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1. Introduction

Linear systems theory is concerned with physical processes that convert an input
signal u into an output signal y in a linear, time-invariant and causal manner.
Mathematically, this is captured in the simple equation y “ Du, where D is a linear
time-invariant causal operator that maps one signal space into another. The system
that processes the signal usually comprises an internal state x which is, as opposed
to y, not directly measurable. In the theory of compatible well-posed linear systems,
these processes are described by a differential equation of the type

9xptq “ Axptq `Buptq, yptq “ Cxptq `Duptq,

where A, B, C and D are linear operators between Hilbert spaces. A notably chal-
lenging situation arises when these Hilbert spaces need to be infinite-dimensional
and the operators may be unbounded. Such infinite-dimensional systems have re-
ceived much attention in the past 30 years, see e.g. the monographs [BDDM07,
CZ95, JZ12, Sta05, TW09] for an overview. Typical examples are diffusion pro-
cesses such as heat conduction, wave propagation, and many others that are for
example mentioned in [CZ95, JZ12, TW09]. Typical control goals are for instance
to make the output follow a desired reference trajectory [BGHS13, LT97, Pau11], or
to make the output insensitive to disturbances [vK93, Mik02, MG90]. The present
thesis is motivated by the desire to achieve each of these two goals in a practically
feasible way for infinite-dimensional systems.

1.1. Summary of the thesis
In order to complete the task of trajectory tracking we employ funnel control, a very
simple control strategy that makes the output follow the reference trajectory in
a strict way. Namely, it evolves in a funnel around the reference trajectory that can
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1. Introduction

be specified by the user. The second output control strategy that we employ aims
at minimizing noise amplification of the closed-loop system. It is a special version
of the famous H8-control problem [vK93].
Both methods require considerable preparation in terms of structural systems

analysis. For both control schemes we construct state space transformation to obtain
realizations in terms of matrix-like representations. While state space transforma-
tions are standard tools in the finite-dimensional theory, they have been neglected
in the infinite-dimensional theory so far. This is mostly due to the lack of matrix
representations for unbounded linear operators. In fact, the transformations we use
may become unbounded themselves which leads to considerable technical difficulties.
Nevertheless, the present work shows that it is sometimes possible and beneficial to
make use of such transformations.
Funnel control for finite-dimensional systems requires two properties: A rela-

tive degree condition and stable zero dynamics. The concept of relative degree for
infinite-dimensional system appears only in [MR07, LT97], where the relative-degree
of a state linear system

9xptq “ Axptq `Buptq, yptq “ Cxptq,

is defined as a natural number determined by the behavior of the transfer function at
infinity. To the definition of [MR07], we add a smoothness condition on the control
and observation operator that guarantees the existence of certain invariant subspaces
[MR07, Zwa89]. This condition allows us to develop two special realizations: The
zero dynamics form and the Byrnes-Isidori form. The latter is a generalization of
the popular Byrnes-Isidori form in [BI91], and both are suitable for determining
the zero dynamics, which is roughly speaking, the set of all trajectories px, uq that
satisfy

9xptq “ Axptq `Buptq, Cxptq “ 0 @ t ě 0.

While the importance of the zero dynamics is undisputed [BG09, BGH94, BGHS13,
BGIS06, Isi95, MR07, MR10], there is no proper definition nor characterization for
infinite-dimensional systems so far. We fill this gap by giving a universal definition
of zero dynamics for well-posed linear systems, and we show that the zero dynamics
are, at least in some cases, characterized by a strongly continuous semigroup on some
subspace of the state space. For systems with relative degree, the zero dynamics
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1.1. Summary of the thesis

form shows that this subspace is precisely the largest feedback invariant subspace
in kerC, which was extensively studied in [Cur84, Cur86, MR07, Zwa88, Zwa89].
The aforementioned semigroup allows us to characterize the stability of the zero
dynamics.
To systems with exponentially stable zero dynamics and relative degree one we

subsequently apply the funnel controller. This control law is an easily implemented
algebraic calculation of the form

uptq “ kpt, yptq ´ yrefptqq ¨ pyptq ´ yrefptqq,

where k is a special nonlinear function that determines the performance funnel, and
yrefptq is the reference signal to be tracked. The challenge is to identify the systems
for which this works. It has been established for finite-dimensional linear, non-linear
and differential-algebraic systems as well as some functional differential equations
in [BIR12b, BIW14, IRS02, IRT05], respectively. In this thesis we first show that
the funnel control is successfully applicable to systems of relative degree one with
exponentially stable zero dynamics. Thereafter, we prove the same result for transfer
functions that have a series expansion of the form

Gpsq “
8
ÿ

k“0

ck
s` λk

, s P Cą0,

where ck, λk P Rě0. Such a transfer function is for instance realized by the following
boundary control system with “collocated” control and observation:

B

Bt
xpξ, tq “ ∆xpξ, tq, pξ, tq P Ωˆ Rą0,

uptq ” Bνxpξ, tq, pξ, tq P BΩˆ Rą0,

yptq “

ż

BΩ
xpξ, tq dσξ, pξ, tq P BΩˆ Rą0.

Here, Ω is a bounded, smooth domain and uptq and yptq are scalar. This non-trivial
example is thoroughly analyzed within this thesis, including a discussion of the zero
dynamics and the evolution of the state under funnel control.
The second output control strategy that we develop is a special version of the fa-

mous H8-control problem, and closely related to the linear quadratic optimal control
problem. The infinite-dimensional versions of these problems have received extensive
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1. Introduction

study, amongst others in [vK93, Mik02, Sta98b] and [BDDM07, CZ95, Mik02, PS87,
Sta98c], respectively. The solutions always comprise an infinite-dimensional observer
that estimates the internal states of the system and is impossible to implement
because of its infinite-dimensional nature. Therefore, some efforts to design finite-
dimensional controllers with similar performance have been made in [Cur03, Cur06].
The method described therein is to approximate the transfer function by a finite-
dimensional-realization in order to construct a finite-dimensional controller that is of
practical use and achieves the control task with a possible decline in performance.
We develop this approach further by applying the approximation method of bal-
anced truncation to a certain H8-balanced realization. This method was proposed
in [MG91] for finite-dimensional systems and has been outlined in [Cur03, FSS13]
for infinite-dimensional state linear systems. We convert these ideas into rigorous
proofs, encompassing the more general class of Pritchard-Salamon systems.
Let us explain this approach: The method of balancing and truncation requires an

output normalized or a balanced realization. Such realizations were given in [CG86,
GCP88, GLP90, Gui12, GO14, Obe86, Obe87, Obe91, OMS91, Sta05]. For systems
with compact Hankel operator we generalize certain balancing transformation that
were first introduced in [TP87] for finite-dimensional systems. While all of the above
works considering infinite-dimensional systems construct the balanced realization
from a Hankel operator that is often not known explicitly, our transformations can
be applied to any existing realization provided that a factorization of each Gramian
is given. These factorizations can for example be obtained from an algorithm that
is described in [ORW13] for infinite-dimensional systems. Moreover, in order to
calculate the approximation, it suffices to evaluate the factors on a finite number of
vectors.
With this approximation method at hand, the next obstacle is that it is only works

for stable systems. The remedy is to stabilize a given system first by a state feedback
and then perform balanced truncation on the closed-loop system. In the spirit of
[MG91] we use a state feedback that solves a certain linear quadratic optimization
problem. This has the advantage that the solution of this optimization problem
can be obtained by solving an algebraic Riccati equation, which also yields the
observability Gramian of the closed-loop system. In the process of balancing and
truncation both Gramians are diagonalized, and we will show that the truncated
Gramians solve two analogous algebraic Riccati equations. With this information
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1.2. Outline of the thesis

we may construct a finite-dimensional robust H8-controller by the method described
in e.g. [TSH01, MG90].

1.2. Outline of the thesis
In Chapter 2 basic definitions and elementary results about well-posed linear systems
are recapped. Almost everything in this chapter is known, except for Section 2.6, in
which a non-trivial, recurring example of the heat with boundary control is intro-
duced.
In Chapter 3 we consider state linear systems that have a well-defined relative

degree within the natural numbers. After giving our definition of relative degree
in Section 3.1, we derive the zero dynamics form in Section 3.2. Subsequently, the
Byrnes-Isidori form can easily be derived from the zero dynamics form of the dual
system in Section 3.3.
For well-posed linear systems we define zero dynamics and their stability concepts

in Chapter 4. The zero dynamics of systems with relative degree are characterized
in Section 4.1 with the aid of the zero dynamics form and the Byrnes-Isidori form.
In Section 4.2 we derive a similar result for the boundary control system introduced
in Section 2.6.
Chapter 5 shows that funnel control is feasible for two new classes of infinite-

dimensional systems: Section 5.1 covers systems with relative degree one and expo-
nentially stable zero dynamics, Section 5.2 a large class of self-adjoint systems. In
this section, we sharpen results for self-adjoint finite-dimensional systems before we
treat the infinite-dimensional class. The results are applied to the boundary control
system introduced in Section 2.6, which is an example of a self-adjoint system.
The second part of the thesis is concerned with the approach of balancing and

truncation, and starts with the construction of various transformations in Chap-
ter 6. The first section of this chapter recapitulates two canonical shift-realizations.
Using these realizations we construct an output normalized realization on `2 in Sec-
tion 6.2. In Section 6.3 we restrict the output normalized realization to a subspace
and obtain an input normalized realization. The balanced realization in Section 6.4
results from interpolation between these two normalized realizations. Aside from
the transformations we also address the truncation of the output normalized and
the balanced realization.
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1. Introduction

Chapter 7 covers the H8-balancing and truncation process for Pritchard-Sala-
mon systems. In Section 7.1 we introduce the type of Riccati-equations used in
this thesis and recall corresponding results. In Sections 7.2 and 7.3 the methods
of the preceding chapter are applied to a right factorization in order to obtain an
H8-output normalized realization on `2 and its truncation. Finally, Section 7.4
contains the finite-dimensional robust controller design based on H8-balancing and
truncation.
There is an appendix consisting of two sections: Section A.1 summarizes existing

assertions on fractional powers of semigroup generators and interpolation, which are
relevant for the boundary controlled heat equation. Section A.2 contains results on
inhomogeneous Cauchy problems in Banach spaces connecting systems theory to
differential equations.
A great part of the results presented in this thesis has been published in peer

reviewed journals by the author together with Timo Reis: Section 4.2 is contained
in [RS15b], Section 5.2 is the subject of [RS15a], and Chapter 6 is entirely contained
in [RS14]. Furthermore, Sections 3.3, 4.1 and 5.1 are in the manuscript [IST15]
which is currently undergoing a second revision.
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2. Basic objects

In this chapter we recollect several definitions and fundamental results from the field
of infinite-dimensional systems theory. Everything in this chapter is known up to
Section 2.6, where we discuss a non-trivial example of a boundary control system.
Most of the notations and conventions that we use are explained in this chapter.
Further notation and a list of symbols and function spaces can be found in the
appendix for quick reference.

2.1. Semigroups and rigged spaces
A strongly continuous semigroup in the Banach space X is a mapping A : Rě0 Ñ

BpX q that satisfies Ap0q “ I, ApsqAptq “ Aps` tq for all s, t ě 0, and

lim
tÓ0
}Aptqx´ x}X “ 0 @x P X .

The growth bound of A is

ωA :“ inf
 

ω P R
ˇ

ˇ DM ą 0 @t ě 0 : }Aptq}BpX q ďMeωt
(

.

The infimum in this definition is not always attained, but it is always less than
infinity. The generator of a strongly continuous semigroup A is the operator

Ax :“ lim
tÓ0

1
t
pAptqx´ xq @x P domA,

where domA is defined as the set on which this limit exists. The generator is closed
and densely defined, and CąωA

Ă ρpAq.
An inevitable concept for semigroups are the rigged spaces. However, they are

also relevant for operators that do not generate semigroups. We recap some basic
facts that can be found in [Sta05, Section 3.6], [EN00, Section II.5].

7



2. Basic objects

Let X be a Banach space and A : domA Ă X Ñ X be a densely defined operator
with ρpAq ‰ H. Then the domain of A is a Banach space with respect to its natural
graph norm } ¨ }domA :“ p} ¨ }2X `}A ¨ }2X q

1
2 . This norm is equivalent to the expression

}pλ´ Aq¨}X for any λ P ρpAq. In situations where it is clear which operator A
is used and the exact value of λ P ρpAq is unimportant, it is convenient to write
X1 :“ domA and }¨}X1

:“ }pλ´ Aq¨}X for some λ P ρpAq.
In the opposite direction, we take an arbitrary λ P ρpAq and define the space X´1

to be the completion of X with respect to the norm } ¨}X´1 :“ }pλ´Aq´1 ¨ }X . Again,
a different choice of λ P ρpAq here leads to an equivalent norm. The operator λ´A
has a unique continuous extension pλ ´ Aq|X that maps X isometrically onto X´1.
As a consequence, the operator

A|X : X Ñ X´1, A|X :“ λ´ pλ´ Aq|X , (2.1)

is bounded and a continuous extension of A. If A generates a strongly continuous
semigroup A in X than A|X generates a strongly continuous semigroup t ÞÑ Aptq|X´1

in X´1. Slightly abusing notation we denote this semigroup by A|X´1 . We point out
that the rigged spaces remain the same (up to an equivalent norm) if we replace A
by A`B where B P BpX q is a bounded perturbation.
If X is a Hilbert space, there is another representation of X´1 that is explained

in [TW09, Section 2.10] and will be used throughout this thesis. Take note of the
following conventions that we adopt from [TW09]: The scalar product 〈¨ , ¨〉X of
a Hilbert space X is defined to be linear in the first and anti-linear in the second
component. When a Hilbert space is identified with its own dual via the Riesz
isomorphism it is called a pivot space. Not all Hilbert spaces are considered as pivot
spaces. The application of a functional y P X 1 to x P X is denoted by 〈x , y〉X ,X 1 , and
scalar multiplication on X 1 is defined by 〈x , λy〉X ,X 1 :“ λ 〈x , y〉X ,X 1 for y P X 1 and
x P X . Furthermore, we define the reversed dual pairing 〈y , x〉X 1,X :“ 〈x , y〉X ,X 1

for y P X 1 and x P X , which is linear in the first and anti-linear in the second
component, just like the scalar product.
If X is a Hilbert space, the norm of the rigged space X´1 has the alternative

representation
}x}X´1 :“ sup

zPdomA˚,

}pλ´Aq˚z}Xď1

|〈x , z〉X | @x P X .

8



2.2. System nodes

From this expression it is not hard to see that } ¨ }X´1 is equivalent to the norm
} ¨ }pdomA˚q1 defined by

}x}pdomA˚q1 :“ sup
zPdomA˚,

}z}domA˚ď1

|xx, zyX | @x P X .

When equipped with this norm, the space
`

X´1, } ¨ }pdomA˚q1
˘

is the so-called dual
space of pdomA˚, } ¨ }domA˚q with respect to the pivot space X . Indeed, it can be
shown that the following mapping J is an isometric isomorphism from X´1 onto the
dual space of domA˚: For z P X´1 pick a sequence pxnq P X with }xn ´ z}X´1 Ñ 0
as nÑ 8, then Jz P pdomA˚q1 is defined via

xJz, ϕypdomA˚q1,domA˚ :“ lim
nÑ8

xxn, ϕyX @ϕ P domA˚.

With this isomorphism we will always interpret pdomA˚q1 as the dual space of
domA˚ with respect to the pivot space X . The bidual space pdomA˚q2 is always
identified with domA˚ itself. If a topological vector space W is continuously and
densely embedded into the topological vector space X , we write W ãÑ X . The
following Lemma taken from [TW09, Proposition 2.9.3] gives a sufficient condition
for an operator to be extendable to X´1.

Lemma 2.1.1. Let W1, W2, X1 and X2 be Hilbert spaces with W1 ãÑ X1 and
W2 ãÑ X2. Assume A P BpW1; X2q satisfies A˚W2 Ă W1. Then A has an extension
A|pW1q1 : pW1q

1 Ñ pW2q
1 given by xA|pW1q1w

1
1, w2yW 1

2,W2 :“ xw11, A˚w2yW 1
1,W1 for w11 P

W 1
1 and w2 P W2.

