

plitude and related components in the latency range [400ms; 600ms]. Since spider

phobics rated stimuli as significantly more unpleasant and arousing, one would

have expected corresponding variations in LPPs. Yet, no group differences be-
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tween spider-fearful and non-fearful subjects could be found for the processing of

spiders and spider-like stimuli. On the contrary, in the random order paradigm

there was even a tendency for larger amplitudes in the 400ms to 600ms latency

range for flowers than for spiders.

To summarize, it seems that the influence of information transmission was most

dominant, while the influence of probability is unclear. An influence of arousal

(meaning) could surprisingly not be found. Possibly, the factors probability and

meaning had opposite influences on LPPs and canceled each other out.

A question that remains to be solved is why reaction times and classification

frequencies showed a differential effect for spider phobics, i.e. faster responses

the more spider-like pictures became, while ERPs showed no complementary

findings. Thus, there was a dissociation between the behavioral findings and

the electrophysiological findings which requires an explanation. Three influenc-

ing factors may account for this phenomenon: first, the Gestalt oddball effect

discussed above, i.e. a larger amplitude to the flower anchor stimuli because of

the rare occurrence of a closed Gestalt. Second, an additional affective oddball

effect in spider phobics, i.e. spider phobics might have divided the pictures of

the flower/spider series in spider-like and non-spider-like stimuli, with the latter

occurring subjectively for spider phobics more rarely than the former, because

of their stronger latent trait to interpret ambiguous stimuli as being spider-like.

Third, there might have been an overall dominant influence of stimulus meaning

on P3 amplitude in the present paradigm, which did not allow the investigation

of stimulus meaning or emotional content of stimuli on P3 amplitudes and related

components.

Summing It All Up

In conclusion, this study confirmed that spider phobics also rate schematic stimuli of

spiders as highly unpleasant and aversive. It found that even ambiguous spider-like

stimuli were rated as more unpleasant and arousing and that the ratings increased

the more the stimuli became similar to the prototype of a spider. In accordance with

the valence and arousal ratings, spider phobics showed faster reaction times the more

stimuli became spider-like. Furthermore, spider phobics revealed a stronger tendency

to classify ambiguous stimuli as being spider-like compared to controls. The described

effects could be due to stimulus generalization or to an interpretive bias; however,

future studies will have to further explore this phenomenon.
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Furthermore, no evidence for a clear threshold in the flower/spider series could be found

beyond which stimuli were perceived as spiders. Instead, the classifications changed in

a rather continuous manner with spider phobics starting earlier to see spiders in the

pictures of the flower/spider series.

The interpretation of ERP data turns out to be difficult because it seems that there

were various additional influences on ERPs in the P3 latency range, i.e. information

transmission and/or Gestalt oddball effects, and eventually in spider phobics additional

affective oddball effects. Future studies will have to find solutions to control for such

influences.

A consistent finding of this study is the effect of stimulus ambiguity or equivocation

on the amplitude of LPPs and on the return of amplitudes to baseline. Unequivocal

stimuli led to larger LPPs which return more rapidly to baseline while ambiguous

stimuli led to smaller and more prolonged positivities.

Suggestions For Future Studies

In the present study the responses to the individual stimuli in the flower/spider series

were averaged and analyzed independently of how subjects actually categorized stimuli

in the individual trials. However, one could also analyze the responses to the pictures

depending on each subject’s categorization, i.e. their perception in the individual trials,

neglecting which picture of the flower/spider series they actually saw. This would

lead to three categories which would have to be analyzed, i.e. trials in which subjects

perceived a “spider”, a “flower”, or “neither/nor”. It is possible that such an analysis

would show differences in LPPs between spider phobics and control groups for those

trials in which subjects indicated that they had perceived the stimulus to be a spider.

Continuing from this analysis, one could also analyze induced gamma band activity

depending on the category perceived. It has been suggested that induced gamma band

activity is a signature of bottom-up and top-down feature processing and is furthermore

linked to affective perception (Keil, Gruber, & Müller, 2001). For example, Keil et al.

