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1. Introduction

Linear systems theory is concerned with physical processes that convert an input
signal v into an output signal y in a linear, time-invariant and causal manner.
Mathematically, this is captured in the simple equation y = Du, where D is a linear
time-invariant causal operator that maps one signal space into another. The system
that processes the signal usually comprises an internal state  which is, as opposed
to ¥, not directly measurable. In the theory of compatible well-posed linear systems,

these processes are described by a differential equation of the type
x(t) = Ax(t) + Bu(t), y(t) = Cz(t) + Du(t),

where A, B, C' and D are linear operators between Hilbert spaces. A notably chal-
lenging situation arises when these Hilbert spaces need to be infinite-dimensional
and the operators may be unbounded. Such infinite-dimensional systems have re-
ceived much attention in the past 30 years, see e.g. the monographs [BDDMO7,
[CZ95], [7Z12), [Sta05, TW0I] for an overview. Typical examples are diffusion pro-
cesses such as heat conduction, wave propagation, and many others that are for
example mentioned in [CZ95] [JZ12l TW09]. Typical control goals are for instance
to make the output follow a desired reference trajectory [BGHSI3, [CT97, [Paull], or
to make the output insensitive to disturbances [vK93, [Mik02, MG90]. The present
thesis is motivated by the desire to achieve each of these two goals in a practically

feasible way for infinite-dimensional systems.

1.1. Summary of the thesis

In order to complete the task of trajectory tracking we employ funnel control, a very
simple control strategy that makes the output follow the reference trajectory in

a strict way. Namely, it evolves in a funnel around the reference trajectory that can
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be specified by the user. The second output control strategy that we employ aims
at minimizing noise amplification of the closed-loop system. It is a special version
of the famous H*-control problem [vEK93].

Both methods require considerable preparation in terms of structural systems
analysis. For both control schemes we construct state space transformation to obtain
realizations in terms of matrix-like representations. While state space transforma-
tions are standard tools in the finite-dimensional theory, they have been neglected
in the infinite-dimensional theory so far. This is mostly due to the lack of matrix
representations for unbounded linear operators. In fact, the transformations we use
may become unbounded themselves which leads to considerable technical difficulties.
Nevertheless, the present work shows that it is sometimes possible and beneficial to
make use of such transformations.

Funnel control for finite-dimensional systems requires two properties: A rela-
tive degree condition and stable zero dynamics. The concept of relative degree for
infinite-dimensional system appears only in [MROT, [LT97], where the relative-degree

of a state linear system
#(t) = Ax(t) + Bu(t),  y(t) = Cx(t),

is defined as a natural number determined by the behavior of the transfer function at
infinity. To the definition of [MR07], we add a smoothness condition on the control
and observation operator that guarantees the existence of certain invariant subspaces
[IMROT, Zwa89]. This condition allows us to develop two special realizations: The
zero dynamics form and the Byrnes-Isidori form. The latter is a generalization of
the popular Byrnes-Isidori form in [BI91], and both are suitable for determining
the zero dynamics, which is roughly speaking, the set of all trajectories (z,u) that
satisfy
z(t) = Az(t) + Bu(t), Cz(t) =0 Vt=0.

While the importance of the zero dynamics is undisputed [BG09, BGH94, BGHS13,
BGISO6, [s195, MROT, MRI0], there is no proper definition nor characterization for
infinite-dimensional systems so far. We fill this gap by giving a universal definition
of zero dynamics for well-posed linear systems, and we show that the zero dynamics
are, at least in some cases, characterized by a strongly continuous semigroup on some

subspace of the state space. For systems with relative degree, the zero dynamics
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form shows that this subspace is precisely the largest feedback invariant subspace
in ker C'; which was extensively studied in [Cur84 [Cur86, IMRO7, [Zwa88) [Zwa89).

The aforementioned semigroup allows us to characterize the stability of the zero

dynamics.
To systems with exponentially stable zero dynamics and relative degree one we
subsequently apply the funnel controller. This control law is an easily implemented

algebraic calculation of the form

u(t) = k(t,y(t) — yret(t)) - (Y(t) — vret(t)),

where k is a special nonlinear function that determines the performance funnel, and
Yref (1) is the reference signal to be tracked. The challenge is to identify the systems
for which this works. It has been established for finite-dimensional linear, non-linear
and differential-algebraic systems as well as some functional differential equations
in [BIR12b, BIW14, TRS02, TRT05], respectively. In this thesis we first show that
the funnel control is successfully applicable to systems of relative degree one with
exponentially stable zero dynamics. Thereafter, we prove the same result for transfer

functions that have a series expansion of the form

Ck
G(s) = , € C.o,
( ) Z S+ A\ s =0
k=0
where ¢, A\ € R5g. Such a transfer function is for instance realized by the following

boundary control system with “collocated” control and observation:

2a(&,t) = Ax(é, 1), (£,1) € Q x Rey,
u(t) = d,x(&,t), (&,1) € 09 x Ry,

y(t) = LQ x(&,t)doe, (€,t) € 02 x Rey.

Here, Q is a bounded, smooth domain and wu(t) and y(t) are scalar. This non-trivial
example is thoroughly analyzed within this thesis, including a discussion of the zero
dynamics and the evolution of the state under funnel control.

The second output control strategy that we develop is a special version of the fa-
mous H*-control problem, and closely related to the linear quadratic optimal control

problem. The infinite-dimensional versions of these problems have received extensive
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study, amongst others in [vIK93|, [Mik02] [Sta98b] and [BDDMO07, [CZ95], Mik02) [PS&7,
[Sta98¢], respectively. The solutions always comprise an infinite-dimensional observer
that estimates the internal states of the system and is impossible to implement
because of its infinite-dimensional nature. Therefore, some efforts to design finite-
dimensional controllers with similar performance have been made in [Cur03] [Cur06].
The method described therein is to approximate the transfer function by a finite-
dimensional-realization in order to construct a finite-dimensional controller that is of
practical use and achieves the control task with a possible decline in performance.
We develop this approach further by applying the approximation method of bal-
anced truncation to a certain H®-balanced realization. This method was proposed
in [MGO91] for finite-dimensional systems and has been outlined in [Cur(3 [FSST3]
for infinite-dimensional state linear systems. We convert these ideas into rigorous
proofs, encompassing the more general class of Pritchard-Salamon systems.

Let us explain this approach: The method of balancing and truncation requires an
output normalized or a balanced realization. Such realizations were given in [CG86,
(GCP88, [GLP90, [Guil2, [GO14, [Obe86l, [Obe87, [Obedll [OMSIT) [Stals]. For systems
with compact Hankel operator we generalize certain balancing transformation that
were first introduced in [TP87] for finite-dimensional systems. While all of the above
works considering infinite-dimensional systems construct the balanced realization
from a Hankel operator that is often not known explicitly, our transformations can
be applied to any existing realization provided that a factorization of each Gramian
is given. These factorizations can for example be obtained from an algorithm that
is described in [ORW13| for infinite-dimensional systems. Moreover, in order to
calculate the approximation, it suffices to evaluate the factors on a finite number of
vectors.

With this approximation method at hand, the next obstacle is that it is only works
for stable systems. The remedy is to stabilize a given system first by a state feedback
and then perform balanced truncation on the closed-loop system. In the spirit of
[IMGO1] we use a state feedback that solves a certain linear quadratic optimization
problem. This has the advantage that the solution of this optimization problem
can be obtained by solving an algebraic Riccati equation, which also yields the
observability Gramian of the closed-loop system. In the process of balancing and
truncation both Gramians are diagonalized, and we will show that the truncated

Gramians solve two analogous algebraic Riccati equations. With this information
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we may construct a finite-dimensional robust H“-controller by the method described

in e.g. [TSHOI, MG90].

1.2. Outline of the thesis

In Chapter [ basic definitions and elementary results about well-posed linear systems
are recapped. Almost everything in this chapter is known, except for Section [2.6] in
which a non-trivial, recurring example of the heat with boundary control is intro-
duced.

In Chapter [3] we consider state linear systems that have a well-defined relative
degree within the natural numbers. After giving our definition of relative degree
in Section [3.1} we derive the zero dynamics form in Section [3.2] Subsequently, the
Byrnes-Isidori form can easily be derived from the zero dynamics form of the dual
system in Section [3.3

For well-posed linear systems we define zero dynamics and their stability concepts
in Chapter [d] The zero dynamics of systems with relative degree are characterized
in Section [£.1] with the aid of the zero dynamics form and the Byrnes-Isidori form.
In Section 4.2] we derive a similar result for the boundary control system introduced
in Section 2.6l

Chapter 5] shows that funnel control is feasible for two new classes of infinite-
dimensional systems: Section [5.1| covers systems with relative degree one and expo-
nentially stable zero dynamics, Section a large class of self-adjoint systems. In
this section, we sharpen results for self-adjoint finite-dimensional systems before we
treat the infinite-dimensional class. The results are applied to the boundary control
system introduced in Section [2.6] which is an example of a self-adjoint system.

The second part of the thesis is concerned with the approach of balancing and
truncation, and starts with the construction of various transformations in Chap-
ter [0l The first section of this chapter recapitulates two canonical shift-realizations.
Using these realizations we construct an output normalized realization on ¢? in Sec-
tion [6.2] In Section [6.3] we restrict the output normalized realization to a subspace
and obtain an input normalized realization. The balanced realization in Section [6.4
results from interpolation between these two normalized realizations. Aside from
the transformations we also address the truncation of the output normalized and

the balanced realization.
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Chapter [7] covers the H*-balancing and truncation process for Pritchard-Sala-
mon systems. In Section [7.1] we introduce the type of Riccati-equations used in
this thesis and recall corresponding results. In Sections and the methods
of the preceding chapter are applied to a right factorization in order to obtain an
H*-output normalized realization on ¢? and its truncation. Finally, Section
contains the finite-dimensional robust controller design based on H*-balancing and
truncation.

There is an appendix consisting of two sections: Section [A T summarizes existing
assertions on fractional powers of semigroup generators and interpolation, which are
relevant for the boundary controlled heat equation. Section contains results on
inhomogeneous Cauchy problems in Banach spaces connecting systems theory to
differential equations.

A great part of the results presented in this thesis has been published in peer
reviewed journals by the author together with Timo Reis: Section is contained

in [RSI5D], Section[5.2]is the subject of [RS15al, and Chapter [6is entirely contained
in [RS14]. Furthermore, Sections and are in the manuscript [IST15]

which is currently undergoing a second revision.



2. Basic objects

In this chapter we recollect several definitions and fundamental results from the field
of infinite-dimensional systems theory. Everything in this chapter is known up to
Section [2.0] where we discuss a non-trivial example of a boundary control system.
Most of the notations and conventions that we use are explained in this chapter.
Further notation and a list of symbols and function spaces can be found in the

appendix for quick reference.

2.1. Semigroups and rigged spaces

A strongly continuous semigroup in the Banach space X is a mapping A : Ry —
B(X) that satisfies 2(0) = I, A(s)A(t) = A(s + t) for all s,¢ > 0, and

ltilr(r)l |A(t)x —z|xr =0 VzelX.
The growth bound of 2 is
wy=inf{weR |[IM >0Vt=>0: |[A1)|px) < Me" }.

The infimum in this definition is not always attained, but it is always less than

infinity. The generator of a strongly continuous semigroup 2l is the operator

1
Az = l}f(r)l ;(Ql(t)a: —1x) VYxedomA,

where dom A is defined as the set on which this limit exists. The generator is closed
and densely defined, and C.,,, < p(A).
An inevitable concept for semigroups are the rigged spaces. However, they are

also relevant for operators that do not generate semigroups. We recap some basic
facts that can be found in [Sta05, Section 3.6], [ENOQ, Section II.5].
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Let X be a Banach space and A : dom A ¢ X — X be a densely defined operator
with p(A) # . Then the domain of A is a Banach space with respect to its natural
graph norm |- |aoma = (|- |% + A+ |%)2. This norm is equivalent to the expression
[(A—=A):|, for any A € p(A). In situations where it is clear which operator A
is used and the exact value of A € p(A) is unimportant, it is convenient to write
Xy :=dom A and |-, = [(A = A)-|, for some A € p(A).

In the opposite direction, we take an arbitrary A € p(A) and define the space X_4
to be the completion of X with respect to the norm |- |+, := [(A—A)7!-|x. Again,
a different choice of A € p(A) here leads to an equivalent norm. The operator A — A
has a unique continuous extension (A — A)|y that maps X isometrically onto X_;.

As a consequence, the operator
A|XIX—>X_1, A’X :)\_()\_A)|X7 (21)

is bounded and a continuous extension of A. If A generates a strongly continuous
semigroup 2 in X’ than A|y generates a strongly continuous semigroup ¢ — ()| x_,
in X_;. Slightly abusing notation we denote this semigroup by 24|x_,. We point out
that the rigged spaces remain the same (up to an equivalent norm) if we replace A
by A + B where B € B(X) is a bounded perturbation.

If X is a Hilbert space, there is another representation of X_; that is explained
in [TW09, Section 2.10] and will be used throughout this thesis. Take note of the
following conventions that we adopt from [TWQ9]: The scalar product (-, -), of
a Hilbert space X is defined to be linear in the first and anti-linear in the second
component. When a Hilbert space is identified with its own dual via the Riesz
isomorphism it is called a pivot space. Not all Hilbert spaces are considered as pivot
spaces. The application of a functional y € X’ to z € X is denoted by (z, y) x.r0 and
scalar multiplication on X" is defined by (z, Ay) y 4 = Az, Y)xx for y e X" and
z € X. Furthermore, we define the reversed dual pairing (y, )y » 1= (r, Y
for y € X’ and x € X, which is linear in the first and anti-linear in the second
component, just like the scalar product.

If X is a Hilbert space, the norm of the rigged space X _; has the alternative
representation

|zl x, = sup (z,2)y| VzeX.

zedom A¥
[(A=A)*z|x<1
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From this expression it is not hard to see that | - |x_, is equivalent to the norm

|+ [[(dom A%y defined by

|Z[(dom axy == sup  [z,z)x| VwelX.
zedom A%
”ZHdomA*<1
When equipped with this norm, the space (X,l, |- ldom A*)/) is the so-called dual
space of (dom A*,| - ||qom a*) with respect to the pivot space X. Indeed, it can be
shown that the following mapping J is an isometric isomorphism from X" ; onto the
dual space of dom A*: For z € X_; pick a sequence (z,) € X with |z, — z||x_, = 0

as n — oo, then Jz € (dom A*)" is defined via

(J 2, Q) (dom A%y dom A* ‘= Jgglo@n, ©yx Ve domA*.

With this isomorphism we will always interpret (dom A*)" as the dual space of
dom A* with respect to the pivot space X. The bidual space (dom A*)” is always
identified with dom A* itself. If a topological vector space W is continuously and
densely embedded into the topological vector space X, we write VW — X. The
following Lemma taken from [TWO09, Proposition 2.9.3] gives a sufficient condition

for an operator to be extendable to X_;.

Lemma 2.1.1. Let Wy, Wh, Xy and Xy be Hilbert spaces with W, — X and
Wy — Xy, Assume A € BOWy; Xy) satisfies A*Wy < Wy. Then A has an extension
Alowy : W) — W) given by <A|(W1)'w'17w2>wg,wz = <w/1,14*w2>wg,w1 Jor wy €
Wi and wy € Wh.

2.2. System nodes

The direct product of two normed spaces X and U is denoted by X xU and equipped
. 2 241/2
with the norm | [z, U]THXXZ/{ = (lz]3 + July) -

In this thesis we study dynamics that obey equations of the type

i) — A&B[igg], y(t) = C&D[ig;], LeR.

Here, the expression A& B is simply the name of an operator that is defined on some



2. Basic objects

subset of a product space X x U. The symbols A and B hint towards special cases
in which A& B can be split into two independent operators, A : domA c X — X
and B : Y — X. The same is true for the operator C'& D, which can sometimes
be split into two operators C' and D. Let us render these objects more precisely by
recalling several definitions from [Sta05].

Definition 2.2.1 (system node). Let X', U, be Hilbert spaces. A block operator

A&B
c&D

cdomScAxU — X x)Y

is an operator node if the following holds:
(i) S is a closed operator.

(ii)) The operator A :dom A ¢ X — X defined by

szA&B[g], domA:z{xeX ’ {ﬂ € dom S },

satisfies p(A) # J, and dom A is dense in X.

(iii) The operator A& B can be extended to an operator [A|y, B] € B(X x U; X_4),
where X_; is defined as in Section [2.1]

(iv) domS:{ [ﬂe)(xu 'A|X+Bue2( }

If, in addition, A is the generator of a strongly continuous semigroup 2, then S is
called a system node. We call A the main operator, and B the control operator of S.
The operator C' € B(dom A;U) defined by Cz := C&D [§] is called the observation
operators of S. The transfer function of S at the point A € p(A) is the operator

G(\) :=C&D Uu;y).

(A — A]X)—lB] 3

While the operator A& B is by definition always expendable into A|y and B, the
operator C'& D can, in general, not be split. A class of operator nodes for which this

is possible appears in the following definition adapted from [Sta05l, Definition 5.1.1].

10
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Definition 2.2.2 (compatible). An operator node [A¢5 ] with main operator A

is said to be compatible with compatibility space VW if there exists a Hilbert space
W — X such that dom A is continuously embedded into WV, the observation opera-
tor C' has a bounded extension C|y, € B (W;)), and the control operator B satisfies
(A — Alx)"'BU = W for some A € p(A). In this case the expression

(A= Alx)'B

D :=C&D — Clwh— Alx)"'B (2.2)

is independent of A\ € p(A) and an element of B(U;)Y) [Sta05, Lemma 5.1.4]. We
call D the feedthrough operator induced by C/|y.

Remark 2.2.3. (i) If dom A is not dense in W then the extension C|yy is not
unique, and the feedthroughs induced by different extensions C/,y will in gen-

eral not be the same; an example of this phenomenon is illustrated in Re-

mark and [Sta05, Remark 5.1.6].

(ii) An immediate consequence of (2.2)) is that the transfer function of a compatible

system node has the representation
G\ =ClwA—A)'B+D VYiep(A).

There is always an outstanding compatibility space that has nice characterization

in terms of A and B:

Lemma 2.2.4. Let S be a compatible operator node with compatibility space W,

main operator A and control operator B. Define
(X +BU) :={zeX |Al,xeX+BU}
with norm
|2 Ev s gy, = inf { |23 + [A| yz + Bulz + |ulf, |ueUd A Al o+ Bue X }.

Then S is also compatible with compatibility space (X + BU),. Moreover, we have
(X + BU), = (A — Alx)"H(X + BU).

11
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The main part of this lemma is [Sta05, Theorem 5.1.8]. The alternative charac-
terization of the set (X 4+ BU); is shown in [Sta05 Lemma 4.3.12].
By the following lemma proven in [Sta05, Lemma 4.7.8], the dynamics of a system

node are well-defined for sufficiently regular input functions.

Lemma 2.2.5. Let S = [4E5] be a system node on (U, X,Y) and let A, B,C&D
and the semigroup A be as in Definition [2.2.1. Then 2 extends to a strongly con-
tinuous semigroup on (dom A*)', and for each xo € X and u € Wi (Rso:U) with

loc
[uﬁg)] e dom S, the function
t
z(t) := 2A(t)zo + J 2A(t — T)‘(domA*),Bu(T) dr VYVt =0,
0

satisfies ¥ € C*(Rs; X) and [£] € C(Rso;dom S). Together with

y(t) = C&Dlzgm vt >0,

the function [y] : [0,00) — X x Y is the unique solution of the equation

F(t)] ~ S ht;] Vi=0,  2(0) = . (2.3)

u(t

Definition 2.2.6 (LP-well-posedness). An operator node S on (U, X,)) is said to
be LP-well-posed with p € [1,00] if S is a system node and, for each ¢ > 0, there
exists a constant M > 0 such that all solutions [y ] of the type described in the

previous lemma satisfy

£l + 19013y < M (JO) L + [l oo 120)) -

In Section [2.4 we will see that every well-posed operator node generates a so-
called well-posed linear system. We conclude this section with a short motivation
for this abstract concept: Let S be a well-posed system node and define for ¢ > 0,
zo € dom A and u € W (R=o;U) the input-to-state map 9B, the state-to-output

12
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map &;, and the input-output map ©; by

¢
Byuljo = L A(t — T)‘(domA*),Bu(T) dr, Crxg = CA(+)xo,
(2.4)
B
Dl = C&D tu‘[o’t]] .
u(t)

Then the solution in Lemma [2.2.5| may be written as

[ z(t) o ] . (2.5)
Yl

ulfo.
The LP-well-posedness then implies that we can extend the above operators so that

e =,
B

the four operators

A(t) : X - X, B, : LP([0,t];U) — X,
O Lp([(),t];y), Dy Lp([O,t];L{) - Lp([07t];y)’

are continuous. Hence, we may use to define the state 2(t) and output y|jo 4 for
arbitrary xyo € X and u € LP([0,t];U). The four operators above constitute a well-
posed linear system in the sense of Section [2.4] For this thesis, which ultimately
aims at output feedback without any knowledge of the internal states, the input-
output map ®; is of particular interest. Therefore it receives some extra attention

in the following section.

2.3. Time-invariant causal operators and transfer

functions

This section summarizes some facts about input-output maps regardless of any un-
derlying system and its internal states.

For a function u : R — U/ and J < R we define the projections

u(s), seJ,

(myu)(s5) =
0, s e R\J,

13
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and the special cases m; 1= o), T- = M(_p0). Furthermore, we use the shift
operator
(T"u)(s) :=u(t +s), VseR.

The shift operator 7" acting on L? (R<o;U) or LF(R=o;U) is denoted by 77 and 77,
respectively.

We will often implicitly extend a function w whose domain is a subset of R by
zero when we apply the above operators. In the following definitions from [Sta05],
the space L{,.(R;U) is used. It is defined as the set of all functions u € Ly, (R;U)
whose support is bounded from below, (and not necessarily compact). LP (Rxq;)) is
the exponentially weighted Lebesgue space. It consists of all functions u that satisfy

e u € LP(R;U), where e, is the function e, (t) := e**.

Definition 2.3.1. Let 1 < p < 0, w € R, let U4 and ) be Banach spaces, and let
D :dom(®) c L1 (R;U) — L

loc loc

(R;U) be a linear operator.
(i) ® is time-invariant if 7"Du = D7'u for all u € dom® and all ¢ € R.
(i) A time-invariant operator ® is causal if 7_D[rp (@_ya0) = 0.

(iii) TICE(U;Y) stands for the space of all bounded linear time-invariant causal
operators © : LP (R;U) — LP(R; ).

(iv) TICY..(U;)) stands for the space of all linear time-invariant causal operators

loc
D LL o (RiU) — L, (R; V) with D e € B(LP(I;U); LP(1;Y)) for every

c,loc c,loc

compact interval I < R.

(v) The Hankel operator induced by ® € TIC? (U;Y) is the operator

9 L(Reo;U) = LER>0:Y), 9 :=mD|1r w_pua)-

Remark 2.3.2. If w is an LY, (R;U)-function, then the support of u is contained in

c,loc

[¢,0) for some ¢ € R and for every t € R the norm H7T(_007t]u|‘Lp( is finite. Hence,

R;U)
D7 (oot is well-defined for ® e TICY (U;)). The causality of © guarantees that
there is a unique function y € L} (R;)) that satisfies

Tty = T DT (o qu VI = L

14



2.3. Time-invariant causal operators and transfer functions

With the assignment Du := y we define a mapping ® : L, .(R;U) — L} 10 (R; D),

c,loc

which coincides with ®© on the intersection of Lg, . (R;U) and L2 (R;U). The map-
ping ® can bee seen as a restriction of D to LP (R;U)- functions with compact
support, followed by an extension. We will sometimes identify ® with D without
explicit warning. Note however that we will only use the continuity of © between

the normed spaces LP (R;U) and L?(R;)). We do not discuss continuity properties

p
c,loc

of ® because the topology of L. .(R;U) is rather involved and not locally convex.

Definition 2.3.3. An operator © € TIC! (U4;)) is said to be stable if it has a con-
tinuous extension to TICH(U; ).

An operator [91, M|" € TICH(U; Y x U) is called a right factorization of D €
TICE (U;Y) if M has an inverse in TICL (U) such that Du = NM 1w for all
we IV (R U).

c,loc

A stable operator © € TIC} . (U;Y) will be identified with its extension. Also in

loc

the sense of extensions, we write ® = 99!, Note that a right factorization is by
definition stable.

Definition 2.3.4. The Laplace transform of a function u € L (R-o;U) is given by

for all s € C for which the integral converges absolutely. The domain of @ is a half

plane C.,, for some w € R.

Recall the definition of Hardy spaces from [Dur70] [Sta05]: For p € [1,0), the
Hardy space HP (U) is the set of all analytic functions f : C.,, — U with finite norm

W= s ([ 1@+t a5)",

and the space HZ(U;)) is the set of all bounded analytic functions f : C., —
B(U;Y) with norm

[l @iy = 50D [ () sy

s€Csy

Theorem 2.3.5 (Paley-Wiener theorem). If U is a Hilbert space, then the Laplace
transform,
LI Reg ) — HA(WU),

15



2. Basic objects

is a homeomorphism with U]z w) = V27w L2 (R o0)-

A proof of the Hilbert space-valued version of well-known Paley-Wiener theorem
can be found in [Sta05, Theorem 10.3.4].

We define transfer functions for time-invariant causal operators in the sense of
[Sta05l Definition 4.6.1]. The ambiguity between the transfer function of a system

node and the transfer function of its input-output map is resolved in Lemma [2.4.6

Definition 2.3.6. The transfer function D of an operator ® € TICP (U; ) is the

operator valued function
D(s) = (u— (D(esu))(0)) VseCs,.

In the next lemma, we summarize parts of [Sta05, Corollary 4.6.10] and [Sta03),
Lemma 10.3.3].

Lemma 2.3.7. Let ©® € TICY(U;Y). Then the transfer function D s an ana-
lytic B(U;Y)-valued function in C~,, and, for each o > w, it is in HEU;Y) with
||@|\Hgo(u;y) < |D|ric,@wiy). Furthermore, for all w e LE(Rxo;U) the relation

(Du)(s) = D(s)ils), VseCsy,

holds.

The following result is a consequence of the Paley-Wiener theorem. A proof is
given in [Sta05, Theorem 10.3.5].

Theorem 2.3.8. IfU and Y are Hilbert spaces, then the mapping ~: TIC2(U;Y) —
HE(U;Y) that associates each time-invariant causal operator to its transfer function

s an isometric isomorphism.
Definition 2.3.9 (regular). A function De HP(U; ) is said to be strongly regular
if the limit

Du:= lim D(s)u

s—00,seR

exists in Y for all w e U, and uniformly regular if the limit

D:= lim D(s) (2.6)

s—00,s€R

exists in B(U; ).
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2.4. Well-posed linear systems and their generators

This definition is taken from [Sta05l Definition 5.6.1]. By the uniform boundedness
principle D defines a bounded linear operator from U to ), even in the strongly

regular case.

2.4. Well-posed linear systems and their generators

In this section, U, X and Y are always Hilbert spaces.

Definition 2.4.1 (Well-posed linear system). Let p € [1,00]. An w-bounded LP-
well-posed linear system on (U, X,)) is a quadruple (2, B, €, ©) with the following

properties:

(i) t— A(t) € B(X) is a strongly continuous semigroup on X with growth bound

Wy < W;
(ii) B € B(LE(R<o;U); X) satisfies A(t)B = Br’ for all ¢ = 0;
(iii) €€ B(X; L2 (R=p;Y)) satisfies €A(t) = 72.€ for all ¢ = 0;

(iv) © € B(L?(R;U); LP (R; Y)) is continuous, causal, time-invariant and it satisfies

T4 D rp®ogu) = €B.

The growth bound of the system is defined as the growth bound of its semigroup. An
LP-well-posed linear system is a quadruple of operators that is an w-bounded LP-well-
posed linear system for some w € R. Any LP-well-posed linear system (2,8, €, D)
is called a realization of ® and of D.

An LP-well-posed linear system is called observable if ker € = {0}, controllable if

ran®B is dense in X', and minimal if it is both, controllable and observable.

Remark 2.4.2. An w-bounded well-posed linear system is also a-bounded for every
a > wy [Sta03, Theorem 2.5.4 (iv)]. That is why there is usually no need to specify
the bound w when the growth bound of wy is known. An exception is the case where
(2,8, ¢, D) is 0-bounded, but 2l is not exponentially stable.

By [Sta0d, Lemma 4.3.5] and [Sta05, Lemma 4.4.1], well-posed linear systems

have the following smoothing properties.

Lemma 2.4.3. Let p € [1,0), let (A,B, &, D) be an w-bounded LP-well-posed linear
system on (U, X,)Y), and denote the generator of A by A. Then the following holds:

17
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(i) B maps Wy (Reo;U) continuously into dom A, and for all u € Wy (Reo;U)
we have Bu = ABu.

(ii) € maps dom A continuously into W2 P(Rx0;Y), and for all z € dom A the

derivative of €x is the LP-function €Ax.

Definition 2.4.4 (Gramian). Let (2,8, €, D) be a 0-bounded L2-well-posed linear
system on (U, X,)). The operator BB* € B(X) is the controllability Gramian, and
C*C € B(X) the observability Gramian of (A,B,C, D).

Definition 2.4.5. Let (2,B,¢, D) be an LP-well-posed linear system with growth
bound wy. The main operator of the system is the generator A of the semigroup 2.
For all w € U, the following expression is independent of A € C.,,, [Sta05, Theo-
rem 4.2.1J:

Bu := (A — A|x)Beyu. (2.7)

The operator B € B(U; (dom A*)') defined by (2.7) is the control operator of the
system. The observation operator C' € B(dom A; ) of the system is defined by

Cz:= (€x)(0) VaedomA.

To every well-posed linear system there is a corresponding well-posed system node

and vice versa:

Lemma 2.4.6. Let (2,8, €, D) be an LP-well-posed linear system on (U, X,)) with

growth bound wy, main operator A, control operator B and observation operator C'.

Define the set
domSzz{ [x] eX xU
u

Then for all [ ] € dom S, the expression

A|X—|—BUEX}

C&:D[ ] = C (z = (A= Alx)"'Bu) + D(\u

x
u
is independent of A € C.,, and the block operator

A& B
c&D

]:domSCXXU%Xxy,
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2.4. Well-posed linear systems and their generators

Alxyz + Bu
C(z— (A= Alx)"'Bu) + D(\)u

9

A&B | |z
C&D | |u

is an LP-well-posed system node with main operator A, control operator B and ob-

servation operator C'. Moreover, the transfer function G of this system node and
the transfer function D of ® satisfy

()\ — A|X)7lB

D(\) = G(A) = C&D VA€ Cay,.

This follows from [Sta05, Theorem 4.7.13]; consult [Sta05, Definition 4.6.4] and
[Sta05 Theorem 4.6.7] for the well-definition of C& D and the formula for the trans-
fer function.

Summarizing [Sta05, Theorem 4.7.13] and [Sta05, Theorem 4.7.14], we may state

the following lemma.

Lemma 2.4.7. Let [ 4¢B] be an LP-well-posed system node, and let w be greater

then the growth bound wy of the semigroup A. Then we can define the operators
B LP(ReosU) — X, C: X - LP(Rxp; YY), D LP(R;U) — LE(R; )

by continuous extension of the mappings

0
Bu = f Q[’(domA*)’(_s)Bu(s) ds Vue LZC)JOC(]RéO)
Cx = CA()x VaxedomA,

t
s\ | — B
§ Al (dom asy(—3) u(s)ds]) VicR ue W2 (Rild),

@’LL = (t [ C&D cloc
u(t) ’

and (2,8, €, D) is an w-bounded, LP-well-posed linear system. The system node
associated to (U, B, €, D) via Lemma[2.4.6 is [ 4E5].

Remark 2.4.8. (i) The last two Lemmas show that the well-posed linear system
and the system node determine each other uniquely. Furthermore, the system
node (and hence also the well-posed linear system) is uniquely determined by
its main operator, control operator, observation operator and the value of the

transfer function at some point A € C.,.
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(ii) The fact that the main operator, control operator and observation operator of

the node and the semigroup coincide implies that the operators 8;, €; and D,

defined via (2.4)) satisfy

B = Brlu Yue LP([0,t];U),
Cix = mp <€ VreeX,
Dyu = o, Du Yue LP([0,t];U).

Now we can formally define the state and output function as indicated at the end
of Section 2.2

Definition 2.4.9 (behavior). Let (2,8, €, ©) be an LP-well-posed linear system
on (U,X,Y). The state z(t) at time ¢ and the output function y € L (Rxo;))
of (A,B,€, D) with initial value xq € X and input function v € LY (Rso;U) are

defined by
.CL’O]
. (2.8)

u

z(t)| |™AE) Brot
Y Tl e Ky,

The behavior of (,B, €, D) is defined as

bhv (A, B, ¢, D) =

(:C,u,y) € CUR?O’ X) X Lfoc(RZO;u) x Lfoc(RZO;y) :

x(t) _ 2A(t) Br_7t )
Y ¢ £y

0
d Vi 0.
u

The state, the output, and the behavior of the associated system node are defined
as the state, output, and behavior of (2,8, €, D).

Remark 2.4.10. (i) For v € L (Rso;U) we have m_7'u € LP (Reo;U), so Br_7tu
is well-defined. By [Sta0d, Theorem 2.12], the state x(t) is a continuous func-

tion of ¢. The operator D used here is an extension to L, .(R;U).

(ii) For input functions of class W2?(Rs;U), Lemma [2.2.5 implies that the state
z(t) and the output function y of a system node are the unique solutions of
the differential equation (2.3]).
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2.4. Well-posed linear systems and their generators

(iii) It is possible to define the state and output for input signals in L{ (Rs;U),
even if the system is only LP-well-posed for some p € (1,00). In this case the
state defined by is an element of the rigged space X1, and the output
y exists only in a distributional sense, see [Sta05, Definition 4.7.5]. However,
for an LP-well-posed system it is natural and logical to allow only for inputs of
class L}, .(Rso;U) in the behavior because these inputs lead to state functions

in the state space X’ and outputs in L} .(Ro;U).

The state can be seen as the solution of a differential equation in the sense de-
scribed in the Appendix by [Sta05, Theorem 4.3.1. (i)]:

Lemma 2.4.11. Let p € [1,0), and let (A,B,C, D) be an LP-well-posed linear
system on (U, X,Y) with main operator A and control operator B. The state x
corresponding to the input w € LY (Rso;U) and initial value xg € X is the unique

strong solution of
x(t) = Ax(t) + Bu(t), z(0) = o,

in X in the sense of Definition|A.2. 1)

Definition 2.4.12. We say that the system node in Lemma generates the
well-posed linear system (2(, 8, €, ©). The transfer function of the well-posed linear
system is defined as the transfer function of its generating system node (and is
by Lemma an extension of the transfer function of ). The well-posed linear
system and its system node are said to be strongly /uniformly regular if their transfer
function is strongly /uniformly reqular.

If the system is strongly regular, the quadruple (A, B, C, D) consisting of the main
operator A, the control operator B, the observation operator C', and the feedthrough
D of the transfer function are said to be the generators of (2,8, €, D).

Definition 2.4.13 (Cesaro extension). Let € € B(X;LP(R>0;))) be the output
map of an LP-well-posed linear system with observation operator C' for some p €

[1,00). The Cesdro extension of C' is defined as

t

1
Cexr :=lim— | (Cz)(7)dr Ve domCg, (2.9)

t—0 0

and its natural domain dom Cyy consists by definition of all x € X for which the
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limit in (2.9)) exists. The norm

, 2z € dom Cey
y

1 J () (r) dr

0

||-73||domoex = ”35”)( + sup
O<t<1

makes dom C¢, a Banach space [Sta05, Theorem 5.4.3].

Lemma 2.4.14. Let S be a uniformly reqular LP-well-posed system node with ob-
servation operator C' and p € [1,0). Then S is compatible with the domain of the
Cesaro extension Cey as compatibility space. Moreover, the feedthrough of S induced

by Cex is the limit in (2.6) of the transfer function.

This follows from the equivalence of (i) and (iv’) in [Sta05, Theorem 5.6.5], with
a view of [Sta05, Theorem 5.6.4]. All the systems treated in this thesis will be
regular.

An important way to get from one realization to another is to use state space
transformations. The easiest situation occurs when the transformation is a homeo-
morphism. In this case the proof of the following lemma is trivial, see e.g., [Sta05],
Example 2.3.7]. We write TAT ! for the semigroup ¢ — T2U(¢)T !, and 2|z for the
semigroup t — A(t)|z.

Lemma 2.4.15. Given a well-posed linear system (204,B1,&1,D1) on (U, X)),
a further Hilbert space Z and a boundedly invertible operator T € B(X;Z). Then
Ay : Royg — B(Z), t — TA ()T, By 1= TBy, & = T and Dy = D4
constitute a well-posed linear system on (U, Z,)). The behavior of the two systems

is related via
(r,u,y) € bhv(A;,B1,&1,0,) < (Tx,u,y) € bhv(Us, By, €5, D5).

If © is reqular with feedthrough D, the generators of the new system are given by
(Ag, By, Cs, D), where dom Ay = T'dom Ay, and

Ay =TAT™, By =T|gomazyB1, Co=CT™

Here, T’(domAf)' is the unique extension of T to an operator from (dom A}) to
(dom A%).
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2.4. Well-posed linear systems and their generators

Definition 2.4.16 (similarity). Two well-posed linear systems (2, B, ¢;, D) and
(As, Bo, €3, 05) on (U, X,Y) and (U, Z,)), respectively, are pseudo-similar if ©; =
®, and there exists a closed, densely defined injective linear operator T : domT <
X — ranT < Z with the following properties: ran®8; < dom T, ran‘B, < ranT,

dom 7" is 2 -invariant, ran 7" is 2As-invariant and

ng(t)Tﬂ?l = Tﬂl(t)l'l, VZEl € dOIHT, te R;o,
%QU = T%lu, Yue LQ(RSQ;U),
€2T$1 = €1x1, Vacl € domT.

The systems (1, B1, €1, 1) and (Ay, Ba, €, D4) are said to be similar if T and

T-! are both bounded, and unitary similar if T is unitary.

We will now recall the concept of duality. Thereby, we will use the reflection
operator around zero which is defined by

q:L?

loc

(R;Y) = Lio(R; V), (A)(t) :=y(-t) VteR, (2.10)

for any Banach space ). The following lemma summarizes [Sta05, Theorem 6.2.3]
and [Sta05, Theorem 6.2.13].

Lemma 2.4.17. Let (A,B,€,D) be an L*-well-posed linear system on the Hilbert
spaces (U, X,Y) with main operator A, control operator B and observation opera-

tor C. Define
(A4, B, ¢!, DY) = (A, ¢, AB*, AD*A) (2.11)

where the semigroup A* is defined by A*(t) := A(t)* for allt = 0. Then is
an L*-well-posed linear system on (Y, X,U). The main operator is A*, the control
operator is C*, and the observation operator is B*. The transfer function of
satisfies

Di(s) = D(5)* Vse plA).
Definition 2.4.18 (dual system). Under the prerequisites of Lemma the
system in is called the dual system of (A, B, €, D).
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2.5. Boundary control systems

A special type of control system often arises in the study of partial differential
equations when the control acts on the boundary conditions; see (2.13)) below for an

example. Informally, the equations then look like
z(t) = Az, u(t) =Tux(t), y(t) = C|W:v(t).

Since we have already seen that the operator C' appears on various domains, we
indicate the domain W here as well, even though it is superfluous in the current

section.

Definition 2.5.1 (boundary control system). Let U, X,) be Hilbert spaces and
let the Hilbert space W be continuously and densely injected into X. The triple
(AT, Clw) € BOV, X) x BOV,U) x BIW,Y) is a boundary control system if the

following conditions hold:

(i) kerI is dense in X.

(ii)) There is a A € C such that (A — A) : kerI' — X is bijective.
(iii) I' : W — U is onto.