2.2. System nodes
The direct product of two normed spaces X and U is denoted by XˆU and equipped
with the norm

›

›rx , usJ
›

›

XˆU :“
`

}x}2X ` }u}
2
U
˘1{2.

In this thesis we study dynamics that obey equations of the type

9xptq “ A&B
„

xptq
uptq



, yptq “ C&D
„

xptq
uptq



, t P R.

Here, the expression A&B is simply the name of an operator that is defined on some

9



2. Basic objects

subset of a product space X ˆ U . The symbols A and B hint towards special cases
in which A&B can be split into two independent operators, A : domA Ă X Ñ X
and B : U Ñ X . The same is true for the operator C&D, which can sometimes
be split into two operators C and D. Let us render these objects more precisely by
recalling several definitions from [Sta05].

Definition 2.2.1 (system node). Let X ,U ,Y be Hilbert spaces. A block operator

S “

«

A&B
C&D

ff

: domS Ă X ˆ U Ñ X ˆ Y

is an operator node if the following holds:

(i) S is a closed operator.

(ii) The operator A : domA Ă X Ñ X defined by

Ax “ A&B
„

x
0



, domA :“
"

x P X
ˇ

ˇ

ˇ

ˇ

„

x
0



P domS

*

,

satisfies ρpAq ‰ H, and domA is dense in X .

(iii) The operator A&B can be extended to an operator rA|X , Bs P BpX ˆU ; X´1q,
where X´1 is defined as in Section 2.1.

(iv) domS “

" „

x
u



P X ˆ U
ˇ

ˇ

ˇ

ˇ

A|X `Bu P X
*

.

If, in addition, A is the generator of a strongly continuous semigroup A, then S is
called a system node. We call A the main operator , and B the control operator of S.
The operator C P BpdomA; Uq defined by Cx :“ C&D r x0 s is called the observation
operators of S. The transfer function of S at the point λ P ρpAq is the operator

Gpλq :“ C&D
«

pλ´ A|X q
´1B

I

ff

P BpU ; Yq.

While the operator A&B is by definition always expendable into A|X and B, the
operator C&D can, in general, not be split. A class of operator nodes for which this
is possible appears in the following definition adapted from [Sta05, Definition 5.1.1].

10



2.2. System nodes

Definition 2.2.2 (compatible). An operator node r A&B
C&D s with main operator A

is said to be compatible with compatibility space W if there exists a Hilbert space
W ãÑ X such that domA is continuously embedded into W , the observation opera-
tor C has a bounded extension C|W P B pW ; Yq, and the control operator B satisfies
pλ´ A|X q

´1BU Ă W for some λ P ρpAq. In this case the expression

D :“ C&D
«

pλ´ A|X q
´1B

I

ff

´ C|Wpλ´ A|X q
´1B (2.2)

is independent of λ P ρpAq and an element of BpU ; Yq [Sta05, Lemma 5.1.4]. We
call D the feedthrough operator induced by C|W .

Remark 2.2.3. (i) If domA is not dense in W then the extension C|W is not
unique, and the feedthroughs induced by different extensions C|W will in gen-
eral not be the same; an example of this phenomenon is illustrated in Re-
mark 2.6.5 (iii) and [Sta05, Remark 5.1.6].

(ii) An immediate consequence of (2.2) is that the transfer function of a compatible
system node has the representation

Gpλq “ C|Wpλ´ Aq
´1B `D @λ P ρpAq.

There is always an outstanding compatibility space that has nice characterization
in terms of A and B:

Lemma 2.2.4. Let S be a compatible operator node with compatibility space W,
main operator A and control operator B. Define

pX `BUq1 :“
 

x P X
ˇ

ˇ A
ˇ

ˇ

Xx P X `BU
(

with norm

}x}2pX`BUq1 :“ inf
 

}x}2X ` }A
ˇ

ˇ

Xx`Bu}
2
X ` }u}

2
U

ˇ

ˇ u P U ^ A
ˇ

ˇ

Xx`Bu P X
(

.

Then S is also compatible with compatibility space pX ` BUq1. Moreover, we have
pX `BUq1 “ pλ´ A|X q´1pX `BUq.

11



2. Basic objects

The main part of this lemma is [Sta05, Theorem 5.1.8]. The alternative charac-
terization of the set pX `BUq1 is shown in [Sta05, Lemma 4.3.12].
By the following lemma proven in [Sta05, Lemma 4.7.8], the dynamics of a system

node are well-defined for sufficiently regular input functions.

Lemma 2.2.5. Let S “ r A&B
C&D s be a system node on pU ,X ,Yq and let A,B,C&D

and the semigroup A be as in Definition 2.2.1. Then A extends to a strongly con-
tinuous semigroup on pdomA˚q1, and for each x0 P X and u P W 2,1

loc pRě0; Uq with
“ x0
up0q

‰

P domS, the function

xptq :“ Aptqx0 `

ż t

0
Apt´ τq

ˇ

ˇ

pdomA˚q1
Bupτq dτ @ t ě 0,

satisfies x P C1pRě0; X q and r xu s P CpRě0; domSq. Together with

yptq :“ C&D
„

xptq
uptq



@ t ě 0,

the function r xy s : r0,8q Ñ X ˆ Y is the unique solution of the equation
«

9xptq

yptq

ff

“ S

«

xptq

uptq

ff

@ t ě 0, xp0q “ x0. (2.3)

Definition 2.2.6 (Lp-well-posedness). An operator node S on pU ,X ,Yq is said to
be Lp-well-posed with p P r1,8s if S is a system node and, for each t ą 0, there
exists a constant M ą 0 such that all solutions r xy s of the type described in the
previous lemma satisfy

}xptq}X ` }y}Lppr0,ts;Yq ďM
´

}xp0q}X ` }u}Lppr0,ts;Uq
¯

.

In Section 2.4 we will see that every well-posed operator node generates a so-
called well-posed linear system. We conclude this section with a short motivation
for this abstract concept: Let S be a well-posed system node and define for t ě 0,
x0 P domA and u P W 2,1

loc pRě0; Uq the input-to-state map Bt, the state-to-output

12



2.3. Time-invariant causal operators and transfer functions

map Ct, and the input-output map Dt by

Btu|r0,ts :“
ż t

0
Apt´ τq

ˇ

ˇ

pdomA˚q1
Bupτq dτ, Ctx0 :“ CAp¨qx0,

Dtu|r0,ts :“ C&D
«

Btu|r0,ts

uptq

ff

.

(2.4)

Then the solution in Lemma 2.2.5 may be written as
«

xptq

y|r0,ts

ff

:“
«

Aptq Bt

Ct Dt

ff«

x0

u|r0,ts

ff

. (2.5)

The Lp-well-posedness then implies that we can extend the above operators so that
the four operators

Aptq : X Ñ X , Bt : Lppr0, ts; Uq Ñ X ,

Ct : X Ñ Lppr0, ts; Yq, Dt : Lppr0, ts; Uq Ñ Lppr0, ts; Yq,

are continuous. Hence, we may use (2.5) to define the state xptq and output y|r0,ts for
arbitrary x0 P X and u P Lppr0, ts; Uq. The four operators above constitute a well-
posed linear system in the sense of Section 2.4. For this thesis, which ultimately
aims at output feedback without any knowledge of the internal states, the input-
output map Dt is of particular interest. Therefore it receives some extra attention
in the following section.

2.3. Time-invariant causal operators and transfer
functions

This section summarizes some facts about input-output maps regardless of any un-
derlying system and its internal states.
For a function u : RÑ U and J Ă R we define the projections

pπJuqpsq :“

$

&

%

upsq, s P J,

0, s P RzJ,

13



2. Basic objects

and the special cases π` :“ πr0,8q, π´ :“ πp´8,0q. Furthermore, we use the shift
operator

pτ tuqpsq :“ upt` sq, @ s P R.

The shift operator τ t acting on LpωpRď0; Uq or LpωpRě0; Uq is denoted by τ t´ and τ t`,
respectively.
We will often implicitly extend a function u whose domain is a subset of R by

zero when we apply the above operators. In the following definitions from [Sta05],
the space Lpc,locpR; Uq is used. It is defined as the set of all functions u P LplocpR; Uq
whose support is bounded from below, (and not necessarily compact). LpωpRě0; Yq is
the exponentially weighted Lebesgue space. It consists of all functions u that satisfy
eωu P LppR; Uq, where eω is the function eωptq :“ eωt.

Definition 2.3.1. Let 1 ď p ď 8, ω P R, let U and Y be Banach spaces, and let
D : dompDq Ă LplocpR; Uq Ñ LplocpR; Uq be a linear operator.

(i) D is time-invariant if τ tDu “ Dτ tu for all u P domD and all t P R.

(ii) A time-invariant operator D is causal if π´D|LplocpRě0;Uq “ 0.

(iii) TICp
ωpU ; Yq stands for the space of all bounded linear time-invariant causal

operators D : LpωpR; Uq Ñ LpωpR; Yq.

(iv) TICp
locpU ; Yq stands for the space of all linear time-invariant causal operators

D : Lpc,locpR; Uq Ñ Lpc,locpR; Yq with D|LppI;Uq P BpLppI; Uq;LppI; Yqq for every
compact interval I Ă R.

(v) The Hankel operator induced by D P TICp
ωpU ; Yq is the operator

H : LpωpRď0; Uq Ñ LpωpRě0; Yq, H :“ π`D|LplocpRď0;Uq.

Remark 2.3.2. If u is an Lpc,locpR; Uq-function, then the support of u is contained in
r`,8q for some ` P R and for every t P R the norm

›

›πp´8,tsu
›

›

LpωpR;Uq is finite. Hence,
Dπp´8,tsu is well-defined for D P TICp

ωpU ; Yq. The causality of D guarantees that
there is a unique function y P LplocpR; Yq that satisfies

πp´8,tsy :“ πp´8,tsDπp´8,tsu @ t ě `.

14



2.3. Time-invariant causal operators and transfer functions

With the assignment rDu :“ y we define a mapping rD : Lpc,locpR; Uq Ñ Lpc,locpR; Yq,
which coincides with D on the intersection of Lpc,locpR; Uq and LpωpR; Uq. The map-
ping rD can bee seen as a restriction of D to LpωpR; Uq- functions with compact
support, followed by an extension. We will sometimes identify D with rD without
explicit warning. Note however that we will only use the continuity of D between
the normed spaces LpωpR; Uq and LpωpR; Yq. We do not discuss continuity properties
of rD because the topology of Lpc,locpR; Uq is rather involved and not locally convex.

Definition 2.3.3. An operator D P TICp
locpU ; Yq is said to be stable if it has a con-

tinuous extension to TICp
0pU ; Yq.

An operator rN , MsJ P TICp
0pU ; Y ˆ Uq is called a right factorization of D P

TICp
locpU ; Yq if M has an inverse in TICp

locpUq such that Du “ NM´1u for all
u P Lpc,locpR; Uq.

A stable operator D P TICp
locpU ; Yq will be identified with its extension. Also in

the sense of extensions, we write D “ NM´1. Note that a right factorization is by
definition stable.

Definition 2.3.4. The Laplace transform of a function u P L1
locpRě0; Uq is given by

pupsq “

ż 8

0
e´stuptq dt

for all s P C for which the integral converges absolutely. The domain of pu is a half
plane Cěω for some ω P R.

Recall the definition of Hardy spaces from [Dur70, Sta05]: For p P r1,8q, the
Hardy space Hp

ωpUq is the set of all analytic functions f : Cąω Ñ U with finite norm

}f}Hp
ωpUq :“ sup

αąω

ˆ
ż 8

´8

}fpα ` iβq}pU dβ
˙

1
p

,

and the space H8
ω pU ; Yq is the set of all bounded analytic functions f : Cąω Ñ

BpU ; Yq with norm
}f}H8ω pU ;Yq :“ sup

sPCąω
}fpsq}BpU ;Yq .

Theorem 2.3.5 (Paley-Wiener theorem). If U is a Hilbert space, then the Laplace
transform,

p̈ : L2
ωpRě0; Uq Ñ H2

ωpUq,

15



2. Basic objects

is a homeomorphism with }pu}H2
ωpUq “

?
2π}u}L2

ωpRě0;Uq.

A proof of the Hilbert space-valued version of well-known Paley-Wiener theorem
can be found in [Sta05, Theorem 10.3.4].
We define transfer functions for time-invariant causal operators in the sense of

[Sta05, Definition 4.6.1]. The ambiguity between the transfer function of a system
node and the transfer function of its input-output map is resolved in Lemma 2.4.6.

Definition 2.3.6. The transfer function pD of an operator D P TICp
ωpU ; Yq is the

operator valued function

pDpsq “ pu ÞÑ pDpesuqqp0qq @ s P Cěω.

In the next lemma, we summarize parts of [Sta05, Corollary 4.6.10] and [Sta05,
Lemma 10.3.3].

Lemma 2.3.7. Let D P TICp
ωpU ; Yq. Then the transfer function pD is an ana-

lytic BpU ; Yq-valued function in Cąω, and, for each α ą ω, it is in H8
α pU ; Yq with

}pD}H8α pU ;Yq ď }D}TICαpU ;Yq. Furthermore, for all u P LpωpRě0; Uq the relation

pxDuqpsq “ pDpsqpupsq, @ s P Cěω,

holds.

The following result is a consequence of the Paley-Wiener theorem. A proof is
given in [Sta05, Theorem 10.3.5].

Theorem 2.3.8. If U and Y are Hilbert spaces, then the mapping p̈ : TIC2
ωpU ; Yq Ñ

H8
ω pU ; Yq that associates each time-invariant causal operator to its transfer function

is an isometric isomorphism.

Definition 2.3.9 (regular). A function pD P H8
ω pU ; Yq is said to be strongly regular

if the limit
Du :“ lim

sÑ8,sPR
pDpsqu

exists in Y for all u P U , and uniformly regular if the limit

D :“ lim
sÑ8,sPR

pDpsq (2.6)

exists in BpU ; Yq.
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This definition is taken from [Sta05, Definition 5.6.1]. By the uniform boundedness
principle D defines a bounded linear operator from U to Y , even in the strongly
regular case.

2.4. Well-posed linear systems and their generators
In this section, U , X and Y are always Hilbert spaces.

Definition 2.4.1 (Well-posed linear system). Let p P r1,8s. An ω-bounded Lp-
well-posed linear system on pU ,X ,Yq is a quadruple pA, B, C, Dq with the following
properties:

(i) t ÞÑ Aptq P BpX q is a strongly continuous semigroup on X with growth bound
ωA ă ω;

(ii) B P BpLpωpRď0; Uq; X q satisfies AptqB “ Bτ t´ for all t ě 0;

(iii) C P BpX ;LpωpRě0; Yqq satisfies CAptq “ τ t`C for all t ě 0;

(iv) D P BpLpωpR; Uq;LpωpR; Yqq is continuous, causal, time-invariant and it satisfies
π`D|LpωpRď0;Uq “ CB.

The growth bound of the system is defined as the growth bound of its semigroup. An
Lp-well-posed linear system is a quadruple of operators that is an ω-bounded Lp-well-
posed linear system for some ω P R. Any Lp-well-posed linear system pA,B,C,Dq

is called a realization of D and of pD.
An Lp-well-posed linear system is called observable if kerC “ t0u, controllable if

ranB is dense in X , and minimal if it is both, controllable and observable.

Remark 2.4.2. An ω-bounded well-posed linear system is also α-bounded for every
α ą ωA [Sta05, Theorem 2.5.4 (iv)]. That is why there is usually no need to specify
the bound ω when the growth bound of ωA is known. An exception is the case where
pA,B,C,Dq is 0-bounded, but A is not exponentially stable.

By [Sta05, Lemma 4.3.5] and [Sta05, Lemma 4.4.1], well-posed linear systems
have the following smoothing properties.

Lemma 2.4.3. Let p P r1,8q, let pA,B,C,Dq be an ω-bounded Lp-well-posed linear
system on pU ,X ,Yq, and denote the generator of A by A. Then the following holds:

17
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(i) B maps W 1,p
0,ωpRď0; Uq continuously into domA, and for all u P W 1,p

0,ωpRď0; Uq
we have B 9u “ ABu.