(2001) recorded ERPs while subjects viewed pleasant, neutral, and unpleasant stimuli

taken from the IAPS. They were able to show that early mid gamma band activity

(30–45 Hz) at 80ms post-stimulus was enhanced in response to aversive stimuli only.

However, the higher gamma band activity (46–65Hz) at 500ms showed an enhancement

for arousing compared to neutral pictures. Thus, in future studies one could investigate
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whether there are similar modulations in gamma band activity in spider phobics when

perceiving a spider in an ambiguous schematic stimulus.
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5. Summary and Integration of

Results

In this final chapter, first the findings of Experiments I, II and III are summarized.

Afterwards, an integration and comprehensive interpretation is given, and finally, an

outlook on possible future studies is provided.

Experiment I investigated reaction times, heart rates, and event-related potentials in

a pictorial emotional Stroop paradigm with spider phobics and non-spider-fearful

subjects (controls and social phobics). Subjects either had to identify the color

of red or blue spiders, birds and flowers (structural task), or they had to identify

the object itself (emotion-focused task) by pressing one of different buttons.

Spider phobics did not show emotional interference, i.e. longer reaction times,

when identifying the color of spiders than when identifying the color of birds

or flowers. However, they identified spiders generally faster compared to birds

or flowers and were faster to identify spiders than controls and social phobics.

Furthermore, spider phobics were generally faster than social phobics and – as a

tendency – faster than controls in the object identification task.

Heart rate data was difficult to interpret because of high variances. Some evidence

for specific changes in heart rates in spider phobics when viewing pictures of

spiders was found. However, gender seemed to be a crucial influencing variable:

while male spider phobics showed a defense reaction, female phobics exhibited a

pronounced orienting response.

ERPs showed larger P3 and P4 amplitudes in spider phobics who viewed their

feared object. This effect was independent of task and was interpreted as due to

the more arousing character of these pictures for the spider phobic group.
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A frontal positivity occurring 500–700ms post-stimulus was present in all subjects

in the emotion-focused task as well as in spider phobics when the task was to

identify the color of spiders.

Experiment II attempted to replicate the results of Experiment I using schematic

stimuli. Spider phobics, social phobics and controls saw schematic pictures of

spiders and flowers, colored either red or blue. The stimuli consisted of identical

visual elements, making them ideal control stimuli for each other. Subjects’ task

was to identify either the color of the stimulus or the object itself by pressing

different buttons.

Reaction times showed no emotional Stroop interference in spider phobics when

identifying the color of spiders. However, all subjects identified spiders signifi-

cantly faster than flowers. Spider phobics were generally faster than controls and

social phobics in the object identification task.

Heart rates were difficult to interpret, but it seemed that gender had again a

strong influence on results: once again, spider phobic females showed a pro-

nounced orienting response to spiders which was not present in male subjects.

The analysis of ERPs revealed that all subjects showed larger late positive poten-

tials (LPPs) in response to spiders compared to flowers, but no additional spider

phobia-specific effects were found.

Experiment III was a first approach to explore the question as to which properties

make a spider fear-relevant. 3 flower/spider series with 7 pictures each were

designed which, starting from the picture of a flower, gradually turned into a

spider by shifting the outlines of the petals, turning them into spider legs. Spider

phobics, social phobics and controls rated all stimuli for valence and arousal.

Stimuli were then presented in random order and in ascending/descending order.

Subjects had to decide whether each stimulus was more similar to a “spider”, a

“flower” or “neither/nor”.

With the first opening of the petals of the flower anchor spider phobics rated the

pictures as significantly more unpleasant and arousing than controls and social

phobics. This difference increased the more pictures became similar to spiders.