It is well-known that every boundary control system can be extended to a com-

patible operator node.

Lemma 2.5.2. Let (A, T',Cly) € BOV; X) x BOV;U) x BOW;Y) be a boundary
control system and D € B(U;Y). Then

cdomSc X xU > X x)Y

Alv B
Clw D

dom S

is a compatible operator node, where
(i) A:= Alerr, and Alx is the extension of A in (2.1));
(it) B := (A — A|x)['", where I't € B(U; W) is an arbitrary right inverse of I';

u=Tw }

(ii) dom S := { lﬂ eW xU
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2.6. An example: The heat equation with boundary control

Furthermore, W = (X + BU)1, the norms of W and (X + BU), are equivalent, and

Aw = A‘Xw + Bl'w VYxeWW. (2.12)
Moreover, B is strictly unbounded, which means ran B n X = {0}.

This Lemma is a consequence of [Sta05, Theorem 5.2.13], see also [TW09, Propo-
sition 10.1.2].

Remark 2.5.3. (i) An immediate consequence of this lemma is that for all x € W
there exists exactly one u € U such that A|yx + Bu € X, and this u is given

by u = T'z.

(ii) The operator A is an extension of A to W. However, Equation (2.12]) shows
that it does not equal the restriction to W of the extension Aly, cf. [Sta0dl
Remark 5.2.10].

Remark 2.5.4. A necessary condition for L'-well-posedness of a system node with
reflexive state space X is that the control operator satisfies B € B(U; X) [Sta05)
Theorem 4.2.7]. In particular, a system node that emerges from a boundary control
system on a Hilbert space can never be L'-well-posed since its control operator is

strictly unbounded by Lemma [2.5.2

2.6. An example: The heat equation with boundary

control

Let 2 < R? d € N be a bounded domain with uniformly C?-boundary 0 in the
sense of [AF03, Chapter 4], and let v : 0Q — R? be the outward normal derivative.
Furthermore, we indicate the Riemann-Lebesgue volume measure on the manifold
0Q2 by o.. We will model a well-posed linear system that is informally written as

the partial differential equation

Zx(&,t) = An(&, ), V(& t) € Q2 x Ry,
u(t) = o,x(&,t), V (&, t) € 092 x Roy,
(2.13)
y(t) :J (€, 6) doe, Vie Ry,
o0
z(£,0) = x0(§), V¢ e,
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where Az(£,t) = 3¢, %}jzx(ﬁ,t) is the Laplacian. This is a well-known heat
equation, but with a special type of boundary conditions. We have a scalar control
u(t) € C that acts similar to a Neumann boundary condition, and the scalar output
y(t) € C determines a Dirichlet-like boundary condition. The fact that u(t) does not
depend on & means that 0,z(&,t) is forced to be constant in £. With the following

operators the above system is a boundary control system.

Lemma 2.6.1. Define X := L*(Q) and

W= { reW>2(Q) | 0,2)s0 = M } , (2.14)
|09
and, for all x € W,
Azx(€)d
Az = Az, [z = W’ Clyz = LQ z(§) dog.

Then (A, T, Clw) € BOW; X) x BOW;U) x BOW;Y) is a boundary control system.

Proof. Looking at (2.14]) and the definition of I", we see that A := Alyer is the

Laplacian with Neumann boundary conditions, more precisely
Az = Az VzedomA={zeW??Q) | 0,z/0a=0 }. (2.15)

For this operator it is well-known that dom A is dense in X and that A— A is bijective
for all A € C., [HTO08, Theorem 7.13 (ii)]. Since I" maps onto R, all the properties
required in Definition are fulfilled. O

Remark 2.6.2. (i) The space W is equivalently characterized by
W = {xe W22(Q) ‘ JueC: d,z|an Eu},

and T" maps each x € W to the constant value of 0,|5q. This can be seen as
follows: Assume that the normal derivative of z € W22%(Q2) on the boundary
is constant and equal to u € C. Then taking the scalar product of Ax with

the constant function 1 and applying Gauf}’s theorem shows

L Ax(e)-1de = [ aa(e)de = u- |00,

o0
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2.6. An example: The heat equation with boundary control

whence

u=2820dE

09|

(ii) If d = 1, the demanded C?-condition on S is not well-defined. In this case it
suffices that €2 is an interval (a,b) and the expressions have to be interpreted
in the following way: 0Q := {a,b}, [0Q| := 2, v(a) := =1, v(b) := 1, and
$o0 (&) doe := p(a) + ¢(b) for all ¢ € C(a,b).

Lemma 2.6.3. The following holds for the operator A in (2.15)), i.e. the Laplace

operator with Neumann boundary condition:

(i) The operator A is self-adjoint, nonpositive and has a compact resolvent. There
is a real valued sequence (\)ken, of eigenvalues of —A such that (\g) is nonde-

creasing, Ao = 0, Ay > 0, and A, "=3 o0. In particular, o(A) = {=X\; | k € No}.

(it) The eigenvectors of —A form an orthonormal basis (vi)ren, of L*(Q) with
v, € dom A for all k € Ny, and there holds

[ee}
dom A = { Z Cr Uk
k=0

(cr), (Akcr) € ﬁQ(No)} : (2.16)

2
0
Sew] = e + 10w, (217)
k=0 dom A
and N
Az = _Z)‘k (T, k) p2iq) vk Vo€ domA (2.18)
k=0

(iii) The norm of dom A is equivalent to the W?%(Q)-norm.

Proof. Part (i) is [HT08, Theorem 7.13 (ii)]. The second part (ii) is a consequence
of the spectral representation theorem for operators with pure point spectrum, see
e.g. [Tri92, Section 4.5.1]. Regarding part (iii), it is easy to show that | - [qoma =
|(s — A)z|x is an equivalent norm to | - ||z2() + [|A - |12(q). Furthermore, Theorem
5.11 of [HTOS] states that the latter norm is equivalent the W?%?(2)-norm. O

Due to the self-adjointness of A we have in particular dom A = dom A*. In view
of Section L*() is embedded into the rigged space (dom A)" in the following
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way: Each x € L?(Q) is identified with the functional tz € (dom A)’, defined by

<§07 Lx>domA,(domA)’ = <Q07 x>L2(Q) = Jﬂ (,0(5)1‘( )df VSD € dom A.

Note that the expression on the right is linear in ¢ and anti-linear in z. With
our definition of multiplication in the dual space, this makes the injection ¢ linear.

Furthermore, we may use the definition of the reversed pairing,

<L$ ) 90>(dom A), dom A <90’ Lx>domA ,(dom A)’ J;l l’(g)@( ) d§ v ¥ e dom A.

Lemma 2.6.4. Let X = L?(Q), W as in (2.14), and the operator A as in ([2.15)).
In addition, define

B:C— (domA), (Bu, ¥)gom ay doma = uf p(¢)doe YpedomA, (2.19)
o0

and
Clw: W —C, cmwpzf w(€)doe VreW. (2.20)
o0
Then
Alx B
% , domS := { lw] eW xU ‘ OyWon = u }, (2.21)
C‘W dom S “

is the operator node corresponding to (A, I', Cly) via Lemma . In particular,
Alyw+ BlT'w = Aw = Aw Yz eW.

Proof. This follows from Lemma [2.5.2], we only need to calculate B: Let u € C and let
't € B(C; W?2%(Q)) be some right inverse of ', i.e. " u = u-w for some w € W22(Q)
with d,w|sq = 1 (for instance, take a solution of Aw —w = 0, d,w|sq =1). Gaul’s

theorem now implies for all ¢ € dom A that

<Bu7 90>(domA)’,domA = <(A - A|X)F+u7 90>

<AF+U §0>( A)’,dom A < u Aw>(domA)’domA

=Lu( p(€)dé — fuw Ap(€) d¢

(dom A)’,dom A

28



2.6. An example: The heat equation with boundary control
=u . O,w(€)p(€) dog = uf ©(€) doe.

This proves the assertion. O

Remark 2.6.5. (i) The adjoint of B satisfies B*p = C'p for all ¢ in dom A because
(BU, ©) (dom Ay dom A = <u, J o(§) da§> Vo edomA, ueC.
o C

System nodes with this property are sometimes called “collocated”.

(ii) The operator C|yy has an extension to Wz +2(Q) for any ¢ > 0 since for these

spaces there exists a continuous trace operator that maps ¢ to ¢|aq € L*(0S2)

[HT08, Theorem 4.24 (i)].

(iii) Instead of (2.20)) we could define the output operator

~ A d
C’|Wx:=f [L’(f)dO’g—FM VoeeW,
o0 |0€2]
and the feedthrough D := —1. Then the lower line of S can be replaced by

[6’ I, 13] because, by the definition of W and dom S,

[5\W f)] m . [C’\W o} m v m e dom S.

However, we will shortly see that the feedthrough of the transfer function of
S is zero. This justifies the choice of C|yy because we want the feedthrough of

the transfer function to coincide with the feedthrough induced by C'yy.

We are going to show that 1W12(Q) is another compatibility space for this operator

node. To this end, we need the following lemma.
Lemma 2.6.6. The following holds for the operator A defined in (2.15)):

(i) For every s > 0 we have dom(s—A)z = W2(Q) and the norms of these spaces
are equivalent. Furthermore, (S_Z—’j\k)keNO is an orthonormal basis of W2(Q),

and dom A is densely and continuously embedded into W'2(Q).
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2. Basic objects

(i) Moreover,

(v Aear) € EZ(NO)} , (2.22)

ikvk — (@) gy + (v Awn) H . (2.23)

iVlﬁQ

Proof. Since the operator s — A is positive definite, part (i) follows from [HTO0S|
Theorem 5.31 (ii)] in combination with [Tri92 Section 4.4.3]. The density claim is
[HTO8, Proposition 5.28 (i)]. Now for part (ii): An application of GauB’s divergence

theorem shows that
HxHWL?(Q) = HQUHLz(Q) —(z, A$>L2(Q) Ve domA.

Using this and the spectral decomposition ([2.18]), we see that the following holds

for all z = > ajvy, € dom A

2z =722 — (@) AT) 20y = (@) By + < ZAM o) >

o0
2 2 2
= [(ar)lesrio) + D Mea | (@, vk) P = (aw) 7,0 + Z Aklak]”.

k=0 k=1
=la|?

The representation (2.16) implies that linear combinations of (vg)ken, are dense in
dom A. Since dom A is dense in W'?(Q), we can infer from the above computations
that W12(Q) is equal to the completion of span{ vy | k € Ny } with respect to the

norm

2
2
= (@) i + | (Vv
£2(N)

Now, since \;, — © as k — o0, the condition (\/)\kak)keN € l5(N) implies (ax)ey, €

05(Np), and we conclude ([2.22]). O

Lemma 2.6.7. Let A and B be defined as in (2.15) and (2.19), respectively. For

QiU
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2.6. An example: The heat equation with boundary control

all s € p(A), there holds

1 S(}Q §) dog 1,2
B = Z SHk o, € WH(Q). (2.24)

This series converges in W2(Q)) and

f;f ) dor

Moreover, the space W2(Q) is a compatibility space for the system node defined in
Lemma and the feedthrough induced by

2 A

_ . 2.25
P W (2.25)

C|W1,2(Q) . Wl’Z(Q) - C, C’W1,2(Q)Q} = LQ Uk(f) dag, (2.26)

1S zero.

Proof. Note that, just like C' in Remark [2.6.5/(ii), the functional Bu € (dom A)’
extends to a continuous functional on W12(Q2). Let z € L*(Q2). Then the series
ij:o (x, vk>L2(Q) vy, converges in L?(Q2) to x as N — . Due to the continuity of
(s — A)2 € B(L2(9); dom(s — A)2), the limit

N x 'Uk; LQ(Q) 1 N A _1 N
g NCESW p=1(s—A 2];) T, V) 20y Ok — (s — A) 72w, — o0,

holds in dom(s — A)2. This implies for every functional ¢ € (dom(s — A)2)’, (which
is identified with the restricted functional on dom A), that

i <x7 Uk>L2(Q) <'Uk gp) ,
Pt m ) dom A,(dom A)

N
_1
k=0 dom A,(dom A)’
L N
= <(8_A)_2 Z <:L', Uk>L2(Q) Uk;, (p> ) )
k=0 dom(s—A)2,(dom(s—A)2)
_1
- <(S a A) oL (p>dom(s A)2 (dom(s—A)%)’.
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2. Basic objects

Thus, in particular for Bu € (dom(s — A)2) and all 2 € L2(Q), the limit

N N
(Bu, vy) > (Vg BU)domA,(domAy
g, Y AR, = T, Vg
< Z Vs + Ak L2(Q) Z V'S + Ay < 2

dom(s—A)% (dom(s—A) 3y

holds. Since L*(Q) is a Hilbert space, we conclude that ZIZXZO (Bu, vg) /A/s + Mg - vy,
converges in L2(Q), and the limit is (s — A)"2Bu. Since (s — A)"2 maps L2(1)

continuously onto dom(s — A)2 = W2(2), we conclude that

N (Bu, v, 1 5 (Bu, v

k
— (s—A)"2(s— A)"2Bu, N — w,

in W2(Q2). This proves, for all s > 0, the convergence of (2.24) in W2(Q2), and
([2.25)) follows from the representation of W'?(Q) in (2.22)). For arbitrary s € p(A),

the series in ([2.25) is finite because it is finite for s = 1 and we have the estimate

o 1+,

< 'Su
5 | S T4 M e |5+ A
| —

Vk‘ENo.

<00

Now ([2.24)) follows from (2.25)) together with (2.22)) for arbitrary s € p(A).
The compatibility claim is a consequence of (2.24) and the fact that (2.26) is

a continuous extension of C|yy. The feedthrough is zero because of formula ([2.2)

and (2.21)). O

Theorem 2.6.8. Let A, B and C|y12(q) be defined as in (2.15), (2.19) and ([2.26)),
and let (\g), (vk) be as in Lemma[2.6.3 Define

2

Cp =

VkeNy and J.:={keNy| c #0}.

IRGE
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2.6. An example: The heat equation with boundary control

Then the transfer function of the system node is

G(s)= Y —F =2 % vsepa). (2.27)

Furthermore, we have 0 € J., and

(i’;) e ({(N). (2.28)

Proof. We express (s — A)~!' B using the series in (2.24]). Since this series converges
in W2(Q), we may interchange the order of limit and application of C lwi2(q) to

obtain
¢)do &) do
O|W1,2(Q)(S — 1B =C Z S&QS n >\k 5 Z S&QS n )\ ¢ C|W1 2 Q)Uk
i SaQ Uk dO'g’ _ Z Ck
=0 s+ )\k S + )\k

Therefore, ([2.27)) holds on p(A).
We have 0 € J. because the first eigenvector vy in Lemma [2.6.3] is a constant

function; more precisely,

1 (Sagld0£)2
. _— h — Mo T TS
vo() Sﬂl é whence ¢g Sgl 5 >

Finally, (2.28) is a consequence of ([2.25)):

I

i CL _ i CL A\ (1 + )\n)2 i Cr\k (2.25) -

]

Remark 2.6.9. For every removable singularity Ay € o(A) of G(s), we have k € N\ J,
which means that the eigenvector v, € dom A satisfies Cv, = 0. The so-called
Hautus test for well-posed linear systems, [Sta05, Corollary 9.6.2], then shows that

our system is not observable. In other words, A\ is an unobservable mode.
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Whether such unobservable modes exist or not depends on the geometry of the
underlying domain Q. If, for example, = [0,7] = R, then it is easy to see that
v(€) 1= sin(§) is an eigenvector of A with eigenvalue —1. It lives in the kernel of C'
because Cv = v(0) + v(m) = 0. Therefore, J. # Ny in this example.

Corollary 2.6.10. For every w > 0, the series in (2.27) converges absolutely in
HZL,,(C; C); in particular, we have G € HZ,(C; C). Moreover, it is uniformly reqular
with feedthrough

o0

: . Ck

lim G(s) = lim =0.
s§—00, s—00, S _|_ Ak

seR seR k=0

Proof. For w > 0, we have

o0

sup
k=0 sEng

C c C = c
0 k 0 k
< sup — + E — < —+ E —.
seCse |S] = Ak w o= Ak

s+ A

Thus, this series converges absolutely in HZ (C;C) and G € HZ(C;C). To prove
the regularity, let ¢ > 0. Choose N € N such that > /" %t < £ and t € R such

N+1 X, 27
that 3V % < 5. Then we have for all s > t,

= Ck N Ck, — Ck N Ck — Ck
> - > + ) <Y o+ ) <
SstA SstA L Fast A it Fa M

This proves that the transfer function converges to zero. O

Corollary 2.6.11. Let G be the transfer function in Theorem and let ® €
TICic(U; ) be the time-invariant causal operator associated to G in Theorem|[2.5.4
Then

(Du)(t) = ft i cre My (r)dr Vue L2(Rsg), t€R. (2.29)

DO k=0

Proof. A simple calculation gives

o0 o0 Ck
J le ™ “Tepe ™ M| dr = J |cpe” AT dr = VkeN,
. 0 w + >\k:

and

* c
J le™“Tcoe N7 dr = 2,
0 w
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2.6. An example: The heat equation with boundary control

Hence, the summability of ($*)ken implies that the series

0]
(t — cpe A’“t
k=0

converges in L (R~), and

o0

C C
1Pl eagy < = + > —

w k:1w+/\k

Now we apply the Laplace transform to h. Since the Laplace transform maps
Ll (Rsg) continuously into HZ(C; C) it may be interchanged with the L! (R=g) limit
in the definition of A and thus,

a0 o0 ee] Ck:
o (=s=Ap)T o o
= cpe dr = =G(s) VselCs,.

Let u e L2(Rx) be given. By Lemma [2.3.7 we have
Du(s) = G(s)i(s) VseCsy.

Since this function is in H2(C) we can apply the inverse Laplace transform to this
equation and the convolution theorem for the Laplace transform [GLS90, Theo-
rem 3.8.2] implies that

(Du)(t) = Jt h(t — T)u(r)dr Vit =0.

This is (2.29). O
The well-posedness of the operator node in Lemma was proven in [BGSWO02].

We keep the following lemma for the record.

Lemma 2.6.12. The operator node S in Lemma is L?-well-posed. The associ-
ated well-posed linear system, (2A,B, €, D), has the following additional properties:

(i) The semigroup 2 : Rsq — B(L*(Q)) is analytic and |A(t)|sr2) < 1 for all
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2. Basic objects

t = 0. For allt > 0 the operator 2A(t) maps L*(Q) into dom A and
1
IM =1 [2A@) | pr2@pwee@) < M |1+ 1)

(ii) For all § € Roy and x € L*(Q), the infinite-time state-to-output map fulfills

Q:l’|[57oo) € Wl,oo<[5’ OO))

Proof. The well-posedness is stated in [BGSW02, Corollary 1]. A proof of analyticity
and boundedness of 2 is for example presented in [HT08, Chapter 5]. By [ENOO,
Chapter II, Theorem 4.6] the analyticity of 2 implies that

A(0)z e dom A Ve L*(Q), § e Roy,
and that there is a constant m > 1 such that
|AA(E) 2y = = V>0
Hence, we have

m
Hm(t)me(Q) + HAQ[(t)xHLQ(Q) < (1 + 7) HIHB(Q) Vae LXQ), t >0,

and the left hand side is equivalent to the W?2%(Q)-norm of z by Lemma [2.6.3
Assertion can then be inferred from the relation

dea(t) = C(I—A) A - 0)(1-A)AAWB)z Vit e [5,00).

2.7. Kalman compression

The principle of restricting a well-posed linear system to its controllable and observ-
able subspace is described in [Sta05l, Section 9.1]. In addition to this, we need to

know what the generators of such a restriction look like.
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2.7. Kalman compression

Lemma 2.7.1. Let p € [1,0] and (2,*B, €, D) be an LP-well-posed linear system on
the Hilbert spaces (U, X,Y). Define Z := (ker €)*, equipped with the scalar product
of X. Then

(3 %, & 9) = (r:z 7%, ¢z D)

is an observable LP-well-posed linear system on (U,Z,Y). Its main operator A

satisfies
dom A = 7z dom A, dom A* = Z A dom A*,
and
Az = mz Az Vzedomﬁ, VaedomA with tzx = z,
A*z = A*2 V¥ z € dom A*.

The control operator B is given by
<§u, Z>(domg*)’,domg* = (BU, Z)(dom A*y ,dom A* Vu €U, ¥z e dom A*
The observation operator C satisfies
5’z=C’x, Vzedomg, VxedomA with tzx = z;
its Cesaro extension é’ex fulfills
é’:xz = (Cyxz Vzedom @,X =nzdom Cey = dom Cey N Z.

Proof. The fact that (gl, %, &, D) is a well-posed linear system is easy and can be
found in [Sta05, Corollary 9.1.10]. We need to determine the generators of this
system. To this end, note that Z is an RA-invariant, closed subspace, whence the
generator A of the quotient semigroup 2 can be found in [ENOQ, Section 2.2.4].
Since we are in a Hilbert space setting, the adjoint semigroups 20* and 2A* are again
strongly continuous [Sta05, Theorem 3.5.6]. The -invariance of ker € implies the

invariance of Z under 2* and therefore, the relation

Q1) 9)z = (mzAU(t)z, 0 = (A0 *yz VzyeZ
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2. Basic objects

shows 2A* = A*|z. Thus, A* is the generator of 2*|z which means by Lemma
the part of A* in Z. The extension A|z : Z c (dom A*) — (dom A*)' reads

(A|zz, Y) (dom A*y dom A = (% A*Y)x Vy € dom A* ze Z.

We use this to calculate B via (2.7). Using that Z is A*-invariant we obtain for all

z € dom A*

(Bu, 2) (dom A*) dom A+ = (Beau, (X — A% z2)z = (mzBesu, Az — A*2)y
= (Beyu, \z — A*2)x = (A — A|x)Beyu, 2)x

= <Bu7 Z>(dom A*)/ dom A*

We will show the claim about C for the Cesaro extension Cu first. Let z € dom Crzx
Then, z € Z by definition, and the limit

! J (€2)(s) ds = 1f(@z)(s> ds =5 Clcz,

t Jo t Jo

shows z € dom Cyy 1 Z. Trivially, this is a subset of 7z dom C.,. Conversely, assume

z € mz dom Cyy and let x € dom Co be such that z = mzz. Then

! J (E)(s)ds = J (€)(s)ds 4% Cua, (2.30)

2 0 0

which means z € dom CZJX As we have already shown that this implies z € dom Cey N
Z, it follows that

doran’\e/X =dom Ce N Z = mz dom Cly.

The formula for the observation operator Cel,,,, 5 is immediate from the special
case x € dom A in (2.30)). O

Lemma 2.7.2. Let p € [1,0] and (A,*B, €, D) be an LP-well-posed linear system on
the Hilbert spaces (U, X,Y). Define the space Z := ran‘B, equipped with the scalar
product of X. Then

(4 B € 9):=(Az B ¢ D)

is a controllable LP-well-posed linear system on (U, Z,Y). Its main operator A
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2.7. Kalman compression

satisfies
dom A = Z ~ dom 4, dom A* = 7z dom A*
and
Az = Az Vzedomg,
A%z = nz A%z V2 e dom A*, Ve dom A* with mzx = 2.

For all we U, the control operator B satisfies

<§U, Z>(dom g*)ﬂdom Ax — <BU, x>(domA*)’,d0mA*

for all z € dom A* and x € dom A* such that mzx = z. The observation operator C

equals the restriction of C' to dom 171, and its Cesdro extension Cey is given by
5'exz —Cz VYVzedomC = Z ~domC.

Proof. The well-posedness of this is system is easy to show and contained in [Sta05,
Corollary 9.1.10]. Since we are in a Hilbert space setting, the adjoint semigroups
2* and A* are again strongly continuous [Sta05l Theorem 3.5.6], and A* generates
the latter. A short calculation shows that 21* = mz2A*|z. So A* can alternatively
be characterized as the quotient generator of the quotient semigroup, which by
[ENOO, Section 2.2.4] has the asserted representation. Consequently, the extension
Alz + Z < (dom A*) — (dom A*)' satisfies

Vze Z, Vye dom;l*, VaedomA* with mzz =y :
<A’237 y>(domj*)/7d0mg* = <Z, ’/TzA*[L'>X.

We use this to resolve the expression Bu = (A — g)%e,\u for v € U: We take an

arbitrary z € dom A* and some z € dom A* with 7z2 = z. Then

(Bu, 2) (dom A%y dom A% = (Beyu, (A — A*)2)z = (Beyu, Az — w5 A% )
= (Beyu, \v — A*x)xy = () — Alx)Beru, v)x

— y , .
(Bu I>(domA*)’ dom A*
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The part about C' and its extension is a direct consequence of the definition of
the observation operator and the Cesaro extension (Definition [2.4.13]), including the

domain. n

Theorem 2.7.3 (Kalman compression). Let p € [1,0], and let (A,B,&, D) be an
w-bounded LP-well-posed linear system on the Hilbert spaces (U, X,)). With the

definitions

M = T(ere)r Tan B,
A = ﬂ-(kerﬁ)lm’ﬂa B = W(ker@)J-%a ¢ .= Q:‘M,

the quadruple (?51, B, &,CD) is a minimal LP-well-posed linear system on (U, M, D).
The generator A ofﬁl has the domain dom A = M T(kere)r dom A and is given by

Az = Terc)L Az for all x € dom A and all » € dom A for which © = 7y )1 2.

The domain of the adjoint operator A* is mri(dom A* n (ker €)*).  The control

operator B is given by
<Bu7 x>(domﬁ*)’,dom/~\* = <BU, Z>(d0m A*)! dom A*
for z € (ker €)1+ A dom A* such that w12 = . The observation operator satisfies
Cx =Cx forall x e dom A and all z € dom A Jor which ¥ = Ter )12,

Its Cesdaro extension CN’eX equals Coy with dom C’GX = dom Cyy N M.

Proof. The theorem is proven by first applying Lemma [2.7.1] and then Lemma [2.7.2]
with Z = ran e, )1 B = M. The only thing that remains to be shown is that the

projections 7y; and ey )1 coincide on ran B, or, in other words

T BU = Taer )t Bu YVue LF(Rep;U)

Indeed, from M = ran(me e)2B) < (ker €)F = (ker €)* we deduce for arbitrary
u e ij (Rgg; U)

T BU + T Bu = BU = T(ier )L BU + Tier ¢ Bu.
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2.8. Pritchard-Salamon systems

= TuBU — Tikere). BU = TiereBu — T Bu € M n M+ = {0}

2.8. Pritchard-Salamon systems

The so-called Pritchard-Salamon systems introduced in this section are a special
type of compatible well-posed system nodes. They have the convenient property
that the two operators A& B and C'& D can be split uniquely into four operators A,
B, C, D. In fact, the concept of a system node is not even needed for the control
theory of Pritchard-Salamon systems. It is because of this and of the fact that
Pritchard-Salamon system were historically developed before the theory of system
nodes that one usually writes (A4, B, C, D) instead of a block operator matrix [ B].
We define Pritchard-Salamon systems in the sense of [PS&7].

Definition 2.8.1 (Pritchard-Salamon system). Let U, X, and ) be Hilbert spaces
and let A generate a strongly continuous semigroup 2l in X'. Furthermore, let W
and V be Hilbert spaces with X ¢ W — X — V < X1, where the rigged spaces
X; and X_; are defined as in Section . Then (A, B,C, D) is said to be a Prit-
chard-Salamon system on (U, (W, X,V), D) if the following conditions hold:

(i) 2 extends to a strongly continuous semigroup 2|y, on V, and it restricts to

a strongly continuous semigroup 2|y, on W;

(ii) B € B(U;V) is an admissible control operator for A, i.e. there exist t, M > 0
such that for all uw e L([0,t];U)

t
By = f Ay(t — 1) Bu(r)dre W and  [Boalw < Mlulqomn:
0

(iii) C' e B(W;Y) is an admissible observation operator for A, i.e. there exist t, M >
0 such that for all x € W

[CAC)2] 210,09y < Mzl

(iv) D e BU;Y).
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The generators of 2|y, and |y are denoted by A” and AY, respectively. The system
is said to be smooth if dom AY = W.

Remark 2.8.2. (i) The space X in this definition is sometimes left out, see for

(iii)

(iv)

example the definitions in [CLTZ94, ¥K93|]. So strictly speaking our Defini-
tion gives only a subclass of the Pritchard-Salamon systems considered there.
However, a smooth system in the sense of [CLTZ94, WK93] always fulfills our
definition if we define X to be equal to V. So for smooth systems there is no
loss of generality. The reason why we include X is two-fold. Firstly X serves as
a pivot space for the representations of W and V', see also [vK93, p. 42]. Sec-
ondly, with our definition, systems of Pritchard-Salamon type become a proper
subclass of L?-well-posed linear systems, see Definition below. This will
allow us to apply the results of Chapter [6] to Pritchard-Salamon systems later

on.

In [CZ94] the word “regular” was used instead of “smooth” In this thesis we
use regular in the sense of Definition [2.3.9] which was introduced by [Wei94Dh]

and is something different.

“Admissible” control and observation operators for more general well-posed
systems are defined with a different meaning, see [Sta05, Section 10.1].

The growth bounds of the semigroups 2|y, 2|+ and 2|,y are in general not the
same, an example is given in [CLTZ94].

In Chapter [3| we will encounter the special case where the control and observation

operators are bounded with respect to X'. These systems are called state linear

systems.

Definition 2.8.3 (state linear system). A Pritchard-Salamon system on (U, (X, X,
X), V) is called a state linear system on (U, X,)).

Remark 2.8.4. Let A be the generator of a strongly continuous semigroup in X', and
BeBU;X), CeB(X;Y), DeBU;Y). Then it is easily seen that (A4, B,C, D) is
a state linear system on (U, X',)). In particular this shows that Definition is
equivalent to other definitions of state linear systems, e.g. in the monograph [CZ95].
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2.8. Pritchard-Salamon systems

Lemma 2.8.5. Let (A, B,C,D) be a smooth Pritchard-Salamon system on (U,
W, X,V), V) and define

domSzz{ [ﬁle?(xbl
U

ALB|
C&D |’

is a compatible system node with compatibility space VV.
Moreover, dom A is dense in VW, domS < W x U and the transfer function of
this system node is uniformly reqular with feedthrough D. In particular, C' and D

are uniquely determined by [ 485 1.

Alxx + Bue X }

Then
Aly B

¢ D

dom S

Proof. By [CLTZ94, Lemma 2.12] there exist constants M,w > 0 such that for all
A e C.,, the operator (A — AY)"1B maps into W and

M
Vy-1
[ = A) B g m) < NiTy R (2.31)
Now let [x, u]" € dom S. A short calculation shows that we can write x as
r=—\—A) " Alxz + Bu)+ (A —A) Az + (A - AY) ' Bu (2.32)

for some A € C.,,. Since all three summands on the right hand side are elements
of W, we conclude x € W and dom S < W x U.

To show the closedness of the node let [z, , u,]" be a sequence in dom S with

[%]X—X%{[x]e)(xu and %]X—X)f[z]eé‘(xy.
Uy, U Un Y

Since A|x and B map continuously into the rigged space X_; we conclude A|yx +

A&B
C&D

Bu = z in X_;, and since z is in X, this implies [z, u|" € dom S. This shows
in particular the closedness of A&B. To show that C&D is closed we use the
decomposition (2.32) on z,: Since A|yx, + Bu, converges in X and (A — A|y)"'B
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2. Basic objects
maps continuously into VW we conclude that
T, = —(A— A) Y (Alxz, + Bu,) + (A — A) Az, + (A — AY) ' Bu,
converges in W to
~—A=A) 2+ A=A A+ (A=A Bu = 2.

Hence, Cz,, — Cz and, since the limit Du,, — Du is trivial, the closedness of C'& D
is shown.

All other conditions in Definition [2.2.1] are satisfied by assumption, so we do have
a system node. The L2-well-posedness follows from the estimates in (ii) and (iii) of
Deﬁnition Since (A—AY)~! B maps into W, it is clear that W is a compatibility
space and that D is the feedthrough associated to C' via (2.2)). Furthermore, the
inequality implies that the transfer function,

(A—AV)"'B
I

c&D

] :C()\—Av)ilB—FD, V)\E(C>w7

converges to D with A — oo. Hence, the node is uniformly regular and has
feedthrough D.

Finally, the density of X} in W is a consequences of the fact that 2l restricts to
a strongly continuous semigroup on W, see [Sta05, Theorem 5.6.8 (ii) (c)]. O

Due to the well-posedness in this lemma, every Pritchard-Salamon system gener-
ates an L2-well-posed linear system. This system will be called of Pritchard-Salamon

type, more precisely, we make the following definition.

Definition 2.8.6 (Pritchard-Salamon type). A uniformly regular w-bounded L*-
well-posed linear system (2,8, €, ) on the Hilbert spaces (U, X, )) is said to be of
Pritchard-Salamon type, if there exists a compatibility space W and a Hilbert space
V such that the main operator A, the control operator B, the extended observation
operator C|yy, and the feedthrough operator D induced by C|y form a Pritchard
Salamon system (A, B, C|yy, D) on (U, (W, X,V),Y) in the sense of Definition 2.8.1]
We call (A, B, Clw, D) the generators of (,8,¢, D).

The generators of such a system can easily be recovered from (2,8,&,D): The
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2.8. Pritchard-Salamon systems

operator A is of course the generator of 2, and the feedthrough D is the limit of
the transfer function. For Cly, we observe that €w € C(R=o;)) for all w € W and
therefore Clyyw = (€w)(0). In order to determine B we can use a Dirac sequence
(dy)nen in L?(R<g; R5g). By this, we mean a sequence of functions d,, € L?(R<p; Rso)
satisfying supp d, < [-=,0] and S(ioo d,(7)dr = 1. We see that Bud,, converges to

Bu in V for every u € U because

0 0
||93udn—Buv=H f A(—7) |y Bud, (v) dr — f Bud,(r) dr

1%

0
< f |2A(=7)|yBu — Bul, d,(7) dr

< sup |A(—7)}yBu— Bul, =% 0.

Duality concepts for Pritchard-Salamon systems require some explanation: We
will always identify the dual space X’ with X itself. We will interpret W' as the
dual space of W with respect to the pivot space X, see Section The dual space
of V will also be interpreted with respect to the pivot space X in the following sense:
Every continuous functional v" on V is also a continuous functional on X'. Therefore,
by the Riesz representation theorem we have a unique element z,, € X such that
W' xyyy ={xy,x)x for all 2z € X. The element v' € V' is identified with x,, € X

The adjoint of the generator AY : dom AY < W — W of 2|y, with respect to
the duality pairing (-, )y is denoted by (A")" : dom(AY) < W — W'. This
operator generates the semigroup given by (2((¢)|)y)’. The domain of this operator

is

dom(AW) = { reW

Je>0¥yedomAby: (2, Ay | < clybw |

with norm |z gomawy = [z + [(AY) 2| For smooth Pritchard-Salamon sys-
tems, we have dom(A") — V' [WK93, Theorem 2.17].

For a 0-bounded well-posed linear system of Pritchard-Salamon type the Gramians
play an important role. We denote the adjoint of B € B(L*(R<o;U); W) by B’
and the adjoint of B € B(L*(R<y;U); X) by B*. With the embedding X = W'
we than obtain B'|y = B*. Similarly the adjoints €' € B(L*(Rso;Y);V’) and
¢* € B(L?(Rs¢;)); X) of € with respect to V and X, respectively, satisfy € = €*|.
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2. Basic objects

For smooth Pritchard-Salamon systems Lemma 2.8 of [CZ94] states

BB |jom(awy = BB*[gomawy € B (dom(A");dom AY),

(2.33)
C*Cgomav = €Cyomav € B(dom AY;dom(A™)).

Definition 2.8.7 (impulse response). The impulse response of an w-bounded well-
posed linear system (2,8, €, ®) of Pritchard-Salamon type with finite-dimensional

input space U and control operator B is defined as the function
hi= B e L (Rao: BU: V).

By [CLTZ94, Lemma 3.5 and Corollary 3.6] the impulse response satisfies h = €B =
C*B and the Hankel operator has the representation

0
CBu = J h(—7)u(t)dr Yue L2 (Reo;U).

Feedback

In order to control a system one typically applies a linear feedback. Informally
speaking, this means the following: First, a new output z(t) = Fz(t) + Gu(t) e U
depending linearly on the state x(¢) and the input u(t) of the system is created. In

other words, the state and output equation in ([2.3|) receives a new output line

z(t) = Ax(t) + Bu(t),
()= [F ¢ [igﬂ

For this new system node to be a well-posed Pritchard-Salamon system we have to
assume that F'is an admissible observation operator in the sense of Definition [2.8.1]
In the second step, the loop is closed, which means, the input w(t) is made to equal

the new output z(t) plus some outer disturbance (t), i.e.

z(t) := Ax(t) + B(z(t) + u(?)),
(1) =|F d [ (t)x(f 17(1&)]'
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2.8. Pritchard-Salamon systems

In order to eliminate the auxiliary output z from these equation I —G should be

invertible. This motivates the upcoming definition.

Definition 2.8.8 (admissible feedback pair). The block operator [F', G| € B(OW x
U;U) is an admissible feedback pair for the Pritchard-Salamon System (A, B, C, D)
on (U,(W,X,V),Y) it F € BOW;U) is an admissible observation operator for A,
ie. (A, B, F,G) is a Pritchard-Salamon system on (U, (W, X,V),U), and 1 -G is
boundedly invertible in B(U).

Without loss of generality we could replace the admissible feedback pair [F', G| by
[(I-G)~'F, 0]. That is why many authors only consider state feedback operators
instead of feedback pairs. There are two reasons why we use the more general
feedback pairs. The first is that the auxiliary output z should be allowed to depend
on u via a feedthrough just like the original output y = C'x + Du in does. The
second and more important one lies in the so-called closed-loop system introduced in
the following lemma. This closed-loop system has to be defined with the feedthrough
GG and has several very important properties that will be described and exploited in
Chapter [7]

Lemma 2.8.9. If [, G] € BOW x U;U) is an admissible feedback pair for the
smooth Pritchard-Salamon System (A, B,C, D) on (U, W, X,V),Y), then

AYidomAY <V -V, A=A+ BI-G)'F,

generates a strongly continuous semigroup 9% in YV which restricts to strongly con-
tinuous semigroups Ay and Q%V in X and W, respectively. The generator Awy of ey

is the restriction of Ag to
dom Ay :={ z e dom AY | Az + B(I-G)'Fze X },
and the quadruple

(A, By, Coy, Dyy) =
DI-G)!

(AO, B(I-G)™, 1-G)

C+DI-G)"'F
1-G)'F ’

> (2.34)

defines a smooth Pritchard-Salamon system on (U, (W, X, V), x U), the so-called
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2. Basic objects

closed-loop system.

If [F,G] e BOW x U;U) is an admissible feedback pair, then (I—-G)"'F is an
admissible observation operator for A. Hence the lemma follows from [vK93, Lemma
2.13].

Definition 2.8.10. An admissible feedback pair [F', G] € B(W x U;U) for the
smooth Pritchard-Salamon System (A, B,C, D) on (U, (W, X,V),Y) is said to be
exponentially stabilizing if the semigroups 2% and Ql{)v that belong to the closed-loop
system are exponentially stable.

An example

Loosely speaking, the range of the control operator B and the domain of the obser-
vation operator C' of a Pritchard-Salamon system must not be “too far apart”. This
is illustrated by the fact that substituting the observation operator of the example

in Section [2.6] by a bounded operator creates a Pritchard-Salamon system:

Lemma 2.8.11. Let the operators A and B be defined as in (2.15) and (2.19), re-
spectively. Furthermore, let C'€ B(X;C). Then (A, B,C,0) is a Pritchard-Salamon
system on (C, (L*(2), L*(Q), W*2(Q)'),C), where k € (3,1). The transfer function

8

0
Ck
G(S):,;)8+>\k Vs e p(A),

where
Cl = f Uk(g) dO’g : O?Jk Vke NO.
o0

Proof. By [Tri95, Theorem 4.3.3] there holds for the fractional powers and the in-
terpolation functor defined in Section [A.1]

dom(I—A)z = [L*(), dom A], = W*2(€).