(ii) C maps domA continuously into W 1,p
ω pRě0; Yq, and for all x P domA the

derivative of Cx is the Lp-function CAx.

Definition 2.4.4 (Gramian). Let pA,B,C,Dq be a 0-bounded L2-well-posed linear
system on pU ,X ,Yq. The operator BB˚ P BpX q is the controllability Gramian, and
C˚C P BpX q the observability Gramian of pA,B,C,Dq.

Definition 2.4.5. Let pA,B,C,Dq be an Lp-well-posed linear system with growth
bound ωA. The main operator of the system is the generator A of the semigroup A.
For all u P U , the following expression is independent of λ P CąωA

[Sta05, Theo-
rem 4.2.1]:

Bu :“ pλ´ A|X qBeλu. (2.7)

The operator B P BpU ; pdomA˚q1q defined by (2.7) is the control operator of the
system. The observation operator C P BpdomA; Yq of the system is defined by

Cx :“ pCxqp0q @x P domA.

To every well-posed linear system there is a corresponding well-posed system node
and vice versa:

Lemma 2.4.6. Let pA,B,C,Dq be an Lp-well-posed linear system on pU ,X ,Yq with
growth bound ωA, main operator A, control operator B and observation operator C.
Define the set

domS :“
# «

x

u

ff

P X ˆ U

ˇ

ˇ

ˇ

ˇ

ˇ

A|X `Bu P X

+

Then for all r xu s P domS, the expression

C&D
„

x
u



:“ C
`

x´ pλ´ A|X q
´1Bu

˘

` pDpλqu

is independent of λ P CąωA
and the block operator

«

A&B
C&D

ff

: domS Ă X ˆ U Ñ X ˆ Y ,
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2.4. Well-posed linear systems and their generators

«

A&B
C&D

ff«

x

u

ff

:“
«

A|Xx`Bu

C px´ pλ´ A|X q
´1Buq ` pDpλqu

ff

,

is an Lp-well-posed system node with main operator A, control operator B and ob-
servation operator C. Moreover, the transfer function G of this system node and
the transfer function pD of D satisfy

pDpλq “ Gpλq “ C&D
«

pλ´ A|X q
´1B

I

ff

@λ P CąωA
.

This follows from [Sta05, Theorem 4.7.13]; consult [Sta05, Definition 4.6.4] and
[Sta05, Theorem 4.6.7] for the well-definition of C&D and the formula for the trans-
fer function.
Summarizing [Sta05, Theorem 4.7.13] and [Sta05, Theorem 4.7.14], we may state

the following lemma.

Lemma 2.4.7. Let r A&B
C&D s be an Lp-well-posed system node, and let ω be greater

then the growth bound ωA of the semigroup A. Then we can define the operators

B : LpωpRď0; Uq Ñ X , C : X Ñ LpωpRě0; Yq, D : LpωpR; Uq Ñ LpωpR; Yq

by continuous extension of the mappings

Bu :“
ż 0

´8

A|pdomA˚q1p´sqBupsq ds @u P Lpc,locpRď0q

Cx :“ CAp¨qx @x P domA,

Du :“
˜

t ÞÑ C&D
«

şt

´8
A|pdomA˚q1p´sqBupsq ds

uptq

ff¸

@ t P R, u P W 2,p
c,locpR; Uq,

and pA,B,C,Dq is an ω-bounded, Lp-well-posed linear system. The system node
associated to pA,B,C,Dq via Lemma 2.4.6 is r A&B

C&D s.

Remark 2.4.8. (i) The last two Lemmas show that the well-posed linear system
and the system node determine each other uniquely. Furthermore, the system
node (and hence also the well-posed linear system) is uniquely determined by
its main operator, control operator, observation operator and the value of the
transfer function at some point λ P CąωA

.
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(ii) The fact that the main operator, control operator and observation operator of
the node and the semigroup coincide implies that the operators Bt, Ct and Dt

defined via (2.4) satisfy

Btu “ Bτ tu @u P Lppr0, ts; Uq,

Ctx “ πr0,tsCx @x P X ,

Dtu “ πr0,tsDu @u P Lppr0, ts; Uq.

Now we can formally define the state and output function as indicated at the end
of Section 2.2.

Definition 2.4.9 (behavior). Let pA,B,C,Dq be an Lp-well-posed linear system
on pU ,X ,Y). The state xptq at time t and the output function y P LplocpRě0; Yq
of pA,B,C,Dq with initial value x0 P X and input function u P LplocpRě0; Uq are
defined by

«

xptq

y

ff

:“
«

Aptq Bπ´τ
t

C D

ff«

x0

u

ff

. (2.8)

The behavior of pA,B,C,Dq is defined as

bhvpA,B,C,Dq :“
$

’

’

&

’

’

%

px, u, yq P CpRě0; X q ˆ LplocpRě0; Uq ˆ LplocpRě0; Yq :
«

xptq

y

ff

“

«

Aptq Bπ´τ
t

C D

ff«

xp0q
u

ff

@ t ě 0.

,

/

/

.

/

/

-

The state, the output, and the behavior of the associated system node are defined
as the state, output, and behavior of pA,B,C,Dq.

Remark 2.4.10. (i) For u P LplocpRě0; Uq we have π´τ tu P LpωpRď0; Uq, so Bπ´τ
tu

is well-defined. By [Sta05, Theorem 2.12], the state xptq is a continuous func-
tion of t. The operator D used here is an extension to Lpc,locpR; Uq.

(ii) For input functions of class W 2,p
loc pRě0; Uq, Lemma 2.2.5 implies that the state

xptq and the output function y of a system node are the unique solutions of
the differential equation (2.3).
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2.4. Well-posed linear systems and their generators

(iii) It is possible to define the state and output for input signals in L1
locpRě0; Uq,

even if the system is only Lp-well-posed for some p P p1,8q. In this case the
state defined by (2.8) is an element of the rigged space X´1, and the output
y exists only in a distributional sense, see [Sta05, Definition 4.7.5]. However,
for an Lp-well-posed system it is natural and logical to allow only for inputs of
class LplocpRě0; Uq in the behavior because these inputs lead to state functions
in the state space X and outputs in LplocpRě0; Uq.

The state can be seen as the solution of a differential equation in the sense de-
scribed in the Appendix by [Sta05, Theorem 4.3.1. (i)]:

Lemma 2.4.11. Let p P r1,8q, and let pA,B,C,Dq be an Lp-well-posed linear
system on pU ,X ,Yq with main operator A and control operator B. The state x
corresponding to the input u P LplocpRě0; Uq and initial value x0 P X is the unique
strong solution of

9xptq “ Axptq `Buptq, xp0q “ x0,

in X in the sense of Definition A.2.1.

Definition 2.4.12. We say that the system node in Lemma 2.4.7 generates the
well-posed linear system pA,B,C,Dq. The transfer function of the well-posed linear
system is defined as the transfer function of its generating system node (and is
by Lemma 2.4.6 an extension of the transfer function of D). The well-posed linear
system and its system node are said to be strongly/uniformly regular if their transfer
function is strongly/uniformly regular .
If the system is strongly regular, the quadruple pA,B,C,Dq consisting of the main

operator A, the control operator B, the observation operator C, and the feedthrough
D of the transfer function are said to be the generators of pA,B,C,Dq.

Definition 2.4.13 (Cesàro extension). Let C P BpX ;LpωpRě0; Yqq be the output
map of an Lp-well-posed linear system with observation operator C for some p P
r1,8q. The Cesàro extension of C is defined as

Cexx :“ lim
tÑ0

1
t

ż t

0
pCxqpτq dτ @x P domCex, (2.9)

and its natural domain domCex consists by definition of all x P X for which the
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limit in (2.9) exists. The norm

}x}domCex
:“ }x}X ` sup

0ătă1

›

›

›

›

1
t

ż t

0
pCxqpτq dτ

›

›

›

›

Y
, x P domCex

makes domCex a Banach space [Sta05, Theorem 5.4.3].

Lemma 2.4.14. Let S be a uniformly regular Lp-well-posed system node with ob-
servation operator C and p P r1,8q. Then S is compatible with the domain of the
Cesàro extension Cex as compatibility space. Moreover, the feedthrough of S induced
by Cex is the limit in (2.6) of the transfer function.

This follows from the equivalence of (i) and (iv’) in [Sta05, Theorem 5.6.5], with
a view of [Sta05, Theorem 5.6.4]. All the systems treated in this thesis will be
regular.
An important way to get from one realization to another is to use state space

transformations. The easiest situation occurs when the transformation is a homeo-
morphism. In this case the proof of the following lemma is trivial, see e.g., [Sta05,
Example 2.3.7]. We write TAT´1 for the semigroup t ÞÑ TAptqT´1, and A|Z for the
semigroup t ÞÑ Aptq|Z .

Lemma 2.4.15. Given a well-posed linear system pA1,B1,C1,D1q on pU ,X ,Yq,
a further Hilbert space Z and a boundedly invertible operator T P BpX ; Zq. Then
A2 : Rě0 Ñ BpZq, t ÞÑ TA1ptqT

´1, B2 :“ TB1, C2 :“ C1T
´1 and D2 :“ D1

constitute a well-posed linear system on pU ,Z,Yq. The behavior of the two systems
is related via

px, u, yq P bhvpA1,B1,C1,D1q ô pTx, u, yq P bhvpA2,B2,C2,D2q.

If D is regular with feedthrough D, the generators of the new system are given by
pA2, B2, C2, Dq, where domA2 “ T domA1, and

A2 “ TA1T
´1, B2 “ T |pdomA˚1 q

1B1, C2 “ C1T
´1.

Here, T |pdomA˚1 q
1 is the unique extension of T to an operator from pdomA˚1q

1 to
pdomA˚2q

1.
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Definition 2.4.16 (similarity). Two well-posed linear systems pA1,B1,C1,Dq and
(A2,B2, C2,D2) on pU ,X ,Yq and pU ,Z,Yq, respectively, are pseudo-similar if D1 “

D2 and there exists a closed, densely defined injective linear operator T : domT Ă

X Ñ ranT Ă Z with the following properties: ranB1 Ă domT , ranB2 Ă ranT ,
domT is A1-invariant, ranT is A2-invariant and

A2ptqTx1 “ TA1ptqx1, @x1 P domT, t P Rě0,

B2u “ TB1u, @u P L2
pRď0; Uq,

C2Tx1 “ C1x1, @x1 P domT.

The systems pA1,B1,C1,D1q and (A2, B2, C2, D1) are said to be similar if T and
T´1 are both bounded, and unitary similar if T is unitary.

We will now recall the concept of duality. Thereby, we will use the reflection
operator around zero which is defined by

R: L2
locpR; Yq Ñ L2

locpR; Yq, p Ryqptq :“ yp´tq @ t P R, (2.10)

for any Banach space Y . The following lemma summarizes [Sta05, Theorem 6.2.3]
and [Sta05, Theorem 6.2.13].

Lemma 2.4.17. Let pA,B,C,Dq be an L2-well-posed linear system on the Hilbert
spaces pU ,X ,Yq with main operator A, control operator B and observation opera-
tor C. Define

`

Ad , Bd , Cd , Dd
˘

:“ pA˚ , C˚ R, RB˚ , RD˚ Rq , (2.11)

where the semigroup A˚ is defined by A˚ptq :“ Aptq˚ for all t ě 0. Then (2.11) is
an L2-well-posed linear system on pY ,X ,Uq. The main operator is A˚, the control
operator is C˚, and the observation operator is B˚. The transfer function of (2.11)
satisfies

xDdpsq “ pDpsq˚ @ s P ρpA˚q.

Definition 2.4.18 (dual system). Under the prerequisites of Lemma 2.4.17, the
system in (2.11) is called the dual system of pA,B,C,Dq.

23



2. Basic objects

2.5. Boundary control systems
A special type of control system often arises in the study of partial differential
equations when the control acts on the boundary conditions; see (2.13) below for an
example. Informally, the equations then look like

9xptq “ Λx, uptq “ Γxptq, yptq “ C
ˇ

ˇ

Wxptq.

Since we have already seen that the operator C appears on various domains, we
indicate the domain W here as well, even though it is superfluous in the current
section.

Definition 2.5.1 (boundary control system). Let U ,X ,Y be Hilbert spaces and
let the Hilbert space W be continuously and densely injected into X . The triple
pΛ,Γ, C|Wq P BpW ,X q ˆ BpW ,Uq ˆ BpW ,Yq is a boundary control system if the
following conditions hold:

(i) ker Γ is dense in X .

(ii) There is a λ P C such that pλ´ Λq : ker Γ Ñ X is bijective.

(iii) Γ : W Ñ U is onto.

It is well-known that every boundary control system can be extended to a com-
patible operator node.

Lemma 2.5.2. Let pΛ,Γ, C|Wq P BpW ; X q ˆ BpW ; Uq ˆ BpW ; Yq be a boundary
control system and D P BpU ; Yq. Then

S :“
«

A|X B

C|W D

ff
ˇ

ˇ

ˇ

ˇ

ˇ

domS

: domS Ă X ˆ U Ñ X ˆ Y

is a compatible operator node, where

(i) A :“ Λ|ker Γ, and A|X is the extension of A in (2.1);

(ii) B :“ pΛ´ A|X qΓ`, where Γ` P BpU ; Wq is an arbitrary right inverse of Γ;

(iii) domS :“
" „

w
u



P W ˆ U
ˇ

ˇ

ˇ

ˇ

u “ Γw
*

.
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2.6. An example: The heat equation with boundary control

Furthermore, W “ pX `BUq1, the norms of W and pX `BUq1 are equivalent, and

Λw “ A
ˇ

ˇ

Xw `BΓw @x P W . (2.12)

Moreover, B is strictly unbounded, which means ranB X X “ t0u.

This Lemma is a consequence of [Sta05, Theorem 5.2.13], see also [TW09, Propo-
sition 10.1.2].

Remark 2.5.3. (i) An immediate consequence of this lemma is that for all x P W
there exists exactly one u P U such that A|Xx ` Bu P X , and this u is given
by u “ Γx.

(ii) The operator Λ is an extension of A to W . However, Equation (2.12) shows
that it does not equal the restriction to W of the extension A|X , cf. [Sta05,
Remark 5.2.10].

Remark 2.5.4. A necessary condition for L1-well-posedness of a system node with
reflexive state space X is that the control operator satisfies B P BpU ; X q [Sta05,
Theorem 4.2.7]. In particular, a system node that emerges from a boundary control
system on a Hilbert space can never be L1-well-posed since its control operator is
strictly unbounded by Lemma 2.5.2.

2.6. An example: The heat equation with boundary
control

Let Ω Ă Rd, d P N be a bounded domain with uniformly C2-boundary BΩ in the
sense of [AF03, Chapter 4], and let ν : BΩ Ñ Rd be the outward normal derivative.
Furthermore, we indicate the Riemann-Lebesgue volume measure on the manifold
BΩ by σξ. We will model a well-posed linear system that is informally written as
the partial differential equation

B

Bt
xpξ, tq “ ∆xpξ, tq, @ pξ, tq P Ωˆ Rą0,

uptq “ Bνxpξ, tq, @ pξ, tq P BΩˆ Rą0,

yptq “

ż

BΩ
xpξ, tq dσξ, @ t P Rą0,

xpξ, 0q “ x0pξq, @ ξ P Ω,

(2.13)

25



2. Basic objects

where ∆xpξ, tq :“
řd
k“1

d2

dξk2xpξ, tq is the Laplacian. This is a well-known heat
equation, but with a special type of boundary conditions. We have a scalar control
uptq P C that acts similar to a Neumann boundary condition, and the scalar output
yptq P C determines a Dirichlet-like boundary condition. The fact that uptq does not
depend on ξ means that Bνxpξ, tq is forced to be constant in ξ. With the following
operators the above system is a boundary control system.

Lemma 2.6.1. Define X :“ L2pΩq and

W :“
"

x P W 2,2
pΩq

ˇ

ˇ

ˇ

ˇ

Bνx|BΩ ”

ş

Ω ∆xpξq dξ
|BΩ| .