In the non-spider-fearful groups reaction times depended on the ambiguity of the

picture, i.e. the more unequivocal, the faster the response. In spider phobics

reaction times decreased the more pictures became spider-like. Spider phobics

showed faster reaction times for the spider than the flower anchor.
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Furthermore, spider phobics showed a stronger mean latent trait to interpret a

picture as a spider than controls and social phobics. There was no “threshold

picture” beyond which subjects started to perceive a spider. Instead, subjects’

perceptions changed in a continuous manner with the change in the stimulus

configuration.

In the random order paradigm, ERPs reflected a major influence of equivocation:

mean amplitudes in the interval [400ms; 600ms] were larger the more unequivocal

the pictures. Furthermore, contrary to the results of Experiment II, there was

a tendency for schematic flowers to lead to larger amplitudes than spiders. In

the ascending/descending order paradigm, no differential effects of the different

pictures in the series was found.

Finally, in both paradigms ambiguity of stimuli influenced the return of ERPs to

baseline: more ambiguous pictures led to prolonged positivities.

Both emotional Stroop paradigms could not find evidence of emotional interference in

spider phobics when viewing pictures of their phobic object. This stands in contrast

to the studies by Lavy and van den Hout (1993) and Kindt and Brosschot (1997) who

found emotional interference in response to pictorial stimuli, although Lavy and van

den Hout found less interference for pictorial stimuli than for spider-related words.

However, the absence of emotional interference is in accordance with the study by

Constantine et al. (2001) which could also find no emotional interference for snake

pictures in snake-fearful subjects.

Possibly, the results of linguistic emotional Stroop paradigms in anxiety patients are

not replicable with pictorial stimuli, especially when using a manual instead of a verbal

response mode. Thus, the question how strongly verbal processing specificities influence

the emotional Stroop effect should be discussed. Other possible explanations for the

absence of emotional Stroop interference were discussed in Section 2.4.2.

In Experiments I and II, faster reaction times in spider phobics compared to social

phobics and controls were found when subjects had to identify spiders. This is consis-

tent with the findings of Öhman et al. (2001) who reported that spider phobics and

snake phobics were particularly fast in detecting their feared stimulus in a matrix of

neutral, fear-relevant and feared stimuli. Similar results were observed in social pho-

bics when detecting angry faces in a visual search paradigm (Gilboa-Schectman et al.,

1999). Thus, there is evidence for an attentional bias in spider phobics for their feared

object.
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Furthermore, faster responses to schematic spiders compared to schematic flowers were

observed in all subjects. This matches the findings of Öhman et al. (2001) who re-

ported a faster detection of fear-relevant stimuli (snakes and spiders) compared to

fear-irrelevant stimuli (flowers and mushrooms) in a group of randomly sampled sub-

jects.

Thus, the reported results provide some evidence for the faster detection of spiders in

healthy controls and an even stronger similar effect in spider phobics. One explanation

could be that schematic spiders depict fear-relevant features to which feature detectors

are tuned in all humans whether phobic or not. However, it remains open why such

a general bias for spiders was only found when using schematic spider stimuli and not

when using non-schematic spider pictures. A possible cause for this effect might be a

better generalization of spider phobics from the real life spider to the spider schematic

which would lead to faster reaction times for non-schematic spiders.

Finally, spider phobics responded generally faster than controls and social phobics in

the object identification task of Experiment II and to some extent also in Experiment I.

This is consistent with a general hypervigilance (Beck et al., 1985; Eysenck, 1991, 1992,

1997) in spider phobics, which would lead to generally faster responses. An analogous

effect was not significant in the color identification task, presumably because this task

is less complex than the object identification task.

In Experiment I, spider phobics showed larger P3 and P4 amplitudes in response to

spiders compared to flowers, and there was also some evidence for larger P3 amplitudes

for spiders compared to flowers in controls, and a trend for larger P4 amplitudes in

response to spiders compared to flowers in social phobics. In Experiment II, all subjects

showed larger LPPs in response to spiders than to flowers. Thus, the present studies

found evidence for an influence of affective valence/arousal on LPPs, i.e. more arousing

and unpleasant stimuli lead to larger parietal positivities in the P3 latency range. This

is consistent with various previous studies using emotional pictures from the IAPS

series which were discussed in the introduction 1.5.2.