MBS

Thus, 2 extends to a strongly continuous semigroup | v
-2

on X i = WHk2(Q), and

its generator has the domain dom(I—A)'~% = W27%2(Q). As a consequence,

¢ t 1—k
2 _ t
J HCQ[(T) ‘X . HW’“vQ(Q)’ dr < ||CHL2(Q)’ J T k dr = ||CHL2(Q)/ 1 2 .
0 -2 0 -
The formula for the transfer function follows by applying C' to ([2.24]). O]
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2.9. Kalman compression of Pritchard-Salamon systems

2.9. Kalman compression of Pritchard-Salamon

systems

Since systems of Pritchard-Salamon type are well-posed linear systems, we can apply
the Kalman compression from Section 2.7 However, those results do not yet show
that the compressed system is again of Pritchard-Salamon type. In fact, the Kalman
compression for Pritchard-Salamon systems should be interpreted in a different way.
In this section let U, W, X', V, and Y be five Hilbert spaces.

Lemma 2.9.1. Let (A, B, €, D) be a well-posed linear system of Pritchard-Salamon
type on (U, W, X,V),Y). Define

W= ran‘B", X = ran ‘B~ V= ran‘B”,
equipped with the norms of W, X and V), respectively. Then

(% 3, & 2):=(Az B ¢y D)

is a well-posed linear system of Pritchard-Salamon type on (U, (W,??,)N)), V) and

controllable. Its generators are (ﬁ,é, CN’,D), where

Ax = Ax, VoedomA = AN’mdomA,

Cw = Cw, Ywe V.

Proof. Since the embeddings
We— X =Y

are continuous and ran‘B < W, it is clear that we have the continuous and dense

embeddings

ran B < ran BY < ran BY.

Moreover, we have B € B(L2(R<:U); W) and € € B(V; L2(Rs0;)). Since ran B
is 2A|y-invariant, it is also 2dy-invariant, and the same holds for the closures of
ran‘B. Therefore, 2 induces strongly continuous semigroups 2|5, 4|3 and Al on

VNV, X and )7, respectively. To see that B maps into V we use a Dirac sequence
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2. Basic objects

(dn)nen © L*(R<o; Rso) with suppd,, © [—2;0]. Then, for all u € U, the limit

<

0
’J A(—7)|yBd,(T)udr — Bu
o v

f (A(—7)|yB — B)d,(T)udr

v

< | I@DE - Byda(r)uly dr

n

< |ufee sup [(2A(T)[vB = B)l,
TE[*%,O]

— 0 (n— ),

shows that Bu € ranBY. It is easily seen that E, C' and D are the remaining

generators of the restricted system. O]

If Z is a closed subspace of X the quotient space X' /Z is equipped with the norm
|2l x/z := inf {|z = c|x | c€ 2,2 € 2},

Lemma 2.9.2. Let (A, B, €, D) be a well-posed linear system of Pritchard-Salamon
type on (U, W, X,V),Y). Define

W= W/ker€ly,  X:i=X/kerCly,  Vi=V/ker€ly,

with the quotient norms | - |, | - | 5: || - |, respectively. Then there holds

~

Wes X s V.

We denote by 7y © W — W the injection that maps each element of W to its

equivalence class in W. Then
<§l, %, é, @) = (%)?QH;% 77/,\7‘3, Q:|/rg, @)

is a well-posed linear system of Pritchard-Salamon type on (U, (W,/’?JN/), V) and

observable. Its generators are (/Nl, B,C, D), where

T=Tg3Az V%edomgz?ffdomfl, VzexndomA,
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2.9. Kalman compression of Pritchard-Salamon systems
C = Cw VweweW.

Remark 2.9.3. The reason why we do not explicitly identify the quotient spaces,
X /ker €|y etc., with the orthogonal complements here is the following: The identity
operator is not a continuous and dense injection from (ker €|y)t into (ker €|y)*
because the first complement is taken with respect to the scalar product of X and
the second with respect to the scalar product of V. It is possible to construct
an observable Pritchard-Salamon realization on these spaces as well. However the
cost is that the embedding is no longer given by the identity but by a much more

complicated mapping.

Proof of Lemma[2.9.7 First note that the identity given by
[:W/ker €|y, — X/ker €|y, W—{reX|Jwew: xz—weker €|y}

is indeed an injection. Furthermore, we have [Ty ¢, w = Tiere, w for all w e W.
Therefore, |w, — x|x — 0 implies || I TierefyyWn — Trere|o %] 3 — 0 for any sequence
(wy,) in W and x € X. Hence the density of W in X implies the density of Win X.

Furthermore, there holds for all w € w

|10 3 = inf {|z — c|x | c € ker €|y, x € Tw}

N

inf {|w — cpllx | cw € ker €|y, w € W}

N

inf {|w — culw | cw € ker €|y, w € W}

@] -

In the second line we have used that w < Iw. This norm estimate shows that
the embedding I : W — X is continuous. Analogously, we see X — V. These
quotient spaces are Hilbert spaces because they are isometrically isomorphic to the
corresponding orthogonal complement of ker € in the Hilbert spaces W, X and V,
respectively.

The fact that (QNL B, ¢, D) is an observable well-posed linear system follows from
Lemma once we identify X'/ker €|y with (ker €|y). It remains to determine
its generators and to show that it is of Pritchard-Salamon type. We remark that,
for ¥ e X , the relation 7 € W is true if and only if £ n W # J, and analogously

¥e X if and only if ¥ n & # . Therefore we have 7 4B = 738, and the operator
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2. Basic objects
¢| 3 is continuously extendable to V.9letrereX , then the computation

5[‘]7(75)55 = %gﬂ(t)% = %99[(t)$ = 7~T]7 Ql(t)l‘ = %);Ql(t)x = Ql\;,;(t).%
X
€

shows that the semigroup 2| restricts to 2| . An analogous computation shows

that, in turn, 2| 3 is an extension of 2A|;;. Furthermore, for all w e W € W we have

Cw = () (0) = (Cw)(0) = Cw.
Let (d,) be a Dirac sequence in L?*(R<p; Rx¢), and let u € . Then
|Bdou — FyBu| | = [Bdau — FBul; = |F5 (Bdu - Bu)l;,
which tends to zero for n — oo. This proves B = Ty B. O]
Combining the last two lemmas we obtain a special version of Theorem [2.7.3

Lemma 2.9.4. Let (A,B, €, D) be a well-posed linear system of Pritchard-Salamon
type on (U, W, X, V), V). With the definitions

M = Ty)kere),, Tan B,

A= T jrer e 3, B = T/ ker B, ¢ =y,

the quadruple (5[, %, gﬁ,@) is a well-posed linear system of Pritchard-Salamon type
on (U, (W, f, 17), V) and minimal. The generator A ofﬁl is given by
domA = X n Tx/ker¢|, dOm A,
Ax = Tx/kerejy Az VI € domﬁ, VzeTndomA.

The domain of the adjoint operator A* is Fx(dom A* A (X/ker€)). Analogous

formulas hold for IZ|W and ﬁ\g The other generators are given by

~

B = 7~TV/ker€|yB and
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O = Cw VweVN\/, Yw e w.

Proof. This follows by first applying Lemma [2.9.2] and then applying Lemma
to the resulting system. Note that the relation

M = TW/ ker €|y ran‘B = 7TX/ker€|X% = WV/kerC\y%

holds. [l

2.10. Notes and references

The theory of well-posed linear systems is standard nowadays. We have marked for
each result in this chapter where the reader can find it. Most of it is taken from
[Sta05], some Hilbert space specific results from [TWQ9].

Since Pritchard-Salamon theory was historically developed before the general the-
ory of well-posed linear systems, the embedding of the Pritchard-Salamon systems
into the well-posed linear systems described in Section [2.8] is rarely used, albeit
well-known.

A detailed description of the generators of the Kalman compression as in Sec-
tion can not be found in the literature yet and neither can the more involved
Kalman compression of Pritchard-Salamon systems in Section [2.9

The example we have worked out in Section [2.6| is based on the examination
of the same equation with different boundary condition in [BGSW02]. Additional
properties of this configuration such as invariant zeros, transmission zeros and the
root locus will be published in [RS15b].
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systems with relative degree

In this chapter we consider systems whose relative degree is well-defined within the
natural numbers. The zero dynamics form and the Byrnes-Isidori form developed
in this chapter are two similar realizations. They both reveal the part of the behav-
ior that can not be seen from the input-output map, the so-called zero dynamics.
Moreover, the Byrnes-Isisdori form corresponds to the zero dynamics form of the

dual system.

3.1. Relative degree

In the current chapter we are going to assume the existence of a relative degree in
natural numbers. This means in particular that the control and the observation
operator are bounded with respect to the state space X. Throughout Chapter [3] we
let the following presumption hold.

Presumption 3.1.1. The Hilbert space X with scalar product (-, -) is real and
(A, B,C,0) is a state linear system on (R, X ,R). Furthermore, v € N, and the

control and observation operator are given by
B:R— X, DBu:=bu, C:X->R, Czx:={(z,c)),
with vectors b e dom A" and c € dom A*" that satisfy
(A, c) #0 and (Alb,c)=0 Vj=01,...,r—2 (3.1)

Definition 3.1.2 (relative degree). A state linear system on (R, X', R) is said to be
of relative degree r if it fulfills Presumption|3.1.1} In this case, we write (A, B,C,0) €
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.
Remark 3.1.3. (i) The system node corresponding to (A, B, C,0) via Lemmal[2.8.5]

is
v|  |Ax+bu
u (w,0) |
(ii) The adjoints of B and C satisfy B* = (-, b) and C* = c. Therefore, a system

is of relative degree r if and only if its dual system is; in other words

A B
C

A B

cdomAxRc X xR - & xR,
c 0

(A,B,C,0)e X, < (A*,C* B*0)eX,.

(iii) The class ¥, is invariant under similarity transformations; in other words, for

every boundedly invertible operator T" we have

(A4,B,C,0)eX, < (TAT',CT ', TB,0)ex,.

3.2. The zero dynamics form

Definition 3.2.1 (zero dynamics form). Let X be a real Hilbert space. A state
linear system (A, B, C, D) on (R, X,R) is said to be in zero dynamics form if and
only if X = R" x V for some Hilbert space V, and the operators A, B, C satisfy the

following conditions:
(i) There exists an operator @ : dom@ < V — V that generates a strongly

continuous semigroup in V;

(ii) The operator A has the domain dom A = R” x dom (), and there are bounded
operators pg,...,pr—1 - R—>R, R:R—-YV, S:V — R such that

[ o | 0 0 0 p S|[ ap |
o 10 -0 p 0| ay
A _ V! 0 (3.2)
Q2 0 p.—o O Q2
Qr—1 I pror O [Qr—
L7 -0 R QL
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for all [ag, a1, -+, a1, n]" € dom A;

(iii) There exists a ¢, € R\{0} such that

] o
0 Qay
Bu=|:], and (] : = Q_1Cy
0 Qr_1
0 U
for all u e R and [ag, g, -+, ap_y, 0] € R" x V.

Remark 3.2.2. If (A, B,C,0) € X, is in zero dynamics form, then A has a block

operator structure of the form

)

An A
Ao | A A
Ay Q

where A1 : R" - R", A;5 : V — R" and Ay : R” — V are bounded operators, and

only ¢ may be unbounded.

Proposition 3.2.3. Fvery state linear system that is in zero dynamics form and

has feedthrough zero belongs to the class 3,.

Proof. Let (A, B,C,0) be a system in zero dynamics form. Then
{lawo, ..., 0,...,0]"eR" xV |ag,...,0,reR } = dom A’
for £ € {1,...,r}. Defining the vectors
b:=[1,0,...,0]" = BI, ci=[0,...,0,¢,0]",
we see b € dom A" and the special structure of A yields

(A, c) =0 ¥ee{0,...,r—2}, and (A"'b,c)=c, #0.

It remains to prove ¢ € dom A* . An inductive argument shows that for all ¢ €

{0,...,r — 1} we have c € dom A* and

£

A¥c=1[v, ..., %1,0]" with =0 Vke{0,...,r —2—1(}.
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If we write [Yo, ..., Jr_1, 0]T := A* "cand let [ag, ..., ay_1, ] € dom A, then

the expression

g Yo 51+ pottr—1 Yo
: : oo + Pr1oy—
A ’ _ 0T D1 1 ’ 71
Qr_1 Vr—1
Ui 0 R xV Qp—2 + Pr_106—1 Yr—1 R"
depends continuously on [ag, ..., @1, n]". This implies that ¢ € dom A*" and
completes the proof of this proposition. m

The goal of this section is to prove that every system of relative degree r can be
put into zero dynamics form by a boundedly invertible transformation. To obtain
this transformation, we choose a special representation of the state space X. We

define the subspace
Sap := span{b} ® span{Ab} @ - - - ® span{ A" b},

where @ indicates that the sum is direct. The Hilbert space X decomposes into the

direct sum

X = SA,b ® Sj{*yc
= span{b} @ span{Ab} @ - - - ® span{A" b} (3.3)
@{c}t N {A S A A (AT

This follows immediately from Presumption Firstly, b, Ab, ..., A""'b are lin-

early independent, and secondly
Sj*’c N SA,b = {0}

Hence, the sum Sap ® Sjx, is direct and since Sy« has by definition at most
codimension 7, equality in (3.3)) follows. This means that every vector x € X has

a unique representation

—agb+ -+ a, AT + n, with ag,...,a,_1€R, ne wac.
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In order to determine the coefficients oy, € R of this representation the next lemma

exploits the relative degree property.
Lemma 3.2.4. Define the functionals
P":X >R, z— P"z:=P" x— 2 Pz m=0,....r—1, (3.4)
j=m+2
where

r—(m+1)
<$ , A* c>

pnT—H X — R’ x— P m+1L = <b A*r—lc> )

and

— A e
P X >R, T Plr = (Pnrf_,_lAj 'h— Z P AT 1b> <<b A 1>>.

k=m+2
forj=m+2 ...,r. Then the following holds:

(i) For all {;me{0,...,r — 1} we have

1, ifl=m

PrAY = ’ (3.5)
0, if ¢ £m,;
P"Sp, = {0} (3.6)
(ii) The operator
r—1 A ‘
Psi, x X — X, st*,c ri=1x— ZO(P]:E) A'b, (3.7)
=

is a projection onto Syx ., and every x € X has a unique decomposition with

respect to (3.3|) of the form

v = (P2)b+ (P2)Ab+ -+ (P')A b + Por 2. (38)

Proof. (i) Assertion (3.6]) follows from the definitions of P™ and Sj*ﬁc. From ((3.1))
we can easily deduce Assertion ({3.5)) for the cases ¢ = m and ¢ € {0,...,m—1}.
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3. State space transformations for systems with relative degree

It remains to show (3.5)) for £ € {m+1,...,r—1}. By definition of P/* and (3.1)

we have

PrA% =0 forall j=0+2,...,r,

and therefore

PmAY = PO AD Y
= P:nn+1Aeb - P£@1Aeb - Ze
= P;:HA% - Z

(P A = Sy PPA%)

;:m+2 PJmAKb

j=m+2 ijAgb
£ m
j=m+2 P] A

<A£b, A*Tﬁl*ec>

(b, A¥"'c)

J/

~-
=1

(ii) By definition of Pst, —and (3.6) we have Psi, v =u for all x € Sjx ., and

by (3.5) we have

span{b} @ span{Ab} @ --- D span{A" b} = Sy, < ker Pst, .

Hence, in view of (3.3)), Psii* is a projection. Finally, (3.8 is a direct conse-

quence of the definition of st* .

Lemma 3.2.5. With P°, ..., P! and st* defined as in Lemma

ator

T:X >R xSy,
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3.2. The zero dynamics form

s bounded and bijective with inverse

TR xS, — X,

r—1
— Z a; A7b + .
j=0

Furthermore, with the orthogonal projector Tst, X — X onto S« ., we have
A%, )

(b, z)
(Ab, x)
T : X >R xSpe, : (3.9)
(A™1b, x)

gL X
SA*,C

and T~* maps Sjl_,b bijectively onto {0} x Sj*,c'

Proof. The assertions about 7" and 7! are a direct consequence of Lemmam (ii).

The formula for 7-* holds because for all [, ..., ap_1,7]" € R"xSgx ,and allz € X

we have
Qo | Q) | [ (b, z) |
o el aq (Ab, )
T |, =<ZajAjb + 77,3:>= N :
Or—1 =0 A1 <Ar71b’ :E)
n | n 1 ﬂ-Sj*ﬁx R’“ij*7C

The last statement on T—* follows from the fact that T is bijective together with

formula (3.9)).

Lemma 3.2.6.

]

(i) For any m € {0,...,r — 1} and P™ as in (3.4), the operator

P™A is closable and densely defined. Its closure is the bounded linear functional
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3. State space transformations for systems with relative degree

PiA: X >R,
<x, A*Tﬁmc>
SR T T (3.10)

<a:, A*r+1_jc>

r j—1
m j—1 m Aj—1
-2 (Pm+1A] b— ), PA b)M

j=m+2 k=m-+2

(i) With Psﬁ*,c as in (B.7)), the operator
AO . domA M SIJ4_*7C c Sj*7c — Sj*7c

{n, A*¢) (3.11)

— An —b——7~
77 77 <b7A*rflc>

is closed and densely defined in Sj*’c and satisfies
Apn = An— (P°An) b = Pst, An Vne Sj*ﬂ N dom A. (3.12)

Proof. For x € dom A, a quick look at the definition of P™ in Lemma [3.2.4] reveals
that the mapping defined in (3.10) coincides with P™Az. The right hand side
of (3.10) is also defined for arbitrary x € X, hence P™A is closable and since

its range is finite-dimensional, the closure P™A is the continuous operator given
by (310).
To prove (ii) we first show

An = (P°An)b + Pst, An VeSS, ndomA. (3.13)

If r = 1, then (3.13) follows immediately from the decomposition (3.3)) and (3.7)).
Assume 7 > 1 and let 7 € Sy« . » dom A. Then (B.3) and (3.7) yield

An = agh+ a1 Ab+ -+ a1 A" + st* An  with o; = P’AneR

and st* Ane Sj*7c. Using this representation we obtain

0=(n, A%) = (A, &) = a,, (A, c),
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3.2. The zero dynamics form
and moreover yields a,._; = 0. Next,
0= <77, A*Qc> = (An, A%c) Qo <AT_1b, c>,
and yields a,._5 = 0. Proceeding in this way, we conclude
0=(n, A"y = {An, A" 7c) & oy (410, ¢)

and arrive at 0 = a,_; = ---ay. This proves (3.13) and the second equality in
(3.12). Note that for all j = 2,...,r we have

<An, A*Tﬁjc> = <17, A*Tﬁj+lc> =0,

whence, by definition, P} An = 0. Now the definition of P° yields

a An, A7)
POy = PPAg— Y Poay = A1 AT ©
n 1 n ]22 7 n <b,A*Tﬁlc> 9

=0

which proves the first equality in (3.12)). This equation shows that Ay maps indeed
into Sy . Since A is closed and densely defined in X and the perturbation P0A
is by (i) a bounded operator, it follows that Ay is a closed and densely defined

operator in Sj*p. This completes the proof of (ii). ]

Remark 3.2.7. Equation (3.11]) shows that the operator A, may be interpreted as

the main operator of a closed-loop system created by the feedback pair

n] ., Ao "
|7 ¢ M i et M e Psi, xR

That is why the space Sy, is called feedback invariant, e.g. in [MRO7].

Theorem 3.2.8. Let T be the similarity transformation defined in Lemma [3.2.5
Then the system (ﬁ, B,C, 0) defined by

Av:=TAT 'z Vze T dom A, Bi= TB, C.=CT

is in zero dynamics form. More precisely, the operator A has the domain R x
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3. State space transformations for systems with relative degree

(Sj*ﬁ N dom A) and is given by

[ ap | 0 0 P°A"p PYA [y |
a 1 0 PLA" 0 ay
~ o1 . : : 0 :
A = | (3.14)
Q9 : .0 PrZATD 0 Q9
(a7 ] 0 1 P1A"b 0 Q1
| n | _O 0 st*,cArb PSX*,.:A_ | n i
forall ag,...,a,_1 € R andne Sj*yc ndom A, and
[y ] | o | [ Qo I 0 |
0 q aq
éu = , é : = , 0
a1 a1 (A™1b | c)
0 |7 Ll L0 e,
forallueR, ag,...,a,_1 €R andne Sj*ﬁ.

Proof. We first show that T'"dom A = R" x (S j*,c N dom A). The standing assump-

tion b € dom A™ implies

T r—1
Tt [ao cee Qg 77] =ZakAkb+n € domA
k=0
for all ag,...,a,_1 e R, ne Sj*ﬁc n dom A. Conversely, we have for all x € dom A
r—1
Pso x =z — Z (PFz)A*b e domA.
A k=0
edom A
-
= Tx = [POLE ... P g PSX* CB] e R"x (Sj*,c 8 domA) )

The decomposition (3.8) applied to the vector A"b reads

r—1
Ab = ) (PFAD) A" + Psi, Ab.

k=0
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3.2. The zero dynamics form

-
Using this we get for all [ao ar .. Qg 77] e R" x SAL*,C N dom A
| ap | [ POAn+ a,_1PYA™D
aq o + Oér_lplATb
T-'A — 7! :
Qr_q Qp_2 + Oérflpr_lArb
| T] l _O{r_lpsi_*’cArb + PSIJA_*,CA/U_
r—2 r—1
= (P’ An)b+ sy, An+ Do AR 4,y Y (PRATD) ARD
k=0 k=0

+ 1P, ATh

r—2
A+ A AR + o, ATh

k=0
r—1
— A (Z ap AFb + n)
k=0

.
= AT [ao ap e 77] :

whence (3.14) holds. Due to Lemma [3.2.6](i) the operator P°A is bounded. Obvi-

ously, all other operators in A except for Psi* A are bounded. It remains to show

’07

that Ps: A generates a semigroup on Six ., i.e. it fulfills Definition [3.2.1](i). Be-

cause of the similarity to A it is clear that A generates a semigroup on R” x St

70’

see Lemma [2.4.150 With respect to the decomposition R” x S}« . the operator A

has the structure

Y

~ A, A
N S
Apr Ao

where the operators Ay : R — R", Ay : Sj*’c — R", and Ay : R" — Sj*?c are

bounded, and 121\22 = PS/&* A| Sty - So the operator

- ~ 4, A
diag(0, Agy) := 0 P — A | M 12
0 Ay Ay 0

differs from A only by a bounded perturbation. In view of [EN0O, Section ITI.1.3],

it is therefore a semigroup generator whose domain equals dom A Obviously, {0} x
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3. State space transformations for systems with relative degree

S j*ﬁ is a closed, diag(0, ﬁn)—invariant subspace of R" xS j*vc, and since the spectrum
of Agy is equal to the spectrum of diag(0, ﬁgg) up to the value 0, the condition (iv) of
[Sta05, Theorem 3.14.4] is satisfied. This theorem implies that diag(0, Ass) |{0}X3j*’c
with domain

dom A n ({0} x Sie,.) = {0} x (Sie. N dom A)

c

generates a strongly continuous semigroup on {0} x Sz« .. Now the identification of
Sj*ﬁ with {0} x Sj*ﬁ and st*’CA with diag(0, AQQ)]{O}X%*’C implies the claim.

Finally, the structures of B and C follow via
T T
TB=Tb= [P% N b} E9).63) [1 0 0 o]

and

CcT ! [ao o) o g n]T = <TZ:1 AR+, c> 0p_q <A’"_1b, c>.

k=0

:
for all [ao @ - n] eR" x Sk . O

Proposition 3.2.9. Let the system (A, B,C,0) € X, be in zero dynamics form as
in Definition|3.2.1, Let V be another real Hilbert space, and let (ﬁ, B,C, 0) e X, be

in zero dynamics form as well with

ﬁ:domﬁcR’”xv—»R’”xi}, 5’:RT><17—>]R,

(00 -0 p S
0 0 P 0 o
o 3.15
,Z: 01 0 y C : :Oérflgr. ( )
0 ﬁr_g 0 Qr_q
0 1 p—1 O n
0 0 R Q

If the two systems are similar via a bounded and bijective similarity transformation
T:R"xYVY —>R"x ]7, then the entries of (3.2) and (3.15)) are related as follows:

(i) p;i =Dp; forall i=0,...,7r—1;
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3.2. The zero dynamics form
(ii) There is a bijective mapping T € B(V; V) such that
(Q,R,S) = (TQT ", TR,ST™") with domQ =T dom Q;
(i) T = c,.
Proof. Simply applying A from r — 1 times to B yields
8 =CA'B=CT 'TA'T'TB=CA'B =c,,

which shows (iii).
The bounded bijective operator 7" : R" x V — R" x V admits a representation
with respect to R" x V and R" x V of the form

TOO TOl TO’I‘

T,;:R—>R, i,7€{0,...,r—1},
Tyw Ty - T, Ty V—->R, 1€{0,...,7r—1},
e ' with bounded v ~ z.e { r-1
: : : T,;:R—->V, je{0,...,r—1},
Too Trw - T Trr:v_)f}
We calculate
Too 1 1
Ty 0 ~ 0
| =T =TB=B= |
T 0 0
The relation
(7)) Q
: - : r—1
CrQlp_1 = C . =CT ' = Er Z Tr—l,kzak + Tr—l,rn
Q1 1 o
Ui Ui
for all [ag, -+, a1, n]" € R” x V implies
[Trfl,O T Trfl,rfl Trfl,r:l = |:O - 001 0]
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3. State space transformations for systems with relative degree

Hence, ) )
1 T To1 Tor—1 Toy
0 T Ty T, T,
T : : :
0 Tr72,0 Tr72 1 TT*2,T‘*1 Tr72,r
0 0 0 1 0
_0 Trl T’I",'I‘—Q 0 Trr i
and we obtain the second column of 7' from
0] 1] 1] 1] o]  [7,
1 0 0 1 T,
0| =4 EX Arlol=TAalo| =T 0| = | Tm
0 0 0 0 0 T
Analogously, we obtain the third column by
0] (0] (0] (0] o] [
0 1 1 1 0
1 ~10 ~ 10 0 1
Al | A =Ta| | =T]| | =
0 0 0 0 0
| 0 ] [ 0 ] [ 0 | [ O ] | 0 ] |

We proceed by calculating the first » columns of 7" in this way and arrive at

0
0

0 ... 0 T |
Tl'r

01 0

0 0 T.

(3.16)

(3.17)

(3.18)

Now the special structure of A, Aand T in (13-2), (3.15) and (3.18)), respectively,
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3.3. The Byrnes-Isidori form

yields
S+ T0,Q] - - S
or@ s T,
0 0 TOT
0 : . : :
' —T|:|=TA| | =AT| |=A|1_,. |=| ~
Trf r O O 7 TT’* T
2,0 0 0 1,
0 I I T o,
Q Trr ~
Ter | -~ - - | QTT”I’ i

By successively comparing the blocks in order from (r — 2)th to first and by finally

considering the last entry, we see that
Tr9p=0=---=T=0 and S=258T,, Q=T1.,QT,"

Finally, we summarize that the transformation has the form

(1 0 ... 0 0]
0
T = :
0
0 T,
This shows that the assertion of the Proposition holds with 7 := T,,. O]

3.3. The Byrnes-Isidori form

Definition 3.3.1 (Byrnes-Isidori form). Let X be a real Hilbert space. A state
linear system (A, B, C', D) on (R, X, R) is said to be in Byrnes-Isidori form if and
only if X = R” x V for some Hilbert space V and the operators A, B, C satisfy the

following conditions.

(i) There exists an operator ) : dom@ < V — V that generates a strongly

continuous semigroup on V;

(ii) The operator A has the domain dom A = R" x dom (), and there are bounded
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3. State space transformations for systems with relative degree

operators pg,...,pr—1 - R—->R, §:V >R, R:R — V, such that

T ] [0 1 0 0 0] ap]
ay o 0 . 0 0 0 o3}
A o 1 0 0
Q2 0 0 0 1 0 Oyp_9
Qr—1 Po P1 o Pre2 Pre1 S| | %
/A R 0 --- 0 0 Q|L n |
T
for all [ao Q1 o Qg 77] € dom A;
(iii) There exists a b, € R\{0} such that
o] o
: &
Bu=1|o9 |, and (]| : =
b,u 01
T
for all w € R and all [ao Q1 ... Qg n] eR" x V.

Lemma 3.3.2. A system (A, B,C, D) is in Byrnes-Isidori form if and only if its

dual system (A*,C*, B*, D*) is in zero dynamics form.

Proof. This is obvious from the structure of the operators in Definition [3.3.1] and
Definition B.2.T] O

In order to transform a system (A, B,C, D) into Byrnes-Isidori form, we may
therefore transform the dual system (A*, C*, B*, D*) into zero dynamics form via
Theorem [3.2.8] and subsequently adjoin the result. We want to elucidate the trans-
formation used in this process a little more and formulate this statement as a theo-
rem.

We still assume Presumption in this section. In we split the space X
into SAvb@Sj*ﬁ. Since the dual system of (A, B, C,0) is of relative degree r as well,
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3.3. The Byrnes-Isidori form

we may analogously decompose X into

X = SA*,C @ Sﬁib
— span{c} @ span{A*c} @ - - @ span{A* ¢}
® O} A {AD A A {ATI

Lemma 3.3.3. Define the operators

P": X >R, P"r:=P] xv— Z Prz, m=0,...,r—1,

j=m+2
where
<:U, AT_(m+1)b>
P, X >R, Pl v:= (o, Ay m=0,1,...,r—1,
and

m—+1

. 1 Jj—1 i <£L’, Arfjb>
Pr:X >R, Prz: <Pm A o= Y prAr c)

k=m-+2

forj=m+2,...,r. Then the following holds:

(i) For any ¢,me {0,...,r — 1} we have

1, ifl=m
P A e =
0, if+m;
P"Sy, = {0}
(ii) The operator
r—1 ) ‘
Po, 1 X —> X, Payri= (1— 3 A*%Pﬂ):g,
3=0

is a projection onto Sjyb, and every x € X has a unique decomposition of the
form

r = (P'z)c+ (P'o)A*c+ -+ (PT'2)A* "¢ + Par.
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3. State space transformations for systems with relative degree

Proof. This follows by replacing A, b, ¢ by A*, ¢, b, respectively, in Lemma m

]

Lemma 3.3.4. With P°, ..., P""! and st \ defined as in Lemma|3.3.5, the operator

F oy
Plx
U:X >R ijjb, r— Uz := : : (3.19)
Pz
| Psi, 7
s bounded and bijective with inverse
o
a1 r—1 .
U™ R xSy, — X, Dol ZajA*]c + .
Op—1 7=0
L]

Furthermore, with the orthogonal projector Tsk X — X onto Sj,b, we have

(z,¢)
(x, A*c)
U™*: X >R xSy, a— : : (3.20)
<a:, A*Tﬁlc>

7T3j bx

and U™* maps Sy« . bijectively onto {0} x Sy,

Proof. The assertions about U and its inverse follow directly from Lemma [3.3.3]

The formula for U™* follows since for all [ag, --+, a1, n]T € R" x Sj,b and all

x € X we have

Qo (z, ¢) Qo
Q7 r—1 <l’, A*C> aq
z,U! : = <J;, Zosz*jc + 7]> = : ; :
1 7=0 <m, A*Tﬁlc> ay_q
| 7] ST I A R™xS,
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3.3. The Byrnes-Isidori form

The last statement on U~* follows from the fact that U is bijective together with

formula (3.20)). O

Theorem 3.3.5. Define U and P™ as in Lemma[3.3.9 and (8.19). The bounded
and bijective operator U™* : X — R" x Sj,b converts the system (A, B,C,0) € X,

into the system
(A,B,C,0):= (U*AU*,U™*B,CU*), with dom A :=U"*dom A,

which is in Byrnes-Isidori form. More precisely, dom A = R" x (Sj’b N dom A),

0o .- 0
0
A\ _ . . . :
o 0 --- 0 1 0
Po Pr vt P2 Pra S
R 0 - 0 0 Q]
with A
pi = PIA* ¢ Vie{0,...,r—1}
. € _ T «
R:R— 8y, Ra= Wsj,bA bi{A’“—lb,c)’ (3.21)
S Sib —-R, Sn= <77, PsibA*rc>
Q:Sjl_,bmdomA_)Si_,bv Qn=7rsijn—R<77, c),
and ~ _ _ .
0 (&%)
: 31
BU = 0 ) 6 : = Oy
(A1, ) u ay_q
0 U
for allu € R, ag,...,a,_1 € R and n € Sj,b. Moreover, ) generates a strongly

continuous semigroup Ag in S,

Proof. We have constructed U in a such away that it transforms (A*, C*, B*,0) into
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3. State space transformations for systems with relative degree

zero dynamics form, i.e. by Theorem we have on R” x dom A* n Sy,

0 P'A*c POA*
1 0 --- 0 PA e 0
o I 0
UATU = r
0 P—2A%¢ 0
1 P1A*¢ 0
0 Psi’bA*TC st,bA*_

For the operator Psi A* restricted to Sk, N dom A*, we use the name
Ay Siyndom A* € Sy — Sy, Ag = Psi A*.

By (3.12)) (interpreted for the dual system) this operator fulfills

* * 777 Arb *
Aen = Psﬁ,bA n=An— CM Vne Sj’b N dom A*. (3.22)

Recall that (T'L)* = L*T* for any densely defined operator L and any bounded
operator T, and if in addition T is boundedly invertible, we also have (LT)* = T*L*
[Wei85, Section 4.4]. Hence, adjoining the equations above yields

1 0 0 1
0 1
U *AU* = ' o :
0 0 -~ 0 1 0
Do P1ot Prea Proa (ar_lHa,n_lpsibA*’“c)
|(PPA)* 0 - 0 0 A, |

It remains to show that the representations of @), R and S in (3.21]) are valid.
The operator P°A* is bounded, see Lemma M(l) Hence (PYA*)* = (POA*)*.
Furthermore, we have for all n € Sj’b and all a € R,

r
7TSIJ4_ bA b

<]TA* a> (n, A™b) _ o
777 R R T]? <A,,,_1b’ C> SL )
Ab

(¢, Ar=1b)~ “
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3.3. The Byrnes-Isidori form

whence (P°A*)* = R. The formula for S is merely the definition of the adjoint of
the mapping o,_; — OérquibA*rC- Lastly, we prove that @ = A¥. Applying the
orthogonal projection sk, to (13-22), we see

(n, A"b)

m VT]ESibmdomA*.

Ao = msy, A'y — ms
The second summand in this representation is a bounded operator from S%, to
itself. Therefore the adjoint of A¢y in the Hilbert space & j,b has the same domain as
the adjoint of Tst bA*] sk, which is the set 751 dom A. Writing out the orthogonal

projection shows for every x € dom A
Tst t=x—(x,b)b—...— <x, Ar_lb> A" e dom A,

whence dom Afy = mg1 domA =S 1,ndom A, Now that the domain is determined,

the calculation

. (n, A"b)
{(Aem, V>81J4_,b = <7T$§’bA n— Wsﬁ’bcma v .
ALb

(n, A™b)
fe, Ay )

_ r—1 <V7 C>
— <77, 7r‘.5/§7bz4y>5L — <77, A bi(A”“b, c)>

Ab

rp (V0
= <7]’ WSX,bAV — ﬂ-Sj,bA bm o

= (A%, v) -

Ab

for all n € 84, N dom A* and all v € S, n dom A shows that

(v, ¢

ASV = ﬂ-‘sﬁ,bAV — Wsi’bATbm.

This is the operator named ) in the theorem, and it generates a strongly continuous
semigroup because its adjoint operator does. The proof is finished. O

The next corollary shows an interesting relation between the zero dynamics form
and the Byrnes-Isidori form: The unbounded lower right operators in both forms

are similar to each other and the spaces Six , and Sy, are isomorphic.
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3. State space transformations for systems with relative degree

Corollary 3.3.6. The transformation U* in Lemma[53.3.4] induces a bijective map-
ping,

[/j* : Sj,b - Sj*,c? n— U* lg]a

with inverse
U™ Sk, — S T Mgl X.
A* ¢ Ab» SA,b

The operator @ defined in (3.21]) on Sj’b is similar to the operator Ay defined in

BII), and
Qn = [7_*14@(7*77 Vnedom@.

Proof. The bijectivity of U* is immediate from Lemma The definition of Ay
yields for all n e domQ = S j,b’

. . . . Urn, A*

U AUy = U (AU*n BRI e ’77 A*’“—lc(;>>
<(7*7], A*Tc>
_\ L 4((), A*r716>1

v

=0

= nsy AU m —|of. 1|4 2

= Qna

which proves the assertion. O

Proposition 3.3.7. Let (A, B,C,0) € X, with Byrnes-Isidori form denoted as in
Theorem [3.3.8. Then

p(A) N p(Q) = { Aep(Q)

r—1
N =Y AN = SN = Q)R # 0 }
k=0

and the transfer function G of (A, B,C,0) is given by

r—1
G<>\) = r—1 <A b7 C> _
X = SiomN - SO - Q)R

Ve p(A) mp(Q). (3.23)
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3.3. The Byrnes-Isidori form

Proof. Since the transformation into the Byrnes-Isidori form (ﬁ, B , 6’, 0) in Theo-
rem is boundedly invertible, we have p(A) = p(A) and

A~ A~

G\ =C\A-—A)"'B=C(\—A)"'B.

Let A € p(Q). Then A—Ais boundedly invertible if and only if the Schur complement

A -1 0 0
A 0 0
. o |-l (A—Q)‘l[—R 0 - 0 0]
0 0 A . 0
| —po -1 P2 A—pea| | 9]

is boundedly invertible [Tre08, Theorem 2.3.3]. The latter is equivalent to
r—1
= g = S(A - Q) 'R £ 0. (3.24)
k=0

Hence, the first claim follows from p(A) = p(A). Now let A € p(Q) N p(A).
Then ([3.24) holds, and we may define the abbreviations

1
A
(A™1b | c) .
= — — P R T = : «
N = T pM =S - Q)R o
(A= Q)R]
It is easily verified that
(A — Az =
1 0 0 o | 1 7 T ]
0 A 0 0 0 A
: —1 0 0 : o :
0 0 A ~1 0 A2 0
“po —P1 o Pra A=Pr S AT (A1, )
R 0 .- 0 0 A—Q _()\—Q)_IR_ | 0 i
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3. State space transformations for systems with relative degree

Hence, z = (A — A)~'B, and we obtain

This completes the proof of the proposition. O

We now investigate the behavior of a system (A, B, C,0) € 3. We will show that
the behavior of a system in Byrnes-Isidori form is closely related to the solution of
a functional differential equation. The latter allows for a simpler representation of
the input-output mapping. In this context we use the abbreviation “f.a.a.” which

means “for almost all”, i.e. for all up to a null set.

Proposition 3.3.8. Let (A, B,C,0) € X,, g € X, u € L. .(R>;R), and y €
C(R>0; R) and use the notation of Theorem[3.3.5 for the Byrnes-Isidori form. De-

fine, for fized ng € Sib, the causal linear operator

o - Li

loc

(R>0;R) — C(Rx0;R),
Yy — (t = SAqg(t)ne + S Sé Ag(t — s) Ry(s) ds> :

Then the following are equivalent:
(i) 3z € C(Rsp; X) with x(0) = zo and (z,u,y) € bhv (4, B, C,0).

(ii) The function y is v — 1-times continuously differentiable and satisfies

?/(t) (950, C)

e 5 3.95
y(r=2) (t) {xq, A*T726> ( )
y(r—l)(t) <£L’0 ’ A*T'*lc>

S(t) yW(s)ds
+ t E :
foy Y
SO " Opl (s) + Sn(s ) + (A", cou(s) ds
1(t) = Ag(t)mss 7o + L Ao (t — 5) Ry(s) ds, (3.26)

for allt = 0.