*

, (2.14)

and, for all x P W,

Λx :“ ∆x, Γx :“
ş

Ω ∆xpξq dξ
|BΩ| , C|Wx :“

ż

BΩ
xpξq dσξ.

Then pΛ,Γ, C|Wq P BpW ; X q ˆ BpW ; Uq ˆ BpW ; Yq is a boundary control system.

Proof. Looking at (2.14) and the definition of Γ, we see that A :“ Λ|ker Γ is the
Laplacian with Neumann boundary conditions, more precisely

Ax “ ∆x @x P domA “
 

x P W 2,2
pΩq

ˇ

ˇ Bνx|BΩ ” 0
(

. (2.15)

For this operator it is well-known that domA is dense in X and that λ´A is bijective
for all λ P Cą0 [HT08, Theorem 7.13 (ii)]. Since Γ maps onto R, all the properties
required in Definition 2.5.1 are fulfilled.

Remark 2.6.2. (i) The space W is equivalently characterized by

W “
 

x P W 2,2
pΩq

ˇ

ˇ Du P C : Bνx|BΩ ” u
(

,

and Γ maps each x P W to the constant value of Bνx|BΩ. This can be seen as
follows: Assume that the normal derivative of x P W 2,2pΩq on the boundary
is constant and equal to u P C. Then taking the scalar product of ∆x with
the constant function 1 and applying Gauß’s theorem shows

ż

Ω
∆xpξq ¨ 1 dξ “

ż

BΩ
Bνxpξq dξ “ u ¨ |BΩ|,
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2.6. An example: The heat equation with boundary control

whence
u “

ş

Ω ∆xpξq dξ
|BΩ| “ Γx.

(ii) If d “ 1, the demanded C2-condition on BΩ is not well-defined. In this case it
suffices that Ω is an interval pa, bq and the expressions have to be interpreted
in the following way: BΩ :“ ta, bu, |BΩ| :“ 2, νpaq :“ ´1, νpbq :“ 1, and
ş

BΩ ϕpξq dσξ :“ ϕpaq ` ϕpbq for all ϕ P Cpa, bq.

Lemma 2.6.3. The following holds for the operator A in (2.15), i.e. the Laplace
operator with Neumann boundary condition:

(i) The operator A is self-adjoint, nonpositive and has a compact resolvent. There
is a real valued sequence pλkqkPN0 of eigenvalues of ´A such that pλkq is nonde-
creasing, λ0 “ 0, λ1 ą 0, and λk kÑ8

ÝÑ 8. In particular, σpAq “ t´λk | k P N0u.

(ii) The eigenvectors of ´A form an orthonormal basis pvkqkPN0 of L2pΩq with
vk P domA for all k P N0, and there holds

domA “

#

8
ÿ

k“0
ckvk

ˇ

ˇ

ˇ

ˇ

ˇ

pckq, pλkckq P `
2
pN0q

+

, (2.16)

›

›

›

›

›

8
ÿ

k“0
ckvk

›

›

›

›

›

2

domA

“ }pckq}
2
`2pN0q ` }pλkckq}

2
`2pN0q, (2.17)

and
Ax “ ´

8
ÿ

k“0
λk 〈x , vk〉L2pΩq ¨ vk @x P domA. (2.18)

(iii) The norm of domA is equivalent to the W 2,2pΩq-norm.

Proof. Part (i) is [HT08, Theorem 7.13 (ii)]. The second part (ii) is a consequence
of the spectral representation theorem for operators with pure point spectrum, see
e.g. [Tri92, Section 4.5.1]. Regarding part (iii), it is easy to show that } ¨ }domA “

}ps´Aqx}X is an equivalent norm to } ¨ }L2pΩq ` }∆ ¨ }L2pΩq. Furthermore, Theorem
5.11 of [HT08] states that the latter norm is equivalent the W 2,2pΩq-norm.

Due to the self-adjointness of A we have in particular domA “ domA˚. In view
of Section 2.1, L2pΩq is embedded into the rigged space pdomAq1 in the following
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2. Basic objects

way: Each x P L2pΩq is identified with the functional ιx P pdomAq1, defined by

〈ϕ , ιx〉domA,pdomAq1 :“ 〈ϕ , x〉L2pΩq “

ż

Ω
ϕpξqxpξq dξ @ϕ P domA.

Note that the expression on the right is linear in ϕ and anti-linear in x. With
our definition of multiplication in the dual space, this makes the injection ι linear.
Furthermore, we may use the definition of the reversed pairing,

〈ιx , ϕ〉
pdomAq1,domA :“ 〈ϕ , ιx〉domA,pdomAq1 “

ż

Ω
xpξqϕpξq dξ @ϕ P domA.

Lemma 2.6.4. Let X “ L2pΩq, W as in (2.14), and the operator A as in (2.15).
In addition, define

B : CÑ pdomAq1, 〈Bu , ϕ〉
pdomAq1,domA :“ u

ż

BΩ
ϕpξq dσξ @ϕ P domA, (2.19)

and
C|W : W Ñ C, C|Wx :“

ż

BΩ
xpξq dσξ @x P W . (2.20)

Then

S :“
«

A|X B

C|W 0

ff
ˇ

ˇ

ˇ

ˇ

ˇ

domS

, domS :“
" „

w
u



P W ˆ U
ˇ

ˇ

ˇ

ˇ

Bνw|BΩ ” u

*

, (2.21)

is the operator node corresponding to pΛ,Γ, C|Wq via Lemma 2.5.2. In particular,

A|Xw `BΓw “ Λw “ ∆w @x P W .

Proof. This follows from Lemma 2.5.2, we only need to calculateB: Let u P C and let
Γ` P BpC;W 2,2pΩqq be some right inverse of Γ, i.e. Γ`u “ u¨w for some w P W 2,2pΩq
with Bνw|BΩ ” 1 (for instance, take a solution of ∆w ´ w “ 0, Bνw|BΩ ” 1). Gauß’s
theorem now implies for all ϕ P domA that

〈Bu , ϕ〉
pdomAq1,domA “

〈
pΛ´ A|XqΓ`u , ϕ

〉
pdomAq1,domA

“
〈
ΛΓ`u , ϕ

〉
pdomAq1,domA

´
〈
Γ`u , Aϕ

〉
pdomAq1,domA

“

ż

Ω
u ¨ p∆wpξqqϕpξq dξ ´

ż

Ω
u ¨ wpξq∆ϕpξq dξ
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2.6. An example: The heat equation with boundary control

“ u

ż

BΩ
Bνwpξqϕpξq dσξ “ u

ż

BΩ
ϕpξq dσξ.

This proves the assertion.

Remark 2.6.5. (i) The adjoint of B satisfies B˚ϕ “ Cϕ for all ϕ in domA because

〈Bu , ϕ〉
pdomAq1,domA “

〈
u ,

ż

BΩ
ϕpξq dσξ

〉
C

@ϕ P domA, u P C.

System nodes with this property are sometimes called “collocated”.

(ii) The operator C|W has an extension to W 1
2`ε,2pΩq for any ε ą 0 since for these

spaces there exists a continuous trace operator that maps ϕ to ϕ|BΩ P L2pBΩq
[HT08, Theorem 4.24 (i)].

(iii) Instead of (2.20) we could define the output operator

rC|Wx :“
ż

BΩ
xpξq dσξ `

ş

Ω ∆xpξq dξ
|BΩ| @x P W ,

and the feedthrough rD :“ ´1. Then the lower line of S can be replaced by
r rC|W , rDs because, by the definition of W and domS,

”

rC|W rD
ı

„

x
u



“

”

C|W 0
ı

„

x
u



@

„

x
u



P domS.

However, we will shortly see that the feedthrough of the transfer function of
S is zero. This justifies the choice of C|W because we want the feedthrough of
the transfer function to coincide with the feedthrough induced by C|W .

We are going to show thatW 1,2pΩq is another compatibility space for this operator
node. To this end, we need the following lemma.

Lemma 2.6.6. The following holds for the operator A defined in (2.15):

(i) For every s ą 0 we have domps´Aq 1
2 “ W 1,2pΩq and the norms of these spaces

are equivalent. Furthermore, p vk
s`λk

qkPN0 is an orthonormal basis of W 1,2pΩq,
and domA is densely and continuously embedded into W 1,2pΩq.
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(ii) Moreover,

W 1,2
pΩq “

#

8
ÿ

k“0
akvk

ˇ

ˇ

ˇ

ˇ

ˇ

p
a

λkakq P `
2
pN0q

+

, (2.22)

›

›

›

›

›

8
ÿ

k“0
akvk

›

›

›

›

›

2

W 1,2pΩq

“ }pakq}
2
`2pN0q `

›

›

›
p
a

λkakq
›

›

›

2

`2pNq
. (2.23)

Proof. Since the operator s ´ A is positive definite, part (i) follows from [HT08,
Theorem 5.31 (ii)] in combination with [Tri92, Section 4.4.3]. The density claim is
[HT08, Proposition 5.28 (i)]. Now for part (ii): An application of Gauß’s divergence
theorem shows that

}x}W 1,2pΩq “ }x}L2pΩq ´ 〈x , Ax〉L2pΩq @x P domA.

Using this and the spectral decomposition (2.18), we see that the following holds
for all x “

ř8

k“0 akvk P domA

}x}2W 1,2pΩq “}x}
2
L2pΩq ´ 〈x , Ax〉L2pΩq “ }pakq}

2
`2pN0q `

〈
v ,

8
ÿ

k“0
λk 〈x , vk〉 vk

〉

“ }pakq}`2pN0q `

8
ÿ

k“0
λkak | 〈x , vk〉 |2

loooomoooon

“|ak|2

“ }pakq}
2
`2pN0q `

8
ÿ

k“1
λk|ak|

2.

The representation (2.16) implies that linear combinations of pvkqkPN0 are dense in
domA. Since domA is dense in W 1,2pΩq, we can infer from the above computations
that W 1,2pΩq is equal to the completion of span t vk | k P N0 u with respect to the
norm

›

›

›

›

›

8
ÿ

k“0
akvk

›

›

›

›

›

2

:“ }pakq}2`2pN0q `

›

›

›

´

a

λkak

¯
›

›

›

2

`2pNq
.

Now, since λk Ñ 8 as k Ñ 8, the condition
`?

λkak
˘

kPN P `2pNq implies pakqkPN0
P

`2pN0q, and we conclude (2.22).

Lemma 2.6.7. Let A and B be defined as in (2.15) and (2.19), respectively. For
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2.6. An example: The heat equation with boundary control

all s P ρpAq, there holds

ps´ Aq´1B “
8
ÿ

k“0

ş

BΩ vkpξq dσξ
s` λk

¨ vk P W 1,2
pΩq. (2.24)

This series converges in W 1,2pΩq and

8
ÿ

k“0

ˇ

ˇ

ˇ

ˇ

ż

BΩ
vkpξq dσξ

ˇ

ˇ

ˇ

ˇ

2
λk

|s` λk|2
ă 8. (2.25)

Moreover, the space W 1,2pΩq is a compatibility space for the system node defined in
Lemma 2.6.4, and the feedthrough induced by

C|W 1,2pΩq : W 1,2
pΩq Ñ C, C|W 1,2pΩqx :“

ż

BΩ
vkpξq dσξ, (2.26)

is zero.

Proof. Note that, just like C in Remark 2.6.5 (ii), the functional Bu P pdomAq1

extends to a continuous functional on W 1,2pΩq. Let x P L2pΩq. Then the series
řN
k“0 〈x , vk〉L2pΩq vk converges in L2pΩq to x as N Ñ 8. Due to the continuity of

ps´ Aq´
1
2 P BpL2pΩq; domps´ Aq 1

2 q, the limit

N
ÿ

k“0

〈x , vk〉L2pΩq
?
s` λk

vk “ ps´ Aq
´ 1

2

N
ÿ

k“0
〈x , vk〉L2pΩq vk Ñ ps´ Aq´

1
2x, N Ñ 8,

holds in domps´Aq 1
2 . This implies for every functional ϕ P pdomps´Aq 1

2 q1, (which
is identified with the restricted functional on domA), that

N
ÿ

k“0

〈x , vk〉L2pΩq
?
s` λk

〈vk , ϕ〉domA,pdomAq1

“

〈
ps´ Aq´

1
2

N
ÿ

k“0
〈x , vk〉L2pΩq vk , ϕ

〉
domA,pdomAq1

“

〈
ps´ Aq´

1
2

N
ÿ

k“0
〈x , vk〉L2pΩq vk , ϕ

〉
domps´Aq

1
2 ,pdomps´Aq

1
2 q1

Ñ
〈
ps´ Aq´

1
2x , ϕ

〉
domps´Aq

1
2 ,pdomps´Aq

1
2 q1
.
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Thus, in particular for Bu P pdomps´ Aq 1
2 q1 and all x P L2pΩq, the limit

〈
x ,

N
ÿ

k“0

〈Bu , vk〉
?
s` λk

vk

〉
L2pΩq

“

N
ÿ

k“0

〈vk , Bu〉domA,pdomAq1
?
s` λk

〈x , vk〉L2pΩq

Ñ
〈
ps´ Aq´

1
2x , Bu

〉
domps´Aq

1
2 ,pdomps´Aq

1
2 q1

“
〈
x , ps´ Aq´

1
2Bu

〉
X

holds. Since L2pΩq is a Hilbert space, we conclude that
řN
k“0 〈Bu , vk〉 {

?
s` λk ¨ vk

converges in L2pΩq, and the limit is ps ´ Aq´
1
2Bu. Since ps ´ Aq´

1
2 maps L2pΩq

continuously onto domps´ Aq 1
2 “ W 1,2pΩq, we conclude that

N
ÿ

k“0

〈Bu , vk〉
s` λk

vk “ ps´ Aq
´ 1

2

N
ÿ

k“0

〈Bu , vk〉
?
s` λk

vk

Ñ ps´ Aq´
1
2 ps´ Aq´

1
2Bu, N Ñ 8,

in W 1,2pΩq. This proves, for all s ą 0, the convergence of (2.24) in W 1,2pΩq, and
(2.25) follows from the representation of W 1,2pΩq in (2.22). For arbitrary s P ρpAq,
the series in (2.25) is finite because it is finite for s “ 1 and we have the estimate

1
|s` λk|

ď
1

1` λk
¨ sup
nPN0

1` λn
|s` λn|

loooooomoooooon

ă8

@ k P N0.

Now (2.24) follows from (2.25) together with (2.22) for arbitrary s P ρpAq.
The compatibility claim is a consequence of (2.24) and the fact that (2.26) is

a continuous extension of C|W . The feedthrough is zero because of formula (2.2)
and (2.21).

Theorem 2.6.8. Let A, B and C|W 1,2pΩq be defined as in (2.15), (2.19) and (2.26),
and let pλkq, pvkq be as in Lemma 2.6.3. Define

ck :“
ˇ

ˇ

ˇ

ˇ

ż

BΩ
vkpξq dσξ

ˇ

ˇ

ˇ

ˇ

2

@ k P N0 and Jc :“ tk P N0 | ck ‰ 0u.
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2.6. An example: The heat equation with boundary control

Then the transfer function of the system node is

Gpsq “
8
ÿ

k“0

ck
s` λk

“
ÿ

kPJc

ck
s` λk

@ s P ρpAq. (2.27)

Furthermore, we have 0 P Jc, and
ˆ

ck
λk

˙

P `1
pNq. (2.28)

Proof. We express ps´Aq´1B using the series in (2.24). Since this series converges
in W 1,2pΩq, we may interchange the order of limit and application of C|W 1,2pΩq to
obtain

C|W 1,2pΩqps´ Aq
´1B “C

8
ÿ

k“0

ş

BΩ vkpξq dσξ
s` λk

¨ vk “
8
ÿ

k“0

ş

BΩ vkpξq dσξ
s` λk

¨ C|W 1,2pΩqvk

“

8
ÿ

k“0

ˇ

ˇ

ş

BΩ vkpξq dσξ
ˇ

ˇ

2

s` λk
“

ÿ

kPJc

ck
s` λk

.