However, it remains to be explained why this effect was more pronounced in all subjects

when using schematic spider stimuli compared to non-schematic spider pictures. Yet,

this finding should not be overrated and future studies will have to investigate in more

detail the differences between schematic and non-schematic spider stimuli.

Furthermore, Experiment I found significantly larger P3 and P4 amplitudes for spider

phobics in response to their feared object as compared to controls. The enhanced

LPPs in spider phobics for their feared object are consistent with previous findings
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by Gutberlet and Miltner (1999, 2001) and Krieschel (2003) who reported larger P3

amplitudes in animal phobics when viewing pictures of their feared object. However, in

Experiment II spider phobics also showed larger LPPs for schematic spiders compared

to flowers, but this effect was not specific to spider phobics but also appeared in controls

and social phobics. Thus, spider phobics did not differ significantly in their P3 and

P4 amplitudes in response to spiders from controls and social phobics. It still requires

an explanation for this finding: why did spider phobics not show larger amplitudes

to schematic spiders although they rated them as more arousing and unpleasant than

controls and social phobics?

An enhanced late frontal positivity in the latency range [500ms; 700ms] was found in

spider phobics when they identified the color of spiders which was not present in social

phobics or controls. Two explanations were proposed for this finding: first, that spider

phobics in contrast to the control groups concentrated not only on the color of spider

pictures but also processed the picture emotionally. Second, that this late frontal

positivity reflects an enhanced attentional dwell-time on the feared object in spider

phobics and that a possible origin of this frontal positivity could be the ACC, which

has been conjectured to play a role in classical and emotional Stroop paradigms. Yet,

an explanation is lacking for the failure to replicate such a component in Experiment

II when schematic spider stimuli were used. Possibly, the schematic spider stimuli were

not as frightening as the non-schematic spider stimuli and therefore spider phobics did

not dwell on them as they did on the more realistic non-schematic spider pictures.

Finally, Experiment III yielded some very interesting new insights into the processing

of feared and fear-relevant stimuli. Spider phobics rated spiders and spider-like stimuli

as significantly more unpleasant and arousing than controls and social phobics. Sur-

prisingly, this effect started with the first opening of the outlines of the petals of the

schematic flower anchor picture. Furthermore, spider phobics also showed a reaction

time advantage for spiders and stimuli they judged more frequently to be spider-like. In

addition, the analysis of classification frequencies with a modified mixed Rasch model

found a significantly stronger latent trait to see a spider in a picture in spider phobics

compared to controls and social phobics. All these findings strongly hint at an inter-

pretive bias in spider phobics which is similar to the negative interpretation bias found

in social phobics. Like social phobics who are more prone to (mis)interpret ambiguous

social situations as more threatening, spider phobics also rated the ambiguous stimuli

used in this experiment as more threatening, classified them more often as a spider,

and showed on average faster reaction times for these stimuli than controls and social
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phobics. Alternatively, the results could also be explained by a well-known effect of

learning psychology, namely stimulus generalization. While interpretive covariation

biases are well-documented in animal phobia, i.e. spider phobics tend to overestimate

the association between between spider pictures and aversive outcomes, this is the first

study to report a negative interpretation bias or stimulus generalization effect in animal

phobia.

In the light of the consistent findings for affective picture ratings, classifications, and re-

action times, it seems the more surprising that no electrophysiological correspondence

to the behavioral effects could be found. Instead, ERPs reflected a major influence

of equivocation: increased uncertainty in identifying the eliciting event reduces LPPs.

This is consistent with Johnson’s model of influences on P3 amplitude and with the re-

sults of previous studies (Fitzgerald & Picton, 1982; Johnson & Donchin, 1978; Ruchkin

& Sutton, 1978). Various reasons for the failure to find an influence of affective va-

lence/arousal of the different stimuli on LPPs in Experiment III were discussed. These

were an overall dominant effect of equivocation, and possibly also a Gestalt oddball

effect and in spider phobics an additional affective oddball effect.