78



3.3. The Byrnes-Isidori form

(1ii) The function y is r — 1-times continuously differentiable and its rth derivative

satisfies

y " (t) = Epiy(i) (1) + (T y) (1) + <AT_1b, c> uw(t) fa.a. t=0, (3.27)

and,
y(0) (xo, €
' - . (3.28)
y=1(0) (o, A™ ¢)
Mo 7rs/g’bfo

The functions x and n in (i) and (i7) are related by the equation
w(t) = U y(t), ...,y (), n(t)]" Vt=0,

with the transformation U defined in Lemma |3.5.4).

Proof. (i) = (ii): Let (x,u,y) € bhv(A, B,C,0) with x(0) = xy and define the
transformation U as in Lemma By Lemma [2.4.15] the transformed function
T = U~ *z satisfies (Z,u,y) € bhv(ﬁ7 E, 6’, 0). Owing to the boundedness of B this

implies by Lemma (ii) that

Rrxsibx(s) + Bu(s)ds Vt=0,

01 — 0
and that Z € C (Rxo;R” x S%,). Since the operators R, S, and [ © * "= ©
L 1
pbo p1 - Pr—1

appearing in A are bounded, Lemma implies that, if we write the function =

as

8D

(t) = [ao(t)v B a?"—l(t)’ U(t)]T Vit =0,
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3. State space transformations for systems with relative degree

then
ap(t) ap(0) §o ai(s) ds
SN I t 5 . (3.29)
a,—o(t) a,—2(0) §o ar—1(s)ds
a,_1(t) a,—1(0) So o pic(s) + Sn(s) + (A7, ) u(s) ds

(6 = 0) + | Qg 1(s) + Rl s (330)

for all t > 0, and

ap(0) (7o, c)
=U"*x(0) = o

a,_1(0) © (0, A ')
n(0) TsL Zo

Since

y(t) = Ca(t) = CR(t) = ap(t) V=0,

we conclude from ([3.29)) that y(*) = — o) =q;foralli=0,...,r—1. Lemma (i)
shows that (3.30]) implies (3.26)) and therefore (ii) holds.
(ii) = (iii): If (ii) holds, then the lower line of (3.25)) shows that the function

y"=1) = o, _; is absolutely continuous. Therefore, it is almost everywhere differen-
tiable and its derivative satisfies (3.27)).

(iii) = (i): Assume y satisfies (iii). Define [ag, ..., a,1] == [y, ...,y Y]
and the function n by . Then is fulfilled, and as well because of
Lemma[A.2.2] Lemma and Lemma [A.2.3] therefore imply that

Qo
Ju,y | € bhv(fl,l%’,é,o).
Qp_1
Ui
Hence, the function
ZE() = U*[CXO(')7 cee O‘(rfl)(')a n()]T
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3.4. Notes and references

satisfies (z,u,y) € bhv(A, B,C,0). Finally (3.28)) yields the initial value z(0) =

U*xq, and the proof of the proposition is complete. m

Note that the right hand side of (3.27) may be interpreted as an ordinary differ-
ential term >)7—) piy® (t) + (A™"'b, ¢) u(t) which is perturbed by a functional term
(Toy)(t). This structure will be exploited in Section |5.1 to control the system.

3.4. Notes and references

Our definition of relative degree is stronger than the frequency domain definition of

[MRO7]. More precisely, Presumption implies by [MRO7, Lemma 2.9] that the
transfer function of the system fulfills

SjiolgeR s"C(s—A)'B#0, SjgorgeR s1C(s—A)'B=0. (3.31)

This property is called relative degree r in [MRO7, Definition 1.3]. A partial converse

to the implication above is contained in [MRO7, Lemma 2.9]: If the state linear

systems (A, B, C,0) fulfills and ran C* < dom(A* '), then it has relative
degree r in the sense of Definition [3.1.2]

The largest (infinite-dimensional) feedback invariant subspace of ker C' has re-

ceived much attention over the years. Many authors have studied existence and

geometric and invariance properties, even under weaker assumptions than Presump-
tion [3.1.1] e.g. [Cur84] [Cur86, MROT7, Zwa88]. It is well-known that under Presump-

tion m this space is precisely S}, see [Zwa88, Section 4] and [MRO7, Theorem
2.10]. The complete decomposition (3.3) has previously only been considered for

systems with relative degree one, where it is simply X = ker C' @ ran B. This fact
has been used in [Byr87, BLGS98|, [LZ91] for the purpose of high-gain control. Even
for finite-dimensional systems, where it is easy to derive, the zero dynamics form in
the sense of Definition B.2.T] is not well documented.

Instead of that, the Byrnes-Isidori form for (nonlinear) finite-dimensional sys-
tems, which was first introduced in [BI91], is very popular and well understood,
see [BIWT4l, TRTO7, Msi95]. Despite this popularity, it has not been established for
infinite-dimensional systems before. Furthermore, we believe the relation between
the Byrnes-Isidori form and the zero dynamics form of the dual system that was
established in Lemma and Corollary is a new insight and clarifies the
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3. State space transformations for systems with relative degree

relationship between two instruments that are often used to get a hold of the zero
dynamics: the largest feedback invariant subspace of ker C' and the Byrnes-Isidori

form.
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4. Zero dynamics

In this chapter we will analyze the behavior that leaves the output completely un-

affected, the so-called zero dynamics.

Definition 4.0.1 (zero dynamics). The zero dynamics of an LP-well-posed linear
system (2(,98, €, D) is the subspace of the behavior defined by

zd(A,B,¢,D) :={ (z,u,y) € bhv(A, B, €, D) | y=0 }.
If the system is of Pritchard-Salamon type with generators (A, B, C, D) we write
zd(A, B,C, D) :=zd(2A,B,¢, D).
The system is said to have exponentially stable zero dynamics if and only if

IM, >0 V(r,u,0)€zd(2A,B,¢D):
I(z(t), w(t)) | xxu < Me™#2(0)| fa.a. t=0,

and strongly stable zero dynamics if and only if

V(x,u,0) ezd(A,B,¢D9): tlgg) [(x(t), u(t))|| xxu = 0.

4.1. Zero dynamics for systems with relative degree

In this section we characterize the zero dynamics of systems with relative degree in
the sense of Definition [3.1.2] We will prove that the zero dynamics are completely
determined by the semigroup generator in the lower right corner of the Byrnes-Isidori
form and the zero dynamics form, respectively. We start with the Byrnes-Isidori

form.
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4. Zero dynamics

Theorem 4.1.1. Let Presumption[3.1.1] hold. Then, with the notation as in Theo-
rem the zero dynamics of the system (A, B, C,0) € X, is given by

p _ * 0 o SQ{Q()HO
A Ben { (U [chwm]’ wvw,cwo>

where ™Ag denotes the semigroup generated by Q) in Sib.

Mo € Sj,b } ) (4.2)

Proof. Let (z,u,y) € zd(A, B,C,0) and define 7, := ng’bx(O). By Propositionw
[y, ..., y" V]  and n(-) := msy, o () satisfy (8.25) and (3.26). Since y =0, we have
y =0 forall i =0,...,r — 1. Inserting this, we can easily solve and
for u and 7. We obtain 7(t) = Ag(t)ne and u(t) = — (A", ¢)~ Sn(t). Since
Proposition also states that z(t) = U*[y(t), ..., y"=Y(t), n(t)]T, the triple
(z,u,y) belongs to the right hand side of (4.2)).

Conversely, let 7, € Sjjb be given and define z¢ := U* [,?0]. Then shows

<£L‘0 ) C>
: 0
e !
sy, %o
Using this equation, it can be seen that the functions

MO0 )=~ o) = Aglm Ve

satisfy (ii) of Proposition m Hence, this proposition implies that

J o0 ] swim [\ (.
(U'[mQ«wm]’ @@=%,cw0> (U

Since y = 0, the left hand side belongs to the zero dynamics and (4.2)) is shown. [J

0
n(:

)] ,u(),y()) € bhv(A, B, C,0).

Recall that the operator Ay in (3.11)) is the lower right operator in the zero
dynamics form. With the zero dynamics form it can be shown that this operator

determines the zero dynamics as well. But since we already know that A, is similar
to @, this is a simple corollary to Theorem
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4.1. Zero dynamics for systems with relative degree

Corollary 4.1.2. Let Presumption |3.1.1| hold, define Fn := ~m for n €

Sj*’c, and let ™Ay, be the semigroup in Sy« . that is generaled by the operator Ap

defined by (3.11). Then

2d(A, B, C, D) = { (5(-) wo, FRA(-) 20 ,0) | 20 € Sy, }-

Proof. The bijection U* : Sty — Six, defined in Corollary [3.3.6| satisfies 2g(t) =
U~*Aes(¢)U* for all ¢ = 0. Observe that the right hand side of (&.2) is equal to

Therefore, the claim follows from Theorem [£.1.1 and the calculation

S0-0 g (07" Poy, A7) (00 (05, NUAT)

(Ar=1b, c) (Ar=1b, c) (Ar=1b, c)
<U**x, UA*TC> <a7, A*TC>
= = — = —Fz
(Ar=1b, ¢) (b, Ar—1%¢)
for all z € Sy« . O

These findings allow for a characterization of the stability of the zero dynamics

in terms of the operator () or, equivalently, A:

Lemma 4.1.3. Let Presumption hold. Then (A, B,C,0) has exponentially
stable zero dynamics if and only if the semigroup generated by the operator @) in
Theorem |3.53.5 is exponentially stable, and the system has strongly stable zero dy-

namics if and only if this semigroup is strongly stable.

Proof. Theoremincludes that () generates a strongly continuous semigroup 2.
If this semigroup is exponentially stable, then the assertion is an immediate con-
sequence of Theorem Assume on the other hand that (A, B, C,0) has expo-
nentially stable zero dynamics and let ny € Sib be arbitrary. Then equation (4.2))

shows that 0 S%0()
% Q\" )Mo
_— A B .
(U l%(‘)no]’ <A’"_1b,c>’0> e zd(A, B,C,0)
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4. Zero dynamics

Thus, the stability assumption (4.1)) implies with U* as in Corollary that

0 0
= |U* <M|\U*
Sk . H [Q[Q(t)no] ‘ H l%]

Since U* is boundedly invertible, we conclude |2q(t)no| < |U~*|Me=#|no|. This

shows the exponential stability of the semigroup because M and p are by assumption

e Mt

Vi=0: H(?*%(t)no

independent of 79. The part about strong stability follows in the same manner from

Theorem ET.11 m

Corollary 4.1.4. Let Presumption hold and assume that (A, B,C,0) has ex-

ponentially stable zero dynamics. Then its transfer function G satisfies
G(A\) #0 VYVAep(A) nCsy

and

p(A) N Cso = { A e Cyo

r—1

N =Y BN —SA—Q) 'R #0 }
k=0

with po, ..., pr—1,Q, R, and S as in Theorem[3.3.5

Proof. By Lemma the exponential stability of the zero dynamics is equivalent
to the exponential stability of 2g. By [CZ95, Theorem 5.15] this is equivalent to the
conditions Cxg < p(Q) and sup,c_, [(A — Q)~"|| < c. Therefore, the denominator
of the transfer function in is finite at every point A € p(A) n C5p and the

claim follows. O

In view of the internal loop form in Proposition [3.3.8] we may observe: If the
zero dynamics are exponentially stable, then Lemma implies that €, maps

bounded functions to bounded functions.

4.2. Zero dynamics of the heat equation with

boundary control

For general well-posed linear systems the zero dynamics are not necessarily char-
acterized by a strongly continuous semigroup; a counterexample is in [MROT, Sec-

tion 4]. However, we will prove in this section that the zero dynamics of the heat
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4.2. Zero dynamics of the heat equation with boundary control

equation system introduced in Section [2.6]are entirely described by an exponentially
stable, contractive and analytic semigroup. First we introduce the operator that will
turn out to be the generator of this semigroup.

As in Section Q2 is a bounded domain with uniformly C*-boundary 0€2. The
following is a deep regularity result from [HT0S8| Proposition 5.26 (ii)].

Lemma 4.2.1. Let x € WH2(Q) and f € L*(2), satisfy

f Va(€) - V(&) dé = f GREGL
Q Q

for all o € C*(Q) with d,plsa =0. Then x € W2%(Q) and d,x|sq = 0.
Theorem 4.2.2. Consider the operator

Ag i dom Ay < L*(Q) — L*(Q), Apx := Ax,

x 4.3)

PP M-S L (

dom Ay := { =€ W**(Q) zlon |o%2] :
and §,, (&) doe = 0.

Then the following is true:

(i) Ag is self-adjoint and has compact resolvent;

(ii) Ay generates an analytic, contractive, and exponentially stable semigroup on
L*(Q).

Proof. Step 1: We construct an associated sesquilinear form for Ay: Define the space

M- { v e W2(Q) ‘ Jm 2(€)doe = 0 } (4.4)

Then H is dense in L*(Q2). We deduce from the Trace theorem, [HT08, Theorem
4.24], that H is the kernel of a continuous linear mapping, and therefore a closed
subspace of W12(Q). More precisely, H is a Hilbert space inheriting the inner
product of W12(Q). We define the sesquilinear form

ag: HxH—->C, (r,2)— L V(&) - Vz(£) dg, (4.5)
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4. Zero dynamics
which is continuous and symmetric. We prove that there is an a > 0 with
Reag(r,z) = alw,x)yy VaeH. (4.6)

Assume that this is false. Then there exists a bounded sequence (x,,) in H with

||[L'nle,2(Q) =1 Vne N, (47)
and
ao(wy, 1) =5 0. (4.8)

The Rellich-Kondrachov theorem, [HT08, Theorem 4.17 (i)], implies that there exists
some z € L*(Q) and a subsequence (z,,) with |z — z,, [ 12(0) "2% 0. Together with
(4.8) and this implies that (z,,) is a Cauchy sequence in W'*(Q). Thus
we have z € WH(Q) and [z — 2, [ w12 "2% 0. Since differentiation as well as
boundary evaluation are continuous with respect to the W12(Q) norm, it follows
that Vz = 0 and §,, 2(§) d§ = 0. Hence, z is a constant function whose boundary
integral vanishes. This implies z = 0, which is in contradiction to .

Step 2: With the definition of H and ag as in Step 1 and Ay as in , we show

that
domAg={zeH [Tz LX(Q): ap(w,9) =z, 0)1200) VpeH }, (4.9)

and
(Ao, @) 12(q) = —ao(x,p) Yz, € dom A, (4.10)

For x € dom Ay the equation (4.10) follows with Green’s formula since all ¢ € H
satisfy

ao(z, ) = Vx p(§)dg

_ f Az() - p€)de + | d,a(€) - 9(6) dog

o9

~—

- _L 2(€) - p(€) d€ + @ngm(é) dg- | »(§)dog
(N

== <Al’, S0>L2(Q) :
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4.2. Zero dynamics of the heat equation with boundary control

This computation also gives rise to the inclusion “c” in (4.9)). To prove the converse

inclusion, assume that z € H and there exists some z € L*(Q) with

| vel©) @ ae —anla0) = G hiney Ve£H @)

Then (4.11) holds true for all ¢ € C*(Q) in particular. Consequently, we have
z = —Az. We choose an W2?(Q)-function h with

Az(£) d¢
o], = Sﬂwm

and claim that z — h fulfills

| ve-n© Ti@ - - | aw-n© 7@ oW

Let v € WH2(Q). Then ¢ := 1) — Saﬂlq’;% is in H and V¢ = V. Thus we have

JOQ Q
:mz(g) o(€) de — QVh(g) Vi (€)dé
| 20 2@ de + f AR(E) - DE) g — | a,h(€) - &) dé
Ja [e) o2
- [ awe) F@ac + [ ane)- @ ag - [ REHOL gy

2
. L Ax(g) <<p(€) ' 50’7%5)) ac + L AR(E) - D) dé
- | Ak©) —a9) T

Now Lemma implies that z — h € W*2(Q) and 0,(z — h)|so = 0. Hence,
r e W*2(Q) and 0,7|s0 = SQ@Tﬁdg.
Step 3: We conclude statement (i) and (ii): Since we have the relations (4.6)) and

([4.10), and ag(-,-) is symmetric, Theorem VI.2.6 in [Kat80, p. 323] implies that A,
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4. Zero dynamics

is self-adjoint and negative definite. In particular, 0 € p(Ay), and
Ay L*(Q) < dom A.

Since W%2(Q) is compactly embedded in L?(£2) by the Rellich-Kondrachov theorem,
we infer that Ay has compact resolvent. Therefore, its spectrum consists of isolated
eigenvalues [Kat80, Theorem 6.29, p.187], which are strictly negative. This shows
that Ag is a sectorial operator, and by [Sta05, Theorem 3.10.5], it generates an
analytic semigroup 2(y(-). The fact that its largest eigenvalue —wj is negative further
implies that

[20(t) | 5z2(0)) < e ™" Ve Rs,

by [TW09, Proposition 2.6.5]. Hence, the semigroup is contractive and exponentially
stable. O]

As a consequence of this theorem the input-output-interchanged triple (A, C|y, T')
consisting of the operators defined in Lemma is a system node as well (although
not a well-posed one). In particular, Alerc|, = Ao is the generator of a strongly
continuous semigroup 2. The following result shows that this semigroup indeed
gives a full characterization of the zero dynamics. Note that the analyticity of 2,
implies that 2o(t)zo € dom Ay for all t > 0 and therefore the expression I'Uy(t)zg is
well-defined for all ¢ > 0.

Theorem 4.2.3. Consider the L*-well-posed system (A, B, €, D) in Lemma|2.6.12,
Let Ay be as in Theorem and Ao(+) be the semigroup generated by Ay. The
space

loc

Z:={zoeX |TUAo(-)zo € L} (Rz0;U) }

is an Ag-invariant, dense subspace of X and the zero dynamics are given by
zd(20,8,C, D) = { (Ao(-)zo, TAo(-)20,0) | 20€ Z }. (4.12)

Proof. Tt is trivial that Z is an 2lp-invariant linear vector space. Since I' maps
dom Ay continuously into U, the function I'%y(-)x is bounded and continuous for
all g € dom Ag. Hence, dom Ay < Z, which shows the density of Z in X.

We first show the inclusion “c” in (£.12). Assume that (z,u,0) € C(Rxo; X) x
(Rso) x L% .(Rso) is in the zero dynamics of (2(,B,¢, D). We know from

loc

L2

loc
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4.2. Zero dynamics of the heat equation with boundary control

Lemma that dom(I—A)2 is the Sobolev space W'2(€2). Therefore, with the
complex interpolation functor [-, -]y in Definition we have

dom(I —A)3 -[2( dom(I1-A4)}| = [L3(@), W'3(©Q)],, - W),

3/4 3/4

where the last equality follows from the interpolation of Sobolev spaces in [Tri93]
Section 4.3.1, Theorem 1] and [Tri95, Equation 2.4.2/11]. Since Bu is for every

u e C a continuous functional on W12(€), we have
ran B < (W32(Q)) = (dom(I —A)F)’.

Due to the smoothing property of 2 described in (A.1)) there exists an M > 1 such
that

’(dom(I_A)S/S)l‘r < M (1 + t_7/8) VZ‘ S (dOIIl(I _A>3/8>/7 t > 0,

)

dom(I —A)1/2

and consequently |A(t) B| sarwre@)) < M(1+¢" 7). Now let T > 0. Then the last
estimate and the fact that u is locally integrable yield

T rt
L fo |24(t — T)BU(T)HWLQ(Q) dr dt
T prt
= MJ J (14 (t=7)7%) Ju(r) o dr dt
N MJ f 1 + 7/8) ()| dt d7
T
= MJ [a(7)les d7 - sup f 14 (t—7) 7Bt
0 7e(0,T) J+

T
— M(T + 8T"%). f |(7) [0 A7
0

Hence, Tonelli’s theorem implies that the mapping ¢ — B,u isin L' ([0, T]; W12(Q)).
The norm estimate on 2 implies that A(-)zy € L' ([0, T]; W2(Q)) as well. The
state x is the sum of these two integrable functions and therefore we have x €
LY ([0, T]; Wh2(2)). Thus, the following holds for all £ > 0 and all ¢ € dom A by
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4. Zero dynamics

[TW09, Remark 4.1.2]:

{x(t) = 2(0), ) p2(q) = L (@(t), A%P) 2oy + (u, BYg)y, dr

t
- j (Va(t), V) oy + (1, By, dr.

0

Since the right hand side depends continuously on ¢ with respect to the W1%(Q)
norm, this equation extends to all ¢ € W2(Q2). Since x is in the zero dynamics, we
have Cz(t) = 0 for almost all ¢ > 0, which means that x(¢) is in the domain of the
sesquilinear form ag defined in (4.4). Hence, for ¢ € dom Ay < W'2(Q) the equation

above becomes
t

(o(t) — 2(0), @Dz = — f (Va(t), Vo) oy 7 = — f aolz(t), ) dr

0 0

t
_ J (2(t), A3) 200 AT

0

This implies z(t) = 2p(t)x(0) via Lemma [A.2.2/(i). As a consequence, we have

x(t) € dom Ay and the derivative of  with respect to the L?*(2)-norm satisfies

La(t) = Agz(t) e X Vit > 0.

By definition of dom Ay and W in (2.14)) we see that dom Ay = W), and Lemma

therefore implies

La(t) = Agz(t) = Ax(t) = Al Jx(t) + Bu(t)e X Vit > 0.

EI’

Remark now implies that u(¢) must equal I'z(t).

Now we proof the inclusion “>” in ([(.12)). Let zo € L*(2) and define z(t) :=
Ao(t)xo. Since the semigroup 2y is analytic we have z(t) € dom Ay for all ¢t > 0.
Hence, z(t) is an element of the space W defined in (2.14), and the derivative of =
with respect to the L?(€)-norm satisfies

Do) = Agz(t) = Ax(t) B2 Alva(t) + Ba(t) Vi 0.

dt

Since x € C(Rxp; L*(Q2)) and T'z(-) is by assumption in L*(Rs;U), this implies that
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4.2. Zero dynamics of the heat equation with boundary control

(x,u,Cx(-)) is in the behavior of (2,B, €, D) with Lemma [A.2.2/(i). Finally, the
representation of dom Ag in (4.3)) shows that Cz(t) = 0 for all ¢ > 0, hence (z,u,0)

is in the zero dynamics. ]

Remark 4.2.4. (i) Theorem can be seen as an analog to Corollary [4.1.2]

(iii)

There it was shown that the zero dynamics of certain state linear systems are
determined by a strongly continuous semigroup on some proper subspace of the
state space, the codimension of which was determined by the relative degree.
In contrast to this, the subspace Z that characterizes the zero dynamics in
Theorem is dense in X.

For all g € X, the function u := T'%(-)xo is well-defined and an element
of Li.(Rso;U). This can be shown as follows: The estimate (A.1]) for the

semigroup 2o implies that
IM 21Vt >0 [Ao(t)|aom(—age < M(L+t7)e !,

For 6 € (0,1) the expression on the left is therefore integrable over finite in-
tervals. Since dom Ay = W?22%(Q), the interpolation result in [Tri95, Theorem
4.3.1] implies

dom(—40) B2 [ dom(—Ay)], < [X, W22(Q)], = WH2(Q).
Furthermore, the mapping
I W22(Q) > W2 22(0Q), x— (- dx(8)), 20> 3/2,

is bounded [HTOS, Theorem 4.24 (ii)]. Hence, for any choice of 6 € (2, 1) the
function u(-) := TAg(-)xg is in Li (Rso;U).

loc

As mentioned in Remark [2.4.10| the behavior, and thereby the zero dynamics,

can be defined in a weaker sense, such that it allows for inputs in Li..(Rxo; U).

Under these conditions an analogous result to Theorem will be published
in [RSI5D]. In that setup, the space Z is replaced by

{ To € X ‘ FQ[O()QZO = L%OC(RZO;U) } )
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4. Zero dynamics

which is equal to the whole state space L?(Q) by part (ii) of this remark.

4.3. Notes and references

As mentioned in Section the largest feedback invariant subspace in the ker-
nel of C has been extensively studied in many publications [Cur84, [Cur&6, IMROT,
Zwa88|. Furthermore, [MRI0] shows the relation to the invariant zeros of the sys-

tem. But a meaningful definition of the zero dynamics in the sense of a subspace

of the behavior was missing so far: In [BLGS98| the zero dynamics were simply
defined to be the dynamics induced by the closed-loop operator on the largest feed-
back invariant space. This kind of definition is also referred to in [MRO07, MR10]. By
exploiting the zero dynamics form we have established this missing link for systems
with natural relative degree.

Similarly, the word zero dynamics was used in some articles treating parabolic
partial differential equations: The zero dynamics of a one-dimensional parabolic
partial differential equation with boundary control and observation is mentioned in
[BGHY94|. For a multidimensional parabolic partial differential equation the authors
of also exploit the zero dynamics. In all three papers the authors
simply define the zero dynamics to be the semigroup generated by the main operator
restricted to the kernel of the observation operator, either knowing beforehand that
this operator generates a strongly continuous semigroup or assuming so. In contrast,
we have given a reasonable definition of zero dynamics for general well-posed linear
systems and established the connection to the zero dynamics semigroup for our
example of the heat equation with boundary control and observation. Interestingly
enough, Theorem shows that the zero dynamics are described by the zero
dynamics semigroup restricted to a dense subspace.

The question, what trajectories the zero dynamics should cover, is of course
a philosophical one: Allowing for distributional inputs or initial values and weaker
concepts of solutions gives more and more trajectories. The setup presented here
is consistent with the concept of LP-well-posed linear systems. A description of our
example that allows for inputs in Li, (R=o;U) will be given in [RST5D].
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5. Funnel control

Figure 5.1.: Error evolution within the funnel F, with “width c” in [0,v]. The
boundary of the funnel is determined by the functions ié.

In this section we are going to design a special time-varying, nonlinear output
feedback in order to achieve two control objectives: The first one is approximate
tracking, by the output y, of reference signals gy of class WH®(Rsq;R). More
precisely, for arbitrary A > 0, the feedback strategy should ensure for every .. €
Whe(Rs0; R) that the closed-loop system has a bounded solution and the tracking
error e(t) = y(t) — yret(t) satisfies |e(t)| < A for all ¢ sufficiently large. The second
control objective is prescribed transient behavior of the tracking error signal. We

capture both objectives in the concept of a performance funnel

szz{ [(jeR;OxR

lelp(t) < 1 }, (5.1)
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5. Funnel control

which is determined by a function ¢ that belongs to the class

P,y = {‘P € WLOO(R>O)

¢lj04] =0, and
Vo>0: inf{eo(t) [t>v%+d}>0

for some 7y > 0. In other words,

ped:= | o, (5.2)
¥0>0
Note that the boundary of the funnel is determined by the reciprocal of ¢ as depicted
in Figure An output feedback strategy that forces the tracking error to evolve
within the funnel F, will achieve both control objectives.

For example, if liminf; .., ¢(t) > 1/A, then evolution within the funnel ensures
that the first control objective is achieved. If ¢ is chosen as the function ¢t —
min{t/T, 1}/, then evolution within the funnel ensures that the prescribed tracking
accuracy A > 0 is achieved within the prescribed time 7" > 0.

For p € ®, the funnel controller is

2
ult) = VKO0 = el 000 = el h(00) = P 63
where v € {—1,1} depends on the high gain amplification of the system.

Loosely speaking, funnel control exploits an inherent benign high-gain property
of the system. The input can be interpreted as a proportional feedback u(t) =
—k(t) e(t) with the property that the gain k(t) becomes large if |e(t)| approaches
the funnel boundary (equivalently, if ¢(¢)|e(t)| approaches the value 1), thereby
precluding contact with the funnel boundary. We emphasize that the gain is non-
monotone and decreases as the error recedes from the funnel boundary.

The essence of the proof of the main result lies in showing that the closed-loop
system possesses a solution and that the error does not hit the boundary of the
performance funnel. We will prove this for two kinds of systems: First we consider
systems with relative degree » = 1 and exponentially stable zero dynamics. Later
we will consider systems with a special type of unbounded impulse response that is
motivated by the example in Section To this end we will use an approximation

argument and have to sharpen results for the approximating finite-dimensional sys-
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5.1. Funnel control for systems with relative degree one

tems tightly before we can treat the infinite-dimensional class. Since this class is
determined by its input-output map alone, we prove the existence of a global closed-
loop solution, but cannot give a global bound on any norm of the state. However,
such a global bound on the state space norm is established for the boundary control

system introduced in Section [2.6] as an example.

5.1. Funnel control for systems with relative degree

one

We consider systems that have relative degree » = 1 in the sense of Definition [3.1.2]
In particular this implies that the high gain amplification C'B is not zero. In this
situation, the sign 7 of the funnel controller in ([5.3)) is chosen as v = —sgn(C'B) to

obtain the following theorem.

Theorem 5.1.1. Consider a state linear system (A, B,C,0) on (R, X, R) with
relative degree r = 1 and exponentially stable zero dynamics. Let ¢ € ® specify the
performance funnel Fy, and yyer € WH*(Rso; R) be the reference signal. There exists
exactly one triple (x,u,y) € bhv(A, B, C,0) such that

sgn(CB)e(t)’

U0 = TR0 — o

(t)|2(y(t) — Yret(t)) Yt =0,

Moreover,
sup ([[2(t)] + [u(®)] + [y(®)]) < =,

and

Jee(0,1) Yt>0: |y@t) —me)]* < p(t) 2 —c. (5.4)

Proof. We use the equivalence of (i) and (iii) in Proposition [3.3.8, In view of Propo-
sition [3.3.8|(iii) we seek a function y that solves the equations

y(t) = poy(t) + L SAq(t — s)Ry(s) ds + SQ{Q(ﬂﬂ'sibe + C'Bu(t),
- —sgnCB

O TS0 el

y(0) = Cxy.

B (y(t) = yret (1)), (5.5)
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5. Funnel control

Due to our assumption on the relative degree we have C'B # 0. The exponential
stability of the zero dynamics is by Lemma equivalent to the exponential
stability of the semigroup 2, which implies that the functions defined by h(t) :=
SAq(t)R and t — S%Q(t)ﬁsj’bxo are in L' n L*(Rx¢; R). Introducing the auxiliary
variable e(t) := y(t) — yrer(t) as well as the abbreviation

t

f(t) = DPoYret + J h(t - T)yref<7—) dT - yref(t) + QLQ(t)ﬂ-Si- b,’]f07
0 )

we can write ([5.5)) equivalently as

6(1) = poelt) + L bt~ )elr) 7 — (OB EO)e() + 10, Lo 120,

e(0) = Cxg — Yret(0).

Note that this is a perturbed linear integrodifferential equation in the sense of
[GLS90, Section 11.4]. The forcing function f is in L¥(Rs() and the nonlinear
perturbation, k : F, — R, is continuous and locally Lipschitz in the second compo-
nent. Therefore, a standard fixed point argument in the spirit of the Picard-Lindel6f
theorem shows that there exists a unique local solution to this equation around every
point [2] € F,, cf. [GLS90, Theorem 11.4.1]. The fact that ¢(0) = 0 guarantees
that the point [Cxo_?/ref(o)] is in F,. Hence, there exists a solution to the initial
value problem . We denote the maximal interval of existence for this solution
by [0,w) and the solution itself by e : [0,w) — R. Let vy be such that ¢ € ®,,.
The solution exists on [0, 7] because the nonlinear term in disappears on this
interval. Therefore, we know w > g, and we can choose an arbitrary ty € (7o, w).

By definition of the class ®., we have

1 1
0<m:= inf < M := sup 5
te[to,00) o(t)

teltow) p(t)?

<< 00.

Let L be the Lipschitz constant of the function g0_2|[t0700), and define

. o m %]CB\m 1 (t0)?
(= min { —, ) — €llo :
27 Mpo+ M |h]l pagg) + VM| fll pogey) + L #(t0)?
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5.1. Funnel control for systems with relative degree one

We will prove that
le®)? < p(t) 2 —c Vte [ty,w). (5.7)

To this end, we observe that

sare(t)” = e(t)é(t)

= poe(t)? + e(t)f h(t —7)e(r)dr + e(t) f(t) — |CBlk(t, e(t)) - e(t)?

0
< Mpo + M bl e,y + VM|l ey — CBlE(E e(t)) - e(t)®

for all t € [tg,w). Assume that (5.7)) is false and there exists a t; € [tp,w) such that
6(t1)2 > 90(251)_2 — E&.

Then t; must be strictly greater than ¢y due to the definition of €, and the continuity

of ¢ and e implies that the maximum
te:=max{ t € [to,t1) |e(t)? =p(t) > —¢ }
is attained. Furthermore, we have
e(t)’ > p(t)?—e Vte (t,t),

which implies

and

k(t, e(t)) = 1_5(53)2(/)@)2 > i Vite (t,t).

With our previous calculation and the definition of ¢, we obtain
saie(t)” < Mpo + M |h] + VM| f] — |CBlk(t,e(t)) - e(t)*
2dt < MPpo L1 (Rx0) L*(R=0) ’
m
< Mpo + M b i) + VM ] e @ey) — 1CBl - 2%

—L.

A
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5. Funnel control
Since L is the Lipschitz constant of o(-)~2, this implies
e(t1)® —e(t:)? < —2L(t — t.) < —2[p(t) 7 — p(t) 2| < p(t) ™ — o(t:) 7>,
and we have the contradiction
e=pt) 2 —e(t.)? <pt) 2 —et)’ <=

Therefore, we have (5.7)). Since furthermore o(t)*e(t)* < 1 on the compact interval
[0, %], the inequality holds after shrinking ¢ if necessary. This implies the
boundedness of the functions e and k(-, e(-)).

We prove that the solution is global, i.e. that w = c©. Seeking a contradiction,
suppose that w < 0. From we see that e € W1*([0,w)). Therefore, the limit
e(w) 1= lim;_,, e(t) exists, and because of the estimate the point [ ] lies in
the interior of F,. But this means that the solution e can be extended further, in
contradiction to the maximality of [0,w). Hence, the maximal interval of existence
of the solution e must be [0, ).

Since e solves ([5.6), the bounded functions u(t) := k(t, e(t))e(t) and y(t) = e(t) +
Yret (1), t = 0 satisfy . Proposition therefore implies that the function

y(t)

x(t) :=U*
Q QlQ(f)Wsﬁl_‘b{BO + Sé Ao(t — s)Ry(s) ds

V=0,

satisfies (x,u,y) € bhv(A, B,C,0). The exponential stability of 2, implies the

boundedness of the function x and the proof is complete. m

5.2. Funnel control for self-adjoint systems

In this section we apply funnel control to systems that have an input-output map

of the form

t o0
(Du)(t) = J Z cke_k’“(t_T)u(T) dr, wue LflOC(R),

0 k=0

like the example in Section [2.6] However, the results are independent of that section

and based solely on the following presumption, which is assumed to hold throughout
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5.2. Funnel control for self-adjoint systems

Section £.2].

Presumption 5.2.1. The real sequences (¢)ren, and (Ag)ken, have the following

properties:

(i) co >0 and Ay = 0;

(ii) A, cx >0 for all k € N;
(77) (Mg )ken, 1S nondecreasing;
fiv) $7., & < 0.

First of all, we make sure that the operator © above is a well-defined time-invariant
causal operator, © € TIC}. (C; C).

Lemma 5.2.2. Let Presumption hold. As n — o0, the functions

n—1
ha(t) = > e, £ >0, (5.8)
k=0
converge in Li. . (Rsg) to
0
h:= Z cpe M0, (5.9)
k=0

and there holds
0 Ck
R L (o,) = cot + Z )\*(1 —e M) Vit >0,
k=1 "'k
The operators

DM LE(R) = LY (R), DMy = <tHJt hn(t—T)u(T)dT). (5.10)

c,loc

and
¢
D : Lfloc(]R) — LflOC(R), Du 1= <t — J h(t — 7)u(r) dT) , (5.11)
—00
are in TICY.(C; C) and for all t =0,

[Pleeqom = D™ e spogony = 0 7= (5-12)
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5. Funnel control

Proof. With the nonnegativity of cx, a simple calculation gives
t Ch
f lere ™7 |dr = —(1 —e ™) VkeN,
0 Ak

and
¢

t
lcge™ 7| dT = J codT = cot.
0 0

Hence, condition (iv) in Presumption implies that the series in (5.9)) converges

in L'([0,¢]), and we may interchange the order of integration and summation to

|hll L1 o) 2 ce T = ¢t + Z e~ M),

0 k=0

obtain

Young’s inequality [Bog07, Theorem 3.9.4] shows that D and © map L%, (Rxo)
into itself. Owing to their convolution nature it is easily checked that ®{™ and
D are time-invariant and causal, see [Sta05 Theorem A.3.7]. Young’s inequality
furthermore shows for all u € L*([0,t]) that

[T J (h— ha)(s — T)u(r) dr

< A= Pl pr o, Il oo o,y

k —/\ t
Z )\* ) ull oo o,y -

%t {s summable.

which implies ([5.12]) because =

]

It is well-known that the convolution with an integrable function results in a uni-
formly continuous function [Bog07, Corollary 3.9.6]. For the convolution kernel h,,,

we sharpen this result by giving an estimate that is independent of n € N.

Lemma 5.2.3. Let Presumption “ 5.2.1| hold and define D and © by (5.10) and
Loc(R), the function D™ is uniformly

continuous. More precisely, for all t1,t5 = 0 and alln e N

(5.11)), respectively. Then, for all u € L
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5.2. Funnel control for self-adjoint systems

s<max{t1,ta}

The same estimate holds with ® instead of D™,

Proof. We assume without loss of generality that ¢; < t5, and keeping in mind that

the support of u is bounded from below, we calculate

(h (t1 = 7) — hy(ty — 7))u(r)dr

" f * hlts = TYu(r) dr

t1

—00

|(D"u)(t1) — (D) (t2)|

to
U n(ty — T)u(r)dr — f hn(te — 7)u(r)dr
—©
o0
( [ 1) = otz =14 7+ [ bt 07 Bl
0 0
0 to—t1 n—1
- J d7'+f che_/\m dr ||UHLO°((700¢2])
k=0
oo n—1 ta—ty n—1
(| Zaera-eemars [T ae e ) s
k=1 k=0
_ 2 l — o k(t2— t1))
= )\

toeolta—t1) + Y (1 — e M- “))) ] oo ((~o0.12])

N

n—1

Z cke—)\kT(l —>\k to— t1

k=0

>/

= ¢ (o
- (22 (1= e MY gty — 1) |l ((—onta))-

ke

I

—
B

The estimate for ® can be shown by the same calculation with n replaced by oo,
or alternatively, with the convergence in ((5.12]). O

We are going to analyze a Volterra equation that is motivated by the following
consideration: If (,B, €, D) is a well-posed realization of ® then, by ({2.8), the

output of this system with initial value x¢ and input u is y = Du + €xy. In view of
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5. Funnel control

the funnel controller, it is therefore natural to consider a Volterra equation of the

form

y(t) = f Bt — TYu(r) dr + (€20)(8),
©?(t)
12O (y(t) — yer(t))?

It is convenient to formulate this equation in terms of the error e := y — y,f and

(Y () = ret (1))

regard

[ = Cxo — Yt

as an inhomogeneity. This means, we seek a solution e to

e(t) = —J h(t —7) - k(r.e(r)) - e(r)dr + f(t), Vt=0

0

with )
o(t)

k(t,e) = =o'

(5.13)

In order to allow for problems where €z is not bounded on Rxq, but €z, .)€
Wh®([ty, 0)) for some g, the class of funnels in has been chosen in such a way
that ¢, and thereby k, are zero on some small initial interval [0, yp].

To solve the nonlinear Volterra equation globally, we will first treat the case
where the kernel is given by the finite sum h,,, and then exploit the fact that D"

approximates ® locally in the sup norm by Lemma [5.2.2]

5.2.1. Finite-dimensional systems

We treat the case where the convolution kernel is given by the finite sum h,(t) =

—1 . .
o cpe™t. The corresponding convolution operator,

(9{"}u) () = J_ Z cpe™ Dy (1) dr,

has an n-dimensional realization that is of relative degree one and in Byrnes-Isidori

form as the following lemma shows.