Therefore, (2.27) holds on ρpAq.
We have 0 P Jc because the first eigenvector v0 in Lemma 2.6.3 is a constant

function; more precisely,

v0p¨q ”
1

b

ş

Ω 1 dξ
, whence c0 “

p
ş

BΩ 1 dσξq2
ş

Ω 1 dξ ą 0.

Finally, (2.28) is a consequence of (2.25):

8
ÿ

k“1

ck
λk
“

8
ÿ

k“1

ckλk
λ2
k

ď sup
nPN

p1` λnq2
λ2
n

looooooomooooooon

ă8

8
ÿ

k“1

ckλk
p1` λkq2

(2.25)
ă 8.

Remark 2.6.9. For every removable singularity λk P σpAq of Gpsq, we have k P NzJc

which means that the eigenvector vk P domA satisfies Cvk “ 0. The so-called
Hautus test for well-posed linear systems, [Sta05, Corollary 9.6.2], then shows that
our system is not observable. In other words, λk is an unobservable mode.
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Whether such unobservable modes exist or not depends on the geometry of the
underlying domain Ω. If, for example, Ω “ r0, πs Ă R, then it is easy to see that
vpξq :“ sinpξq is an eigenvector of A with eigenvalue ´1. It lives in the kernel of C
because Cv “ vp0q ` vpπq “ 0. Therefore, Jc ‰ N0 in this example.

Corollary 2.6.10. For every ω ą 0, the series in (2.27) converges absolutely in
H8
ěωpC;Cq; in particular, we have G P H8

ěωpC;Cq. Moreover, it is uniformly regular
with feedthrough

lim
sÑ8,

sPR

Gpsq “ lim
sÑ8,

sPR

8
ÿ

k“0

ck
s` λk

“ 0.

Proof. For ω ą 0, we have

8
ÿ

k“0
sup
sPCěω

ˇ

ˇ

ˇ

ˇ

ck
s` λk

ˇ

ˇ

ˇ

ˇ

ď sup
sPCěω

c0

|s|
`

8
ÿ

k“1

ck
λk
ď
c0

ω
`

8
ÿ

k“1

ck
λk
.

Thus, this series converges absolutely in H8
ěωpC;Cq and G P H8

ěωpC;Cq. To prove
the regularity, let ε ą 0. Choose N P N such that

ř8

k“N`1
ck
λk
ă ε

2 , and t P R such
that

řN
k“0

ck
t
ă ε

2 . Then we have for all s ě t,

8
ÿ

k“0

ck
s` λk

“

N
ÿ

k“0

ck
s` λk

`

8
ÿ

k“N`1

ck
s` λk

ď

N
ÿ

k“0

ck
t
`

8
ÿ

k“N`1

ck
λk
ă ε.

This proves that the transfer function converges to zero.

Corollary 2.6.11. Let G be the transfer function in Theorem 2.6.8, and let D P

TIClocpU ; Yq be the time-invariant causal operator associated to G in Theorem 2.3.8.
Then

pDuqptq “

ż t

´8

8
ÿ

k“0
cke´λkpt´τqupτq dτ @u P L2

ωpRě0q, t P R. (2.29)

Proof. A simple calculation gives
ż 8

0
|e´ωτcke´λkτ | dτ “

ż 8

0
|cke´pω`λkqτ | dτ “

ck
ω ` λk

@ k P N,

and
ż 8

0
|e´ωτc0e´λ0τ | dτ “ c0

ω
.
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2.6. An example: The heat equation with boundary control

Hence, the summability of p ck
λk
qkPN implies that the series

h :“
8
ÿ

k“0
pt ÞÑ cke´λktq

converges in L1
ωpRě0q, and

}h}L1
ωpRě0q ď

c0

ω
`

8
ÿ

k“1

ck
ω ` λk

.

Now we apply the Laplace transform to h. Since the Laplace transform maps
L1
ωpRě0q continuously into H8

ω pC;Cq it may be interchanged with the L1
ωpRě0q limit

in the definition of h and thus,

phpsq “
8
ÿ

k“0

ż 8

0
ckep´s´λkqτ dτ “

8
ÿ

k“0

ck
s` λk

“ Gpsq @ s P Cěω.

Let u P L2
ωpRě0q be given. By Lemma 2.3.7, we have

xDupsq “ Gpsqpupsq @ s P Cěω.

Since this function is in H2
ωpCq we can apply the inverse Laplace transform to this

equation and the convolution theorem for the Laplace transform [GLS90, Theo-
rem 3.8.2] implies that

pDuqptq “

ż t

0
hpt´ τqupτq dτ @ t ě 0.

This is (2.29).

The well-posedness of the operator node in Lemma 2.6.4 was proven in [BGSW02].
We keep the following lemma for the record.

Lemma 2.6.12. The operator node S in Lemma 2.6.4 is L2-well-posed. The associ-
ated well-posed linear system, pA,B,C,Dq, has the following additional properties:

(i) The semigroup A : Rě0 Ñ BpL2pΩqq is analytic and }Aptq}BpL2pΩqq ď 1 for all
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t ě 0. For all t ą 0 the operator Aptq maps L2pΩq into domA and

DM ě 1 : }Aptq}BpL2pΩq;W 2,2pΩqq ďM

ˆ

1` 1
t

˙

.

(ii) For all δ P Rą0 and x P L2pΩq, the infinite-time state-to-output map fulfills

Cx|rδ,8q P W
1,8
prδ,8qq.

Proof. The well-posedness is stated in [BGSW02, Corollary 1]. A proof of analyticity
and boundedness of A is for example presented in [HT08, Chapter 5]. By [EN00,
Chapter II, Theorem 4.6] the analyticity of A implies that

Apδqx P domA @x P L2
pΩq, δ P Rą0,

and that there is a constant m ě 1 such that

}AAptq}L2pΩq “
m

t
@ t ą 0.

Hence, we have

}Aptqx}L2pΩq ` }AAptqx}L2pΩq ď
´

1` m

t

¯

}x}L2pΩq @x P L2
pΩq, t ą 0,

and the left hand side is equivalent to the W 2,2pΩq-norm of x by Lemma 2.6.3.
Assertion (ii) can then be inferred from the relation

d
dtCxptq “ CpI´Aq´1Apt´ δqpI´AqAApδqx @ t P rδ,8q.

2.7. Kalman compression
The principle of restricting a well-posed linear system to its controllable and observ-
able subspace is described in [Sta05, Section 9.1]. In addition to this, we need to
know what the generators of such a restriction look like.
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2.7. Kalman compression

Lemma 2.7.1. Let p P r1,8s and pA,B,C,Dq be an Lp-well-posed linear system on
the Hilbert spaces pU ,X ,Yq. Define Z :“ pkerCqK, equipped with the scalar product
of X . Then

´

rA, rB, rC, D
¯

:“
´

πZA|Z , πZB, C|Z , D
¯

is an observable Lp-well-posed linear system on pU ,Z,Yq. Its main operator rA

satisfies
dom rA “ πZ domA, dom rA˚ “ Z X domA˚,

and

rAz “ πZAx @ z P dom rA, @x P domA with πZx “ z,

rA˚z “ A˚z @ z P dom rA˚.

The control operator rB is given by

x rBu, zy
pdom rA˚q1,dom rA˚ “ xBu, zypdomA˚q1,domA˚ @u P U , @ z P dom rA˚.

The observation operator rC satisfies

rCz “ Cx, @ z P dom rA, @x P domA with πZx “ z;

its Cesàro extension rCex fulfills

ĂCexz “ Cexz @ z P dom ĂCex “ πZ domCex “ domCex X Z.

Proof. The fact that prA, rB, rC,Dq is a well-posed linear system is easy and can be
found in [Sta05, Corollary 9.1.10]. We need to determine the generators of this
system. To this end, note that Z is an A-invariant, closed subspace, whence the
generator rA of the quotient semigroup rA can be found in [EN00, Section 2.2.4].
Since we are in a Hilbert space setting, the adjoint semigroups A˚ and rA˚ are again
strongly continuous [Sta05, Theorem 3.5.6]. The A-invariance of kerC implies the
invariance of Z under A˚ and therefore, the relation

xrAptqz, yyZ “ xπZAptqz, yyX “ xz,Aptq
˚yyZ @ z, y P Z
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shows rA˚ “ A˚|Z . Thus, rA˚ is the generator of A˚|Z which means by Lemma A.1.4
the part of A˚ in Z. The extension rA|Z : Z Ă pdom rA˚q1 Ñ pdom rA˚q1 reads

x rA|Zz, yypdom rA˚q1,dom rA˚ “ xz, A
˚yyX @ y P dom rA˚, z P Z.

We use this to calculate rB via (2.7). Using that Z is A˚-invariant we obtain for all
z P dom rA˚

x rBu, zy
pdom rA˚q1,dom rA˚ “ x

rBeλu, pλ´ rA˚qzyZ “ xπZBeλu, λz ´ A
˚zyX

“ xBeλu, λz ´ A
˚zyX “ xpλ´ A|X qBeλu, zyX

“ xBu, zypdomA˚q1,domA˚ .

We will show the claim about rC for the Cesàro extension Cex first. Let z P dom ĂCex.
Then, z P Z by definition, and the limit

1
t

ż t

0
pCzqpsq ds “ 1

t

ż t

0
prCzqpsq ds tÓ0

ÝÑ ĂCexz,

shows z P domCexXZ. Trivially, this is a subset of πZ domCex. Conversely, assume
z P πZ domCex and let x P domCex be such that z “ πZx. Then

1
t

ż t

0
prCzqpsq ds “ 1

t

ż t

0
pCxqpsq ds tÓ0

ÝÑ Cexx, (2.30)

which means z P dom ĂCex. As we have already shown that this implies z P domCexX

Z, it follows that
dom ĂCex “ domCex X Z “ πZ domCex.

The formula for the observation operator Cex|dom rA is immediate from the special
case x P domA in (2.30).

Lemma 2.7.2. Let p P r1,8s and pA,B,C,Dq be an Lp-well-posed linear system on
the Hilbert spaces pU ,X ,Yq. Define the space Z :“ ranB, equipped with the scalar
product of X . Then

´

rA, rB, rC, D
¯

:“
´

A|Z , B, C|Z , D
¯

is a controllable Lp-well-posed linear system on pU ,Z,Yq. Its main operator rA
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satisfies
dom rA “ Z X domA, dom rA˚ “ πZ domA˚

and

rAz “ Az @ z P dom rA,

rA˚z “ πZA
˚x @ z P dom rA˚, @x P domA˚ with πZx “ z.

For all u P U , the control operator rB satisfies

x rBu, zy
pdom rA˚q1,dom rA˚ “ xBu, xypdomA˚q1,domA˚

for all z P dom rA˚ and x P domA˚ such that πZx “ z. The observation operator rC

equals the restriction of C to dom rA, and its Cesàro extension rCex is given by

rCexz “ Cz @ z P dom rC “ Z X domC.

Proof. The well-posedness of this is system is easy to show and contained in [Sta05,
Corollary 9.1.10]. Since we are in a Hilbert space setting, the adjoint semigroups
A˚ and rA˚ are again strongly continuous [Sta05, Theorem 3.5.6], and rA˚ generates
the latter. A short calculation shows that rA˚ “ πZA

˚|Z . So rA˚ can alternatively
be characterized as the quotient generator of the quotient semigroup, which by
[EN00, Section 2.2.4] has the asserted representation. Consequently, the extension
rA|Z : Z Ă pdom rA˚q1 Ñ pdom rA˚q1 satisfies

@ z P Z, @ y P dom rA˚, @x P domA˚ with πZx “ y :

x rA|Zz, yypdom rA˚q1,dom rA˚ “ xz, πZA
˚xyX .

We use this to resolve the expression rBu “ pλ ´ rAqrBeλu for u P U : We take an
arbitrary z P dom rA˚ and some x P domA˚ with πZx “ z. Then

x rBu , zy
pdom rA˚q1,dom rA˚ “ x

rBeλu , pλ´ rA˚qzyZ “ xBeλu , λz ´ πZA
˚xyX

“ xBeλu , λx´ A
˚xyX “ xpλ´ A|X qBeλu, xyX

“ xBu, xypdomA˚q1 ,domA˚ .
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The part about rC and its extension is a direct consequence of the definition of
the observation operator and the Cesàro extension (Definition 2.4.13), including the
domain.

Theorem 2.7.3 (Kalman compression). Let p P r1,8s, and let pA,B,C,Dq be an
ω-bounded Lp-well-posed linear system on the Hilbert spaces pU ,X ,Yq. With the
definitions

M :“ πpkerCqK ranB,

rA :“ πpkerCqKA|M, rB :“ πpkerCqKB, rC :“ C|M,

the quadruple prA, rB, rC,Dq is a minimal Lp-well-posed linear system on pU ,M,Yq.
The generator rA of rA has the domain dom rA “ MX πpkerCqK domA and is given by

rAx “ πpkerCqKAz for all x P dom rA and all z P domA for which x “ πpkerCqKz.

The domain of the adjoint operator rA˚ is πMpdomA˚ X pkerCqKq. The control
operator rB is given by

x rBu, xy
pdom rA˚q1,dom rA˚ “ xBu, zypdomA˚q1,domA˚

for z P pkerCqK X domA˚ such that πMz “ x. The observation operator satisfies

rCx “ Cz for all x P dom rA and all z P domA for which x “ πpkerCqKz,

Its Cesàro extension rCex equals Cex with dom rCex “ domCex XM.

Proof. The theorem is proven by first applying Lemma 2.7.1 and then Lemma 2.7.2
with Z “ ran πpkerCqKB “ M. The only thing that remains to be shown is that the
projections πM and πpkerCqK coincide on ranB, or, in other words

πMBu “ πpkerCqKBu @u P LpωpRď0; Uq

Indeed, from M “ ranpπpkerCqKBq Ă pkerCqK “ pkerCqK we deduce for arbitrary
u P LpωpRď0; Uq

πMBu` πMKBu “ Bu “ πpkerCqKBu` πkerCBu.
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2.8. Pritchard-Salamon systems

ñ πMBu´ πpkerCqKBu “ πkerCBu´ πMKBu P MXMK
“ t0u.

2.8. Pritchard-Salamon systems
The so-called Pritchard-Salamon systems introduced in this section are a special
type of compatible well-posed system nodes. They have the convenient property
that the two operators A&B and C&D can be split uniquely into four operators A,
B, C, D. In fact, the concept of a system node is not even needed for the control
theory of Pritchard-Salamon systems. It is because of this and of the fact that
Pritchard-Salamon system were historically developed before the theory of system
nodes that one usually writes pA,B,C,Dq instead of a block operator matrix r A B

C D s.
We define Pritchard-Salamon systems in the sense of [PS87].

Definition 2.8.1 (Pritchard-Salamon system). Let U ,X , and Y be Hilbert spaces
and let A generate a strongly continuous semigroup A in X . Furthermore, let W
and V be Hilbert spaces with X1 Ă W ãÑ X ãÑ V Ă X´1, where the rigged spaces
X1 and X´1 are defined as in Section 2.1. Then pA,B,C,Dq is said to be a Prit-
chard-Salamon system on pU , pW ,X ,Vq,Yq if the following conditions hold:

(i) A extends to a strongly continuous semigroup A|V on V , and it restricts to
a strongly continuous semigroup A|W on W ;

(ii) B P BpU ; Vq is an admissible control operator for A, i.e. there exist t,M ą 0
such that for all u P L2pr0, ts; Uq

Btu :“
ż t

0
A|Vpt´ τqBupτq dτ P W and }Btu}W ďM}u}L2pr0,ts;Uq;

(iii) C P BpW ; Yq is an admissible observation operator for A, i.e. there exist t,M ą

0 such that for all x P W

}CAp¨qx}L2pr0,ts;Yq ďM}x}V .

(iv) D P BpU ; Yq.
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The generators of A|W and A|V are denoted by AW and AV , respectively. The system
is said to be smooth if domAV Ă W .