Finally, Experiment III could not identify a clear threshold in the flower/spider series

beyond which stimuli were perceived as spiders. Instead, the classifications changed in

a rather continuous manner. Suggestions regarding which configurational properties

caused a picture to be perceived as a spider, i.e. fear-relevant, were discussed. While

controls and social phobics were rather similar in their classifications of the different

stimuli, spider phobics differed significantly from both groups in their latent trait to

see a spider in a stimulus. In spider phobics, even the picture with the slightly opened

outlines of the petals of the flower anchor was interpreted in nearly a third of all trials

as a spider. Thus, for spider phobics the pictures in the series started to look spider-like

once the closed configuration of the flower anchor turned into an open Gestalt, and the

subjective similarity to a spider increased continuously the more the outlines of the

petals opened and turned into spider legs.

The following conclusions can be drawn from the results reported in this thesis:

1. Experiments I and II provided strong evidence for an attentional bias for feared

stimuli in spider phobia, but this bias was expressed as a more ready detection

of threat rather than – as reported previously in linguistic emotional Stroop

paradigms – as an emotional interference effect. Presumably different mechanisms

are at work in pictorial and linguistic emotional Stroop paradigms.
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2. Furthermore, Experiment II found some evidence for a special relevance of spiders

for all subjects, independent of whether they are phobics or not. This supports

evolutionary models which assume that specialized neural systems for the pro-

cessing of fear-related stimuli evolved during evolution since rapid detection of

fear-related cues was critical for survival.

3. Experiment III is the first study to report evidence for a negative interpretation

bias or stimulus generalization effect in spider phobics.

4. No threshold in the flower/spider series beyond which stimuli were perceived as

spiders was found. Instead, classifications changed in a rather continuous manner,

although spider phobics started interpreting stimuli as being spider-like earlier

than controls and social phobics.

5. However, the results of the present studies strongly depended on the experimental

design and the stimuli, e.g. schematic vs. non-schematic stimuli (as in Experiment

I and II), or schematic flower and spider anchors only vs. a picture series with

transitional pictures in between (as in Experiment II and III).

5.1. Implications for Future Studies

The results of the present experiments show that different results can be obtained with

only small variations in experimental conditions. In the study of attentional biases

in animal phobia, but also of anxiety disorders in general, an uneven use of a limited

number of experimental paradigms can be observed. Regarding the attentional bias in

phobia and anxiety disorders, the influence of card vs. computer presentation, blocked

vs. single trial presentation, linguistic vs. pictorial stimuli, and oral vs. manual response

modes should be investigated. As Wells and Matthews (1994) argue, where consistent

results are found using only a limited number of paradigms, there is the possibility

that these findings reflect procedural aspects of the tasks used and not more general

phenomena. More information on the internal consistency, stability, and comparability

of variants of the emotional Stroop task is needed (Egloff & Hock, 2003).

Although it seems an established finding that an attentional bias in anxiety disorders

exists, it has been demonstrated with a limited number of paradigms, and the influ-

ence of small variations in experimental designs on results is still not well understood.

Various suggestions for future studies were given in the discussion of each experiment.
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In particular, the transitional stimuli used in Experiment III might help in developing

new paradigms to investigate different aspects of attentional bias in spider phobia. It

seems promising to study in further detail the phenomenon of stimulus generalization

and/or interpretive bias in spider phobia. One interesting question would be, for in-

stance, whether the observed interpretative bias or stimulus generalization effect occurs

on a more preattentive level (possibly because feature detectors are tuned differently

in spider phobics compared to controls) or whether it is due to a more or less con-

scious cognitive bias. In the latter case the term “interpretative bias” would be more

appropriate while in the former case learning mechanisms on preattentive levels could

play a role and the term “stimulus generalization” would be more appropriate. Öhman

(1993), for example, explicitly notes that conditioning mechanisms may play a role in

the development of phobias by tuning feature detectors to respond preferentially to

features of feared objects.