Lemma 5.2.4. Under Presumption define h,, and 1™ by (5.8) and (5.10),
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5.2. Funnel control for self-adjoint systems

respectively. Then there exists some R € R"™' and a symmetric negative definite

matriz Q € R=UDX(=1) sych that, with the real numbers

n—1 n—1
i .= Z Chs Py = — Z Cr
k=0 k=0

the matriz 4 := [’;_23 RT] is negative semi-definite, and the n-dimensional system

Q
i
O ] ) [1 0£7L71:| 70)
Rn—1

Po RT
R Q

)

(4,8, C,0) := (

is a realization of D1

Proof. Define

A= , b:= : . (5.14)

'_An—l Cp—1

Then the fact that h,(t) = bTe'b for all t+ > 0, shows that (A, b, bT,O) is an n-
dimensional realization of ®{". The relative degree is one, since b'b # 0. In order to
transform this system into Byrnes-Isidori form, we use the following transformation.
Choose U := [y, ..., U,—1] such that the matrix [ﬁ, (7] e R™" is unitary and
define

T:= L [i U ] :

ol [ fe

The inverse of T' is given by
1 b T
T =l O]
A short calculation shows that the matrices
R:=UTAbb|Y, Q:=UTAU,

fulfill
Po RT

R Q

?

(T'AT, T 'b,b'T) = (
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5. Funnel control
It is clear from the definition of A that Q = UTAU < 0. Suppose that
v UTAUv =0 for some v e R™ 1\ {0}.

Then the fact that Aq,..., A\,_1 > 0 yields Uv e span{e; } and, by our choice of U,
we have vTUTh = 0. Hence the first entry of b is zero, which contradicts the fact

that ¢ > 0. Thus, ) must be negative definite. This completes the proof. O

Remark 5.2.5. (i) The system node [ 3 ¢ ] of the realization (5.14) is self-adjoint.
This is the reason for the title of Section [.2]

(ii) It can be shown that the realization considered in this lemma is impedance
passive in the sense of [Sta02].

Since the realization in Lemma [5.2.4] is in Byrnes-Isidori form and () is negative
definite, the zero dynamics are exponentially stable by Lemma The relative
degree is obviously one, and therefore Theorem [5.1.1] can readily be applied. How-
ever, we crave more. In order to make use of the approximation in , we will
show that the funnel control applied to this system results in a control function
bounded by some constant that is independent of n € N. The crucial part that will

lead us to this independence is the following lemma.

Lemma 5.2.6. Let Ay € R 171 be symmetric and negative definite, and let

Ay € R 1A € R be such that the matric A = [ii i;z] is singular and

negative semi-definite. Furthermore, define

T Lig(Reo) — Lig.(Rxo),

loc

t
T = <t — Ana(t) + J Appe2T AL (1) dr) .
0

Then the following claims hold:

(i) A = A Az Al

t

(ii) For all x € L¥.(Rso) and t = 0, there holds J z(7)(Tx)(r)dr < 0.

loc
0
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5.2. Funnel control for self-adjoint systems

(iii) For all y € WOI’OO(Rgo),

-1 -1
. 1 S — AH —Alg 1
- © (R < lim — |:1 OTn, ] 0.
Hy yHL (R=0) P 8 Rn—1 _A1|—2 8_A22 Ot HyHW1

Proof. (i) By using elementary row transformations and the singularity of A, we

obtain
Ay A

Ajy A

0 = det

] = det(Agp) - (A1 — A1pAy Al,).

Then the result follows from det(Asy) # 0, which holds true since Ay is nega-

tive definite.

(ii) By using the Cauchy-Schwarz and Young's inequality, we obtain for all £ > 0

t o
J .T}(O')J Appe12 AT 2 (7) dr do
0 0

)
< |zl ez o - Jo Ape2 AL 2(7) dr

L2([0.])
< \\517\\%2([0,1:]) ‘ HAlzeAQQ'AlTZHLl([Ovt])

< 220, - (—A12A5 Al).

This gives rise to the estimate

t t o
JO I‘(T)(S.%) (7') dr :AHHLTH%Q([OJ]) + JO I(O’) JO A126A22(07T)AI2‘T(T) drdo

—~

_ i)
< A2 qoq) — Ar24ss AL |2 )72 g0.q) = 0-

(iii) Let y e W, "“(Rsp). Then integration by parts yields

L
J A12€A22(t_T)A1T2y(T) dr

0

¢
= Ajpet2?? fo e*A”TAlTZy(T) dr

T=t t
= A12eA22t (_Az_zle_AQQTAszy(T) 0 + A2_21J e_A2QTA1TQy(T) dT)

= 0
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t
— —AlQeAQ?tAQ_2 e_A”tAlTQy(t) + AlgeA”tAQ_Q1 J e_A”TAlTQy(T) dr
0

t
= —A12A521A1sz(t> + Ao L A2721€A22(t7T)A1Tz y(T) dr

. ¢
&) —Any(t) + A12J A2—2leA22(t_T)A1TQ y(r)dr.
0

—~

Therefore,

t
T(y)(t) = Any(t) + Jo A12€A22(t_T)A1sz(T) dr

t
_ f A Ayl e™20=7) AT 5(7) dr.
0

Since Ay, is symmetric and negative definite, the expression Ajp Ay et AL is

nonpositive for all ¢ = 0 and

0
HA12A2_216A22(')A1T2 = f —ApAy =T AL dT = ApAy Al

HLl(Rgo) 0

Hence, we have
HngLw(Rzo) < A Ay Al HyHLOC(RBO)

and
Hy() - Ty”LOO(R>O) < (1 + A12A2_22A1Tz) ) HyHWMC(R;o) (5'15)

for all y € Wy (Rsg). The Schur complement [GvI.83, p. 103] gives rise to the

equation
-1
1
ORn—l

=s— Ay — A12(3 - A22)_1A;|—2
(Q S — Alg(A2_21 + (3 - A22)_1>A—1r%

[1 Oﬁnfl] s—An  —Ap
—A1T2 S — A22

108



5.2. Funnel control for self-adjoint systems

—1
1
[ORn—l]

and using de I’'Hopital’s rule, we obtain

1 —A —A
lim — [1 0&,1,1] T N
s—0 s _Asz S — A22

o e (5.16)
=1—Ap £1£r(1) ;(A22 + (s — Ax)" A
=1+ A12 }glil’(l)(s - AQQ)_QAIQ =1+ A12A2_22A12.
The combination of (5.15)) with ([5.16|) gives the desired result.
0

Theorem 5.2.7. Let Presumption hold and define h,, and k by (5.8) and
(5.13), respectively. Letto > 0 and f € WH*([ty, 20)), and let p € ® satisfy p(ty) > 0

and | f(to)| < ﬁ. Then, for all n € N, the Volterra equation

e™(t) = — Jt ho(t —7) - k(7, et (7)) - ™ (r) dr + f(t) V= to, (5.17)

to

has a bounded, absolutely continuous solution e!™ : [ty,c0) — R. There further

exists a constant € > 0 independent of n such that
M2 < pt)2—e VneN, t >t (5.18)

Proof. We define ®1 by (5.10) and the auxiliary functions

= fto), tel0.),

fo(t) =
f(t)v t= tO?
O, te [0, to),
1 <p(t)262’ t > tO'
Now we seek a solution to
e{”}(t) = — (Q{”}ko( - e{”}) . e{”}) (t) + fo(t), te[0,00). (5.19)

For t € [0,ty] the functions e!™(t) = fy(t) solves this equation because ko(t;-) = 0
on this interval. In view of the realization of ®1" given in Lemma the solution
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of (5.19)) can be extended beyond ¢ty if and only if there is a solution z of the initial

value problem

“W=1p Q Ogn s

ety = [1 0% ] =) + fold),
z(to) = 0.

2 RT] A(0) [F{”} ] kolt, e (1)) - e (1),
(5.20)

The right hand side of this ordinary differential equation is defined on the open set
D :={(t,z) € [to,0) x R"| (¢, z1(t) + f(t)) € Fy} |

with the performance funnel F, as in . It is readily verified that the right
hand side of satisfies a local Lipschitz condition with respect to z(t) on the
(relatively open) domain D < [tg,o0) x R™. Hence, by the standard theory of
ordinary differential equations (see e.g. [Wal98, Theorem I11.10.VI]), the initial-value
problem has a unique maximal solution

() [to,w) > R, g < w < o,

and moreover,
graph(z") := {(t, 2" (1))| t € [to,w)} = D

does not have compact closure in D.

Now we show that the solution e!™ does not approach the boundary of D. Define

0, te [0, to),
[1, Ogn] 2™ (1), te[to,w).

By Proposition the function y satisfies, for almost all ¢ € [ty,w), the integrod-

ifferential equation

y(t) = poy(t) + R' (Lt @ Ry(7) dT) —To(t, e (1)) - e (1),

= (g{n}y) (t) — T o (t, el™ (1)) - el (1),

(5.21)
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5.2. Funnel control for self-adjoint systems

where
T{n}:L?SC(R>O) - Lfgc(R>0)7
t

(S0) (1) 5= poylt) + BT | @I Ry(r)
0
In order to prove that w = o0, we will exploit two crucial properties of the operator
Tt Firstly, T is negative semi-definite in the sense that
¢

Vt=0, Vee L*([0,t]) : f e(7)(TMe) (1) dr <. (5.22)

This follows from Lemma [5.2.6)(ii), because @ is a negative definite matrix. The
second property is that

rin
Co

i _ gl H <. (). 5.23
Hfo fo Lo([0,00)) HfOHWl (R>0) ( )

This holds because the transfer function of D" satisfies, for all s € C,,

I i
ORn—l ’

n

Zs-fc—k)\k:&n\}(s):[ 1 ]

k=0 ORn—l

s—py —RT
—R s—Q

and by Lemma m(iii),

Hf0 — T{n}fOH
L*(Rx0)
—1

-1
1
[ ] I follw .o )

ORn— 1

We use the representation ([5.21]) to show that the solution of (5.20) is global. Dif-
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5. Funnel control
ferentiating the second line of ({5.20]) shows for almost all ¢t > ¢, that

M (8) = () + folt)
= (Ty)(t) = Tko(t, ™ (1) - ™ (1) + fo(t) (5.24)
= (T (1) + (fo(t) = (T fo) (8) = T ko(t, e (1)) - e (2).

Now define
— —2
m: te%gfw) ()77, (5.25)
L := Lipschitz constant of gp‘[to’oo)(-)_Z, (5.26)
M := sup p(t)”, (5.27)
telto,w)

m [(4M 2L\ " Y
€ _mm{2 m<60”f0”W1°°[000)) mlgr{n}) Jp(to) % — el }(to)Q}- (5.28)

We show that (5.18)) holds for all ¢ € [tg,w). Seeking a contradiction, we suppose
that

Ity € [to,w) = o(t) 2= (™)) <&
By continuity of ¢ and e, the maximum
t- := max {t € [to, 1) } o(t)2 — (™))% = =&}

is attained and
Vie(t,tr): @)= (e"(t)’ <e

Therefore, the definitions and (5.28) imply
Vie (tety): (™) >pt)2—c=m—m/2=m/2. (5.29)

Moreover, for all ¢ € (t.,t1),

AM | follwrwqqocey , 2L EB 1 _ 1 ED kit e (1)),
me Tk e p(t)=2 — (elnd(1))?
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5.2. Funnel control for self-adjoint systems

and thus
2M mk(t,el™ (1)) L
Vite (t,t): ZHfOHWI,OC([(Loo)) — 5 S T (5.30)
Finally, integrating 4 (et (¢))? and invoking (5.24)), we get
11 d t1
(e™ (1)) — (e (t.))? = f d—e{"}(T)2 dr = ZJ e™ (et (r) dr
t. AT te

=2 [P EI)(r) + el (r) (o) = (S (7))

— F{"}k(T, e{”}(T)) (e{”} (7))*dr

2 )] () = (Ee)(@)| —TOh(r, e (@) (e (7)) dr

0

629.623 [ T . . .
£ f M ol ponny — DOk, el (7)) (7 (7))2 dr
te

Co

62 (™ 2M mk(r, e™ (7
< J rin (Hfo\wm[o,oo) _ (2())> dr
te Co
E30) [
? J —L dr.
te

This implies

(™ (0))? — (" (£)) < —L(ty — ) 2" —Jo(tr)? — o(t) 2],

whence the contradiction
e=p(t) 2 — (e (t)? < p(t) > — (e (1))’ <.

This proves ([5.18]) since £ was chosen independently of 7.
Finally, we show that w = o0. Seeking a contradiction, suppose that w < oo.
Because of (5.18)), the tuple (¢, ef™ (1)) is for all ¢ € [to,w) in the set

K := {(t,e) eF, ‘ te[to,w], le]* < p(t) ™2 - 5} < F,.

But the set K is compact, which contradicts the fact that the closure of the graph
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5. Funnel control

of e{”}|[t07w) is not compact. Hence w = 0. O

We have shown that (5.17]) possesses for each n € N a solution e{™, and that these
solutions are bounded away from the funnel boundary by a constant independent
of n. We are now going use these findings to show that the set {e!™ : n e N} is

equicontinuous.

Lemma 5.2.8. The set of solutions { el ! neN } to equation (5.17)) that are
given by Theorem is uniformly equicontinuous. That s,

Ve>0 >0 VYneN Vi, tye |ty 0):
|t1 — t2| <= \e{”}(tl) — e{"}(tz)\ < E.

Proof. Define the input signal corresponding to e!™ by

N | () PN U3 |
u{n} (t) — 1—(<p(t)e{"}(t))2€ (t)7 t € [t[): OO), (531>
0, te [0, to),

so that (5.17) reads
et (t) = (@Mut)(t) + f(t) Ve [t,0).

Then the uniform estimate ([5.18)) in Theorem implies that there is a C' > 0
with [ u!™ | re(fg.00)) < C for all n € N. By Presumption (iv) there exists some

N e N with
o _ £
e 8C

k=N+1

Since f € W1*(Ry,) is uniformly continuous we may choose § € (0 such that

Frie)
1f(t) — f(ts)] < Z for all £, ty > 0 with [t; — t] < 0,
and

N -
E LS TR Vi) =
- A (1 ¢ ) = 8C"

k=1 "k
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5.2. Funnel control for self-adjoint systems
For all t1,t5 € [tg,%0) with |¢t; — 5| < § we obtain with Lemma [5.2.3]

e () — et (1))
=@t (1) + f(t1) — (@MUl (L) — f(t2)]
<[f(t) — f(t2)] + }(@{n}u{n})(tl) - (@{n}u{n})(b)}
(R

<

=|m

ee}
c C _ n
<it (Cot1 —tl+2), - (1-e Ak‘s)) Nl e @)
k=1 "k g
<
N o0
<5+< 00(5 +2207k‘<1_ef)\k5)+2 Z C).C<€.
Ao Ak (SR M
<ﬁ \ ~~ - ~ " -~
<5 <ic

5.2.2. Infinite-dimensional systems

Theorem 5.2.9. Let Presumption hold and define h by (5.9). Let to > 0 and

f e Whe([tg,0)), and let v € ® satisfy o(tg) > 0 and |f(ty)] < ﬁ- Then the

equation

e(t) — —L Bt —7) - k(re(r) - e(r)dr + f(t), ¢ o, (5.32)
with (t)2
2
k(t,e) = T ol 2 S

has a bounded, global solution e € BUC([ty,0)), which is uniformly bounded away

from the funnel boundary in the sense that
Je>0 Vixty: |e(t)]* <p(t)?—c. (5.33)

Proof. Let { elnt ‘ neN } be the set of solutions of from Theorem . and
let t > to be arbitrary. Since the sequence (€™, )nen is bounded by 1/ | e (fro,00))
and, by Lemma [5.2.8] equicontinuous, we can conclude from the Arzela-Ascoli theo-
rem [Rud&7, Theorem 11.28] that (e{”}\[to,ﬂ)neN contains a subsequence (e{™} |[t0,£]) keN
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5. Funnel control

that converges uniformly to some e € C([to,t]). The limit of ([5.18) as n — oo shows
that (5.33)) holds true. Hence, there is some ¢ > 0 such that [[¢?e?| () < 1 — 9,
which is why the inputs u and u{" defined by

,7_2
~ere(n): 7€ lto, ),

0, T E [0, to),
and (|5.31)), respectively, are well-defined and satisfy

= ut™ o
@2(6 — e{nk}) + 90466{7"46}(6 — e{nk})
(1= @?e?)(1 = @*(elm)?)

< 35 (12l oy + 12170 (0.0 €l o o, €™ o 0,7) e — €7 | 0,01 -

L%([to,t])

For k — oo this implies limy_,o, [|u — U{nk}|[0,t]||L°0([0,t]) = 0. Furthermore, in the

inequality

le = (Du + £ ((to,0)
= (e — ™) — (Du+ f) + (@ ul™ 1+ £)|1o(110.1)
< lle = €™ oo, + [Du = DI U™ o1y )
< lle = e ooy + 1(D = DV )u + DU (w0 — wl™) | o 1.1
< fle = "™ o + 19 = D" oo - [uloon
+ DU (noo oy 1w — w1 0.1

the right hand side tends to zero because |D — D5 e(os)) — 0 as k — 0.
This proves that the function e satisfies on [tg, t]. Since this construction was
done with arbitrary t € [to, c0), it enables us to construct a function e : [y, 0) — R
that fulfills all the claims of the theorem. Finally, the uniform continuity of e is
a consequence of the fact that e satisfies by the convolution equation e =
Du + f, and that Du € L*([t, o0)) is bounded and uniformly continuous. O

Corollary 5.2.10. Under Presumption let v > 0, ¢ € &, and a function
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5.2. Funnel control for self-adjoint systems

f e Wh([vg,0)) be given. Then the equation

e(t) = —J h(t —71)-k(r,e(r))e(r)dr + f(t), t = (5.34)

Yo

with k as in (5.13) has a unique global solution e € BUC([yy,®0)). This solution is

uniformly bounded away from the funnel boundary in the sense that
Je>0 Vi>vy: le@P <elt)?—c¢.

Proof. First of all it follows with standard fixed point arguments, see [GLS90, Chap-
ter 12, Theorem 1.1], that for sufficiently small ¢y > v, there exists a unique solution
eo € BUC ([0, to]) of (5.34). Choosing #, small enough guarantees that the function
f e Wh([t, 0)) defined by

to

ft) = —J h(t —7) - k(1,e0(7)) - eo(T)dr + f(t) Vit =to,

Yo

satisfies the prerequisites of Theorem [5.2.9, This gives rise to the existence of a so-

lution € € BUC([to, 20)) of the Volterra integral equation

~

B(t) = —f h(t —7) - k(r, (1)) - &(r)dr + F(t), Vt=t,

to

Combined with ey on [vo, %] this becomes a bounded and uniformly continuous
solution of on the entire interval [, 00).

In order to prove the uniqueness of the solution e we assume that, for some
t € [0, %), there are two functions ey, ez € C([70,t]) that solve (5.34). This means

in particular that

p(s)er(s) <1 and @(s)ea(s) <1 Vse|[y,t]

Define ¢’ := inf { 7 € [y9,t] | e1(7) # ea(7) }. We show that ¢’ < ¢ leads to a contra-
diction. Pick £ > 0 such that, for all 7 in the compact interval [vo, t], the following

inequalities hold:

P13 (T) < 1—€2, pA(r)ed(r) <1—¢%
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5. Funnel control

Further, choose ¢ such that
J~5 54
h(r) dr < —5——.
0 QHSOH%OO([o,t])

Then defining for i € {1, 2} the abbreviations

S02

w; = (t— k(t,ei(t)) - ei(t)) = 1

64,
we obtain for all ¢ € [/, ¢/ + 0]

len(t) = e()]

< j (e = )l () = a7 dr

gj \h(T)[ d7 - sup  [ui(7) — ua(7)]

0 TE[t! t'+6]

et H ©* + plerey (61— e)
S : 1— €2
2l || (1 —p2ef)(1 — p%e3) Lo ([t +8])
4
€ 1
IYPATE HSDH2 (= 80261€2|‘L00([t/,t/+5]) N3
2ll]Z, 7 < —~— - 11 pet L ([t 1/+5])
1
T 5 9 'H€1 - 62HL°0([t’,t’+6])
L= @63 oo i)

€

< er — el Lo, 4a))-

Now taking the supremum of all ¢ € [t',#' + 0] leads to the contradiction
lex — eol| Lo (e +oy) < ler — €] Lo p+a))-

Thus, the corollary is true.
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5.2. Funnel control for self-adjoint systems

5.2.3. Funnel control for the heat equation with boundary

control

Since the input-output map of the heat equation in Section 2.0] is of the type de-
scribed in Lemma [5.2.2] we can apply the results from the previous section to this
example. This readily provides a global solution to the closed-loop system. In

addition, we are going to show that the corresponding state function is bounded.

Existence of a closed-loop solution

Theorem 5.2.11. Let (2, B, €, D) be the L*-well-posed system corresponding to
the heat equation as in Lemmal[2.6.13, Let yor € WHP(Rsg), 2 € L*(Q; R) be given.
Pick any p € ® and define the funnel feedback gain function k by . Then there
exists a unique triple (z,u,y) € bhv(, B, €, D) that satisfies ©(0) = x¢ and

u(t) = =k, y(t) = yeet (1)) (Y1) = Yres(t)) V1> 0. (5.35)

Moreover,
(i) the input fulfills u € BUC(Rxo);
(ii) the output function satisfies y € C(R=q) and ?/‘[5,00) € BUC([0,0)) for all 6 > 0;

(7it) the tracking error e := y — Yyt evolves within the funnel F, with uniform

distance to the funnel boundary in the sense that there is an £ > 0 such that

e(t)Ppt)? <1-2 Vt>0.

Remark 5.2.12. For general o € L*(2;R) the output signal y cannot be defined at
the point zero. That is why the function y cannot be bounded on R, in general.
However, if xq is in W12(Q;R), then the upcoming Theorem and the fact
that C € B(W'?(Q); C) imply that y is bounded on Ry.

Proof. By Theorem and Corollary [2.6.11] the input-output map ® has a rep-

resentation

t o0
Du = (t — J 2 cre My (1) dT) Vue L (Rso),

0 k=0
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5. Funnel control

with ¢ and Ay fulfilling Presumption [5.2.1} Let «p > 0 be such that ¢ € ®,,. By

Lemma we have €xg|p.000 € WH*([70,90)), which together with y.er €
WH*(R) implies that the function f := €xg — yrer fulfills f[ ) € W ([, 0)).
Thus, by Corollary [5.2.10} there exists a solution e € BUC([~o,%0)) of the Volterra
equation with f as above. The corollary also states that

Je>0 Vi>y: |le®)P<pt)?—c.
Define the function

0, te [07 70)7
_k(tve(t)) 'e(t)7 L= %.

The estimate above and the definition of k£ imply that the function ¢ — k(¢,e(t)) is
bounded. Hence, u is bounded and a short calculation using the boundedness of k
and the uniform continuity of e on [y, 0) shows that « is uniformly continuous on
R-g. So u satisfies (i).

With this v we define the functions x and y to be the state and output corre-
sponding to the initial value xy by . Then we have

y(t) = (Cxo)(t) + (Du)(t) = (Cxo)(1), Vi€ (0,70,

and
y(t) = (Czo) (1) + (Du)(t) = weet (1) + f(1) + (Du)(?)

B30 (5.36)

yref(t) + e(t)a faa. t> Yo-

This equation shows that y is continuous, and the restriction of y to [y, 0) is in
BUC([70,0)) since e and y,e¢ are. This implies (ii) because the uniform continuity
on any compact interval [d, o] is trivial.

We claim that holds for all t > 0. On (0,7o), the function ¢ € &, is zero
by definition. Hence, k(t,y(t) — yret(t)) = 0 for t € [0,v) and is fulfilled by
the definition of uw. For ¢ € [yy, o), inserting into the definition of u shows
(5.35).

It remains to prove (iii). Extending e to R-¢ by € := y — ¥, We get

o) e(t)* <1—pt)? e Vt>0
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5.2. Funnel control for self-adjoint systems

because ¢|(,y) = 0. Due to the continuity of e at v, and the properties of ¢, this
implies that assertion (iii) holds for a suitable & > 0.

Finally, the uniqueness of the triple (x,u,y) follows from the uniqueness of the
solution in Corollary and the proof is complete. O

Boundedness and regularity of the closed-loop solution

Note that Theorem does not yet say anything about the norm of the func-
tion x. In this section we will show that = is bounded in the norm of the state
space L*(€2). To do this, we will exploit the fact that any constant output feedback
stabilizes the system exponentially. Well-posedness of regular infinite-dimensional
systems under output feedback is well understood, see [Wei94a]. The following
lemma summarizes [Wei94al, Proposition 3.6, Theorem 6.1 & Theorem 7.2].

Lemma 5.2.13. Let X be a Hilbert space and let (A,B, €, D) be a strongly reqular
L?-well-posed linear system on (U, X,Y) with transfer function G. Let K € B(Y;U)
and w € R be such that 1 +KG(s) is invertible in B(U) for all s € Cs,, and

sup (1 + KG(s

SG(C}W

)>71H3(u) < %

Let x and y be the state and output function corresponding to the initial value xg € X
and input u € L} (Rso;U). With the function v := u + Ky € L% _(U), the state x
satisfies

x(t) = Ax(t)zo + B VE=0.

Here, Ay is a strongly continuous semigroup on X generated by
Agr = (A— KBC)x, domAg ={zedomCyx | (A—KBCx)xe X }, (5.37)

and

t
B = f Ag (t — T)|(d0mA*K)/BU(T) dr,
0

where Ak (t)](gom 4%y s the extension of U (t) to (dom A%)', and the integral is

computed in (dom A%)". In particular, the range of B is contained in this space.

Theorem 5.2.14. Let (A,B,€, D) be the reqular L*-well-posed linear system on
(C; L*(Q2); C) constructed from the heat equation in Lemma and denote its
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5. Funnel control

transfer function by G. For all K > 0 and all s € C~q, the expression 1 + KG(s)

s nonzero and

1
Su — | < O
SECI:U 1+ KG(S) ‘

The operator Ay that is associated to K via Lemma[5.2.13 has the following prop-

erties:

(i) Axx = Az, and

dom Ay = {a; e W?(Q) | 0,2(6) = —K | 2(¢)dos VEe agz}. (5.38)

o

(ii) The operator Ay is self-adjoint, o0(Ax) < (—0,0), and Ax has a compact
resolvent. For all s € p(A) with KG(s) # —1 we have s € p(Ak) and

(s— Ag) ' = (s— A — (s — A)'B ([1( + G(s))_ C(s— AL (5.39)

(iii) Ag generates an exponentially stable analytic semigroup A in L*(€2).

Proof. By Corollary [2.6.10 the transfer function G is uniformly regular and has the
feedthrough D = 0. Moreover, we have for all £ > 0 and all s € C.,

Ck,
1+ KG(s)| > Re(l+ KG(s)) =1+ K Re
1+ KG(s)| > Re(1 + KG(s)) ey
>1+chkRe<S+A’“)/1.
ke, [s 4 Anl?

This shows that 1 + K'G(s) is boundedly invertible in the complex right half plane
and therefore Lemma applies. Now we prove the properties (i)—(iii):

(i) We show that the set defined in is a subset of the domain given in
. Let « be in the former set. Then x is in dom C., because the trace operator
is well-defined on W%2(Q). Moreover, we have the following equation for all ¢ €
dom A* = dom A:

(Az, 90>L2(Q) — (BKCr, 90>L2(Q)

- [ w0 Be@ac— & | s(0)an [ HEao,

09
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5.2. Funnel control for self-adjoint systems

This shows that Arx — BKCx € X because it can be represented by the function
Ax € L*(Q). For the converse inclusion, take any x € dom Cy, with Ax—BKCxz € X.
Then z is by definition an element of the space (X + BC); defined in Lemma [2.2.4]
By Lemma this space equals the space W defined in . Therefore, x €
W?22(Q), and Remark [2.5.3|(i) implies 0,7 = —KCxz = —K §,, 2(¢) d¢.

(ii) Let s € p(A) and KG(s) # —1. Then, combining the Equations (6.14) and
(7.3) of [Wei94a], we get that s € p(Ax) and that holds. Since the resolvent
of A is compact, this formula shows that the resolvent of Ay is compact as well.
Therefore, the spectrum of Ax is a countable set of isolated eigenvalues [Kat80,
Theorem 6.29, p.187]. With Gauf}’s theorem we get for all z, z € dom Ag

(AT, 2)12(q) = JQ Ax() - z(£) dE = — fﬂ Va(l) -Vz()dE+ | dua(§) - 2(€) dog

o2

[ veto) T - [ a(e)doe [ @ aoe

o0
By further reversing the roles of x and z in the above formula, we can conclude that

(A, 2)p2q) = (¥, AkZ)p2q) V2,2 € domAg.

Since the spectrum of Ay consists of isolated eigenvalues, we have Rnp(Ag) # &. In
other words, there exists some A € R such that A— A is onto. Thus, we conclude from
[TW09, Proposition 3.2.4] that Ag is self-adjoint. Furthermore, Ay is nonpositive
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since for all x € dom Ay,

(Ak, Ty = — L Va()  Va@) dé — K (LQ () dag)z <0 (5.40)

We show that zero is not an eigenvalue of Ax. Assume that Axz = 0 for some
function € dom Ag, = # 0. Then implies Vo = 0 everywhere and
$oq2(&)doe = 0. Hence, z must be the constant zero function, which leads to
a contradiction. Consequently zero is not an eigenvalue of Ag.

(iii) With the spectrum containing only isolated eigenvalues, statement (ii) implies
SUDyeo () RE(A) < 0 and the claim follows with [TW09, Proposition 3.8.5]. O

In order to prove the boundedness and regularity results, we need to determine
the domain of the operator root of the closed-loop generator Ax. To this end, we
determine the symmetric sesquilinear form associated to Ay in the sense of [Kat80]
because its domain is exactly the domain of (—A K)%, see Theorem or [Kat80,
Section VI.2].

Lemma 5.2.15. Let K > 0 and define Ak by (5.38)) Then the bilinear form associ-
ated to Ak in the sense of Theorem has the domain dom ax = dom(—AK)% =
W12(Q) and is given by

o) doe- | (€ dor

Q2

axc (@, ) = L V() V@) dé + K

Q2

Proof. Tt is easy to see that ay is a continuous, symmetric, nonnegative sesquilinear
form on W12(Q2). Hence, ax fulfills the prerequisites of Theorem [A.1.5, By this
theorem it suffices to show that the domain dom Ag defined in ([5.38)) satisfies

dODﬁf{K =

(5.41)
{x e WH(Q) | 3z € L*(Q) : a(z,¥) = (z,¥)r20) Y € WH(Q)}

We show “c”: Let x € dom Ag. Then Az € L?(f2), and the inclusion follows since
for all ¢ € W12(Q) the following holds:

o) doe- | (€ do

o0

ax (1) = JQ V(&) V) dé + K

o0

_ LM(SW()dH 0,2(€)8(©) do¢ + K x(@dag-f 56 o

o092 o2 o2
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o doe+ 1 [ s(e)aoe) [ Gan

o0 o2

Now for the inclusion “>”: Let = be an element of the right hand set in ([5.41]).
Then in particular for all compactly supported and smooth functions ¢ : @ — C

the equation

L 2(E)AY(E)dE = —ag(x,v) = — L 2(&)(€) d¢

holds. This implies Az = —z € L*(Q). In order to show that z is in W?%%(Q),
we pick some function h € W*?(Q) that satisfies 0,h(¢) = —K §,, #(§) do¢ for all
¢ € 0. Then for all ¢ e W12(Q) the following holds:

L V(e — h)(E)VI{E) de¢

. L V(&) TO(E) de — L V(&) T(E) de
— axla ) = K | a@doe- | T doc+ | An©TE s

This implies by Lemma that * — h € W?2?(Q), and therefore we conclude
r € W?%(Q). With this information we can finally apply Gauf’s theorem, which
yields

ax () = st)v ©dc+ 1 | alg)doe- | D@ do

o0

- fQAI(é)l/J()d§+ 6,0 dog + K | (€) dog - f B0 doe.

o0 o0 09

The left hand side is by the previous considerations equal to — §, Az(&)(§) d€, so
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we have

O,x(6)Y(€)doe + K aﬂx(g) do - ng( Ydoe =0 Ve WH(Q).

o0
This implies ¢,z = —K §,, z(§) do. O

Lemma 5.2.16. Let 0 € [0, 1] and denote by (-)" the duality with respect to the pivot
space L*(Q). Then the extension A (t)|(aomaxy maps W(Q)" into W2(Q), and

there are c,w > 0 such that
_1re\
|20k ()| (dom ax y T wr20) < ¢ (1 +1 ) e alwory VaeW(Q),

Proof. This is an application of the complex interpolation functor [-, -]s in Defi-

nition [A.1.2] With the self-adjointness of Ak it follows from (A.2), [Tri95 Sec-
tion 4.3.1, Theorem 1] and [Tri95, Equation 2.4.2/11] that

dom(—Ag)"? = [X,dom(—Ax)?]y = [L2(Q), WH2(Q)]g = WH2(Q) VY6 e [0,1].

Consequently, the dual spaces satisfy (dom(—Ag)%2) = W%2(Q)' V6 € [0,1]. By

Lemma and Lemma the semigroup A |(gom A%y Testricts to an analytic
semigroup on (dom(—Ag)??)’, whose generator has the domain dom(—Ag)'~%2

Lemma implies further that this extended semigroup maps (dom A%Q)’ into
dom Aj. % = dom(—Ag)Y? and that

Je,w>0 Ve (dom(—Ag)??) :
S E/0 N
1921 (1) aom gy aom a2 < € (14875 ) o ot 02y

A further use of dom(—Ag)Y? = W2(Q) gives rise to the desired result. O

Theorem 5.2.17. The solution in Theorem |5.2.11| satisfies x € C(R=o; WH2(Q)),
sup |2 (t)|| 2(0) < oo, (5.42)

=

and there are w,c > 0 such that

() w2y < c (1 + t_l%ee_“’t> V> 0. (5.43)
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5.2. Funnel control for self-adjoint systems
If xg € WH2(Q), then x € C(Rso; WH(Q)) and
sup [z(t)|lw12(0) < .
=0

Proof. Let 7o as in Theorem [5.2.11] By definition, u is equal to zero on [0, 7], and
the state = satisfies
l’(t) = Q(<t)x07 Vte [07 70]

Consequently, the smoothing property of 2 (Lemma [2.6.12) yields that

[2(0) w129y < 12(v0) (22 @220y [T0ll 12y < € (L +70") 2ol 20 »

and that = € C((0,7]; W'*(Q)). Obviously, if o € W2(Q) then z is actually
continuous in the point 0 as well.
To analyze the behavior of x on |7y, 00) we exploit the exponential stability of the

semigroup with constant output feedback. Choose any K > 0 and define v(t) :=
u(t) + Ky(t). Then v e BUC([v,0)) and, by Lemma [5.2.13] the function = satisfies

l‘(t) = Q[K(t - ’}/O)ZL’(’Y()) + %Kﬂg_%@(‘ + ’}/0). (544)

We use Lemmato show that B ; has a smoothing effect. Let w € BUC(R=)
and pick some 6 € (3,1). Then B maps continuously into W??(Q)" because B* is
well-defined and continuous from W%2(Q) into C, see Remark For the rest of
this proof we use the notation |B|| := | B|zgyo.2(qy). Lemma implies that
A (t — 7)lwozyBw(r) is in WH*(Q) and
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H%K(t - T)‘W"’Q(Q)’BM(T>HW1,2(Q) sc¢ (1 + (t - 7_)_?> e_W(t_T)HBH”wHOO'

Since the real-valued function on the right hand side is integrable over [0,t), the

integral in By ,w converges in WH?(Q) and
' —w(t—T) —L6 _(t—7)
|Briwllyrog <c | e +(t—7) 7e dr - | B |wle
0
b _1s0 _
=c|B||w]|le | e“T+7 2 e dr
0

1 — gt 1 o0
< c| Bl||w]w (e +J e dr +J
w 0

1

_1t60
T 2z e de)
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5. Funnel control

1 — et 1 140 ©
< ¢| Bl|||wl|s ( + J T2 dr + f e T dT)
w 0 1

1—e vt 2 e
= Bl (F5 4 2+ ).

This shows that B ,w is a bounded function. We show continuity of this function

with respect to the norm of W12(Q) at an arbitrary point ¢ € R-y. We have

H%K7t+hw - %K,thWLz(Q)
t+h t
f A(1)Bw(t +h—7)dr + J A(T)Bw(t — 7)dr

0 0

Wh2(Q)

fh%(T)Bw(Hh—T) dr + f A(7)B(w(t+h—7) — w(t—7))dr

0 W12(Q)
t+h
< f () Bult + h—7)gragy A7
t
t
+ f () Bw(t + h—7) — w(t — 7))lyragay d7
0
t+h 4o
< c||B|||w|oof 14 ar
t
t 1+6
B J L4 % dr sup |w(t+h—7)—w(t—1)|
0 T€[0,t+h]
t+h "
< ¢| Bl|||wl|s f 1+7 =2 dr
t
t
+c]BJ 1+ 5% dr sup |w(t+h—7)—w(t—7)"=%0
0 T€[0,t+h]

because w is uniformly continuous and the function 1 + 5 s integrable on
the compact interval [0,¢ + h]. This proves that the mapping t — B ,w is in
C(Rso; WH2(Q)).

With v(- + ) being in BUC(Rsy), these results applied to show x €
C(R-o; W12(Q)). Finally, the norm bounds and follow from the bound-

edness of B, v(- + 7o) and the estimates

1
HQ[K(t)xOHWL?(Q) <c (1 + t7§> e and HQ(K(t)CEOHLQ(Q) <e v
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5.3. Notes and references

5.3. Notes and references

The funnel control principle was first introduced in [[RS02] and has since than
been extended to a variety of systems, including systems of relative degree greater
than one [IRT06], nonlinear systems with hysteresis [[RS02, TRT07] and differential
algebraic systems [BIR12al, BIR12D]. For all these systems the funnel control strat-
egy is the same, namely to amplify the output error by the simple nonlinear gain
function and feed it back to the input. The challenge is to prove that the
system properties guarantee the existence of a stable global solution to the closed-
loop system. To the variety of systems for which this works, we have added the
infinite-dimensional systems of relative degree one with stable zero dynamics and
the (infinite-dimensional) systems whose input-output map is of the form .
Thereby we have sharpened existing results on self-adjoint, finite-dimensional sys-
tems in Section and provided a new proof for these systems.

The proof of Theorem [5.1.1}is not entirely new: Once the problem is written in the
form (5.5)), a slight modification of [IRS02, Theorem 7] can be applied to complete
the proof. However, we chose to give a standalone proof that is much simpler than
the one for nonlinear functional differential equations given in [IRS02].

The results on self-adjoint systems in Section are already published in [RST5al.
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6. State space transformations for
systems with compact Hankel

operator

In the subsequent sections we construct —by means of state space transformation—
some very useful realizations of time-invariant causal operators with compact Han-
kel operators. The generators of these normalized and balanced realizations have
matrix-like representations and they order the state coordinates according to their
contribution to the input-output map. They are therefore suitable for approximating
the input-output map by finite-dimensional realizations.

In contrast to the transformations in Chapter [3, the normalizing and balancing
transformations in the present chapter far from being similarity transformations:
Firstly, they are in general not continuous, and secondly they cut off any unobserv-

able or uncontrollable part of the system.