Remark 2.8.2. (i) The space X in this definition is sometimes left out, see for
example the definitions in [CLTZ94, vK93]. So strictly speaking our Defini-
tion gives only a subclass of the Pritchard-Salamon systems considered there.
However, a smooth system in the sense of [CLTZ94, vK93] always fulfills our
definition if we define X to be equal to V . So for smooth systems there is no
loss of generality. The reason why we include X is two-fold. Firstly X serves as
a pivot space for the representations of W 1 and V 1, see also [vK93, p. 42]. Sec-
ondly, with our definition, systems of Pritchard-Salamon type become a proper
subclass of L2-well-posed linear systems, see Definition 2.8.6 below. This will
allow us to apply the results of Chapter 6 to Pritchard-Salamon systems later
on.

(ii) In [CZ94] the word “regular” was used instead of “smooth”. In this thesis we
use regular in the sense of Definition 2.3.9, which was introduced by [Wei94b]
and is something different.

(iii) “Admissible” control and observation operators for more general well-posed
systems are defined with a different meaning, see [Sta05, Section 10.1].

(iv) The growth bounds of the semigroups A|V , A|X and A|W are in general not the
same, an example is given in [CLTZ94].

In Chapter 3 we will encounter the special case where the control and observation
operators are bounded with respect to X . These systems are called state linear
systems.

Definition 2.8.3 (state linear system). A Pritchard-Salamon system on pU , pX , X ,
X q, Yq is called a state linear system on pU ,X ,Yq.

Remark 2.8.4. Let A be the generator of a strongly continuous semigroup in X , and
B P BpU ; X q, C P BpX ; Yq, D P BpU ; Yq. Then it is easily seen that pA,B,C,Dq is
a state linear system on pU ,X ,Yq. In particular this shows that Definition 2.8.3 is
equivalent to other definitions of state linear systems, e.g. in the monograph [CZ95].
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2.8. Pritchard-Salamon systems

Lemma 2.8.5. Let pA,B,C,Dq be a smooth Pritchard-Salamon system on pU ,
pW ,X ,Vq, Yq and define

domS :“
# «

x

u

ff

P X ˆ U

ˇ

ˇ

ˇ

ˇ

ˇ

A|Xx`Bu P X

+

.

Then
«

A&B
C&D

ff

:“
«

A|X B

C D

ff ˇ

ˇ

ˇ

ˇ

ˇ

domS

is a compatible system node with compatibility space W.
Moreover, domA is dense in W, domS Ă W ˆ U and the transfer function of

this system node is uniformly regular with feedthrough D. In particular, C and D
are uniquely determined by r A&B

C&D s.

Proof. By [CLTZ94, Lemma 2.12] there exist constants M,ω ą 0 such that for all
λ P Cąω the operator pλ´ AVq´1B maps into W and

›

›pλ´ AV
q
´1B

›

›

BpU ;Wq
ď

M
?

Reλ´ ω
. (2.31)

Now let rx , usJ P domS. A short calculation shows that we can write x as

x “ ´pλ´ Aq´1
pA|Xx`Buq ` pλ´ Aq

´1λx` pλ´ AV
q
´1Bu (2.32)

for some λ P Cąω. Since all three summands on the right hand side are elements
of W , we conclude x P W and domS Ă W ˆ U .
To show the closedness of the node let rxn , unsJ be a sequence in domS with

«

xn

un

ff

XˆU
ÝÑ

«

x

u

ff

P X ˆ U and
«

A&B
C&D

ff«

xn

un

ff

XˆY
ÝÑ

«

z

y

ff

P X ˆ Y .

Since A|X and B map continuously into the rigged space X´1 we conclude A|Xx `
Bu “ z in X´1, and since z is in X , this implies rx , usJ P domS. This shows
in particular the closedness of A&B. To show that C&D is closed we use the
decomposition (2.32) on xn: Since A|Xxn ` Bun converges in X and pλ ´ A|Vq

´1B
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maps continuously into W we conclude that

xn “ ´pλ´ Aq
´1
pA|Xxn `Bunq ` pλ´ Aq

´1λxn ` pλ´ A
V
q
´1Bun

converges in W to

´pλ´ Aq´1z ` pλ´ Aq´1λx` pλ´ AV
q
´1Bu “ x.

Hence, Cxn Ñ Cx and, since the limit Dun Ñ Du is trivial, the closedness of C&D
is shown.
All other conditions in Definition 2.2.1 are satisfied by assumption, so we do have

a system node. The L2-well-posedness follows from the estimates in (ii) and (iii) of
Definition 2.8.1. Since pλ´AVq´1B maps into W , it is clear that W is a compatibility
space and that D is the feedthrough associated to C via (2.2). Furthermore, the
inequality (2.31) implies that the transfer function,

C&D
«

pλ´ AVq´1B

I

ff

“ Cpλ´ AV
q
´1B `D, @λ P Cąω,

converges to D with λ Ñ 8. Hence, the node is uniformly regular and has
feedthrough D.
Finally, the density of X1 in W is a consequences of the fact that A restricts to

a strongly continuous semigroup on W , see [Sta05, Theorem 5.6.8 (ii) (c)].

Due to the well-posedness in this lemma, every Pritchard-Salamon system gener-
ates an L2-well-posed linear system. This system will be called of Pritchard-Salamon
type, more precisely, we make the following definition.

Definition 2.8.6 (Pritchard-Salamon type). A uniformly regular ω-bounded L2-
well-posed linear system pA,B,C,Dq on the Hilbert spaces pU ,X ,Yq is said to be of
Pritchard-Salamon type, if there exists a compatibility space W and a Hilbert space
V such that the main operator A, the control operator B, the extended observation
operator C|W , and the feedthrough operator D induced by C|W form a Pritchard
Salamon system pA,B,C|W , Dq on pU , pW ,X ,Vq,Yq in the sense of Definition 2.8.1.
We call pA,B,C|W , Dq the generators of pA,B,C,Dq.

The generators of such a system can easily be recovered from pA,B,C,Dq: The
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operator A is of course the generator of A, and the feedthrough D is the limit of
the transfer function. For C|W we observe that Cw P CpRě0; Yq for all w P W and
therefore C|Ww “ pCwqp0q. In order to determine B we can use a Dirac sequence
pdnqnPN in L2pRď0;Rě0q. By this, we mean a sequence of functions dn P L2pRď0;Rě0q

satisfying supp dn Ă r´ 1
n
, 0s and

ş0
´8

dnpτq dτ “ 1. We see that Budn converges to
Bu in V for every u P U because

}Budn ´Bu}V “

›

›

›

›

ż 0

´8

Ap´τq|VBudnpτq dτ ´
ż 0

´8

Budnpτq dτ
›

›

›

›

V

ď

ż 0

´ 1
n

}Ap´τq|VBu´Bu}V dnpτq dτ

ď sup
τPr´ 1

n
,0s
}Ap´τq|VBu´Bu}V

nÑ8
ÝÑ 0.

Duality concepts for Pritchard-Salamon systems require some explanation: We
will always identify the dual space X 1 with X itself. We will interpret W 1 as the
dual space of W with respect to the pivot space X , see Section 2.1. The dual space
of V will also be interpreted with respect to the pivot space X in the following sense:
Every continuous functional v1 on V is also a continuous functional on X . Therefore,
by the Riesz representation theorem we have a unique element xv1 P X such that
xv1, xyV 1,V “ xxv1 , xyX for all x P X . The element v1 P V 1 is identified with xv1 P X .
The adjoint of the generator AW : domAW Ă W Ñ W of A|W with respect to

the duality pairing x¨, ¨yW 1,W is denoted by pAWq1 : dompAWq1 Ă W 1 Ñ W 1. This
operator generates the semigroup given by pAptq|Wq1. The domain of this operator
is

dompAW
q
1
“

!

x P W 1

ˇ

ˇ

ˇ
D c ą 0 @ y P domA|W : | 〈x , Ay〉W 1,W | ď c}y}W

)

with norm }x}dompAW q1 “ }x}W 1 ` }pAWq1x}W 1 . For smooth Pritchard-Salamon sys-
tems, we have dompAWq1 ãÑ V 1 [vK93, Theorem 2.17].
For a 0-bounded well-posed linear system of Pritchard-Salamon type the Gramians

play an important role. We denote the adjoint of B P BpL2pRď0; Uq; Wq by B1

and the adjoint of B P BpL2pRď0; Uq; X q by B˚. With the embedding X Ă W 1

we than obtain B1|X “ B˚. Similarly the adjoints C1 P BpL2pRě0; Yq; V 1q and
C˚ P BpL2pRě0; Yq; X q of C with respect to V and X , respectively, satisfy C1 “ C˚|V 1 .
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For smooth Pritchard-Salamon systems Lemma 2.8 of [CZ94] states

BB1
|dompAW q1 “ BB˚

|dompAW q1 P B
`

dompAW
q
1; domAV˘ ,

C˚C|domAV “ C1C|domAV P B
`

domAV ; dompAW
q
1
˘

.
(2.33)

Definition 2.8.7 (impulse response). The impulse response of an ω-bounded well-
posed linear system pA,B,C,Dq of Pritchard-Salamon type with finite-dimensional
input space U and control operator B is defined as the function

h :“ CB P L2
ωpRě0; BpU ; Yqq.

By [CLTZ94, Lemma 3.5 and Corollary 3.6] the impulse response satisfies h “ CB “

CB and the Hankel operator has the representation

CBu “

ż 0

´8

hp´τqupτq dτ @u P L2
ωpRď0; Uq.

Feedback

In order to control a system one typically applies a linear feedback. Informally
speaking, this means the following: First, a new output zptq “ Fxptq ` Guptq P U
depending linearly on the state xptq and the input uptq of the system is created. In
other words, the state and output equation in (2.3) receives a new output line

9xptq “ Axptq `Buptq,

zptq :“
”

F G
ı

„

xptq
uptq



.

For this new system node to be a well-posed Pritchard-Salamon system we have to
assume that F is an admissible observation operator in the sense of Definition 2.8.1.
In the second step, the loop is closed, which means, the input uptq is made to equal
the new output zptq plus some outer disturbance ruptq, i.e.

9xptq :“ Axptq `Bpzptq ` ruptqq,

zptq :“
”

F G
ı

„

xptq
zptq ` ruptq



.
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In order to eliminate the auxiliary output z from these equation I´G should be
invertible. This motivates the upcoming definition.

Definition 2.8.8 (admissible feedback pair). The block operator rF , Gs P BpW ˆ

U ; Uq is an admissible feedback pair for the Pritchard-Salamon System pA,B,C,Dq

on pU , pW ,X ,Vq,Yq if F P BpW ; Uq is an admissible observation operator for A,
i.e. pA,B, F,Gq is a Pritchard-Salamon system on pU , pW ,X ,Vq,Uq, and I´G is
boundedly invertible in BpUq.

Without loss of generality we could replace the admissible feedback pair rF , Gs by
rpI´Gq´1F , 0s. That is why many authors only consider state feedback operators
instead of feedback pairs. There are two reasons why we use the more general
feedback pairs. The first is that the auxiliary output z should be allowed to depend
on u via a feedthrough just like the original output y “ Cx`Du in (2.3) does. The
second and more important one lies in the so-called closed-loop system introduced in
the following lemma. This closed-loop system has to be defined with the feedthrough
G and has several very important properties that will be described and exploited in
Chapter 7.

Lemma 2.8.9. If rF , Gs P BpW ˆ U ; Uq is an admissible feedback pair for the
smooth Pritchard-Salamon System pA,B,C,Dq on pU , pW ,X ,Vq,Yq, then

AV
œ : domAV

Ă V Ñ V , AV
œ :“ AV

`BpI´Gq´1F,

generates a strongly continuous semigroup AV
œ in V which restricts to strongly con-

tinuous semigroups Aœ and AW
œ in X and W, respectively. The generator Aœ of Aœ

is the restriction of AV
œ to

domAœ :“
 

x P domAV ˇ

ˇ AVx`BpI´Gq´1Fx P X
(

,

and the quadruple

pAœ, Bœ, Cœ, Dœq :“
˜

Aœ, BpI´Gq´1,

«

C `DpI´Gq´1F

pI´Gq´1F

ff

,

«

DpI´Gq´1

pI´Gq´1

ff¸

(2.34)

defines a smooth Pritchard-Salamon system on pU , pW ,X ,Vq,Y ˆ Uq, the so-called
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closed-loop system.

If rF , Gs P BpW ˆ U ; Uq is an admissible feedback pair, then pI´Gq´1F is an
admissible observation operator for A. Hence the lemma follows from [vK93, Lemma
2.13].

Definition 2.8.10. An admissible feedback pair rF , Gs P BpW ˆ U ; Uq for the
smooth Pritchard-Salamon System pA,B,C,Dq on pU , pW ,X ,Vq,Yq is said to be
exponentially stabilizing if the semigroups AV

œ and AW
œ that belong to the closed-loop

system (2.34) are exponentially stable.

An example

Loosely speaking, the range of the control operator B and the domain of the obser-
vation operator C of a Pritchard-Salamon system must not be “too far apart”. This
is illustrated by the fact that substituting the observation operator of the example
in Section 2.6 by a bounded operator creates a Pritchard-Salamon system:

Lemma 2.8.11. Let the operators A and B be defined as in (2.15) and (2.19), re-
spectively. Furthermore, let C P BpX ;Cq. Then pA,B,C, 0q is a Pritchard-Salamon
system on

`

C, pL2pΩq, L2pΩq,W k,2pΩq1q,C
˘

, where k P p1
2 , 1q. The transfer function

is
Gpsq “

8
ÿ

k“0

ck
s` λk

@ s P ρpAq,

where
ck “

ż

BΩ
vkpξq dσξ ¨ Cvk @ k P N0.

Proof. By [Tri95, Theorem 4.3.3] there holds for the fractional powers and the in-
terpolation functor defined in Section A.1,

dompI´Aq k2 “
“

L2
pΩq , domA

‰

k
2
“ W k,2

pΩq.

Thus, A extends to a strongly continuous semigroup A|X
´ k2

on X´ k
2
“ W k,2pΩq1, and

its generator has the domain dompI´Aq1´ k
2 “ W 2´k,2pΩq. As a consequence,

ż t

0

›

›CApτq
ˇ

ˇ

X
´ k2

›

›

2
Wk,2pΩq1 dτ ď }C}L2pΩq1

ż t

0
τ´k dτ “ }C}L2pΩq1

t1´k

1´ k .

The formula for the transfer function follows by applying C to (2.24).
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2.9. Kalman compression of Pritchard-Salamon
systems

Since systems of Pritchard-Salamon type are well-posed linear systems, we can apply
the Kalman compression from Section 2.7. However, those results do not yet show
that the compressed system is again of Pritchard-Salamon type. In fact, the Kalman
compression for Pritchard-Salamon systems should be interpreted in a different way.
In this section let U , W , X , V , and Y be five Hilbert spaces.

Lemma 2.9.1. Let pA,B,C,Dq be a well-posed linear system of Pritchard-Salamon
type on pU , pW ,X ,Vq,Yq. Define

ĂW :“ ranBW , rX :“ ranBX , rV :“ ranBV ,

equipped with the norms of W, X and V, respectively. Then
´

rA, rB, rC, D
¯

:“
´

A|
rX , B, C|

rX , D
¯

is a well-posed linear system of Pritchard-Salamon type on pU , pĂW , rX , rVq, Yq and
controllable. Its generators are p rA, rB, rC,Dq, where

rAx “ Ax, @x P dom rA “ rX X domA,

rB “ B,

rCw “ Cw, @w P ĂW.

Proof. Since the embeddings
W ãÑ X ãÑ V

are continuous and ranB Ă W , it is clear that we have the continuous and dense
embeddings

ranBW ãÑ ranBX ãÑ ranBV .

Moreover, we have B P BpL2
ωpRď0; Uq; ĂWq and C P BprV ;L2

ωpRě0; Yqq. Since ranB

is A|X -invariant, it is also AV-invariant, and the same holds for the closures of
ranB. Therefore, A induces strongly continuous semigroups A|

ĂW , A|
rX and A|

rV on
ĂW , rX and rV , respectively. To see that B maps into rV we use a Dirac sequence
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pdnqnPN Ă L2pRď0;Rě0q with supp dn Ă r´ 1
n
; 0s. Then, for all u P U , the limit

›

›

›

›

ż 0

´8

Ap´τq|VBdnpτqu dτ ´Bu
›

›

›

›

V
ď

›

›

›

›

ż 0

´8

pAp´τq|VB ´Bqdnpτqu dτ
›

›

›

›

V

ď

ż 0

´ 1
n

}pAp´τq|VB ´Bqdnpτqu}V dτ

ď }u}U sup
τPr´ 1

n
,0s
}pApτq|VB ´Bq}V

ÝÑ 0 pnÑ 8q,

shows that Bu P ranBV . It is easily seen that rB, rC and D are the remaining
generators of the restricted system.