In addition, further characteristic features of fear-relevant stimuli like the sinusoidal

shape of a snake should be investigated. Also, whether feature detectors are specifically

sensitive to certain movement-related characteristics of feared animals like the wriggling

of snakes and the crawling of spiders should be investigated.

While the reported studies mainly focused on P3 and related components, future studies

should investigate the variation of additional components, in particular early visual

components like the visual N1 or induced gamma activity (cf. Keil et al., 2001), in

response to fear-relevant vs. fear-irrelevant stimuli.
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A. DSM-IV Criteria

A.1. Specific Phobia

According to DSM-IV (American Psychiatric Association, 1994) the essential features

of Specific Phobia are:

A: Marked and persistent fear that is excessive or unreasonable, cued by the presence

or anticipation of a specific object or situation (e.g. spiders, snakes).

B: Exposure to the phobic stimulus almost invariably provokes an immediate anxi-

ety response, which may take the form of a situationally bound or situationally

predisposed Panic Attack. Note: In children, the anxiety may be expressed by

crying, tantrums, freezing or clinging.

C: The person recognizes that the fear is excessive or unreasonable. Note: In chil-

dren, this feature may be absent.

D: The phobic situation(s) is avoided or else is endured with intense anxiety or

distress.

E: The avoidance, anxious anticipation, or distress in the feared situation(s) inter-

feres significantly with the person’s normal routine, occupational (or academic)

functioning, or social activities or relationships, or there is marked distress about

having the phobia.

F: In individuals under age 18 years, the duration is at least 6 months.

G: The anxiety, Panic Attacks or phobic avoidance associated with the specific ob-

ject or situation are not better accounted for by another mental disorder, such as
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Obsessive-Compulsive Disorder, Post-traumatic Stress Disorder, Separation Anx-

iety Disorder, Social Phobia, Panic Disorder with Agoraphobia, or Agoraphobia

Without History of Panic Disorder.
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A.2. Social Phobia

The essential features of Social Phobia according to DSM-IV(American Psychiatric

Association, 1994) are:

A: A marked and persistent fear of one or more social or performance situations

in which the person is exposed to unfamiliar people or to possible scrutiny by

others. The individual fears that he or she will act in a way (or show anxiety

symptoms) that will be humiliating or embarrassing.

B: Exposure to the feared social situation almost invariably provokes anxiety, which

may take the form of a situationally bound or situationally predisposed Panic

Attack.

C: The person recognizes that the fear is excessive or unreasonable.

D: The feared social or performance situations are avoided or else are endured with

intense anxiety or distress.

E: The avoidance, anxious anticipation, or distress in the feared situation(s) in-

terferes significantly with the person’s normal routine, occupational (academic)

functioning, or social activities or relationships, or there is marked distress about

having the phobia.

F: In individuals under age 18 years, the duration is at least 6 months.

G: The fear or avoidance is not due to the direct physiological effects of a substance

(e.g. a drug of abuse, a medication) or a general medicational condition and is

not better accounted for by another mental disorder (e.g. Panic Disorder With or

Without Agoraphobia, Separation Anxiety Disorder, Body Dysmorphic Disorder,

a Pervasive Developmental Disorder, or Schizoid Personality Disorder).

H: If a general medical condition or another mental disorder is present, the fear

in Criterion A is unrelated to it, e.g. the fear is not of Stuttering, trembling in

Parkinson’s disease, or exhibiting abnormal eating behavior in Anorexia Nervosa

or Bulimia Nervosa.
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B. Self Assessment Manikin

The picture shows a slightly modified version of the SAM scale. Instead of ranging

from 1–9 this scale ranges from 0–8. The upper scale assesses emotional valence,

e.g. whether the stimuli are rated pleasant or unpleasant (German: “angenehm” vs.