6.1. Shift realizations

There are two canonical realizations of ® e TIC;(U;)) which are well-known as
shift realizations. These are partial differential equations of transport type. We will
use the results of Section 2.7 to construct minimal versions of the shift realizations

and determine their generators. The Hankel operator
fj : L2<R§0)u) - LQ(RZ()a y)? fj = W+@‘L2(Rgo;u)’
plays an important role for these realizations and so do the shift operators

't L(Reo;U) — L*(Reo; U), 7 LP(Rs0;Y) = L*(Rx0; )
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6. State space transformations for systems with compact Hankel operator

defined in Section [2.3] Note that (7" )0 and ()50 are strongly continuous semi-
groups. We assume that U, X, ) are Hilbert spaces, and we will make use of the

reflection operator defined in ([2.10)).

Lemma 6.1.1. Let ® € TIC(U;Y) with Hankel operator $ and define Z :=
(ker 9)* = L2(Reo;U). The system

<7T27'—|Z, Tz, 5’J|z, ©> (6-1)

is a minimal 0-bounded L*-well-posed linear system on (U, Z,Y). The main operator

of this system is the following differential operator:
A:domAc Z > Z, dom A = 7z Wy *(Reo: U),

Az =7zi VzedomA, Vae Wy (Reo;U) with mzx = 2,
and its adjoint is

A* :domA* ¢ Z — Z, dom A* = Z n W (Rso; U),

A*z=—%2 VzedomA*.
The control operator is the evaluation functional at zero, i.e.
B:U — (dom A*),  u (o= (0(0), u)y).
The Hankel operator maps dom A into W?(Rxq; V) and the observation operator is
C:domA—Y, Cz = (9H2)(0).

This system is called the exactly controllable shift realization of ® on (ker $)*.

Proof. 1t is well-known that the so-called exactly controllable shift realization of ©,

(T_, L % @)

is an L2-well-posed linear system on (U, L*(R<o;U), V), see [Sta0dl, Example 2.6.5].
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6.1. Shift realizations
The generator of the left shift semigroup 7_ is the differential operator
d% 3W()1’2(R<0;U) CLQ(R@;L{)—’Lz(RsO;U)» T T,
see [Sta0b, Example 3.2.3 (iii)], whose adjoint is known to be
—de WH (R U) © L*(Rep;U) — L*(Reg; U), T — —.

This together with Lemma m proves the well-posedness of and the form
of A and A*. Since the observation operator is clear by Definition [2.4.5] it only
remains to determine the control operator B. By the control operator satisfies
the following for all ¢ € (ker )t n Wh2(Reo;U), u € U:

<90 ) Bu>domA*,(d0mA*)’
Y ’ A

_ Y t . t

= <)\g0(t) , € u>u dt + J_OO <gp(t) , € u>u dt

Now the proof is complete. O]

Remark 6.1.2. Tt can be shown that the exactly controllable shift realization belongs
to a boundary control system in the sense of Lemma Thus, every operator
D € TIC3(U; V) can be realized by a boundary control system.

Lemma 6.1.3. Let® € TIC%(Z/{; V) with Hankel operator $ and define Z := ran §).
Then

(mz, 9, 1, ,@) (6.2)

is a minimal 0-bounded L?-well-posed linear system on (U, Z,Y). The main operator

15
A:domAc Z2 - Z, dom A = W' (R>0; ) N Z,

Az = 2.
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6. State space transformations for systems with compact Hankel operator
The adjoint of this operator is the differential operator
A* :domA* < Z — Z, dom A* = 1zW,*(Rso; V),
A*z = —mzi VzedomA*, Ve Wy (Reg;U) with mzz = 2.

The operator $* maps Wy (Rso; V) into WH2(Reo;U) and the control operator

of (6.2) satisfies
B:U — (dom A*)', (z, BU) dom 4% (dom axy = ((972)(0) , u)y,

for all z € dom A* and all x € Wy *(Rsq; V) with mzx = z. The observation operator

s given by
C:domA—)Y, Cz=z20).

We call the system (6.2)) the exactly observable shift realization of © on ran §).

Proof. Analogously to the previous proof we now apply Lemma to the exactly

observable shift realization on L?(Rxq;)),
(r.. o 1 D).
which can be found in [Sta05l Example 2.6.5 (ii)]. It has the main operator
& WHPR:0Y) € LP(Ro0;Y) — L*(Rog;Y), o i,
see [Sta0d, Example 3.2.3 (iii)], with adjoint
W (Rag; V) © LP(Ro0; V) — LA(Rs;Y), x> —ib.

Therefore Lemma yields the form of A and A*. The verification of the operator
C' is straightforward from the definition of an observation operator. To calculate B
we observe that the dual input-output map A9*9 is in TIC}();U) by Lemma/[2.4.17|

The corresponding Hankel operator is

AH*A 1 L*(Reo; V) — L*(Rso; U).
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6.2. Output normalizing transformations

Since it is the input operator of the exactly observable shift realization of AD*A,
(T+, A6, 1, ﬂ@*ﬂ) ,

we conclude from Lemma (i) that $* maps W, (Rso; V) to Wh?(Ro;U) and
that $H*x is the derivative of H*x. Let A € C.y and uw € Y. Then for all z € dom A*

we take an arbitrary z € Wy*(Rso; V) with 7z = 2 and obtain

<27 Bu)domA*,(domA*)’ = << o A*)Z’ ﬁe)‘u>2
= <5\z + T2, ﬁGAU>Z
= <5\x + 2z, ﬁe,\U>L2(R20;u)

= <5\5§*x + 9%, e,\u>

L2 (Rxo5U)
0 0
_ Y[ * At d [* At
-] (M&*2)(t), ) dt+f_oo<dt(5§ 2)(t), eMu) dt
= ((972)(0) , u)y
This is the desired expression for Bu. O]

Remark 6.1.4. The adverb “exactly” indicates that the input operator of the exactly
controllable shift realization is onto, which is stronger than controllability. Similarly
it indicates in the exactly observable shift realization, that the adjoint of the output

operator is onto, which is stronger than observability.

6.2. Output normalizing transformations

The exactly observable shift realization in the previous Section has the outstanding
property that its observability Gramian is the identity operator. Similarly, the
controllability Gramian of the exactly controllable shift realization is the identity
operator. We call systems of this kind normalized, more precisely, we make the

following definition.

Definition 6.2.1 (normalized system). We say that a 0-bounded L2-well-posed
linear system (2,8, &, D) on three Hilbert spaces (U, X,)) is input normalized if
and only if B8* = Iy, and output normalized if and only if €*C = I .
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6. State space transformations for systems with compact Hankel operator

Remark 6.2.2. Since the Gramians are solutions of so-called Lyapunov equations
[Sta05, Section 10.4], input or output normalized systems are sometimes said to be

“Lyapunov normalized”.

The shift realizations in the last section are the most popular normalized realiza-
tions. The goal of this section is to construct yet another realization that is output
normalized and has the state space ¢(?(N). This can for example be achieved by
choosing an appropriate basis of ran § if the Hankel operator is known and com-
pact. In practice however, one is usually stuck with the generators of a system and
an explicit representation of the Hankel operator is difficult to obtain. Therefore, we
introduce amenable state space transformations that carry us from the generators
of a given realization to a normalized realization.

For the rest of this chapter the following is a standing presumption.

Presumption 6.2.3. We have the Hilbert spacesU, X, Y, whereU and Y are finite-
dimensional. (A,B, €, D) is a 0-bounded L*-well-posed linear system on (U, X,))
with compact Hankel operator $ = €B. Moreover, Xgr and Xs are Hilbert spaces,
and R € B(Xg,X), S € B(Xs,X) are operators such that the controllability and

observability Gramians satisfy
BB* = RR* and e = S55*. (6.3)

Remark 6.2.4. The factors may for instance be R = B, S = €*, or R = (BB*)1/2,
S = (€*¢)Y2. The motivation for the formulation of Presumption is that the
so-called “ADI method” [ORW13] directly provides factors R and S of the Gramians,

which can be used.

A first consequence of Presumption [6.2.3]is that

ran R = ran ‘B, ran €* = ran S, (6.4a)

ker B* = ker R*, ker S* = ker €. (6.4Db)

The equations in ((6.4a)) are consequences of the fact that the operator square roots
fulfill

ran R = ran v RR* = ran VBB* = ran‘B and
ran €* = ran V€*¢ = ran v SS* = ran S,
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6.2. Output normalizing transformations

see e.g. [Kat80), pp. 334-336]. The remaining assertions in ((6.4b)) follow by regarding
the orthogonal complements in (6.4a)). With this, the restricted operators

R: (ker R)* < Xp — ran'B, S : (ker $)* < Xg — (ker €)*,
B : (kerB)' = L*(Reo;U) — ran ‘B, ¢: (ker€)* ¢ X - ranC.

are injective and have dense range. We denote their inverses (and adjoints of their
inverses) by R™', B!, St and € (R™*, B~* S7* and €* ). Recall e.g. from
[Sta05l Lemma 3.5.2] that any injective closed and densely defined operator T' with
dense range satisfies (dom 77 !)* = ranT*, and T—* := (T"Y)* = (T*)7! is well
defined.

Lemma 6.2.5. The mappings

0 :ran S*R — ran $), PURES Q‘fS‘*|m7

where ES~* is the continuous extension of €S~ *|an sxr with respect to the norms of
Xs and L*(Rso;Y), and

U:(ker S*R)T — (ker 9)', U= B R|er s p)L- (6.5)
are unitary with inverses V* = S*E~1 and U* = R™'B, respectively. Furthermore,
YAz = S*Rax Ve (ker S*R)L. (6.6)
Proof. From the fact that ran R = ran‘B and
|€S™ 2l 2@y = (S, CES m)n = (S7"x, Sw)x = |},

for all x € ran 5%, we deduce that €S : ran S*R — ran § is an isometry with dense
range and left inverse S*@~!. Therefore, it can be extended to a unitary operator
U between the closures of these two spaces. Analogously, we can deduce that the

concatenation R*B~* : ran B*C* — ran R*S satisfies
|IR*B 2| xy = |2le2reory V@ € ran B*,

and has a unitary extension that we denote by {* : (ker $)* — (ker S*R)*. Further-
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6. State space transformations for systems with compact Hankel operator

more, because of , the identity R*B *z = R~'Bx holds for all x € ran B*¢*,
which is a dense subset of (ker£)*. The operator R~ ¢): is defined on the
complete space (ker ) and it is closed because R™! is closed. By the closed graph
theorem it is continuous and hence, it must be equal to the unique unitary extension
I of R*B~*. This implies that its inverse is its adjoint, i.e. I = %_1R|(kerS*R)L.

The equation

O ers)t = Cer 5592 B (ker )t = €S *S*RR™' B er 1)L
= V(5™ R)|(ker 5% Ry 4" | (ker 5) -

shows and completes the proof. O]

As a consequence of this lemma and the compactness of ), the operator S*R
is compact as well. It therefore admits a singular value decomposition (sometimes
called “canonical form for compact operators”) in the sense of [RS72, pp. 203]. That
is, there are orthonormal systems (u,)nen in Xr and (v, )nen in Xs and a nonincreas-

ing, positive null sequence (0, ),eny With

o0]
S*Rx = Z on (T, “n>xR v, Vze Xp.

n=1

The numbers o, are called singular values, and (u,, v,) is the so-called Schmidt pair
associated to o,. Note that we allow consecutive o,, to be equal. A more convenient

way of writing the singular value decomposition is
S*R =VXU*, (6.7)
where the operators X € B(¢?), U € B((*; Xg), V € B(¢*; Xs) are defined by
X(@n)nen = (diag(on)nen) (#n)nen = (Tnn)nen (6.8)

and
o0 o0
U(xn>neN = Z LpUn, V<xn)neN = Z L Up-
n=0 n=0

Here, we have assumed that there are infinitely many singular values, or, equiva-

lently, that ran S* R is infinite-dimensional. In case that this range is k-dimensional,

138



6.2. Output normalizing transformations

the results in this chapter hold with ¢? replaced by C* and obvious modifications.
In any case, there holds ran V' = ran S*R, ranU = (ker S*R)*, U*U = V*V = I,
VV* = T and UU* = T gxp)-. Note that the restrictions U*| 5 and
V*|(ker ¥ m)+ are both unitary. It can be seen that ¥ is injective, self-adjoint and has

dense range, and therefore we have
X =V*S*RU = U*R*SV.

Likewise, there is a singular value decomposition of the Hankel operator itself. The
singular values of $ are called Hankel singular values. The following corollary to
Lemma [6.2.5] shows that these coincide with the singular values of S*R.

Corollary 6.2.6. The singular values (0,)nen of S*R are the singular values of the
Hankel operator $.

Proof. The equalities

(S*R)(S*R)" |mnger = T 99"Vl eeg and
(S*R)*(S*R>’(ker5*R)J_ = u*ﬁ*ﬁu’(kerS*R)L

show that v; is an eigenvector of S*R(S*R)* to the eigenvalue o2 > 0 if and only
if v; := Yo is an eigenvector of HH* corresponding to the same eigenvalue and,
analogously, u; is an eigenvector of (S*R)*S*R if and only if @; := $lu; is an eigen-

vector of H*$. Hence it follows that the singular values of S*R and $) are equal. In

particular,
[0 0]
Hu = Z Vioiu, Uy Yue L*(Reo;U) (6.9)
i=1
is a singular value decomposition of §). O]

We will write the singular value decomposition in as operator equation

H= ‘72(7*, where
U := U e B((% (ker$)b), (6.10)
V=9V e B(*ran$),

where i, U are defined in Lemma and X € B((?) is precisely the operator
defined in (6.8).
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6. State space transformations for systems with compact Hankel operator

Lemma 6.2.7. Let S*R = VXU* be the singular value decomposition and
define

M = T(er gyt TAD R = T(p %)L Tan B,

i.e. as in Theorem |2.7.5. The mapping

VESH s M = B

s an isomorphism with inverse given by
STV (25) = Ter s+t RUS (2,) V() € B (6.11)

Proof. With and VV* = m—z73 it can be seen that V*S*|  is an isomorphism
between the asserted spaces with inverse S™*V. (The important part here is that
the spaces were chosen correctly.) The singular value decomposition further shows
immediately that V*S* is the left inverse of e, g+)1 RU ¥~! on ¥/2. To prove that

it is a right inverse we calculate for given y = 7 g+)1 Rr with x € X

W(kers*)LRUzilv*S*y = W(kers*)LRUzilv*S*RI = T(kers*)LRUU*JI

= W(kerS*)iRﬂ—(kerS*R)ix = W(kerS*)iRm =1.

]

Theorem 6.2.8. Let S*R = VXU* be the singular value decomposition of the op-
erator S*R. Then the operators

T:X — (2 TH. 20 c? > X,
x— V*S*x, z— RUYS 'z

are well-defined, and the following assertions hold true:

(i) There exists a constant ¢ > 0 such that, for all z € 2%, u € L*(Reo;U) and
t =0, there holds

ITADT "zl < ¢ |z, |TBule < ¢ ul2@eonn),

€T " )| L2 ogiyy < € |22
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6.2. Output normalizing transformations

(i) With the unique continuous extensions
TAT+ - Ry — 8(52)7 t— W» and CT+ e 8(525 LQ(R>0§3}))>
the quadruple
(A, By, €, D) 1= (TATH,TB,CT+,D) (6.12)

is a minimal 0-bounded L?-well-posed linear system on (U, (%) and output
normalized. Furthermore, the system is unitarily similar to the exvactly
observable shift realization of ® on ran$) via the unitary transformation V in
, and its controllability Gramian is 32,

In the following, we are going to refer to (6.12)) as the output normalized realization

of ® on (2. But there exist of course other output normalized realization on /2.

Proof. We are going to show that the mapping V in transforms the shift
realization into the system (6.12)). The boundedness of the operators in (i)
then follows because V is unitary, and all the properties of the shift realization are
preserved under this transformation by Lemma [2.4.15]

First note that, owing to the equality ker € = ker S* and Definition [2.4.1](iii), we

have the following expression for all x € ran S*R

S*AM)S* 2 = S* M er et A Ter ey S = S*CEA()E'CS ¥ =
= Y*EA(t)C 'Vr = V*7! | V.

ran )

Furthermore, we can substitute (6.11]) to obtain for all z € ran £

VTAD) TV z = YV VS A() T er 50 RUS V0¥
— PVVS*A) S VV*Tx =
= mﬁms*ﬁ(t)s_*ﬂmm*x

_ S 3 e ¢ P 2 Y+ o ¢ USRI
- Q]ﬂ-ran.S““Rm 7—+qjﬂ-raunS*RQ] T = T+33',

and by continuous extension it follows that this formula holds on the closure of
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6. State space transformations for systems with compact Hankel operator

ran §). Furthermore, one gets

CT*V*z = CRUSTW*B*z = €y 5oy RUS WV *U*
= CSTVVY r = Vo5 Vrx = .

Again, continuous extension yields that €RUX ! is similar to I via the unitary

transformation V*0*. The equation
VT8 = UVV*S*B = CT*5*B = €5 *rm—pS*B = CB = 9,

completes the proof of the asserted similarity.

Finally, the controllability Gramian computes to
BB = VFS*BB*SV = V*S*RR*SV = ¥2.

]

Remark 6.2.9. Tt is relatively easy to check that the mapping V*S* : M — (2 is
a pseudo-similarity transformation (Definition between the output normal-
ized system (2,,B,,€,, D) and the realization (7 (e ey A|57 Ter o2 B, €|53. D) in
Theorem It is shown in [RST4, Section 11] that the inverse of this pseudo-

similarity transformation is the closure of the operator T ¢yt RUS™! : X2 — M.

The following corollary shows the relation between the generators of the last

theorem and the generators of the exactly observable shift realization.

Corollary 6.2.10. Define V as in the singular value decomposition (6.10)) of $.
The output normalized realization (6.12) on (* satisfies

(2A,, B, C,, D) = (V*TW, V*ﬁ,ﬁ,@) , (6.13)

and its generators are determined by the following relations:

n=1

dom A, = {(xn) el Z T, 0, € WH(Rsg; y)} : (6.14a)

Agln) = V* &V (), (6.14b)
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6.2. Output normalizing transformations

o0

dom A* = {(xn) e (*: 2 Ty € WMWJ’Z(R%; y)} : (6.15a)
n=1

Ad(an) = =V*dy Vye Wi(Rog; V) with momgy = V(2a). (6.15b)

For each uw e U, the image Byu is an element of (dom A%) acting as

~

(Bot, (20)) (dom A%y dom a3 = (1> (97V (2))(0)) (6.16)

u

Furthermore,

Co(2y) = (Z xnﬁn> (0) VY (z,) e dom A,. (6.17)

All the series here are limits in the L*(Rsq;)) norm.

Proof. We have already shown in Theorem that V is a unitary similarity trans-
formation between ([6.12]) and (6.2)), i.e. (6.13) holds. The generators of (6.12)) are

therefore obtained by applying the same similarity transformation to the genera-
tors of (6.2) given in Lemma in the sense of Lemma [2.4.15] This proves the

corollary. We only have to observe that
dom A, = {(In) e (? ‘ V(z,) € ran$ n W2 (Rxo; y)}

becomes (6.14a)) because V() is always in ran 5. O

Now we show that the generators of the output normalized realization on ¢2 can

also be computed via the state space transformations in Theorem [6.2.8

Theorem 6.2.11. Let T and T+ be as in Theorem[6.2.8 Then the following is true
for the generators A, ,B, and C, of the output normalized realization (6.12)) on (?:

(i) The space Z = T%W&’Q(Rgo;u) is a subset of 0% and a core for A,, i.e. it

is dense in (dom A, || 4om 4, ). Moreover,
AOZ = Tzziﬂ'(kers*)LTJrZ Vze Z, (618)

where the quotient operator A of A is defined as in Theorem .

143



6. State space transformations for systems with compact Hankel operator

(it) The adjoint operator (T |57)* of T\ is given by w5 SV and maps dom A% into
dom A*. The operator Tlx; has a continuous extension T_; : (dom A¥Y -

(dom A¥)" given by

(T2, (Yn) (dom A%y dom ax = <&, TxzSV (Un)) e (6.19)

for all 2 € (dom A*)' and (y,) € dom A*.

(iii) The space T Z is a subset of the domain of the Cesaro extension Cex and the
following formulas hold:

AO|K2ZL' = 7:1E|A77T(kers*)1_7d+$, Voe 262 (620)
B, =T.B, (6.21)
Coz=Cu Ttz VzeZ. (6.22)

Moreover, A, and (A,)_1 are obtained by taking the closures of the respective oper-

ators above.

Proof. We start with proving (i): Lemma [2.4.3)(i) states that B maps the set
Wy (Reo; U) into dom A, so the relation

Z = V*S*BW,*(Rep;U) © V*S*(dom A N ran R) < £¢°

holds. This means that for arbitrary z € Z, we may write z = V*S5*y with y €
dom A nran R. Then S*y € ran S*R, and with VV* being the identity on this set,

one gets
Ty = S5y = STVVESTy = sV B 1 RUSTL,

Recall that by Theorem , Tker o) A 77 15 @ semigroup whose generator A has

the domain M N T(kere)r dom A. Since (i ¢)1y is in this domain, the calculation

.1 "
lgfél i (TAR)T "z — 2)
N SN _
= lt%l ; (V SHA() T (er 53y RUL 1y — z)
: 1 * Q% —% * Qk * Qk
= ltliI(I)lg (V*S*A(t) S~V (V*S*)y — (V*S*)y)
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6.2. Output normalizing transformations

.1
= lgfgl EV* (S*ﬂ-(kerS*)J-Ql(t)ﬂ-(kers*)l-y - S*ﬂ-(kers*)iy)

o1
= V*9* ltll%l ; (W(ker S*)iQ[(t)ﬂ—(ker S#)LY — T (ker S*)Ly)
= V*S*ﬂ-(kers*)lgﬂ—(kers*)ly

= V*S* AN eer 5%y RUS ™12

shows A,z = V*S* AS~*V z and V*5*(dom Anran R) © dom A,. By [ENO0, Propo-
sition 11.1.7], Z is already a core for A, if it is ,-invariant and dense in dom A,. It
is indeed invariant: We can write any z € Z as z = V*S*Bu with u € W01’2(R<0;U)

and the equality

Wz = VES*A() S *Vz = VES*A(H) S *V (V*5*Bu)
— VES* A() T (er 5y B = VES*A(H)Bu = VE5*Brlu

holds. Now the left shift of u is obviously again in Wy*(R<o;U) and the overall
expression therefore in Z. Regarding density, we have that the continuous mapping
V*S*9B maps the dense subset W&’Z(RSO;U) of L?*(R<;U) into a dense subset of
its image, ran V*S*%B, which is X¢2. Since this is dense in ¢2, we conclude that Z is
dense in ¢? and in particular in dom A,. This proves (i).

Now we proof (ii). A simple calculation shows that the adjoint (75;)* of T35 :
M — (# equals 7SV In order to show that (7x;)* maps dom A% into dom A*,

we prove the following three auxiliary statements:

(I) For all (z,) € ¢% there holds SV (2,) = €*V (z,,) with V as in (6.10): Due to
continuity, the equality

Sx =S8S5*S™¥r = C€*ES ™ r = €Y,
which is true for all z € ran S*R, must hold on ran S*R = ran V' as well, and
the assertion follows because V = GV

(II) The operator €* maps W, *(Rxg; V) into dom A*: This follows because €*§ is
the input operator of the dual system, and therefore, €* maps Wol ’Q(Rso; V)

into dom A* by Lemma [2.4.3]

(III) The last assertion is that my€* = 7y C* m5: If we take an arbitrary y €

ran "
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6. State space transformations for systems with compact Hankel operator
L*(Rx0;Y), then (ran )+ = ker B*C* shows that
Ji=Crsy € ran@ nkerB* < (ker €)F N (ranB)*.

Hence, taking the scalar product with any x € M, which must be of the form

T = Tkereyrb for some b € ran B yields

<1‘, @X = <b — Tkereb, @X = <b, @X —<7Tker¢b, @X = 0.
=0 =0
It follows §j € M*, and therefore
Ty = T Ty + WMQ*W(m)ly

= 7r/\7€*7rr7anﬁy + ngj

= 7T-MQ:akﬁra‘lrl.ﬁ’)y?
which is what we wanted to show.

In order to prove our original claim, we pick (z,) € dom A¥. Because V was the
similarity transformation between ([6.12]) and the output normalized shift realization,
we have V dom A* = ﬂranyJWOl’Q(RZO; V) by (6.15a)). Hence, V() = Ty for some
Y€ Wol’2(]R>0; V), and with () and (I1I)) we get

~

(Tx0) " (z) = 7SV () = i€V () = WMQ:*me = 1 ¢*y.

Now, because of ([I)), the latter is an element of 7 (dom A* A (ker €)*), which was
shown to be dom A* in Theorem m Finally, Lemma implies that is
an extension of 7|5 as claimed.

It remains to show (iii). Observe that, on the set Z, the operators A,|= and
7’_1ﬁ|ﬂ7r(ker g#)L T " reduce to their unextended versions and therefore coincide ac-
cording to (i). Since Z is a core of the closed operator A,|,2, whose domain contains
¥¢2, this shows that 7:1ﬁ|m7r(ker g#)L T T is closable and its closure is A,|p2. In par-
ticular, both operators coincide on the larger set X¢2. Hence, the assertion is
true. We make use of this fact to determine the control operator via . For any
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6.2. Output normalizing transformations
weld and X in p(A,) n p(A) it can be calculated by

BOU = ()\ — AO‘@)‘Bo@)\U = ()\ - ﬁlﬁ‘ﬂﬁ(kerg*)LT+> T’/T(kers*)J_%e)\u
= 7:1()\ - g\ﬂ)w(kers*)ﬁBeAu = 7:1(/\ - glm)%e,\u = 7:1§’U,

Here we have used that 7 maps M into 3¢% and that e, s+ 7 77T is the identity
on M. Now for the output operator C,: We take an element z € Z. Then there is
an x € dom A nran‘B such that z = T, but in general 7"z # x. So the first thing
we have to check is that 7tz is in the domain of C.,. An immediate consequence
of the definition of dom C¢y is that ker S* = ker € < (dom Ce N ker Cex). Since

dom Cy, is a linear space, we deduce

——

edom Cex edom Clex

+
Tkere)t T 2 = T(kere)t T = _ T — Tiere® € dom Coy.
—

With this we get indeed
THz = T (ker @)LT+Z + Tkere T T2 € dom Oy

Hence,

1 t
C,z = lim J (ET*2)(7)dr = Co, T 2.
t—0 ¢ 0
O

Remark 6.2.12. If ker &€ = {0}, i.e. the original system is observable, the projec-
tion ey g#)1 is just the identity and A may be replaced by A. In the non-
observable case, one might be tempted to omit the projection in the expression
V*S* AT (ke g3y1 RU Y1 as well, since A maps dom A N ker S* into ker S* anyway.
However, this is not allowed because for arbitrary z € Z, the vector RUX "'z will in
general not be in the domain of A, even though the projected vector 7 (ye; gy RU Yz

lies in 7 (ke g#)1 dom A.

Truncation

The output normalized realization on ¢? proves beneficial for approximation of the
input-output map, or more precisely the Hankel operator: An approximating se-

quence of finite dimensional systems arises by truncating the output normalized
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6. State space transformations for systems with compact Hankel operator

realization on ¢2. In order to define such truncations properly, an additional pre-

sumption has to be made.

Presumption 6.2.13. Presumption[6.2.3 holds and, in addition, the compact Han-
kel operator has a special representation: There exists an h € L'(Rso; B(U;Y)) such
that, for all u e L*(Reo;U),

() (t) = J_OO Wt — Pu(r)dr, faa t>0. (6.23)

The function h is the so-called impulse response of the input output map 9.

Remark 6.2.14. (i) A short calculation shows that the adjoint of §) is the mapping

H* ZLQ(Rzo;y) - LQ(R@QU);
© 6.24
(H*y)(t) = J (h(r —t))*y(r)dr, faa. t=0, ( )

0

cf. [GO14, Lemma 4.9]. Note that our Hankel operator differs from the Hankel
operator defined in [GO14] and [GCP8Y| by multiplication from the left with
the reflection operator A defined in (2.10)).

(ii) The representation (|6.23) implies compactness of the Hankel operator accord-
ing to [GCP8Y, Appendix 1, p.895].

(iii) Recall that an operator is nuclear if only if it is compact and its singular values
are summable. It has been proven in [Guil2, Corollary 5.1.18.] that nuclearity
of the Hankel operator implies that a representation of the form (|6.23)) exists.

Further characterizations of nuclearity of Hankel operators can be found in

[CS01], [Opm08], [Opm10].
Lemma 6.2.15. Under Presumption[6.2.3, the following implications hold:

(i) If Presumption holds, then ® is strongly regular.

(ii) If Presumption holds, then the Schmidt pairs (u;,v;) of the Hankel op-
erator satisfy U; € W (Reo;U) and U; € WHH(Rsg; )).

(iii) If Presumption holds and moreover h € L' n L*(Rso; B(U;Y)), then
the Schmidt pairs (U;, ;) of the Hankel operator satisfy u; € W'?(Reo;U) and
52‘ € W1’2(R>0; y)
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6.2. Output normalizing transformations

(iv) If the system (A, B, €, D) is of Pritchard-Salamon type on (U, (W,X,V),))
with control operator B, then (6.23)) holds with h = €B € L*(Rxo; B(U;Y)).
If, in addition, € € BOW; L*(R=o; Y)) then Presumption[6.2.15 is fulfilled.

Proof. (i) We will prove the regularity with the help of the the output normalized
shift realization of ©. Since regularity is independent of the realization, we may use
the non-minimal output normalized shift realization of ® on L*(R=;)). So let A,
B and C be as in Lemma with Z replaced by L*(Rsq;)), and let u € U be
arbitrary. We want to show that (I—A|z2r.y)) ' Bu is in dom Cex. From
we get that

0

(Bu,d) = |, ho) o) .

0
We will use that (I—A|;2r.,y)) ' Bu is the unique function z in L*(Rs¢;Y) that

satisfies

0
(Al )y = | 0 BO0) At Vi W (R D),

or equivalently,
0
| o wtony dt = o, =410 e
Now we define the function
o0
z(€) = ¢t (J e "h(t)u dT) VE=0,
13

and claim that it solves the above equation. It can be shown by standard estimates
that this function is in L' n L®(Rx¢;)). Hence, Holder’s inequality implies that

this defines indeed an L?*(Rs¢;)) function. Furthermore, the derivative,

#(§) = z(§) — h(Qu,
is integrable as well. Therefore, we can use partial integration, and we obtain for all
p e Wy?(Rog; ))
a0

) (1= A7)0 prany) = f (2(€), ol€) + PlE))y At

0
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6. State space transformations for systems with compact Hankel operator

~ [ (@), #(€)y — (649, 9Oy e~ (2(0), p(O)

0

- [ " o))y de.

0

This shows that @ = (I —A|[2(r.,)) ' Bu. Since x is easily seen to be continuous,
it follows that « € dom Cex with Cexz = x(0) = e "h(r)udr. By [Sta05, Theo-
rem 5.6.5] the fact that (I —A|;2g.,)) ' Bu € dom Ce for all u € U implies that D
is strongly regular.

The assertions (ii) and (iii) are proven in Theorem 4.4] and [GO14],
Lemma 4.11], respectively.

The first part of (iv) follows from [CLTZ94, Lemma 3.5 and Corollary 3.6], and
the additional assumption guarantees that h € L' n L*(R=o; B(U;))). O

For the rest of this Section, Presumption [6.2.13] is assumed to hold. The special
case where h € L*(Ro; B(U;Y)) is considerably easier and will arise in Chapter [7]
where we treat Pritchard-Salamon systems.

The above lemma makes the following definition of the output normalized trun-

cation possible.

Definition 6.2.16 (output normalized truncation). Let Presumption hold
and denote by (0, )nen the sequence of singular values of the Hankel operator $) with
corresponding Schmidt pairs (0}, ;). Choose r such that 0,1 # o, and denote by
d% the differential operator d% : WH(R20; V) — LY (Rxo; V). The r-th order output
normalized truncation of © is the finite-dimensional system (A, B, C,, D) defined
by
aip -0 Qi by
A= L eCr, B.=|:]eBU,C,
ary ccc Gpr br

Co=|er o e|eBEY), D= limDN),

and

aij <”l’ dg“ﬂ>Lw(R>o;y>,Ll(R>o;y> ==
bi =0 (-, 4i(0)),, B0
¢ = 7,(0) eV
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6.2. Output normalizing transformations

Remark 6.2.17. The output normalized truncation is called “balanced truncation”
in [GO14]. We prefer the expression “output normalized” and reserve the name

“balanced truncation” for the realization that actually is balanced in the sense of
Definition [6.4.1]

The input-output map of the output normalized truncation approximates the
input-output behavior of the original system. More precisely, Guiver and Opmeer
have proven the following theorem in [GO14l, Theorem 2.3 and Proposition 5.12]:

Theorem 6.2.18. Under Presumption the output normalized truncation of
(A, B,C, D) is a minimal 0-bounded output-normalized state linear system on (U,
C", ¥) with an exponentially stable semigroup. Its input-output map ©, approxi-

mates © in the sense that

1D~ Dilnczey) = 1D = Drlweeen <2 ), ow (627

{n>r|on#oLVk<n}

Note that our presumptions do not guarantee summability of the Hankel singular
values. If they are not summable, the right hand side in is to be interpreted
as infinity.

The remainder of the current section shows that the output normalized truncation
is obtained by some kind of truncation of the output normalized realization on ¢?
and therefore deserves its name. If h € L?(Rq; B(U;Y)), then Lemma and
Corollary [6.2.10]imply that e; € dom A, for all j € N and that the coefficients of the

output normalized truncation satisfy
aij = <€i> A0€j>£2 s Cj = Caej.

Without the additional assumption on A the situation is much more difficult for the
following reason. Since ¥; is only in W' (R=g; V), the unit vector e; is not in the
domain of A, described in . It is therefore necessary to use the extension
A,le, on e; instead. The functional A,|se; € (dom A%) is by Lemma defined
through the adjoint , and can, by partial integration, be shown to equal

() Al sy = — [ (3 25000 3(E))
Yy
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6. State space transformations for systems with compact Hankel operator

J Z Un(§)2n dgvj(€)>y dg,

with 4 ;€ L'(R~¢;Y). This representation is valid for all (x,) in the domain of A%,
which means 377, ¥,2,, € Wy*(Rs0; V). Unfortunately, e; is not in this domain. At

a first glance, it may seem straight forward to extend this expression via

0

(ei, Aole,e5) = f

0

<5¢(§), %%(5)%} d§ = <77i’ ;?5J>Lw(R>0;y),L1(R>o;y)’

which is well-defined because v; € L*(Rx¢; )). To do this properly, however, we need
to extend the functional A,|ne; to the set {(z,) € ly : X7 Uz, € WH(Rog; V)1
Since Wy (R=0;)) n Wy (Rsg; Y) is not dense in W' (Rsg; ), this extension
can not simply be obtained from continuity. Instead we must explicitly declare
the construction of this extension to be the following: First, the subspace of all
functionals in (W' (Rx0; )))’ that can be represented by an L'-function is identified
with the actual space L'(Rx¢;)), and then it is embedded into the dual space of
W1 (Rs0; V). For the operator B,, which experiences the same difficulties only
with the L!-function h(-)u instead of <4 4¢j, one can either proceed in the same way
or, more elegantly, by using the Cesaro extension of its adjoint. The next theorem

formalizes the construction explained above.

Theorem 6.2.19. Let Presumption hold, and let A,, B, and C, be the gener-
ators of the output normalized realization (6.12)). Then there exists a space W, < {o
such that the following holds true:

(i) For allie N the canonical unit vector e; is an element of W,;
(7i) Aole,e; € W for all i, ran B, ¢ W, and W, < dom(C,)ex;

(7it) The matriz entries a;j, b;, ¢; of the output normalized truncation in Defini-

tion satisfy

ai; = (€, Ao€j)yy, i eC,
bl() = <€i> lgo'%/\}o,v\}{7 = <(B:)exei7 '>Z,{ € B(U, C)a (628)
C; = (C’O)exej € y
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6.2. Output normalizing transformations

where (BX)e is the Cesdro extension of BX.
If, in addition, h is in L*(R=o; B(U;Y)), then it is possible to choose W, = (2.

Proof. Let us first assume that h € L' n L*(R-o; B(U;Y)) and set Wy = ¢*. The
representation of $* in (6.24) and B, in (6.16)) show that the following holds for all
(x,) € dom A* and u € U:

0

(Bt () tom a2 o a5 = f (u, B @V (), dr = (TR, (52))

0

Recall that (dom A%)" is by definition the dual space of dom A¥* with respect to the
pivot space (. Whence (2 is by definition considered as a subset of (dom A*)’, and in
this sense the functional Byu € (dom A*)' is equivalent to the (2 sequence V*h(-)u.

In this way, we can make sense of the following scalar product:

(Bou, €)p = <V*h(-)u, ei>£2 = (h()u, 5z’>L2(R>o;Jf)
= (u, (9*%)(0)), = (u, (TSV*5)(0)),
= (u, O'ﬂjl(o»u = bz(U)
As mentioned before this theorem, the other equations in (6.28)) follow immediately
from Corollary [6.2.10]since e, is in dom A4,. So the case where h € L*(Rxo; B(U;)))

is settled.
For h e L'(Ro; B(U;Y)), we show that the space

W, =

—~

(wn) € ba | V(w,) e WH(Rs0:Y) |

with the norm |/(w,)[, 1= H‘N/(wn)le,l(R?o;y) has the asserted properties. Because
the Schmidt vectors v; = ‘7@ are in WH(R>¢; V), the vector e; is by definition in

W, and (i) is true. We claim that the space
3fe L' (Rs0;Y) V(x,) € dom A :

Wo =4 /€ (dOIIlA:)/ <f> (xn)>(domAé‘)/,domA;" :L <fo(£)>y(£)>y dg

for some y € W, (Rsg; V) with Tangly = Vi(zy).
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6. State space transformations for systems with compact Hankel operator

with norm | f|;, = | 7l L1 (R=0;y) 18 continuously embedded into W), via the injection

L Wo - W, f s (za))ww, = LOO <f i 2n0n (€ > d§ Y(zn) €W,.

A simple estimate shows [(tf , (zn))wrw,| < [tf] 21 @®200)[ (20) ]I, and hence, ¢f is
a functional on W,. The estimate [vf|w; < |f],3, moreover shows the continuity
of the embedding ¢. To conclude the injectivity of ¢, observe that the statement
(f s (za))wiw, = 0 for all (2,) € W, is equivalent to §;°(f(€), w(€))ydé = 0 for
all w € WY (Rso;Y) M ran$), which implies f € (ran$)*. Hence, f is the zero
functional on dom A% if tf = 0. Note that the embedding of £* into (dom A*)" that
we used in the previous case is inherent in the definition of (dom A¥*)’. The analogous
embedding ¢ that we have now does not come automatically with any definition. We
had to define it manually.

In order to prove that A,|s,e; € W/, it suffices now to show that A,|se; € W, for
all j € N. Choose an arbitrary (z,) in dom A%. Recalling the formula for
A* | we choose y € W, (Rsg; V) with Tangly = V(z,) and have

<< ) A |€26]>don’1*A>ok7 domA* <A:(Zn> ? €J>
(Ve @),
<_d7§y’ Vej>L2(R>o;y)

- " o). g0),

In the last line we have used partial integration between a Wh'- and a I/VO1 2_function,
which is justified by approximation with smooth functions. The equation above

shows that A,|se; is an element of W, with A0|226j = Now it is merely

d ~
d—gvj.
a matter of definition to see that {(e;, tA,|s,ej)w, w:, equals the desired formula for
the matrix entries a;;.

Similar to the previous case, the representations of B, and $* in (6.16]) and ((6.24 -

imply for all (z,,) € (dom A,)* and u e U

Bou7 Ty ’ :<hu7‘7xn> .
< ( >>(domA2,“) ,dom A% () ( ) L2(Rx0;))
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Since h is in L'(Rso; B(U;Y)), this shows Byu € W, with Byu = hu. Hence, the
embedding ¢ gives
Q0
~ 6.24) o~
B eimym, = | BT ¢ B (575) O
0
The alternative representation of b; uses the Cesaro extension of B, which is defined

as

1 t
(BY)ext 1= %ir% t,[ (Brz)(—7)dr Yaedom(B])ex.
- 0
For e; we have
%:62‘ " 55*‘761 = ﬁE‘N/*sz = alﬂi € W1’1<R<0;Z/{).