If Z is a closed subspace of X the quotient space X {Z is equipped with the norm

}rz}X {Z :“ inf t}z ´ c}X | c P Z, z P rzu ,

Lemma 2.9.2. Let pA,B,C,Dq be a well-posed linear system of Pritchard-Salamon
type on pU , pW ,X ,Vq,Yq. Define

ĂW :“ W{ kerC|W , rX :“ X { kerC|X , rV :“ V{ kerC|V ,

with the quotient norms } ¨ }
ĂW , } ¨ }

rX , } ¨ }rV , respectively. Then there holds

ĂW ãÑ rX ãÑ rV .

We denote by rπ
ĂW : W Ñ ĂW the injection that maps each element of W to its

equivalence class in ĂW. Then
´

rA, rB, rC, D
¯

:“
´

rπ
rXA| rX , rπ

rXB, C|
rX , D

¯

is a well-posed linear system of Pritchard-Salamon type on pU , pĂW , rX , rVq, Yq and
observable. Its generators are p rA, rB, rC,Dq, where

rArx “ rπ
rXAz @ rx P dom rA “ rπ

rX domA, @ z P rxX domA,

rB “ rπ
rVB,
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2.9. Kalman compression of Pritchard-Salamon systems

rC rw “ Cw @w P rw P ĂW.

Remark 2.9.3. The reason why we do not explicitly identify the quotient spaces,
X { kerC|X etc., with the orthogonal complements here is the following: The identity
operator is not a continuous and dense injection from pkerC|X qK into pkerC|VqK

because the first complement is taken with respect to the scalar product of X and
the second with respect to the scalar product of V . It is possible to construct
an observable Pritchard-Salamon realization on these spaces as well. However the
cost is that the embedding is no longer given by the identity but by a much more
complicated mapping.

Proof of Lemma 2.9.2. First note that the identity given by

I : W{ kerC|W Ñ X { kerC|X , rw ÞÑ tx P X | Dw P rw : x´ w P kerC|X u

is indeed an injection. Furthermore, we have I rπkerC|Ww “ rπkerC|Xw for all w P W .
Therefore, }wn ´ x}X Ñ 0 implies } I rπkerC|Wwn ´ rπkerC|Xx} rX Ñ 0 for any sequence
pwnq in W and x P X . Hence the density of W in X implies the density of ĂW in rX .
Furthermore, there holds for all w P ĂW

} I rw}
rX “ inf t}x´ c}X | c P kerC|X , x P I rwu

ď inf t}w ´ cw}X | cw P kerC|W , w P rwu

ď inf t}w ´ cw}W | cw P kerC|W , w P rwu

“ } rw}
ĂW .

In the second line we have used that rw Ă I rw. This norm estimate shows that
the embedding I : ĂW Ñ rX is continuous. Analogously, we see rX ãÑ rV . These
quotient spaces are Hilbert spaces because they are isometrically isomorphic to the
corresponding orthogonal complement of kerC in the Hilbert spaces W , X and V ,
respectively.
The fact that prA, rB, rC,Dq is an observable well-posed linear system follows from

Lemma 2.7.2 once we identify X { kerC|X with pkerC|X qK. It remains to determine
its generators and to show that it is of Pritchard-Salamon type. We remark that,
for rx P rX , the relation rx P ĂW is true if and only if rx XW ‰ H, and analogously
rv P rX if and only if rv XX ‰ H. Therefore we have rπ

rXB “ rπ
ĂWB, and the operator
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C|
rX is continuously extendable to rV . Let x P rx P rX , then the computation

rA|
rVptqrx “ rπ

rVAptqrx “ rπ
rVAptqx “ rπ

rV Aptqx
loomoon

PX

“ rπ
rXAptqx “

rA|
rX ptqrx

shows that the semigroup A|
rV restricts to A|

rX . An analogous computation shows
that, in turn, A|

rX is an extension of A|
ĂW . Furthermore, for all w P rw P ĂW we have

rC rw “ prC rwqp0q “ pCwqp0q “ Cw.

Let pdnq be a Dirac sequence in L2pRď0;Rě0q, and let u P U . Then
›

›

›

rBdnu´ rπ
rVBu

›

›

›

rV
“
›

›

rπ
ĂWBdnu´ rπ

rVBu
›

›

rV “
›

›

rπ
rV pBdnu´Buq

›

›

rV ,

which tends to zero for nÑ 8. This proves rB “ rπ
rVB.

Combining the last two lemmas we obtain a special version of Theorem 2.7.3

Lemma 2.9.4. Let pA,B,C,Dq be a well-posed linear system of Pritchard-Salamon
type on pU , pW ,X ,Vq,Yq. With the definitions

M :“ rπW{ kerC|W ranB,

ĂW :“ MW , rX :“ MX , rV :“ MV ,

rA :“ rπX { kerCA| rX ,
rB :“ rπX { kerCB, rC :“ C|M,

the quadruple prA, rB, rC,Dq is a well-posed linear system of Pritchard-Salamon type
on pU , pĂW , rX , rVq,Yq and minimal. The generator rA of rA is given by

dom rA “ rX X rπX { kerC|X domA,

rArx “ rπX { kerC|XAz @ rx P dom rA, @ z P rxX domA.

The domain of the adjoint operator rA˚ is rπX pdomA˚ X pX { kerCqq. Analogous
formulas hold for rA|

ĂW and rA|
rV . The other generators are given by

rB “ rπV{ kerC|VB and
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rC rw “ Cw @w P ĂW , @w P rw.

Proof. This follows by first applying Lemma 2.9.2, and then applying Lemma 2.9.1
to the resulting system. Note that the relation

M “ rπW{ kerC|W ranB “ rπX { kerC|XB “ rπV{ kerC|VB

holds.

2.10. Notes and references
The theory of well-posed linear systems is standard nowadays. We have marked for
each result in this chapter where the reader can find it. Most of it is taken from
[Sta05], some Hilbert space specific results from [TW09].
Since Pritchard-Salamon theory was historically developed before the general the-

ory of well-posed linear systems, the embedding of the Pritchard-Salamon systems
into the well-posed linear systems described in Section 2.8 is rarely used, albeit
well-known.
A detailed description of the generators of the Kalman compression as in Sec-

tion 2.7 can not be found in the literature yet and neither can the more involved
Kalman compression of Pritchard-Salamon systems in Section 2.9.
The example we have worked out in Section 2.6 is based on the examination

of the same equation with different boundary condition in [BGSW02]. Additional
properties of this configuration such as invariant zeros, transmission zeros and the
root locus will be published in [RS15b].

53





3. State space transformations for
systems with relative degree

In this chapter we consider systems whose relative degree is well-defined within the
natural numbers. The zero dynamics form and the Byrnes-Isidori form developed
in this chapter are two similar realizations. They both reveal the part of the behav-
ior that can not be seen from the input-output map, the so-called zero dynamics.
Moreover, the Byrnes-Isisdori form corresponds to the zero dynamics form of the
dual system.

3.1. Relative degree
In the current chapter we are going to assume the existence of a relative degree in
natural numbers. This means in particular that the control and the observation
operator are bounded with respect to the state space X . Throughout Chapter 3 we
let the following presumption hold.

Presumption 3.1.1. The Hilbert space X with scalar product 〈¨ , ¨〉 is real and
pA,B,C, 0q is a state linear system on pR,X ,Rq. Furthermore, r P N, and the
control and observation operator are given by

B : RÑ X , Bu :“ bu, C : X Ñ R, Cx :“ 〈x , c〉 ,

with vectors b P domAr and c P domA˚
r that satisfy

〈
Ar´1b , c

〉
‰ 0 and

〈
Ajb , c

〉
“ 0 @ j “ 0, 1, . . . , r ´ 2. (3.1)

Definition 3.1.2 (relative degree). A state linear system on pR,X ,Rq is said to be
of relative degree r if it fulfills Presumption 3.1.1. In this case, we write pA,B,C, 0q P
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Σr.

Remark 3.1.3. (i) The system node corresponding to pA,B,C, 0q via Lemma 2.8.5
is

«

A B

C 0

ff

: domAˆ R Ă X ˆ RÑ X ˆ R,

«

A B

C 0

ff«

x

u

ff

“

«

Ax` bu

〈x , c〉

ff

.

(ii) The adjoints of B and C satisfy B˚ “ 〈¨ , b〉 and C˚ “ c. Therefore, a system
is of relative degree r if and only if its dual system is; in other words

pA,B,C, 0q P Σr ô pA˚, C˚, B˚, 0q P Σr.

(iii) The class Σr is invariant under similarity transformations; in other words, for
every boundedly invertible operator T we have

pA,B,C, 0q P Σr ô pTAT´1, CT´1, TB, 0q P Σr.

3.2. The zero dynamics form
Definition 3.2.1 (zero dynamics form). Let X be a real Hilbert space. A state
linear system pA, B, C, Dq on pR,X ,Rq is said to be in zero dynamics form if and
only if X “ Rr ˆV for some Hilbert space V , and the operators A, B, C satisfy the
following conditions:

(i) There exists an operator Q : domQ Ă V Ñ V that generates a strongly
continuous semigroup in V ;

(ii) The operator A has the domain domA “ Rr ˆ domQ, and there are bounded
operators p0, . . . , pr´1 : RÑ R, R : RÑ V , S : V Ñ R such that

A

»

—

—

—

—

—

—

—

—

—

–

α0

α1
...

αr´2

αr´1

η

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

—

—

—

—

–

0 0 ¨ ¨ ¨ 0 p0 S

1 0 ¨ ¨ ¨ 0 p1 0
0 1 . . . ... ... 0
... . . . 0 pr´2 0
0 0 1 pr´1 0
0 0 ¨ ¨ ¨ 0 R Q

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

—

—

—

—

–

α0

α1
...

αr´2

αr´1

η

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(3.2)
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for all rα0 , α1 , ¨ ¨ ¨ , αr´1 , ηs
J P domA;

(iii) There exists a cr P Rzt0u such that

Bu “

»

—

—

—

—

—

–

u
0
...
0
0

fi

ffi

ffi

ffi

ffi

ffi

fl

, and C

»

—

—

—

—

—

–

α0
α1
...

αr´1
η

fi

ffi

ffi

ffi

ffi

ffi

fl

“ αr´1cr

for all u P R and rα0 , α1 , ¨ ¨ ¨ , αr´1 , ηs
J P Rr ˆ V .

Remark 3.2.2. If pA,B,C, 0q P Σr is in zero dynamics form, then A has a block
operator structure of the form

A “

«

A11 A12

A21 Q

ff

,

where A11 : Rr Ñ Rr, A12 : V Ñ Rr and A21 : Rr Ñ V are bounded operators, and
only Q may be unbounded.

Proposition 3.2.3. Every state linear system that is in zero dynamics form and
has feedthrough zero belongs to the class Σr.

Proof. Let pA,B,C, 0q be a system in zero dynamics form. Then

 

rα0 , . . . , αr´` , 0 , . . . , 0sJ P Rr
ˆ V

ˇ

ˇ α0, . . . , αr´` P R
(

Ă domA`

for ` P t1, . . . , ru. Defining the vectors

b :“ r1 , 0 , . . . , 0sJ “ B1, c :“ r0 , . . . , 0 , cr , 0sJ,

we see b P domAr and the special structure of A yields

〈
A`b , c

〉
“ 0 @ ` P t0, . . . , r ´ 2u, and

〈
Ar´1b , c

〉
“ cr ‰ 0.

It remains to prove c P domA˚
r . An inductive argument shows that for all ` P

t0, . . . , r ´ 1u we have c P domA˚
` and

A˚
`

c “ rγ0 , . . . , γr´1 , 0sJ with γk “ 0 @ k P t0, . . . , r ´ 2´ `u.
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If we write rγ0 , . . . , γr´1 , 0sJ :“ A˚
r´1
c and let rα0 , . . . , αr´1 , ηs

J P domA, then
the expression

ăA
»

—

—

—

—

–

α0
...

αr´1

η

fi

ffi

ffi

ffi

ffi

fl

,

»

—

—

—

—

–

γ0
...

γr´1

0

fi

ffi

ffi

ffi

ffi

fląRrˆV

“ ă
»

—

—

—

—

–

Sη ` p0αr´1

α0 ` p1αr´1
...

αr´2 ` pr´1αr´1

fi

ffi

ffi

ffi

ffi

fl

,

»

—

—

—

—

–

γ0

γ1
...

γr´1

fi

ffi

ffi

ffi

ffi

fląRr

depends continuously on rα0 , . . . , αr´1 , ηs
J. This implies that c P domA˚

r and
completes the proof of this proposition.

The goal of this section is to prove that every system of relative degree r can be
put into zero dynamics form by a boundedly invertible transformation. To obtain
this transformation, we choose a special representation of the state space X . We
define the subspace

SA,b :“ spantbu ‘ spantAbu ‘ ¨ ¨ ¨ ‘ spantAr´1bu,

where ‘ indicates that the sum is direct. The Hilbert space X decomposes into the
direct sum

X “ SA,b ‘ SKA˚,c
“ spantbu ‘ spantAbu ‘ ¨ ¨ ¨ ‘ spantAr´1bu

‘ tcuK X tA˚cuK X ¨ ¨ ¨ X tA˚
r´1
cuK.

(3.3)

This follows immediately from Presumption 3.1.1: Firstly, b, Ab, . . . , Ar´1b are lin-
early independent, and secondly

SKA˚,c X SA,b “ t0u.

Hence, the sum SA,b ‘ SKA˚,c is direct and since SKA˚,c has by definition at most
codimension r, equality in (3.3) follows. This means that every vector x P X has
a unique representation

x “ α0b` ¨ ¨ ¨ ` αr´1A
r´1b` η, with α0, . . . , αr´1 P R, η P SKA˚,c.
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In order to determine the coefficients αk P R of this representation the next lemma
exploits the relative degree property.

Lemma 3.2.4. Define the functionals

Pm : X Ñ R, x ÞÑ Pmx :“ Pm
m`1x´

r
ÿ

j“m`2
Pm
j x , m “ 0, . . . , r ´ 1 , (3.4)

where

Pm
m`1 : X Ñ R, x ÞÑ Pm

m`1x :“

〈
x , A˚

r´pm`1q
c
〉

〈b , A˚r´1c〉
, m “ 0, 1, . . . , r ´ 1,

and

Pm
j : X Ñ R, x ÞÑ Pm

j x :“
˜

Pm
m`1A

j´1b´
j´1
ÿ

k“m`2
Pm
k A

j´1b

¸

〈
x , A˚

r´j
c
〉

〈b , A˚r´1c〉
.

for j “ m` 2, . . . , r. Then the following holds:

(i) For all `,m P t0, . . . , r ´ 1u we have

PmA`b “

$

&

%

1, if ` “ m,

0, if ` “ m;
(3.5)

Pm SKA˚,c “ t0u. (3.6)

(ii) The operator

PSK
A˚,c

: X Ñ X , PSK
A˚,c

x :“ x´
r´1
ÿ

j“0
pP jxqAjb, (3.7)

is a projection onto SKA˚,c, and every x P X has a unique decomposition with
respect to (3.3) of the form

x “ pP 0xqb` pP 1xqAb` ¨ ¨ ¨ ` pP r´1xqAr´1b ` PSK
A˚,c

x . (3.8)

Proof. (i) Assertion (3.6) follows from the definitions of Pm and SKA˚,c. From (3.1)
we can easily deduce Assertion (3.5) for the cases ` “ m and ` P t0, . . . ,m´1u.
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3. State space transformations for systems with relative degree

It remains to show (3.5) for ` P tm`1, . . . , r´1u. By definition of Pm
j and (3.1)

we have
Pm
j A

`b “ 0 for all j “ `` 2, . . . , r ,

and therefore

PmA`b “ Pm
m`1A

`b´
řr
j“m`2 P

m
j A

`b

“ Pm
m`1A

`b´ Pm
``1A

`b´
ř`
j“m`2 P

m
j A

`b

“ Pm
m`1A

`b´
ř`
j“m`2 P

m
j A

`b

´

´

Pm
m`1A

`b´
ř`
k“m`2 P

m
k A

`b
¯

〈
A`b , A˚

r´1´`
c
〉

〈b , A˚r´1c〉
looooooooomooooooooon

“1
“ 0 .