“unangenehm”). This dimension is related to behavioral approach or avoidance. The

lower scale assesses the intensity of emotional arousal ranging from low to high arousal

(German: “ruhig” vs. “erregt”).
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C. Stimuli

C.1. Examples of Stimuli in Experiment I

Spider Stimuli

Flower Stimuli
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Bird Stimuli

C.2. Schematic Stimuli of Experiment II

Spider Stimuli

Flower Stimuli
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C.3. Transitional Schematic Flower/Spider Stimuli

of Experiment III

The stimuli are shown smaller than in Appendix C.2 in order to fit in one line. In the

actual experiment they were as large as in Experiment II.
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D. A Modified Mixed Rasch Model

for the Analysis of Classification

Frequencies

A Modified Mixed Rasch Model was used to analyze the classification frequencies of

schematic spider pictures.

The “simple” Rasch model can be summarized as follows (Andrich, 1988): consider

dichotomous responses rjk of subject j to item k with possible values 0 and 1 (e.g.

1 corresponding to “spider” and 0 to “flower” or “neither-nor”). The response rjk is

pjk-Bernoulli distributed, i.e. P (rjk = 1) = pjk, where

pjk =
exp(zjk)

1 + exp(zjk)
with zjk = θj − δk. (D.1)

In this formula, θj denotes a latent trait of subject j (e.g. the ability of subject j to

recognize a spider in some picture), and δk denotes the item difficulty of item k (e.g.

the difficulty of recognizing a spider in the k-th picture). Thus, pjk is logistic in θj and

“negatively” logistic in δk.

For our estimations, we will assume normal distributions, i.e. θj ∼ N(0, β), where β is

the standard deviation of the subject component.

For our purposes, we extend the simple Rasch model in two ways: first, we allow

multiple answers of the same subject to the same item, since in our experiments, each

subject saw every stimulus more than once. Suppose that subject j answers njk times

to item k, and that every single answer is pjk-Bernoulli distributed. Then the sum of

all answers, which we again denote by rjk, is a natural number between 0 and njk and
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is (pjk, njk)-binomially distributed:

P (rjk = s) =

(
njk

s

)
ps

jk(1− pjk)
njk−s. (D.2)

Second, we know that each subject belongs to one of three groups (in this applica-

tion, spider phobics, social phobics and controls). This additional information can be

included in the model by assuming a mean latent trait of 0 for the control group, of

some value αSo for the social phobics and of some αSpi for the spider phobics. Consider

two indicator variables xSpi
j and xSo

j , where xSpi
j = 1 if subject j is a spider phobic and

xSpi
j = 0 otherwise, and analogously xSo

j = 1 if subject j is a social phobic and xSo
j = 0

otherwise. Now, the logit zjk in Equation (D.1) is calculated as follows:

zjk = θj + αSpix
Spi
j + αSox

So
j − δk, (D.3)

where again θj ∼ N(0, β).

Now the parameters αSo, αSpi, δ1, . . . , δk and β can be estimated, e.g. by maximizing

an approximation to the likelihood integrated over the random effects, as implemented

in the NLMIXED procedure of SAS (Wolfinger, 1999).
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Öhman, A. (1979). The orienting response, attention and learning: an information

processing perspective. In H. D. Kimmel, E. H. van Olst, & J. F. Orlebeke (Eds.),

The Orienting Reflex in Humans (p. 443-471). Hillsdale, NJ: Lawrence Erlbaum

Associates.
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Grundlagen, Häufigkeit, Risikofaktoren und Konsequenzen. In J. R Johnson,

J. W. Rohrbaugh, & R. Parasuraman (Eds.), Enzyklopädie der Psychologie. The-
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1999–2000 Einjähriges Forschungspraktikum und Auslandsstudium an der

University of Minnesota, Minneapolis (USA)