Since dom(B¥)ex is by definition the set where the limit above exists, we conclude
that e; € dom(B¥*). for all i € N and that

, (Bg)exeipu = Cu, 03ti(0) )y = bi(u)(0).

Analogously, W, is contained in the domain of (C,). since W!-functions are con-

tinuous and therefore posess a Cesaro limit at zero. Thus,

t

1 1t
(Co)exej = lim = | (€,e;)(7) dr = lim J v;(1)dr =7,(0) = ¢,
t—0 ¢ 0 t—0 ¢ 0

and the proof is complete. O]

6.3. Input normalizing transformations

In analogy to Section [6.2] it is possible to construct an input normalized realization
on ¢2, which is unitary similar to the input normalized shift realization on (ker )+
via the transformation U in . We will not carry this out here explicitly. Instead
we only give one lemma highlighting another interesting aspect: The restriction of
the output normalized realization to the subspace ¥¢? is input normalized. This

lemma is based on the same principle.
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6. State space transformations for systems with compact Hankel operator

We equip the space X¢2, i.e. the image of ¥, with the scalar product

<'7 '>E€2 = <Z_1'7 2_1'>£2-

Lemma 6.3.1. Let Presumption hold. The output normalized system (6.12))

restricted to Y02, i.e.
(ﬂ,ﬁ,g,@) = (Q[O|E€27%07Q:O|Z€27©) 3 (629)

is an input normalized 0-bounded L*-well-posed linear system on (S0%, || - |se). The

generator A of 2 satisfies

domA = Z = {redom A, n 2% : A,z e X%}, (6.30)

A:domAc X? - 302, Ar=A,x VYzedomA,

where the space Z = V*S*BWy*(Reo;U) is as in Theorem |6.2.11]

Proof. In analogy to the proof of Theorem [6.2.8] we claim that the operator
UL™': 26 — (ker )",

with U as in the singular value decomposition , is a unitary similarity trans-
formation between the system and the input normalized shift realization
on (ker $)*. We know that Uis unitary. With respect to the scalar product of 3¢2,
the operator & € B((2;X(?) is unitary as well. So it suffices to show that UX !

transforms ([6.29)) into (6.1). In Lemma we proved that R~'B maps (ker $)*
into (ker S*R)* and the restriction R8¢ ). was named U*. Using the readily

verified fact that R~!B also maps ker § into ker S* R, we therefore have
W(kerS*R)i (R_l%)u = ﬂ*ﬂ'(kery))Lu YVue L2(R<0; U),

and consequently for all x € ran ‘B

V*S*r = V*S*RRBB o = V*S* R (er 535y (R B)B '

- (6.31)
= SU M T er ). B0 = DU M(ger 90 B~ .
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Using this and the A-invariance of ran B, we get

Ao (t) |5z = V*S*A(H) RUS™
= SU* T (v 50 B A BUUS ™!

= Eﬁ*ﬂ(kerﬁ)l7{|(kerﬁ)l (7271.

This shows that the semigroup 2, |2 is unitarily similar to the strongly continuous
semigroup of the shift realization on (ker$))*. For the input operator, equation
(6.31) immediately gives the asserted equality

V*S*% = Eﬁ*ﬂ—(kerfj)l-ﬂ-(ker%)i- = E(’j*ﬂ'(kerﬁ)L,
and finally, the output operator € equals
CRUS™ = ¢B(B ' R)US™ & 6] 10 UUN = 9]y U5

Altogether we have shown that is unitary similar to the system ([6.1). There-
fore, its well-posedness follows from Lemma and moreover, the unitary trans-
formations keep the system input normalized.

Also by Lemma the domain of A is given by the transformation nU*
applied to the domain of the exactly controllable shift realization. With this

becomes
dom A = SU* T ger sy Wo > (Reo; U) = VES*BWy* (Rep; U) = Z.

On the other hand, we know that 2 is the restriction of 2, and strongly continuous
with respect to [-|y.. Hence, the generator A must be the part of A, in 2¢* by
Lemma [A.1.4] The latter is by definition the last term in (6.30) and therefore the

proof is complete. O]

Remark 6.3.2. (i) We point out that the crucial property of the space Z is that
T € %WOI’Q(RSO;L{) does not only imply = € dom A n ran‘B, but also Az €
ran‘B. This explains the fact that V*S*Ax is again an element of X/? and
thus the relation ([6.30)).

(i) A further similarity transformation with the unitary operator 7! : (2 — (2
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6. State space transformations for systems with compact Hankel operator

yields an input normalized system on the state space ¢? as mentioned at the
beginning of this section. This gives a completely analogous result to Theorem
with output normalization replaced by input normalization. For the
upcoming interpolation step however, the present system with state space 362

1S more convenient.

6.4. Balancing transformations

In the previously constructed realizations on ¢ one of the Gramians was the identity
operator and the other was the diagonal operator 2. The most popular realization
for finite-dimensional systems is the one in which both Gramians are equal to .
This realization is called balanced and is the eponym of the balanced truncation.
For infinite-dimensional systems, equality of the Gramians can also be achieved,
but with a lot of technical effort: The balanced realization has to be constructed by

interpolating the input normalized and the output normalized realization.

Definition 6.4.1 (balanced system). We say that a 0-bounded L*-well-posed linear
system (2(,B,€, D) on (U, (?,Y) is balanced if and only if there exists a diagonal
operator ¥ € B(£?) such that the Gramians satisfy

BB* = CC=%.

Theorem 6.4.2. Let Presumption[0.2.5 hold and let S*R = VXU* be the singular

value decomposition of the operator S*R. Then the operators

T:ranRc X — (s, T Y%, < 1y — X,

(6.32)
x> DTV RS z— RUS Vg

are well-defined, and the following assertions are true:
(i) ran R = ran*B, and thus 2A(t)ran R < ran R for all t = 0.

(ii) There exists a constant ¢ > 0 such that, for all v € X205, u e L*(R<o;U) and
t>0,

| TA) T  z]e, < € |]lg,, 1T Bulle, < ¢ |uf2@eour,
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6.4. Balancing transformations

1€T 2] L2@s0iy) < € [7]ea-

(7ii) With the unique continuous extensions

TATT : Rog — B(ly), t— TAWD)TT,

and
T+ € B(ly; L*(Rs0; ),

the quadruple
(A, By, €, D) 1= (TAT+, TB, T+, D) (6.33)

forms a minimal balanced 0-bounded L*-well-posed linear system on (U, ly,)).

The idea behind the proof of Theorem [6.4.2] is to obtain the balanced system by
interpolating between the output normalized realization of ® on (£2,{-, )
and its restriction to (362, (-, )xe2) described in (6.29). So an important ingredient
for the proof is the following auxiliary result about well-posedness of an interpolated

system.

Lemma 6.4.3. Let X, X and X be Hilbert spaces with X — X — X. Assume that
there exists a positive operator ¥ € B(X) such that X = ranX"?, X = ran ¥ and

(z, )5 = E2, 52 = (82, Sy)x Va,ye X,

Let (A,B,€,D) and (2,8, ¢, D) be two 0-bounded L*-well-posed linear systems on
the Hilbert spaces (U, X,Y) and (U, X,Y) respectively, with the same input map B,
the same input-output map © and A = Aly, € = €|y. Then X is invariant under
A and (Alx,B, €|y, D) is a 0-bounded L*-well-posed linear system on (U, X,Y).
Moreover, the domain of the generator A of 2 is the part of A in X and the domain
of A is a core for A.

Proof. The claim about well-posedness is a special case of Lemma 9.5.7 in [Sta05].
That the generator of a semigroup restricted to an invariant subspace is given by
the part of the generator in the subspace, is Lemma To see that dom A is a
core, it suffices by [ENO0, Proposition I1.1.7] to see that it is invariant under 2 and

a dense subset of dom A. The latter is true because X «— X. ]
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6. State space transformations for systems with compact Hankel operator

Proof of Theorem[6.4.7 Part (i) has been shown before, see and Defini-
tion [2.4.1](ii). It is restated in the theorem to underpin that the concatenations
in (ii) are well-defined.

We apply the interpolation Lemma to the output normalized system (6.12))
on ¢ and its restriction to Xly. This guarantees the well-posedness of the

system
(2, B, €, D) = (Aolsi2,, Bo, Colsiig,, D) (6.34)

on the interpolated state space $'/20,. In particular, £'/2 is invariant under 2, and
Ao[s1/2¢, is strongly continuous with respect to ||z, -
In order to determine the Gramians of this system, we calculate some adjoints

with respect to (-, -)si/2,. For all y € L*(Rxo; V) we have

<Q:OI, y>L2(R>0;y) = <$7 Q::y>f2
= (N7, BTERC ),
= (z, 2 Y512y, Ve X2,

and for all u € L*(Reo;U)

<%OU, .T>21/2z2 = <E_1/2%0U, 2_1/QCE>E2
= <U, %:Z_lx>L2(Rgo;Z/{) Vae 262

Thus, the Gramians with respect to the scalar product (-, -)su2,, are given by
C*¢ = C*¢, = Tidyupe,

and

A~ A~

BB*r = B,BIN o = VHS*BB*SVE oz = VFS*RR*SVY o
= V*S* Rt e g2 pyr R*SVE 'a = V*S*RUU*R*SVE 'z
=Xx Vel

where the last equation can be extended to the whole space ¥/2(5, because both of
the operators BB* and ¥ are in B(S/2(,). The system (6.34) is therefore balanced.

The last step of the proof is to transfer this system to the favored state space ¢
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6.4. Balancing transformations

via another unitary transformation X712 : ¥%2¢, — ¢,. The result of this is the

system

(271/25[21/27 271/2;%’ (?:21/27 ©>
(6.35)

. (E*1/2V*S*QLRUE—1EV2, S-12ygE  CRUS N2, @)

on f5. Since we are transforming unitarily with respect to the scalar products
() )spzg, and (-, ), , the Gramians do not change and the resulting system is
still balanced. In order to complete the proof, it suffices to check that the operators
defined in (6.33)) and (6.35)) are the same. For B, and © there is nothing to prove.
For 2,(t) and &, it follows since all the operators are bounded with respect to the

ly-norm and coincide on the dense subset ¥¢5 of ¢5. Thus, parts (ii) and (iii) are

proven as well. O

Remark 6.4.4. (i) As an immediate consequence of Lemma [6.2.7 and the fact that

Y22 - 21202 is an isomorphism the mapping
Tlm: Mc X -2 T .= 12yg*
is an isomorphism with inverse

TSV c P > M, Tpesot T = Tger gy RUSTYV2,

(i) It is shown in [RS14) Section 11] that the closure of T' is a pseudo-similarity
transformation between the system (2l;, By, €, ©) and the Kalman-compres-
sed realization (7 (ere) 2|54 T(kere)2 B, €[ 57, D) in Theorem m

Theorem 6.4.5. Let T and T be as in Theorem|[6.4.3. Then the following is true
for the generators A, ,By, and Cy of the balanced realization in (6.33)):

(i) The space W := TBW,*(Reo;U) is a subset of ©Y%0y and a core for A,.
Moreover, T(yers5#)t T W C Tereyr dom A and the quotient operator A of A

defined in Theorem satisfies

Apyr = Tﬁw(kers*)LTer VaoeW. (6.36)
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6. State space transformations for systems with compact Hankel operator

(ii) There exists a space W < 120, A dom Af, which is a core for A}, such that

the adjoint
(T|)* : 2Vl c by > X, x> 1 SVE g

fulfills (T\M)*W < dom A*. For all z € W and u € U the control operator
fulfills

<Bbu7 x>(d0mAl’f)’,domA2‘ = <BU, (T|/T4)*I>(domA*)’,domA* : <637>

Consequently, Byu is obtained by continuous extension of this functional to
dom Aj.

(iii) The observation operator fulfills

Cox=C, Tz YxreW.

Proof. By Remark we have
W(kers*)LTJrW = W(kers*)LTJrT%WOlQ(RgO; Z/{) = W(kerc)L%WOl’Q(RgO;U).

Theorem and Lemma [2.4.3|(i) show that A maps this set into M and therefore
the right hand side in is well-defined. Recall that the system in the
proof of Theorem was obtained by interpolation. Thus, by Lemma the
space dom A is a core for A and the domain of A is the part of A, in 2Y2¢,. This

means in particular

dom A = {x eX?AndomA, : Az e 21/2&},
Az = Az = V*S* A gxt RUS ' V2 € dom A.

Formula (6.30) shows that YW = %~"2dom A. Since the semigroups 2, and A are
unitarily similar via the transformation 72 € B(X20,; (5), their generators are
related by

dom Ay = "2 dom A = ¥ 1/? {reX? ndom A, : Az e X%}
Abz _ 2—1/2121\21/22 _ Z_l/zv*s*gﬁ(kerS*)LRUZ_l/QZ Ve W,
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6.4. Balancing transformations

and W is a core for Ay. This shows all the assertions in (i).

We do not determine the domain of the adjoint A} exactly, but we will prove
that W := $/2dom A is a core for A} and has the properties claimed in (ii). Take
yeW and z € dom A, = ¥~Y2dom A,. Then the right hand side of the equation

<Ab$7 y>€2 = <E_1/2A021/21', y>52 = <l’, El/QA:Z_1/2y>£2
is continuous in x, which implies y € dom A; and
Afy = SV2A*S 12y yye W, (6.38)

So we have shown W < dom Aj. We now prove that W is dense in £, and 2A7-
invariant. The continuity of /2 € B(f,) implies that X2 dom A* is dense in X2/,
with respect to the topology of £. Because $V/20, itself is dense in £, it follows that

W is dense in ly. Furthermore, for x € /5 and y € W c ¥1/2¢y the equation
()T, y)ey = (STPU (OS2, e, = (@, SPAL () STy,

shows ¥ (t)y = BY22*(t)X~Y2y. This representation together with the definition
of W shows the -invariance of W, since the 2,(t) maps dom A* into itself. So
altogether W must be a core of A¥ by [ENOQ, Proposition 11.1.7].

To complete the proof of (ii), we observe that (T'|5;)* = (T|5;)*S? and therefore

(T5)W = (T3 2222 dom A% = (T |5)* dom A%,

The latter set was shown to be a subset of dom A* in Theorem m Choose A in
the resolvent sets of A, and A,, and let y € W and u € . Knowing from (i) that

y € dom A} and using ([6.38]) we obtain with (6.21)

(Byty Y)(dom Axy dom A = (A = Ap|e,) Boert, Y) (dom A% dom A
= (Brexu, (A = A7)y,
= (7B enu, S (X — A7)y,
= (Byeau, (A — A:)E_1/2y>gz
= (A = Aol,)Bou, 2_1/2y>(domAZ,“)’,domA;“

= <Bou7 E_l/2y>(dom A¥)’ dom A¥
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6. State space transformations for systems with compact Hankel operator

= <BU’7 (T|ﬂ)*y>(dom A#)" dom A% "

The functional Byu € (dom Aj)" is obtained by continuous extension of this expres-
sion to all y € dom A} because the core W is dense in dom A} with respect to the
graph norm of A;. Thus, the assertion in (ii) is shown, and (iii) follows from the fact
that €,z = €,XY2x for all x € W and the definition of the observation operator. [

Remark 6.4.6. In view of Corollary [6.2.10] the generator A, of 2, is also equal to

1%
dom A, = X712 {(:cn) en20,|
V

(z,) e WH(R,;Y) and
*d%f/(xn) € 21/262 7

Ay = 2*1/2%%1721/%.

Truncation

Definition 6.4.7 (balanced truncation). Let Presumption[6.2.13/hold and denote by
(0n)nen the sequence of singular values of the Hankel operator $ with corresponding
Schmidt pairs (v, ;). Choose r such that 0,1 # o, and denote by d% the differential
operator d% : W (R50; V) — LY (Rs0;Y). The r-th order balanced truncation of ©
is the r-dimensional system (A,, B,, C,, D) defined by the matrices in with

coefficients

_ V9%

y 5odg
Y= e (6 G0 11 o <G (6.3%)
b = /B (-, T e BU,C), (6.39D)
1
Cj 5](()) € y (639C)

Note that the output normalized truncation in Definition and the balanced
truncation are related by a simple state space transformation with the diagonal
matrix X, := diag(y/o1, ..., \/0,) € C™". In particular they are realizations of the
same input-output map.

It is shown in [RSI4] Theorem 5.6] that the balanced truncation is obtained
by truncating the balanced realization on ¢? in analogy to Theorem An
easier way to obtain the balanced truncation is to determine the output normalized

truncation and then transform it with the matrix X,.
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6.5. Notes and references

The balancing technique that makes use of the factorizations RR* and SS* of the
Gramians was first introduced in for finite-dimensional systems. The pop-
ularity of this balancing approach is mainly based on two facts: Firstly, there are
various numerical methods for the determination of Gramians which directly provide
the factors S and R instead of the Gramians themselves (see [Ant05, Chapter 6] for
an overview). Secondly, this balancing approach can be easily modified to directly
construct the truncated balanced realization without determining the parts of Ay,
By, Cp which are truncated anyway. This is done by simply truncating the singular
value decomposition of S*R.

Balancing for infinite-dimensional systems has been considered in various articles

The error bound in terms of neglected Hankel singular values has been first shown
in for the class of systems with square integrable impulse response, and has
recently been generalized to systems with nuclear Hankel operator [Guil2), [GO14].
All mentioned approaches to balancing or output normalizing of infinite-dimensional
systems have in common that they rely on a construction by means of the Schmidt
pairs of the Hankel operator and not on transformations of the state space. The
closest to our approach is [Sta0b, Chapter 9], which defines pseudo-similarity trans-
formations. In Sections|6.2H6.4| we have essentially worked out the concepts that are
described on the level of input-to-state and state-to-output maps in [Sta05, Chap-
ter 9], in more detail. The novelties in the present work are that we have used factors
of the Gramians instead of the input-to-state and the state-to-output map, that we
have applied the transformations to non-minimal systems and, most importantly, we
have given detailed characterization of the generators and highlighted the relation
to the balanced truncation defined in [Guil2) [GO14].

The generators of a balanced realization on ¢? have also been considered in
[GCPSS] for impulse responses in L' nL?. However, the proof of [GCP88| Lemma 3.3]
is flawed as it suggests without justification that the limit in Ay >} | kD) is ex-
changeable with A,.

By [Sta05, Theorem 9.2.5] two minimal realizations of the same input-output
map are pseudo-similar. In particular, the output normalized and the balanced

realization on ¢* are pseudo-similar to (2(,B, €, D) if this system is minimal. In
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6. State space transformations for systems with compact Hankel operator

[RS14] we have shown that the corresponding pseudo-similarity transformations in
this case are the mapping 7 in Theorem [6.2.8] and the closure of the mapping 7" in

Theorem [6.4.2] respectively.
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7. H*-balancing and truncation for

Pritchard-Salamon systems

In this chapter we consider an w-bounded Pritchard-Salamon system (A, B, C, D)
on (U, W,X,V), V). We aim to construct a controller & € TIC} (V;U) that
stabilizes the system in an input-output sense defined later. This controller should
have a finite-dimensional realization in order to be implemented in practice. To
this end, we use the approximation theory by balanced truncation that was already
described in Section [6.2] The main obstacle is that this approximation is only
valid for 0-bounded systems. The idea here is to stabilize the system first by an
exponentially stabilizing feedback pair in the sense of Definition [2.8.10] and then
perform balanced truncation on the closed-loop system described in , which
is 0-bounded. We do not use an arbitrary exponentially stabilizing feedback pair,
but the one that arises in the solution of the following linear quadratic minimization
problem. Consider, for an initial value zy € W, the following set of admissible

controls:

o0
J 2@ dt < o0 for all a, y
0

with (z,u,y) € bhv(A, B,C, D)
and x(0) = x.

Z/{adm<x0) = u e LQ(RZ(),Z/{)

We try to find, for € (0, 1], the minimizer of the set

2 2
{ |€20 + Dul 2oy + 72 [l 2@opze | @ € Uanam(o) }
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7. H*-balancing and truncation for Pritchard-Salamon systems

In other words, if we assume for a moment that u is smooth, we try to minimize the

functional

o0
jo Ca(t) + Du(t)[y + & Ju(t)|Z dt

where (x,u,y) € bhv(A, B,C, D), x(0) = xo,

over all u € Uyam (o). This problem has been studied extensively under various
conditions, for example in [vK93| [Mik02, [PS87, [Stad8c| to name but a few. The
result is that there exists a self adjoint, so-called Riccati operator, X, € B(V; V'),
such that

. 2 2
(ro, Xpzo) =  inf ) (HQ:xO + DUHL%R;();)}) + é HUHL2(R>0;L{)> ’ (7.2)

ueuadm (IQ

and this Riccati operator solves an algebraic operator equation, known as control
algebraic Riccati equation. However, it is usually not the only solution to this
equation. Furthermore, an admissible feedback pair can be constructed from X
such that the input-output map of the closed-loop system is in TIC;(U; Y xU). This
feedback pair is often assumed to be exponentially stabilizing which distinguishes
a unique solution of the Riccati equation [vK93| Theorem 3.10]. The clue to this
whole approach is that the closed-loop system (2, By, €y, Dry) has some usable
properties. Firstly, its Hankel operator fulfills Presumption [6.2.13] Secondly, if v
is the minimizer of , then the (autonomous) output of the closed-loop system

with initial value zq is

Cxp + Dv
; )

Coyxg = [

Therefore implies that the observability Gramian &,&, equals X.,. Recall that
knowledge of both Gramian is required for balanced truncation. The controllability
Gramian is related to a dual, so-called filter algebraic Riccati equation. With these
tools at hand, we can carry out balancing and truncation of the closed-loop system.
The procedure is called H*-balanced truncation because, following the idea of
[IMGO1], the factor 5 € (0, 1] makes it possible to consider the minimization problem
above, together with a dual problem, as a special case of H*-control problem. This

will be exploited in Section [7.4] to construct a robust controller.
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7.1. Riccati equations

The notion of a control algebraic Riccati equation varies heavily in the literature,
depending on the associated control problem. We use a definition in the spirit of
[vK93]. In this chapter we use (-)* for the Hilbert space adjoint of an operator and
(+) for the adjoint between the dual spaces (which are by Section represented

with respect to a pivot space).

Definition 7.1.1 (Riccati equations). Let (A, B,C,D) be a smooth Pritchard-
Salamon system on the Hilbert spaces (U, W, X,V),Y). An operator X, € B(V; V')
is said to be a solution of the HCARE (H* Control Algebraic Riccati Equation) if
X = X, (Xoow, 2y = 0 for all z € V, and the following equation holds for all
z,y € dom AY < W:

(X, Avy>yl,v + <Avsc, Xy +{(Cx, Cy)y

7.
= 8*((1+4*D*D) " (D*C + B'Xy)x, (D*C + B'X,.)y) . "

For § = 1, the HCARE is simply called CARE (Control Algebraic Riccati Equation).

An operator Y, € B(W'; W) is said to be a solution of the HFARE (H™ Filter
Algebraic Riccati Equation) it Y, = Y, {(x,Yy2)ww = 0 for all z € W, and the
following equation holds for all z,y € dom(AW) < V"

Yoo, (AYYywwr + (AY) 2, Yoy)wow + (B'z, B'y)y,

= 62 <(I +D62D*)—1(DB/ +COYy)z, (DB/ n C'Yoo)y>y (7.4)

For § = 1, the HFARE is simply called FARE (Filter Algebraic Riccati Equation).

Note that the HFARE is well-defined because the smoothness of the Pritchard-
Salamon system implies by [vK93, Theorem 2.17 (iii)] that dom(A") < V. This
means that the dual system is smooth as well.

The HCARE may be interpreted as the CARE with respect to a different scalar
product. To this end, we introduce the space Us, which is defined as the input space
U equipped with the new scalar product (-, '>uﬁ = <§, '>u' Adjoint operators
with respect to this scalar product are indicated by (-)©. The relation

(Du, y)y = (u, D*y)y = (u, °D*y), ~ Vuellyey,
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7. H*-balancing and truncation for Pritchard-Salamon systems

shows that the adjoint of D with respect to (-, '>uﬁ is D® = 32D*. An analogous
calculation yields B® = 3?B'.

Lemma 7.1.2. The operator X, solves (7.3|) if and only if it satisfies the following
CARE for all z,y € dom AV :

(X, Ay + (A2, X))y + (Cx, Cy)y

= (I+D°D) " (D°C + BX )z, (DOC + B°X0)y) .
B

(7.5)

The operator Y, solves (7.4)) if and only if Yy := (%Y., satisfies the following FARE
for all z,y € dom (AW :

<B2YOOJ77 (Aw)ly>W,W’ + <(AW)/$a 52Y00y>W’,W + <B/ZL‘, B,y>uﬂ

- <(I +DD®) Y DB® + Cp*Y,)x, (DB® + Cﬁzyoo)y>y (7.6)

Proof. Note that ([7.3) can equivalently be written as

(X, APy y + (A2, Xpydyyr + (Cx, Cy)y

_ 512 (142D D) (B*D*C + B*B'X.p)x, (BD*C + *B'X..)y)

and multiplication of ([7.4]) by (% yields
BV, (A o + (A @, B2Yooy)wrw + BBz, B'yyy
= ((1+DB*D*) {(DB*B' + C5*Y)x, (DB’ + CH*Yar)y) -
As mentioned before, the adjoints with respect to (-, '>uﬂ satisfy D® = $2D* and
B® = 32B’. This shows the claim. O

Throughout this chapter we will make the following hypothesis.

Presumption 7.1.3. The quadruple (A, B,C, D) is a smooth Pritchard-Salamon
system on the Hilbert spaces (U,(W,X,V),Y). It generates the w-bounded well-
posed linear system (A, B, €, D). There exists a solution Xy to the HCARE such
that, with the definitions

L:= (1+8*D*D), K := —-L ' (B*D*C + B*B'X,,), (7.7)
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the block operator [L2K , 1—Lz] € B(W x U:U) is an exponentially stabilizing ad-
missible feedback pair for (A, B,C, D). Moreover, there exists a solution Yy, to the
HFARE.

Remark 7.1.4. We will not need any exponentially stabilizing condition on Y.

Theorem 7.1.5. Under Presumption[7.1.3 the following holds:

(i)

(i)

(ii)

(iv)

The closed-loop system
(Ao, Boy, Coy, Do) 1=

((AV + BEK)|dom Ay BL™Y2,

C+DK| |DL™'2 (7.8)
K L)

dom Apy := { z € dom 4" ‘AVI-FBKZEEX },

with

is a 0-bounded Pritchard-Salamon system on (U, W, X, V), Y x U).

The input-output map of (7.§), which we denote by [, M| € TICZ(U; Y xU),
satisfies

BN + UM = 1. (7.9)
The operator M is invertible in TICY (U;U) and Du = NM 1 u for all u €
L2 (R U).

c,loc

The operator Xy, equals the observability Gramian Q) of (7.8) with respect to
the output space Y x Uy, i.e. Xop = Q := CRCr.

The operator
[+ X, f7Y0|, : X = X,

has an inverse, (I1+X,3%Y,)"! € B(X), and the controllability Gramian P
of (7.8) satisfies

(I+X08%Ye0) ' 7Y = P := BpyBY = BBy,

Remark 7.1.6. (i) The operator [91, 9] " is a right factorization of D in the sense

of Definition [2.3.3] Such factorizations are usually considered to be “coprime”
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7. H*-balancing and truncation for Pritchard-Salamon systems

in some sense, see e.g. [CWWO6| [Mik06]. But coprimeness does not play a role
here.

(i) The reason for choosing the feedback pair [L2K , I —L2] instead of [K , 0] is
that this choice “normalizes” the factorization in the sense that ([7.9) holds,
cf. [CZ95, Theorem 7.3.11].

(iii) In the theory of Riccati equations for state linear systems (i.e. when W =
Y = X) it is often assumed that D = 0 without loss of generality, e.g. in
[CZ95] [CO06]. If D is zero, then the term D*C' in the definition of K vanishes,
and thus K € B(V;U). In general however, K is only in B(W;U). That is
why we can not assume D = 0 without loss of full generality for all Pritchard-

Salamon systems.

Proof of Theorem[7.1.5 (i) This follows from the assumption that the feedback pair
is exponentially stabilizing, Lemma [2.8.9] and some standard estimates. It also
contained in [Mik06, Lemma 4.4].

(ii) By [vK93| Theorem 3.10] our assumptions imply that, for every xy € YW and
the admissible control set Uyam (o) defined in , the function

v() = K2 ()20
solves the linear quadratic minimization problem ([7.2)). More precisely, there holds
. 2 2
lnf{ H¢$0 + QUHLZ(R;();JJ) + HUHLz(R;U;Mﬁ) ‘ u e Z/{adm(ajO) }

2 2
= €20 + D[ 12 0y + 0] L2@o0s) = (20, XeoTo)y -

Therefore, [Mik06, Lemma 4.4] can be invoked and implies the property (7.9). The
fact that the closed-loop input-output map [9, 9] " is a right factorization of D is

well-known, see e.g. [Mik06l Corollary 5.2] or [CWW96].

(iii) As in Lemma we denote the extension of Ay to dom AY by AY. Since
the closed loop system is exponentially stable, Lemma 2.8 of [CZ94] implies that @

is the unique solution of the following observability Lyapunov equation for all x,y €
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7.1. Riccati equations
dom AY:

= (Qu, A%y),, , + (A%, Qu),, , + (Cor. Coy)y.,
(Qu, A7), + (A2, Qu),, +(Qu, BKy),, + (BKz, Qu)yy,
+((C+ DK)z, (C+ DK)y)y + (K, Ky),,,
= (Qz, A%), , + (2w, Qy), , +(Qu, BKy)yy + (BKz, Q)
+(Cx, Cy)y, + (D*C, Ky), + (Ka, D*Cy),
4 <(51 +D"D) K, Ky>u
= Q. A%),  + (A0, Qy), , +(Cr, Cy)y
+ ((B'Q + D*C)x, Ky), + (K, (B'Q + D*C)y),
+ % (LKz, Ky),,
D (0, a0, + (s 1),
+{((B'Q+ D*C )x Ky), — 8 (L7 (B'X, + D*C)x, (B'Q+ D*C)y)
— ((B' Xy + D*C)z, Ky),,

+(Cz, Cy),,

We see that with () = X, this equation becomes the HCARE for X,,. Thus, X

solves the Lyapunov equation, and since there is only one solution, it must be equal

to Q.
(iv) Before we turn to the controllability Gramian, we calculate a useful represen-
tation for the expression CECrpy : W — W'. We have

C8Cy =C'C+ C'DK + K'D*C + K'D*DK + K’;Q

=(C'C+C'DK + K'D*C + ;K LK

=C'C - C'DL'B*(D*C + B'X,) — B*(C'D + X,B)L ' D*C
+ B*C'D + X B)L™ Y (D*C + B'Xy,)

=C'C—C'DB*L'D*C + X, BB*L'B' X,

(7.10)

_c (1 —B*DD* (1 +52DD*)‘1) C+ X, BFL'B'X,,
= ' (1+4°DD*) " C + X BF*L'B'X,,
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7. H*-balancing and truncation for Pritchard-Salamon systems

on W. The second observation is that Y,, maps dom(A")" continuously into the
space dom AY. This follows because the HFARE together with the continuity of Y,
and B’ on V' shows that the estimate

(Yoo, (A7) wor] < el gompawy [yl 72,y € dom(A™)
holds for some constant ¢ > 0, and this implies by definition that
Yo edomAY Vaedom(AY).

Hence, the observability Lyapunov equation above still holds if we replace z and
y by the expressions %Y,z and $2Y,.y for some z,y € dom(A")". Together with
(7.10)) this means for all z,y € dom(AWY
2 V52 V52 2
0= <X006 Yoo, Aoﬁ Yooy>v,,v + <AQ6 Yor, Xof Yooy>
+ (O Yoz, CoyB2Y.
< B Yex, Cpf8 ooy>y><uﬂ
= <X0062Yoo$7 A(v)ﬁzyooy>v,’v + <Agj)/82yoo$7 XOO/BQYOOZ/>V’V, (7.11)
+{((1+82DD*) " OB, 0/52me>y
+ (B L7 B' X 8*Y oo, B' X087V )

A%

u
On the other hand we multiply the HFARE by 3% and use the relation
62[/71 _ 62 . 64D* (I+D62D*)_1D
to obtain
0 = (B, (AY) 1w + (AY) @, B*Yoy)wrw

+ 82 (B'x, By), — 5 <D*(I +DBFD*) 'DB'z, B’y>y

— B <(1 +DB*D*) 'DB'x CYooy>y

— B <(1 +DB2D*) Y, DB’y>y

— B ((1+DB*D*) Yo, CYa)y)

= <AV62Yoo$a y>V,V’ + <5U7 AVBZYOO?J>V’,V
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7.1. Riccati equations

+8*(L7'B'x, B’y>u

— (LB, D*CYa)y),,

~ B (L' D*CYopr, B’y>y
—{(([+DB*D*) ' CYopr, CﬁzYoo)y>y

Adding this equation to (7.11]) gives

0= (XoBYor, AYBYuy) , + (ALBYor, XouBYory)
+ (AYB*Y oo, Yoy + (o, A BPYodvry
+8* (L' Bz, B’y>u + 82 (L7 B X oo Yo, B’XOOB2YOOy>u
4 —1 o/ *
.y <L Bz, D C’Yoo)y>y

v,V

— ' (L' D*CYex, By,

= (X BYow, AL Yy) 4+ (ALB Yo, XooBYiny)
+ (A B2, vy + (x, A BPY vy
+ B2 (L7 B (14X 2o )x, B'(14+ X0 %Yo0)y)
~B*(L'B'z, (D*C + B’Xoo)ﬁzYoo)y>y
— B (LN (D*C + B'X) %Yo, B’y>y

= <Xooﬁ2Yooxa Agﬁzyooy>v,’v + <A(‘3ﬁ2Yooxa Xooﬁzyooy>
+ <A(13/62Y00x7 y>V,V’ + <I7 A{)62Y00y>V',V
+ B (L7 B 14+ X8V )w, B'(1+ X060 )y),

= (([+XofYo), ALBYey) ,  + (ALBYoow, (1+X0B°Yar)y)

+ B (L7 B 14+ X8V )w, B'(1+ X080 )y),

v,V

u

v,V

A%

Up to know we have not used the invertibility of I+X,3%Y,|x which we are go-
ing to show now. The operator Xy,|y : X — X is nonnegative and possesses
therefore an operator root /X, € B(X). The operator I+X,3*Y,|x is bound-
edly invertible if and only if —1 ¢ (X, 3?Y,) which holds by Jacobson’s lemma

[Mii07, Corollary 30 in Section I.1] if and only if —1 ¢ o (/X5 3*Y0n/Xo). Since
the operator /X, 32Y,4/X is nonnegative its spectrum is contained in R. Thus,
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7. H*-balancing and truncation for Pritchard-Salamon systems

I+Xooﬁ2Yoo| x maps X onto itself and has a bounded inverse.

Analogous to the previous considerations for Y, it can be shown that X, maps
dom AY continuously into dom(A")’. With the bijectivity of I +X,3%Y,, it follows
that the image of dom(AY) under 14X, (%Y, is a dense subset of dom(A™)".
Hence, we deduce from the equation above that, for all x,y in this dense subset, the

following controllability Lyapunov equation holds:

0= (2, ALBYou (14X 37Ys) 1) ,F (AYBYoo (14 X0 87Yo0) 2, y)

VvV, A%

+ <L—1B’a:, B’y>u2 :
B

Since the smoothness of the dual system implies dom(AY) = dom(A")', this shows
that P := 52V, (I+X,3%Y,) " solves for all 2,y € dom(AY)" the controllability

Lyapunov equation

0=((A)x, Py), . +(Pz. (AYYy) +(L"'Bxz, BYy)

uz’

7W B

ww’

Thus, P must be the controllability Gramian by [CZ94, Lemma 2.8]. O

7.2. H*-balancing

In this section we transform the system (A, B,C, D) in order to diagonalize the
solutions X, and Y, of the two algebraic Riccati equations. To this end, we will
diagonalize the Gramians of the closed-loop system (A, By, Cry, Dyy) by the means
developed in Section [6.2] In analogy to Presumption [6.2.3] we assume that the in-
and output spaces are finite-dimensional and that we have some factors, S and R,
of the Gramians at hand. The compactness of the Hankel operator in Presump-
tion [6.2.3| is superfluous here, since it is automatically fulfilled for exponentially

stable Pritchard-Salamon systems owing to Lemma [6.2.15

Presumption 7.2.1. Presumption [7.1.5 holds. In addition, U and Y are finite-
dimensional, Xr and Xs are two further Hilbert spaces, and the operators R €

B(Xgr; X) and S € B(Xs; X') satisfy

RR* = (1+B%*Y,, X)) ' %Yy, SS* = X,
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7.2. H*-balancing

Remark 7.2.2. Solving a Lyapunov equation is numerically much easier than solving
a Riccati equation. In practice, it therefore makes sense to compute the controllabil-
ity Gramian (I+5%Y,Xo) 1 3%Y,, of the closed-loop system instead of the solution
Y, of the HFARE. This can for example be done by solving the controllability
Lyapunov equation with the ADI algorithm [ORW13]. This algorithm computes

a factor R and motivates our presumption.

Lemma 7.2.3. Let Presumption hold. Then the Hankel operator of the closed-
loop system (7.8)) satisfies Presumption with impulse response

h=CnBye L' n L*(Rso; BU; Y x U)).

The operators Yy, Xoplx : X — X and S*R : X — X are compact. The nonin-
creasingly ordered sequence (Vp)nen of the square-roots of the non-zero eigenvalues

of Yo X o is related to the singular values (o,)nen of S*R by

o __ P VneN. (7.12)

SV CEr

Proof. Since the closed-loop semigroup is exponentially stable we conclude with

standard estimates that
e L' n LA (Rso; BV; Y x U)).

By [CLTZ94, Corollary 3.6], the function € B is the impulse response, i.e. the
Hankel operator has a representation of the form . With this and [GCPS8S|,
Appendix 1] it follows that the Hankel operator €%y is compact. This implies the
compactness of the operator 60%0%868 Hence, the spectrum of this operator,
with exception of the value zero, consists of countably many eigenvalues (02),cn.
Jacobson’s Lemma [Mi07, Corollary 30 in Section I.1] implies that

o (€ BryBHER)\{0} = 0(BrBIEIEH)\{0},

and therefore, By, BRECEE,, is a compact operator as well. Since we have by Theo-
rem [7.1.5] that

B BOCIEr, = (1+82Y,, X.,) 52V, X, = SS*RRY,

177



7. H*-balancing and truncation for Pritchard-Salamon systems

it follows that Yo, Xoo|x = (I+8%Y5, X0 )| x B BRERE, is the concatenation of a com-
pact and a continuous operator and therefore compact. Hence the, spectrum of this

operator with exception of the value zero consists of eigenvalues and for all n € N,

5

1+ %2

0

v2eo(YeXy) € 0(SS*RR").

Another application of Jacobson’s Lemma implies that S* RR*S is compact and
o(S*RR*S)\{0} = 0(SS*RR*)\{0} = {02 : n e N}.

This implies ([7.12)) and the compactness of the operator root (S *RR*S)%. Finally,
the polar decomposition
S*R = E(S*RR*S)?

for some unitary operator E shows that S*R itself is compact and completes the

proof. O

Definition 7.2.4 (H-characteristic values). Let Presumption hold. Then
the square roots of the countably many non-zero eigenvalues of Y, X, are called
Ho-characteristic values of (A, B,C, D). We always order them non-increasingly in

a sequence (Vy,)nen-

Remark 7.2.5. With the diagonal operator Y := diag(r,,) € B(f?) and X as in the
singular value decomposition S*R = VXU*, the equation ([7.12)) implies that

T=1(1-5%) %%

Now we apply the output normalizing transformations from Section [6.2] to the

closed-loop system.