Predoctoral Research Assistant am Institute of Child Development

und Center for Magnetic Resonance Research

10.4.2002 Diplom der Psychologie an der Universität Konstanz

seit 16.4.2002 Promotionsstudium an der Friedrich-Schiller-Universität Jena

Promotionsstipendium der Studienstiftung des deutschen Volkes

Wissenschaftlicher Mitarbeiter am Lehrstuhl für Biologische und

Klinische Psychologie

Jena, den 17. Juni 2004

Iris-Tatjana Kolassa

240

mailto: Kolassa@biopsy.uni-jena.de

	List of Abbreviations
	Zusammenfassung
	Abstract
	Introduction
	Fear and Phobias, Anxiety and Anxiety Disorders
	Psychopathology of Spider Phobia
	Psychopathology of Social Phobia
	Why Should One Study Specific Phobia of Animals?

	Evolution and Phobias
	The Unequal Distribution of Fears
	Innate Fears: The Non-Associative Account
	Preparedness Theory

	Cognitive Biases in Anxiety Disorders
	Attentional Bias in Phobia: Unconscious Preattentive Mechanisms in the Activation of Phobic Fear
	Emotional Stroop Interference as a Measure of Attentional Bias
	Emotional Stroop Interference in Animal Phobics
	Inconsistencies in Studies Investigating the Attentional Bias in Animal Phobics
	Models Accounting for the Attentional Bias in Phobias

	The Neuronal Basis of the (Emotional) Stroop Interference
	Brain Regions Involved in Color-Word Stroop
	What Do We Know About Emotional Stroop Interference?

	The Processing of Emotional and Fear-Relevant Stimuli
	Results of Functional Imaging Studies
	Results of Event-Related Potential Studies

	The Late Positive Complex: Multiple P3 Components
	Influences on P3 Amplitude
	Influences on P3 Latency
	Theoretical Interpretations of the P3

	The Aims of This Thesis

	Experiment I -- Pictorial Emotional Stroop Paradigm
	Introduction: Aims and Hypotheses
	Methods
	Subjects
	Paradigm
	Subjective Ratings of Valence and Arousal
	Assessment of EEG and Other Psychophysiological Variables
	Analyses of Dependent Variables

	Results
	Performance and Reaction Times in the Stroop Task
	Heart Rates
	Event-Related Potentials

	Discussion
	Summary of Results
	Possible Causes for the Absence of Stroop Interference
	How Findings Fit in Previous Results
	Suggestions for Future Studies


	Experiment II -- Pictorial Emotional Stroop Paradigm with Schematic Stimuli
	Introduction: Aims and Hypotheses
	Methods
	Subjects
	Paradigm
	Subjective Ratings of Valence and Arousal
	Assessment of EEG and Further Psychophysiological Variables
	Analyses of Dependent Variables

	Results
	Performance and Reaction Times in the Stroop Task
	Heart Rates
	Event-Related Potentials

	Discussion
	Summary of Results
	Comparisons of Findings in the Emotional Stroop Paradigm with Schematic and Non-Schematic Pictures
	Suggestions for Future Studies


	Experiment III -- Which Properties Make a Spider Fear-Relevant? -- A First Approach
	Introduction: Aims and Hypotheses
	Methods
	Subjects
	Assessment of Valence and Arousal Ratings
	Paradigm
	Assessment of EEG
	Analyses of Dependent Variables

	Results
	Valence and Arousal Ratings
	Performance and Reaction Times
	Classification Frequencies
	Event-Related Potentials

	Discussion
	Summary of Results
	Original Hypotheses and Results


	Summary and Integration of Results
	Implications for Future Studies

	DSM-IV Criteria
	Specific Phobia
	Social Phobia

	Self Assessment Manikin
	Stimuli
	Examples of Stimuli in Experiment I
	Schematic Stimuli of Experiment II
	Transitional Schematic Flower/Spider Stimuli of Experiment III

	A Modified Mixed Rasch Model for the Analysis of Classification Frequencies
	List of Tables
	List of Figures
	Bibliography