Lemma 7.2.6. Let Presumption hold and let S*R = VXU* be the singular
value decomposition of S*R with 3 = diag(c,,) € B(¢?). Define the transformations

T:=V*S*eB(V;?),

. B ) (7.13)
T := RUS™ ' e B(S3;W),

and let (Apy, Bry, Cry, Dyy) be the closed-loop system in (7.8) with input-output map
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7.2. H*-balancing

[0, M. We define the quotient operator A?) as in Lemma and as in Theo-
rem [0.2.11) we can define Aw, to be the closure of the operator

TA\{)WW/kerS*T+Z VzeZ = T’BOW(}’Q(R@;L{)

in (2. Then the operators

(Atsos Besgs Cooos Do) = (T%ww/ker s+ T+, T By, Oy T, DO> (7.14)

generate a Pritchard-Salamon system on (U, (302, 02,0%),Y x U), which is a re-
alization of [, M|".  The output normalized truncation (Apy, Beyr, Coyr, Diy) of

[0, IM|T in the sense of Definition satisfies

(ei, Aprej)er = (€is Aroti) e e C,
<ei7 BOT'>(CT = <€i> BOO'>Z2 = <(B:)ex€i7 ‘>Z,{ € B(U,C), (715)
Corej = (Cro)ex€; .

and its input-output map [N, , M, |7 approzimates [N, M| with the error bound

o o2 B

TIC2(U;Y xU) {n>r|on#oLVk<n}
Proof. We apply Theorem [6.2.11|to the system ([7.8]). Note that the transformations
in (7.13)) are indeed bounded because the transformation ¥ and 4 in Lemma [6.2.5]

show

T = V*S* = V*Y*ey e B(V; ),
TH = RUS™ = BpUUT ' € B (S35 W) .
Theorem [6.2.11] states that (Ape, Bros Coyes D) generates a 0-bounded well-posed

linear system which is unitarily similar to the minimal output normalized shift real-
ization of [D, M]T. We still need to prove that this system is of Pritchard-Salamon
type. To this end, we take a closer look at the generators. According to Lemmal6.3.1},

the part of Ay, in 362 is the operator

ADS = TAFwrerss T2 V2 € TBoW* (Reg;U)

179



7. H*-balancing and truncation for Pritchard-Salamon systems

and generates the restriction of the semigroup 2y, to L2,

By Lemma the impulse response of the closed-loop system is square inte-
grable. Therefore, we may choose W, = £? in Theorem , which shows the
boundedness of

B = TBL™2 € B(U; ().

Furthermore, we have the output operator

(C+ DK)T*
KT™

D _ DLz
Oo — L_% .

So these are indeed mappings between the correct spaces. The admissibility of B is

Cryo =

] e B(X3Y xU),

and the feedthrough

equivalent to the boundedness of
T%O = V*S*%O eB (L2(R$0,Z/{), 252) s

which is contained in Lemma [6.3.1} and the admissibility of C' follows because the

operator
QfOT+ = QORUE*1 = YS*RUL' = BV

admits a continuous extension to ¢2. Altogether, we see that (Ar, Bryo, Coye, Do)
is a Pritchard-Salamon system.

Now the matrix coefficients in follow directly from Theorem , and the
error bound follows from Theorem O

Remark 7.2.7. We point out that the two larger state spaces in the triple (X¢2, ¢2, (?)
coincide because By, maps into ¢2. Therefore, there are only two different semigroup

generators, A% and Ap, = AL,
Theorem 7.2.8. Let Presumption hold and define the quotient operator

ﬁ:%x/kers*domAchX,

AT = Ty /e s Az VIedomA, VzedndomA,
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7.2. H*-balancing

as in Lemma [2.9.4, Define the transformations T and T+ and the space Z as in
Lemma[7.2.6, and let Ay, be the closure of the operator

TAFwiassT 2 VzeZ

in (2. Then

(A, By, Cp, D) 1= (TET+,TB,CT+,D) (7.16)
is a Pritchard-Salamon system on (U, (X%, 0%, 0?),Y) and a realization of D.
Proof. With the above assumptions we can define the closed-loop system (Agy, By,
Cry, Dyy) with input-output map [91, 9] as in Theorem and the output
normalized realization (Ape, Bryos Crye, Do) 0f this mapping as in Lemma The
idea of the proof is to “undo” the feedback by application of the inverse feedback
pair [-KT™, I—L*%] € B(X0* x U;U). We need to ensure that this process is
compatible with the state space transformation, in other words that closing the
loop and applying the transformations commute.

Note that the feedback pair above is admissible for Ay,. Define the corresponding
state feedback

1 -1 1
K, = <I—(I—L*§)) (-KTY) = —~L3KT" e B(S%:U).
The admissibility implies by [vK93, Lemma 2.13 (ii)] that the operator defined via
Aot + BryoK,x Vo e { x e X0? A dom Ao ! Aot + By, K,z € »? }

generates a strongly continuous semigroup in ¥¢? which extends to a strongly con-
tinuous semigroup on ¢2. The generator of this extended semigroup is denoted by
(Apyo + BryoK,)”. Moreover, by [vK93, Lemma 2.13] the domain of this operator

equals dom Ay, with equivalent norm, and it satisfies
(Ao + Bryok,) & = Apott + BryoKox V& € dom Apy, n S0,
The admissibility further implies that

((AOO + BOOKO)Z27 BOoLéu OOo,l + DOo,le DOO,IL%>
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7. H*-balancing and truncation for Pritchard-Salamon systems
— ((Avw + BooKo)", TB,CT*, D)

is a Pritchard-Salamon system on (U, (X202, (%, (%), Y). Here Cpy,1 and Dy, denote
the first components of the block operators Cry, and Dy, respectively. What remains
to be proven is that A, coincides with (Ar, + BryoK,)" . It suffices to verify this on
the space Z < dom Apy, N X%, which is by Lemma a core of Apy,, and therefore
also a core of (Ap 4+ BroK,). With the notation of the Kalman compression as in
Lemma we have for all z € Z

%W/kerS*T+Z € dom gg‘j < dom 121/9 M W
Hence, ker S* n W = ker €|y < ker K yields

(Avso + BrooKo)" 2 = Avoz + BroKoz
— T ATk s+ T2 — TBKT
— TA %y kv 5+ T 2 + TBK Ry jxr 52T 2 — TBKT 2
= T ARy ker s+ T 2

= Aooza

and the proof is complete. m

Remark 7.2.9. (i) It can be shown that the compressed spaces W and V defined
in Lemma satisfy

%W/kerg‘WT'i_EgQW = W, 7~Ty/ker¢|vT+Z£2v = 9

(ii) For all w € ¥¢? we have
—B*B' X, Ttw = B*B'SS*RUY'w = —3°B'SVe; = —3*BXw,  (7.17)

and since By, € B(U; (?) this shows that the left hand side extends continuously

to —(32B% € B((*;U). In regard of K = —%(D*C + B'X,,), this implies that

if D =0, then KTT = —3?B'X,, T" has a continuous extension to B((*;U).
Theorem 7.2.10. Let Presumption hold and let (Aw, By, Coo, D) be the sys-
tem in Theorem . Let Y := diag(v,) be the diagonal operator built from
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the H™-characteristic values (v,) of (A, B,C, D). Then all unit vectors e; satisfy
e; € dom A, and the following Riccati-like equations hold for all i,j € N:

(Le, Aooej>£2 + (Ape;, 1 €j>z2 + (Coei, Coo€j>y

7.18
— % ((I+8°D*D) " (8°D*Cy + BB} Des, (B°D*Cyp, + 3B, I)ej>u, (718

and

<AOOT2€ia €j>£2 + <6i7 AOOT2€j>52 + <B:O€i7 B:06j>b{ (7 19)
— <(1 +DD*B*) Y DB % + C.Y?)e;, (DBES? + CwT2)6j>y. '

Remark 7.2.11. Since (e;);en is in general not dense in dom A, these equations do
not imply that the operators I and T2 solve the HCARE and HFARE in the sense
of Definition [T.1.1]

Proof of Theorem[7.2.10. The idea of the proof is to use that the operators X2 and I
solve certain Lyapunov equations of the closed-loop system. This follows from the
Lyapunov equations of the output normalized shift realization that are given in
[Guil2], modulo a unitary transformation. Algebraically the upcoming calculations
reverse the ones in the proof of Theorem But because of the unboundedness
of T we have to be careful not to make any forbidden steps.

Recall from the definitions (|7.8)), (7.14)), and the proof of Theorem that we

have
(A007 BOO) CDoa DOO)

., TBL™'2,

2
- <(AOO + TBET)" | a

CT+ + DKT+] [DL—1/2]>
KT+ Y2 ’
Let $ be the Hankel operator of this system and $ = VIU* its singular value
decomposition as in ((6.10). By Corollary , the mapping V is unitary simi-
larity transformation between this system and the exactly observable (and output
normalized) shift realization of its input-output map on ran$. Since XN/ei =7; €

W12 (Rsp; V) nran ), and the latter is the domain of the differential operator that

generators the shift semigroup, we have

€e; = ‘7*%1 € dom AOO M E€2
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7. H*-balancing and truncation for Pritchard-Salamon systems

The shift realization satisfies the Lyapunov equation in [Guil2, Equation (5.105)],

which becomes after application of 1%
0 = (Avois €j)p + (€i s Avo€)) e + (Cooti s Cootily,
for all 7,5 € N. Hence,
0= <AOoei, €j>Z2 + <€i, AOoej>g2 + <Coo€i + DKTJrei, Oooej + DKT+€j>y
+ é <KT+€,L', KT+€j>u
= (Apo€is €5)p + (€iy Avo€j)pp + (Cuseis Cey)y,
+ <<B12 + D*D) KT+€1' y KT+€J’>
u
+(D*CT e;, KT e;) +(KT%e;, D*CT*e;)
u u
= (Avoti, ) + (€, Avotj) e + (Oeis Cones)y + 53 (Kot , Koej)y,
+(D*Crei, KT¥e;) + (KT e;, D*Cirey)
With the two equations
(D*Crei, KTVe;) +(KT%e;, D*Cre;) = =2(L7'FD*Cires, D*Ce; )
- <D*Cooei, L_152B:oej>u - <L_1BZB§OGZ-, D*cooej>u

and

75 (Koes, Koej)y = 8° (L' Bles, Bye;) + (L7 D*Chres, D*Ce; )
+(D*Coei, L7 B°Be;) + (L7 5*Byes, D*Cuney)

(in which we have used ([7.17))), the above becomes

0 = <AOoeia €j>£2 + <€i7 AOO€j>ZQ + <Coo€i, Oooej>y

_ <L_162D*Coo€i , D*Coo€j>u + <L—162B:Oei : B;koej>u (720)
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for all 7, 7 € N. Using that

AOoei = Aooei — BOOKOei = Aooei + TBKTJrez
= Aye; — TBL'B*(B' X, + D*C)Te; (7.21)
Awes — Bu L 32BY e, — BoL ' 32D*Cpes

for all e;, we end up with

0= ((Ay = Bo L' B D*Cuo)es , €5) , + (ei, (As = Bo L' 8°D*Clo)e;)
— (L7 B Byei, Bye;), + (Cueis Cuey)y — (LB D*Cres, D*Clre; )
= (Axei, €) e + (i, Axej)p + (Cxey, C’ooej>y — <L_IB2B:O&L-, B;"Oej>u
—(L7'8°D*Cey, Biey), — (Biej, L' B°D*Croer)
— B (L' D*Ce;, D*Clrey)

u

= <A006i, €j>£2 + <€i7 Aooej>é2 + <Cooe'i’ C’ooej>y
— B (L7 (D*C + By )es, (D*Cop + Bi)ey),

This shows ([7.18)).

In order to prove the second equation we invoke the controllability Lyapunov
equation [Guil2, Equation (5.106)] which implies with V*§§*V = %2 that
_ 2 2 0 )
0= <AOOZ €, 6j>€2 + <6i7 AOOZ 6j>22 + <Booei, BOO€j>MB
= <A00226i, €j>£2 + <€i7 A0022€j>€2 + 62 <LilB:067;, B:Oej>u

for all unit vectors e;, e;. Multiplying this equation by (é +v;)(1+4 B*v;) and using
¥?(g + T?) = T? we conclude that zero equals to

<A0022 (é - TQ) ey (1+ 62T2)ej> o+ <<512 - T2> e, ApoX?(1 + 62T2)ej>
0
(LB (F+ T2 e, BL(1+ 82 T%e )
= <AOOT2€1' (14 52T2)6j>ez + <(1 + 32T?)e;, AOOT26j>
+ (LB (1+ 8°Y%) e, Bo(1+ B°)e;)
= <ADOT261‘, 6j>€2 + <€i7 AOOT2€j>£2 -+ <AOOT261’> 52T2€j>

[2

42

62
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+(B°0%;, Ao X’;) , + (L' Byei, Bie;) +(L7'BLA e, Bie;)
+ (L7 Byei, BL@Y%;) + (L7 BLA e, BLFT%e;)

= ((Avo + BoLT'8°B3)Y%e;, ¢) , + (ei, (Ao + B L7 8°B3) T%;) |
+ (Apo Y2, /32T2ej>62 +(Y%;, A0062T26j>£2 +(L7'Bxe;, B;;ej>u
+ (L7 B2 "%, BB ;)

-
Since T?e¢; = vje; and °T%e; = vie;, we can use (7.20) multiplied by v75%v7 to
substitute the second line of this equation and get
0 = ((Apo+ B L™ B BL) Y%, ¢5) , + (e, (Ao + Bo L™ 3 B) T2;)
+ (L7 8D C T D*COOBQTQe]->u —{C, Y%, 00052T2ej>y

€2

+ (L' Bies, Byey), -

Inserting ([7.21)) into this yields with the abbreviation L° := I +32DD*  which sat-
isfies L~1D* = D*(L°)~1,
0= ((As = Bo L' B D*Coo) Y2, €5) , + (€5, (A — Bo L7 32D*C)T2;)
+ (L7 =T)Byes, Bie;), + (Biei, Bieiy
+((DL7'3D* — 1) Co T2, 000/32T26j>y
= (Ap—=BoD* (L)' B°Coo) Yei, €5) , + (€1, (A= By D*(L°) 7 8°Co) T;)
— (L)' DBe, DB;;ej>y + (Btei, Bie;),
- <(LQ)_ICOOT261~, 0m52r2ej>y
— <AOOT26i, 6j>£2 + <e,~, AwT26j>62 +(BLei, Byej)y,
- <62(L°)‘1 (DB + C,Y%) ¢y, DB:Oej>y
- <(L<>)—1 (DB + C,Y%) ¢y, coo52r26j>y :

82

62

This proves ([7.19)). O
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7.3. H*-balanced truncation

7.3. H*-balanced truncation

Now we define the H®-balanced truncation in analogy to the balanced truncation
in Definition [6.2.76l The main theorem in this section states that the H*-balanced

truncation has essentially the same properties as the original system.

Definition 7.3.1. Let Presumption hold, let (v, )nen be the H*-characteristic
values of (A, B,C, D), and let (A, By, Cy, D) be the system in ([7.16)). We define
the r-th H*-balanced truncation of the Pritchard-Salamon system (A, B,C, D) to
be the r-dimensional system (A,, B, C,, D) consisting of

@11 - Ay by
A =| : Dl eC, B, =|:|eBU,C),

Ary - App br

Co=ler o o|eBE,),

with coefficients

N

aij = v; * (e, Awey) V7, i,7e{l,...,r},
_1
biu:=1v; *{e;, Bypu), ie{l,...,r},uel,
1
cj = Cpe;V7, jed{l,... r}

Recall that the H™-balanced system was constructed in the following way: First,
the feedback loop was closed, then the closed-loop system was balanced, and then
the loop was re-opened, before the system was finally truncated. The following
theorem is a consequence of the fact that the truncation and the re-opening of the

closed-loop in this process can be interchanged.

Theorem 7.3.2. Let Presumptz’on hold and (v,)nen be the H*-characteristic
values of (A, B,C, D). Choose r € N such that v,.1 # v,.. Then the HCARE and
the HFARE of the H*-balanced truncated system (A, B, C,, D) are both solved by
the matriz

T, := diag(vy, ..., 1);
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7. H*-balancing and truncation for Pritchard-Salamon systems

in other words,

T, A, + A, + C*C, = B> (Y, B, + C*D) (1+8*°D*D)~" (D*C + BIY,), (722)
Y, A* + A, + B.B* = 8>(Y,C* + BD*) (1+Dg*D*) " (DB* + C,Y,).

With L as in (7.7) and K, = —3?L~Y(B*Y,+D*C,), the matriz A,+ B, K, generates
an exponentially stable semigroup in C”, and the input-output map [N, , M,|" of the

C.+ DK,| |DL>
K, L3

is a right factorization of the input-output map D, of (A,, B,.,C,, D). Moreover,

closed-loop system,

(Ar + B,K,, B, L2,

BTN, + MM, = 1, (7.24)

[ Lo

Proof. The equations in ([7.22)) are a direct consequence of Theorem [7.2.10; Just

. 11
multiply (7.18) by \/v;\/7j, and (7.19) by Wk

We prove that ([7.23)) is similar to the system (Agy., By, Cryr, Dry) in Lemma|[7.2.6]
i.e. the r-th output normalized truncation of the factor system in ([7.8]). More pre-

cisely, we show the following equations for all 7,j € {1,...,r}:

‘ <2 3 _ O (7.25)

2,,2°
{n>r|vn#vEVk<n} L+ 5 Vi

<ei L TE(A + B.K,)Ty 5ej> — (e, (A + BoFo)ej)

62

— (e, Bl 7?)

(e, 17B,L7) o

42

(C, + DK,)T, 2 (Co + DK,)
K T_% €; = K €j.

1
In view of Definition [7.3.1{these equations are immediate if the equation K, T, *e; =
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7.4. Robust control under right factor perturbation
K,e; holds. This is equivalent to
(B*Y, + D*C,)Yr %e; = (B' X, T* + D*CT*)e;,
which holds because

B'X,T*e; = B'SS*RUS e; = B'SVe; B8 B* e, = B /e
= B:TEGJ

So Té is indeed a similarity transformation between and (Aeyr, By, Coory Dpy).
Since Apy. generates by Theorem [6.2.18 an exponentially stable semigroup, so does
A, + B, K,. The error bound also follows from Theorem .

Now that we know that K, is an exponentially stabilizing feedback, we may apply
Theorem to the finite-dimensional system (A, B,., C,., D) to prove and

the lemma is shown. O]

7.4. Robust control under right factor perturbation

In this section we show that a certain norm estimate guarantees robustness with
respect to right factor perturbations. This result is independent of the rest of this
thesis. We are going to apply it to the H*-balanced truncation in an ensuing
corollary. For better reading, we write [|-|| for all norms in this section. This should

not lead to confusion.

Definition 7.4.1. A controller & € TIC} (;U) is said to stabilize ® € TIC} (U;Y)

loc loc

if I —® A has an inverse in TIC(Z)(J/; V) and the operator

I-DR)'D (I-DR) 'DA]
R1-DR)'D A/I-DR)
[ D(1-8D)! D(I-8D) K]
(I-£D)'AD (I1-£D)'R |

F(D,R) :=
(7.26)

is stable, i.e. F(®,8) e TICL(U x V; Y x U).

Remark 7.4.2. F(D, R) is the operator, that maps [w; ws]" to [21 22]" in the closed-

loop system depicted in Figure [7.4 Some literature requires boundedness of the
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7. H*-balancing and truncation for Pritchard-Salamon systems

wq 21

O P Wy

Z9 ﬁ

Figure 7.1.: Mlustration of [21, z]" = F(D, K)[w; , wa]".

operator
0 I
F(D,R) + [ ]
I 0

instead of F(®,RK) for the definition of stability. This is obviously an equivalent
condition and amounts to placing the signals z; and 2z in Figure [7.4] behind the

summations.

Theorem 7.4.3. Let ©,,D € TICY (U;Y), and let [N, M]" € TICA(U; Y x U) be

loc

a right factorization of ® satisfying
BTN + MM = 1. [7-9)

for some B e (0,1]. Let [M,, M,]" € TICLU; Y x U) be a right factorization of D,
satisfying

BN, + MEM, = 1 (7.27)
and define
m m,
€= - . (7.28)
N N,
If &, € TIC} (U;Y) stabilizes D, in such a way that, for some v > 0,
1
F(@, 8] <7<~ 1, (7.29)
then R, stabilizes © as well, and
Y+ye+¢€
F(® < —. 7.30
P, < T2 (7.30)
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7.4. Robust control under right factor perturbation

Before we proof this theorem, let us explain the ideas by means of state flow
diagrams. We abbreviate the perturbations by Agy := 91 — M, and Ay := 91— N,.
Then, ® = (M, + Ax) (M, + Ag) L, so the plant D may be replaced by the plant

in Figure[7.2

— Aoy An

Y

] N |

Figure 7.2.: lllustration of y = Du = (N, + Ax) (M, + Agp) u.

Inserting this into the closed-loop system F(®, R;) gives the plant in Figure .
The main assertion of Theorem is that this plant is stable.

—Aom An

wq

—— M N O

22

Figure 7.3.: Mlustration of [z, 22]" = F(D, &,)[w; , we]" with D as in Fig-

ure |7.2

In order to prove this, we take a look at the reduced system and observe two
things: Firstly, removing the perturbation Agy and Ay yields the closed-loop system
F(D,, &) which is stable by assumption; and secondly, the perturbations act like
an output feedback of the auxiliary output z3 marked in Figure [7.4]
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7. H*-balancing and truncation for Pritchard-Salamon systems

w1y z3 21

M n,

Z9

Figure 7.4.: Mlustration of [21, 22]" = F(OLM 1, &) [w:, wa] .

Therefore, the following lemma about stability under feedback perturbation will
be substantial in the proof. This lemma is readily verified and known as Small gain

theorem.

Lemma 7.4.4 (Small gain theorem). Let 8 € TIC(V;U) and © € TIC;(U;Y) both
be stable and assume
1D 8] < 1.

Then R stabilizes 9.

Proof of Theorem[7.4.3 We define the auxiliary operator
F= M 1-R/D,)"! [1 ﬁ;] e TIC2U x Y;U),

which is the input-output map from [w; , ws]|" to z3 in Figure . It is verified by
looking at Figure [7.4] or short calculation that it fulfills the important equation

N, 0 0
[Qﬁr] §:=F(®,8)+ [I O] e TICHU x V; Y x U). (7.31)

Now we proceed in three steps.
Step 1: We show that (7.29)) implies

1
I31 << (732

Equation ([7.9)) implies for all u € L*(R;U)
Mu
Nu

192

2
= (Mu, Mu) + (Nu, Nu) = Mu, Mu) + (BNu, Nu) = (u, u) = ||ul?,




7.4. Robust control under right factor perturbation

and analogously, ([7.27]) implies

The second inequality gives

n mr 1 —-1 Y1
S < M (I-RD,) (I R
0 0
Lo Y2
<(v+1)||”
Y2
1
< - [‘%] Yy, y2 € L*(R; ).
Y2
This proves ([7.32)).
Step 2: We show that ([7.32)) guarantees stability of F'(D, &.). With the definition
Ao — A _ m, — M |
AR N —N,

and (7.28)), the estimate (7.32)) implies ||§||A| < 1. Thus, by Lemma [7.4.4] the

operator A stabilizes §. This means that I —§A is invertible, that
An

= (14+M (1 -&D,) " (Am — KAn))
= (I—R,D,)M, + Ay — &, An) ' (1-K,D,)9M,
= (M- &N (1-%D,)M,

(1-34)" = (I—Wzl(l—&mr)‘l 1 & ] o

1

is in TIC3(U;U), and that

(15875 = |-/~ M-8 & |
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7. H*-balancing and truncation for Pritchard-Salamon systems

M (1-RD) [1 &]

is in TICZ(U x Y;U). In analogy to (7.31]), multiplying this equation by [9T, 90]"

gives

0 0

Lol (7.33)

[;‘;;] (1-3A)'5 = F(D, &) + [

Since the left hand side is an element of TICS(Z/{ x ;Y x U), this shows that 8],
stabilizes ©.

Step 3: We prove ([7.30). Combining equations ([7.33]) and (7.31]), we obtain

T

F(®,8)—-F®,,81) = ;;] I-FA) 1§ — [;] 3

—1 A‘J’I -1 mr
= | 0-5a)15 + [ Am] (1-34)7'F - Lm]s

= | T (@-FA) T -D)F+ lim] (I-§A)7'§

m

= | T ISAI-FA) T+

2““] (I-3A)7'§

m

0 0
0 )A(I ~3A)7'S

Ax

m

An 1
1) o-sars

+ I-FA)'F

= <F(®r,&)A +

Since [91, 9] " is an isometry, we deduce for the norm

An
0

N —1
K

[F(D, %] < [F (D, &) + | F(Dr, Rr)A + [(1-FA) 3]

< |F®r, &)l + (1F (D0, &) e + €)
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7.4. Robust control under right factor perturbation

< [F®@r, &) + ([F(Dr, Re)]e +¢)

0 0
F(®,R.) + [I 0]

< [F(®r, &) + ([ F (D, Re)le +2) (1F(D, &) +1).

Since assumption ([7.29)) guarantees
1—[|F(®,,R)|e —e > ¢,

we may conclude from the inequality above that

|[F (D, &)|(1+6) +¢
1—|F(®,, & )e—¢

|F (D, %)] <

This proves the claim ({7.30)) O

If we have a robust controller for the reduced system in Theorem [7.3.2] then
Theorem shows that this controller will also stabilize the original, infinite-
dimensional system. Fortunately, sufficient conditions for the existence of such
a controller are well-known, see e.g. [ITSHOI, Chapter 14] or [MG90, Chapter 7].
In fact, the controller we are looking for is the solution to a special version of the

so-called ‘H*-four block problem, which is the following:

Problem (H*-four block problem). Given v > 0 and

911 912

TIC2 (U x Us; Vi x Vs),
@21 @22 ( 1 2 1 2)

loc

find 8 € TICL . (Vao;Us) such that (1—DR) has an inverse in TICY(Vy;Vs), and
@11 + @12.@(1 —@22.@)_1@21 18 1n TIC%(UD yl) with

D11 + D181 —D98R) Do | < 7. (7.34)

If we define for our ©, € TIC} (U;)) the auxiliary input-output map

loc

911 912

, (7.35)
3321 3322
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7. H*-balancing and truncation for Pritchard-Salamon systems

then becomes the closed-loop map F(D,, &) as defined in (7.26]). This means,
if R, solves the H*-four block problem for the auxiliary input-output map in ,
then it has the desired property F(D,,R,) <. If (A,, B, C,, D) is a realization of
9, then
C, D 0|D
A, Boo|B | [of.| 0 o] (7.36)
C, D I1|D

is a realization of . Therefore, it suffices to solve the well-known finite-
dimensional H*-four block problem for this auxiliary system. Solutions to this
problem can for example be found in [Sto92 [TSHOI, [ZDG96]. The idea of using the
auxiliary input-output map is exploited in [MG90]. In order to solve this auxiliary
four block problem, one has to assume that the diagonal of the feedthrough operator
consists of zero matrices. For the system in , this means D = 0. Under this

condition, we obtain our final corollary.

Corollary 7.4.5. Let v > 1, and let Presumption hold with D = 0 and
B = (1- 7%)% Let (Vp)nen be the H®-characteristic values of (A, B,C,0), and
choose v € N such that v,.1 # v,. Assume that the r-th H®-balanced truncation
(A, B,.,C.,0) of © is detectable (in the sense of [MG90]) and that v, < ~. Then
there is a controller R, that stabilizes the input-output map © of (A, B,C,0) and

has the r-dimensional state space realization
<AT — *Y,C3C, — B,BXY, (1—7°Y2), Y,.C¥, —B*Y, (I-y7°Y7), o),

where V. := diag(vy, ..., 1v,). Moreover, the performance estimate in (7.30) holds.

Proof. The H*-balanced truncation (A,, B,, C,,0) is by assumption detectable, and
by Theorem stabilizable. Moreover, by the same theorem, the operator T,
solves the HCARE and the HFARE in . A simple calculation shows that with
D =0and §:= (1 — %)%, the Riccati equations in reduce to the Riccati
equations in [MG9(, Proposition 7.3.3]. By our previous consideration, T, therefore
solves these equations and, with the additional condition v, < v, Proposition 7.3.3
of [MGI(0] states that the controller &, stabilizes ® with F(D,,&,) < 7. Finally,
Theorem shows that R, stabilizes ©. U

Remark 7.4.6. If D # 0, there is still a way to solve the auxiliary H*-four block
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problem [Sto92, Section 5.6]. In contrast to the situation in Corollary [7.4.5 this
method does not lead to the HCARE and HFARE in Definition [7.1.1] with D # 0 as
one might hope. Thus, the H*-balancing and truncation method described in this

chapter is not applicable in this case.

7.5. Notes and references

The overall idea of the H*™-balancing and truncation procedures in Chapter [7] fol-
lows the finite-dimensional analog in [MG91], although there are some conceptional
differences: We use a right factorization instead of a left factorization and we intro-
duce a new scalar product instead of scaling the input-output map. This leads to
a different measure of the error bound, which is neither better nor worse. The ap-
proach is based on the idea that the H*-four block problem for the auxiliary system
(7.36)) is closely related to the LQG problem for (A, B, C,0). According to [MG90,
Chapter 7], it can also be interpreted as the problem of minimizing the so-called
“entropy” of (A, B,C,0).

Coprime factorizations arising from exponentially stabilizing feedback are well un-
derstood for regular well-posed linear systems [CWWO9G|. There are extensions for
non-exponentially stabilizing feedbacks as well [Sta98al, Mik02 [Mik06]. The con-
nection to Riccati equations is made in [Mik02] [Mik06 [CO0G, [OS14]. In particular,
the construction of normalized factorizations is discussed in [CO06, Mik06].

The robustness results in Section [7.4]are standard algebraic calculations, similar to

the ones for left factorizations in [Cur90], [CZ95, Chapter 9], or [ZDG96, Chapter 9].

A similar procedure for H*-balanced truncation can be carried out for discrete
time systems, see [Sell5]. The works [CO04, [Opm06| [Opm07, [OS14] make use of

the discrete time theory and the Cayley transformation to transform the Riccati

equations into simpler equations with bounded operators. In [Opm06|, Opm07| this

was exploited to construct an LQG-balanced truncation for continuous time infinite-
dimensional systems. This approach can be exploited in various ways: either only
the balancing and truncation is performed in discrete time, or even the controller is
constructed in discrete time, before transforming back to continuous time. In any
case, this method leads to a different controller since the Cayley transform does not
commute with the process of truncating. Moreover, the state space realization of

the resulting controller not as practical to compute as the one in Corollary
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A. Appendix

A.1. Analytic semigroups and interpolation

We recap some facts about analytic semigroups and fractional powers of their gen-
erators. These standard results are documented in e.g. [Sta05, Sections 3.9-3.10],

[Paz83|, Section 2.6].

An analytic semigroup in the Hilbert space X is a strongly continuous semigroup 24

in X which can be extended to an analytic mapping 2 : Spy — B(X') on a sector

Sop:={AeC | arghe(—0,0) } for some e (0,Z),

2

such that A(s)A(t) = A(s + t) for all s,t € Syg and

lim A(t)xr =2 VrwelX.

t—0, t€Sy 0

A densely defined operator A is the generator of an analytic semigroup if and only
if A is sectorial in the sense of [Sta05, Definition 3.10.2].

Let A:dom A € X — X be the generator of an analytic semigroup 2 in a Hilbert
space X and let A € C-,,,. The negative powers of A — A are defined by the formula

0 -1 roo
(AN—A) Y= (J tolet dt) f e MUz dt, Va >0, zeX.
0 0

This formula defines an injective, bounded linear operator. The positive positive

powers of A are defined by
A=A :ran(A—A) > X, A-A)%:=(A-4))"", Va>0.

These operators are closed and densely defined in X. For a > 0, the domain of
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A. Appendix
(A — A)“ is equipped with the norm
|zl == (A = A)%a]

and named X,. The space X_,, is defined as the dual space of X, with respect to the
pivot space X', and therefore it is a subspace of the rigged space X_; = (dom A*) in
Section [2.1] Different choices of A € Cs,,, yield equivalent norms. As a consequence
of [Sta05, Lemma 3.10.9] we may state the following Lemma.

Lemma A.1.1. Let A be an analytic semigroup in X, « € [—1,1] and define X, as

above. The extension |y, restricts to an analytic semigroup on X,. Furthermore,

IM=1: |2Ax, (D), L, S M1+ t70) e x|y, VoelX, t>0. (A

The estimate in (A.1)) is an interpolation inequality. Let us briefly summarize
the simplest form of the complex interpolation functor [-,-]s defined in [Tri95l Sec-
tion 1.9.2].

Definition A.1.2 (complex interpolation functor). Let W, X be Banach spaces
with W — X. Define S := C.(\Cs; and S, := {a+it |teR } for a = 0,1.

Furthermore, define the function space
F(S) = { FeC(8;X) nHZ(S; X) ‘ flg, €C(S0:X) A flg, €C(SW) } .
Then for 6 € (0,1), the interpolation space of exponent 6 is defined as
(X, W]y :={zeX |3feF(S): f(O) =z}
with norm
el = it § o fsup ) sup 5 | £ F(8) 2 100) = ).

By [Tri95], Section 1.18.10] the following theorem holds.

Theorem A.1.3. Let A be the self-adjoint generator of an analytic semigroup in
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A.1. Analytic semigroups and interpolation
X, and let 0 < f < a < 1. For the spaces X,,, X defined as above, we have
Xa-0)a+0p = [Xa s Xply VO€(0,1). (A.2)

The next lemma, which is found for example in [ENOO, p. 60], helps determine

the generator of 2|y, .

Lemma A.1.4. Let the Banach space VW be continuously embedded into the Banach
space X, and let A be the generator of a semigroup A in X. Assume that W is
A-invariant and t — A(t)|yy is strongly continuous with respect to the norm of W.

Then the generator of Al is the part of A in W, i.e. the operator
Ay = Ar VYredomAW :={zeWndomA | AreW }.

Thus, for o € [—1,1], the generator of the semigroup 2|y, is the part of Al ,
in X,.
Another powerful means to determine the space &), is Kato’s Second represen-

tation theorem. We summarize Kato’s First and Second representation theorem
[Kat80, Section VI.2] in the following theorem.

Theorem A.1.5. Let W and X be Hilbert spaces with W — X, and let a : WxW —

C be a continuous, hermitian symmetric sesquilinear form that fulfills
Rea(z,z) = a(zr,x) =20 VYreX.
Then there exists a unique operator A with

domA:={zeW |3z(z) e X: a(z,¥) = (z(z), byx Vi € W},
Ax = —z(z) VzedomA

Furthermore, A is self-adjoint and nonnegative, dom A is dense in W, and for every

A > 0 we have

dom((\ — A)%) =W, and <(—A)%x, (—A)%y>;( =a(zr,y) Vz,yeW.
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A.2. Solutions to inhomogeneous Cauchy problems

Definition A.2.1. Let A: dom A ¢ X — X be the generator of a strongly con-
tinuous semigroup 2 on the Banach space X, and denote by X _; the rigged space
defined in Section Furthermore, let xg € X and f € L] .(Rso; X_1). A function

x is a strong solution of the Cauchy problem

#(t) = Ax(t) + f(t),  2(0) = o, (A.3)

in X if and only if x € C(R>o; X') and

t

z(t) = xo —I—J Alyz(t) + f(r)dr Vit =0,
0

where this Bochner-integral is defined with respect to the norm of X_;.

In view of [Sta05 Definition 3.2.2 (i)], our definition of strong solutions is just
a reformulation of [Sta05, Definition 3.8.1]. Hence, we may excerpt the following
assertions from [Sta05, Theorem 3.8.2.]:

Lemma A.2.2. Let xg€ X and f € L (Rsp; X_1).

loc

(i) The Cauchy problem (A.3) has at most one strong solution in X. This solution
is given by

t

x(t) = A(t)zo + J A(t — s)|x_, f(s)ds, t

0

A\
o

(A4)

(ii) If f € L .(Rso; X), then the function x defined by (A.4) is a strong solution
of (3) in X.

(iii) If [ € VVI})C1 (Rso; X_1), then the function x defined by (A.4) is a strong solution
of (3) in X.

Lemma A.2.3. Let Ay; and Asy generate strongly continuous semigroups on the
Hilbert spaces X and Z, respectively, and let Ay € B(Z;X), Ag € B(X; Z). Then

the operator

A: domAj xdomApy c X xZ->Ax2Z A= [fl; fl;;]’
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A.2. Solutions to inhomogeneous Cauchy problems

generates a strongly continuous semigroup in X x Z. Let [29, 25]" € X x Z and
[fi, f2]" € LL (Rso; X x Z). Then [z, 22]" € C(Rso; X x Z) is the strong solution

of
51:71(75) _ 4| @A) ’ z1(0) | _ | oY 7 (A5)
(1) (1) fa(t) 2(0) 3

in X x Z if and only if the functions x1 and x5 satisfy for allt = 0 the equations

ri(t) = 29 + Jo An| a1 (s) + Aipaa(s) + f1(s) ds, (A.6)

To(t) = 29 + Jo Ags| jx2(s) + Asiwi(s) + fa(s) ds, (A7)

where the integrals are computed in (dom Af,)" and (dom As)’, respectively. In
particular, there exists a unique pair of functions 1 € C(Rso; X), x5 € C(Rxo; Z)
that fulfills and . If, in addition, Aqq is bounded, then the component x;
of this solution is differentiable almost everywhere with respect to the norm of X,

and

1(t) = Az (t) + Apxa(t) + fi(t) fa.a. t=0. (A.8)

Proof. We observe that the operator diag(Aj1, Agz) with domain dom A7 x dom Ay
generates a strongly continuous semigroup in X x Z. Due to the boundedness of
the perturbation [ AZI A(}z] € B(X x Z), the operator A is well-defined and generates
a strongly continuous semigroup in X x Z. Moreover, an elementary proof shows
that the adjoint of A fulfills

dom A" = (dom A}y x dom AY),  A* = [4 75,

¥ Ak
ATy AS,

and therefore the rigged space corresponding to A is (dom A*) = (dom A}, x
dom A%,)". By definition and owing to the Uniform boundedness principle, |73 ]
is a strong solution of (A.5) in X' x Z if and only if all [ £} ] € dom Af; x dom A3,

satisfy the equation
(s s R
R s R | VRS o
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- <x?, ¢1>X + <$g’ S02>z

t
+f (21(5), Atyor + Abpa)y + (22(5), Alpr + Alpr) 5
0

+ (fi(s), ¢1) + (f2(5), p2) 7 ds.

This holds if and only if, for all ¢; € dom A}, and all ¢y € dom A%, the equations

(1(t) . i)y = (a3 1)

+ L (21(s), ATipr)x + (22(s), Appr) z + (f1(5), p1)x ds

and

(22(t) @2)x = <x8, 902>Z

" f (w2(s) , Atppr) s+ (1(5), Afon) 5 + (fals) , 2) 5 ds

0

hold. Again by the Uniform boundedness principle, these two equations are equiv-
alent to and .

For the additional claim assume now that the operator A;; is bounded. The rigged
space (dom A%f,)" then coincides with X, and therefore z; satisfies

t

ri(t) = 2% + J Apxi(s) + Apxa(s) + fi(s)ds Vi =0,
0
where the integration is carried out in X'. This equation and Corollary 2 of [HP5T,
Theorem 3.8.5] imply that, for almost all ¢, the limit
Ll'l(t + h) — 1'1(t>

lim
h—0

= Apx(t) + Apxe(t) + f1(t)

with respect to | - |+ exists. This shows (A.8) and completes the proof of the

lemma. O]
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