(ii) By definition of PSK
A˚,c

and (3.6) we have PSK
A˚,c

x “ x for all x P SKA˚,c, and
by (3.5) we have

spantbu ‘ spantAbu ‘ ¨ ¨ ¨ ‘ spantAr´1bu “ SA,b Ă kerPSK
A˚,c

.

Hence, in view of (3.3), PSK
A˚,c

is a projection. Finally, (3.8) is a direct conse-
quence of the definition of PSK

A˚,c
.

Lemma 3.2.5. With P 0, . . . , P r´1 and PSK
A˚,c

defined as in Lemma 3.2.5 the oper-
ator

T : X Ñ Rr
ˆ SKA˚,c , x ÞÑ Tx :“

»

—

—

—

—

—

—

—

–

P 0x

P 1x
...

P r´1x

PSK
A˚,c

x

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,
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is bounded and bijective with inverse

T´1 : Rr
ˆ SKA˚,c Ñ X ,

»

—

—

—

—

—

–

α0
α1
...

αr´1
η

fi

ffi

ffi

ffi

ffi

ffi

fl

ÞÑ

r´1
ÿ

j“0
αjA

jb ` η.

Furthermore, with the orthogonal projector πSK
A˚,c

: X Ñ X onto SKA˚,c, we have

T´˚ : X Ñ Rr
ˆ SKA˚,c, x ÞÑ

»

—

—

—

—

—

—

—

–

〈b , x〉
〈Ab , x〉

...
〈Ar´1b , x〉
πSK

A˚,c
x

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (3.9)

and T´˚ maps SKA,b bijectively onto t0u ˆ SKA˚,c.

Proof. The assertions about T and T´1 are a direct consequence of Lemma 3.2.4 (ii).
The formula for T´˚ holds because for all rα0, . . . , αr´1, ηs

J P RrˆSKA˚,c and all x P X
we have

ăT´1

»

—

—

—

—

—

—

—

–

α0

α1
...

αr´1

η

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, xą “ 〈r´1
ÿ

j“0
αjA

jb ` η , x

〉
“ ă

»

—

—

—

—

—

—

—

–

α0

α1
...

αr´1

η

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

»

—

—

—

—

—

—

—

–

〈b , x〉
〈Ab , x〉

...
〈Ar´1b , x〉
πSK

A˚,c
x

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fląRrˆSK
A˚,c

.

The last statement on T´˚ follows from the fact that T is bijective together with
formula (3.9).

Lemma 3.2.6. (i) For any m P t0, . . . , r ´ 1u and Pm as in (3.4), the operator
PmA is closable and densely defined. Its closure is the bounded linear functional
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3. State space transformations for systems with relative degree

PmA : X Ñ R,

x ÞÑ

〈
x , A˚

r´m
c
〉

〈Ar´1b , c〉

´

r
ÿ

j“m`2

˜

Pm
m`1A

j´1b´
j´1
ÿ

k“m`2
Pm
k A

j´1b

¸

〈
x , A˚

r`1´j
c
〉

〈Ar´1b , c〉
.

(3.10)

(ii) With PSK
A˚,c

as in (3.7), the operator

Aœ : domAX SKA˚,c Ă SKA˚,c Ñ SKA˚,c

η ÞÑ Aη ´ b
xη , A˚

r
cy

〈b , A˚r´1c〉
(3.11)

is closed and densely defined in SKA˚,c and satisfies

Aœη “ Aη ´
`

P 0Aη
˘

b “ PSK
A˚,c

Aη @ η P SKA˚,c X domA. (3.12)

Proof. For x P domA, a quick look at the definition of Pm in Lemma 3.2.4 reveals
that the mapping defined in (3.10) coincides with PmAx. The right hand side
of (3.10) is also defined for arbitrary x P X , hence PmA is closable and since
its range is finite-dimensional, the closure PmA is the continuous operator given
by (3.10).
To prove (ii) we first show

Aη “ pP 0Aηqb` PSK
A˚,c

Aη @ η P SKA˚,c X domA . (3.13)

If r “ 1, then (3.13) follows immediately from the decomposition (3.3) and (3.7).
Assume r ą 1 and let η P SKA˚,c X domA. Then (3.3) and (3.7) yield

Aη “ α0b` α1Ab` ¨ ¨ ¨ ` αr´1A
r´1b` PSK

A˚,c
Aη with αi “ P iAη P R

and PSK
A˚,c

Aη P SKA˚,c. Using this representation we obtain

0 “ 〈η , A˚c〉 “ 〈Aη , c〉 (3.1)
“ αr´1

〈
Ar´1b , c

〉
,
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3.2. The zero dynamics form

and (3.1) moreover yields αr´1 “ 0. Next,

0 “
〈
η , A˚

2
c
〉
“ 〈Aη , A˚c〉 (3.1)

“ αr´2
〈
Ar´1b , c

〉
,

and (3.1) yields αr´2 “ 0. Proceeding in this way, we conclude

0 “
〈
η , A˚

r´1
c
〉
“
〈
Aη , A˚

r´2
c
〉 (3.1)
“ α1

〈
Ar´1b , c

〉
and arrive at 0 “ αr´1 “ ¨ ¨ ¨α1. This proves (3.13) and the second equality in
(3.12). Note that for all j “ 2, . . . , r we have

〈
Aη , A˚

r´j

c
〉
“
〈
η , A˚

r´j`1
c
〉
“ 0,

whence, by definition, P 0
j Aη “ 0. Now the definition of P 0 yields

P 0Aη “ P 0
1Aη ´

r
ÿ

j“2
P 0
j Aη

loomoon

“0

“
xAη , A˚

r´1
cy

〈b , A˚r´1c〉
,

which proves the first equality in (3.12). This equation shows that Aœ maps indeed
into SKA˚,c. Since A is closed and densely defined in X and the perturbation P 0A

is by (i) a bounded operator, it follows that Aœ is a closed and densely defined
operator in SKA˚,c. This completes the proof of (ii).

Remark 3.2.7. Equation (3.11) shows that the operator Aœ may be interpreted as
the main operator of a closed-loop system created by the feedback pair

”

F G
ı

„

η
u



:“ ´ xη , A˚
r
cy

〈b , A˚r´1c〉
@

„

η
u



P PSK
A˚,c

ˆ R.

That is why the space SKA˚,c is called feedback invariant, e.g. in [MR07].

Theorem 3.2.8. Let T be the similarity transformation defined in Lemma 3.2.5.
Then the system p pA, pB, pC, 0q defined by

pAx :“ TAT´1x @x P T domA, pB :“ TB, pC :“ CT´1.

is in zero dynamics form. More precisely, the operator pA has the domain Rr ˆ
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3. State space transformations for systems with relative degree

`

SKA˚,c X domA
˘

and is given by

pA

»

—

—

—

—

—

—

—

—

—

–

α0

α1
...

αr´2

αr´1

η

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

—

—

—

—

–

0 0 ¨ ¨ ¨ 0 P 0Arb P 0A

1 0 ¨ ¨ ¨ 0 P 1Arb 0
0 1 . . . ... ... 0
... . . . 0 P r´2Arb 0
0 0 1 P r´1Arb 0
0 0 ¨ ¨ ¨ 0 PSK

A˚,c
Arb PSK

A˚,c
A

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

—

—

—

—

–

α0

α1
...

αr´2

αr´1

η

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(3.14)

for all α0, . . . , αr´1 P R and η P SKA˚,c X domA, and

pBu “

»

—

—

—

—

—

—

—

–

u

0
...
0
0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, pC

»

—

—

—

—

—

—

—

–

α0

α1
...

αr´1

η

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“ ă
»

—

—

—

—

—

—

—

–

α0

α1
...

αr´1

η

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

»

—

—

—

—

—

—

—

–

0
...
0

〈Ar´1b , c〉
0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fląRrˆSK
A˚,c

for all u P R, α0, . . . , αr´1 P R and η P SKA˚,c.

Proof. We first show that T domA “ Rr ˆ
`

SKA˚,c X domA
˘

. The standing assump-
tion b P domAr implies

T´1
”

α0 . . . αr´1 η
ıJ

“

r´1
ÿ

k“0
αkA

kb` η P domA

for all α0, . . . , αr´1 P R, η P SKA˚,c X domA. Conversely, we have for all x P domA

PSK
A˚,c

x “ x ´
r´1
ÿ

k“0
pP kxqAkb
loooomoooon

PdomA

P domA.

ñ Tx “
”

P 0x . . . P r´1x PSK
A˚,c

x
ıJ

P Rr
ˆ
`

SKA˚,c X domA
˘

.

The decomposition (3.8) applied to the vector Arb reads

Arb “
r´1
ÿ

k“0
pP kArbqAkb` PSK

A˚,c
Arb.
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3.2. The zero dynamics form

Using this we get for all
”

α0 α1 . . . αr´1 η
ıJ

P Rr ˆ SKA˚,c X domA

T´1
pA

»

—

—

—

—

—

—

—

–

α0

α1
...

αr´1

η

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“ T´1

»

—

—

—

—

—

—

—

–

P 0Aη ` αr´1P
0Arb

α0 ` αr´1P
1Arb

...
αr´2 ` αr´1P

r´1Arb

αr´1PSK
A˚,c

Arb` PSK
A˚,c

Aη

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“ pP 0Aηqb` PSK
A˚,c

Aη `
r´2
ÿ

k“0
αkA

k`1b` αr´1

r´1
ÿ

k“0
pP kArbqAkb

` αr´1PSK
A˚,c

Arb

(3.12)
“ Aη ` A

r´2
ÿ

k“0
αkA

kb` αr´1A
rb

“ A

˜

r´1
ÿ

k“0
αkA

kb` η

¸

“ AT´1
”

α0 α1 ¨ ¨ ¨ αr´1 η
ıJ

,

whence (3.14) holds. Due to Lemma 3.2.6 (i) the operator P 0A is bounded. Obvi-
ously, all other operators in pA except for PSK

A˚,c
A are bounded. It remains to show

that PSK
A˚,c

A generates a semigroup on SKA˚,c, i.e. it fulfills Definition 3.2.1 (i). Be-
cause of the similarity to A it is clear that pA generates a semigroup on Rr ˆ SKA˚,c,
see Lemma 2.4.15. With respect to the decomposition Rr ˆ SKA˚,c the operator pA

has the structure
pA “

«

pA11 pA12
pA21 pA22

ff

,

where the operators pA11 : Rr Ñ Rr, pA12 : SKA˚,c Ñ Rr, and pA21 : Rr Ñ SKA˚,c are
bounded, and pA22 “ PSK

A˚,c
A|SK

A˚,c
. So the operator

diagp0, pA22q :“
«

0 0
0 pA22

ff

“ pA´

«

pA11 pA12
pA21 0

ff

differs from pA only by a bounded perturbation. In view of [EN00, Section III.1.3],
it is therefore a semigroup generator whose domain equals dom pA. Obviously, t0uˆ
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3. State space transformations for systems with relative degree

SKA˚,c is a closed, diagp0, pA22q-invariant subspace of RrˆSKA˚,c, and since the spectrum
of pA22 is equal to the spectrum of diagp0, pA22q up to the value 0, the condition (iv) of
[Sta05, Theorem 3.14.4] is satisfied. This theorem implies that diagp0, pA22q|t0uˆSK

A˚,c

with domain
dom pAX pt0u ˆ SKA˚,cq “ t0u ˆ pSKA˚,c X domAq

generates a strongly continuous semigroup on t0uˆSKA˚,c. Now the identification of
SKA˚,c with t0u ˆ SKA˚,c and PSK

A˚,c
A with diagp0, pA22q|t0uˆSK

A˚,c
implies the claim.

Finally, the structures of pB and pC follow via

TB “ Tb “
”

P 0b P 1b ¨ ¨ ¨ P r´1b PSK
A˚,c

b
ıJ (3.6),(3.5)

“

”

1 0 ¨ ¨ ¨ 0 0
ıJ

and

CT´1
”

α0 α1 ¨ ¨ ¨ αr´1 η
ıJ

“

〈r´1
ÿ

k“0
αkA

kb` η , c

〉
(3.1)
“ αr´1

〈
Ar´1b , c

〉
.

for all
”

α0 α1 ¨ ¨ ¨ αr´1 η
ıJ

P Rr ˆ SKA˚,c.

Proposition 3.2.9. Let the system pA,B,C, 0q P Σr be in zero dynamics form as
in Definition 3.2.1. Let rV be another real Hilbert space, and let p rA, rB, rC, 0q P Σr be
in zero dynamics form as well with

rA : dom rA Ă Rr ˆ rV Ñ Rr ˆ rV , rC : Rr ˆ rV Ñ R,

rA “

»

—

—

—

—

—

—

—

—

—

—

–

0 0 ¨ ¨ ¨ 0 rp0 rS

1 0 ¨ ¨ ¨ 0 rp1 0
0 1 . . . ... ... 0
... . . . 0 rpr´2 0
0 0 1 rpr´1 0
0 0 ¨ ¨ ¨ 0 rR rQ

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, C

»

—

—

—

—

–

α0
...

αr´1

η

fi

ffi

ffi

ffi

ffi

fl

“ αr´1rcr.
(3.15)

If the two systems are similar via a bounded and bijective similarity transformation
T : Rr ˆ V Ñ Rr ˆ rV, then the entries of (3.2) and (3.15) are related as follows:

(i) pi “ rpi for all i “ 0, . . . , r ´ 1;
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3.2. The zero dynamics form

(ii) There is a bijective mapping T P BpV ; rVq such that

p rQ, rR, rSq “ pT QT ´1, T R, ST ´1
q with dom rQ “ T domQ;

(iii) rcr “ cr.

Proof. Simply applying rA from (3.15) r ´ 1 times to rB yields

rcr “ rC rAr rB “ CT´1TArT´1TB “ CArB “ cr,

which shows (iii).
The bounded bijective operator T : Rr ˆ V Ñ Rr ˆ rV admits a representation

with respect to Rr ˆ V and Rr ˆ rV of the form

T “

»

—

—

—

—

–

T00 T01 ¨ ¨ ¨ T0r

T10 T11 ¨ ¨ ¨ T1r
... ... ...
Tr0 Tr1 ¨ ¨ ¨ Trr

fi

ffi

ffi

ffi

ffi

fl

with bounded

Tij : RÑ R, i, j P t0, . . . , r ´ 1u,
Tir : V Ñ R, i P t0, . . . , r ´ 1u,
Trj : RÑ rV , j P t0, . . . , r ´ 1u,
Trr : V Ñ rV .

We calculate
»

—

—

—

—

–

T00

T10
...
Tr0

fi

ffi

ffi

ffi

ffi

fl

“ T

»

—

—

—

—

–

1
0
...
0

fi

ffi

ffi

ffi

ffi

fl

“ TB “ rB “

»

—

—

—

—

–

1
0
...
0

fi

ffi

ffi

ffi

ffi

fl

.

The relation

crαr´1 “ C

»

—

—

—

—

–

α0
...

αr´1

η

fi

ffi

ffi

ffi

ffi

fl

“ rCT

»

—

—

—

—

–

α0
...

αr´1

η

fi

ffi

ffi

ffi

ffi

fl

“ rcr
loomoon

“cr

r´1
ÿ

k“0
Tr´1,kαk ` Tr´1,rη

for all rα0 , ¨ ¨ ¨ , αr´1 , ηs
J P Rr ˆ V implies

”

Tr´1,0 ¨ ¨ ¨ Tr´1,r´1 Tr´1,r

ı

“

”

0 ¨ ¨ ¨ 0 1 0
ı

.
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3. State space transformations for systems with relative degree

Hence,

T “

»

—

—

—

—

—

—

—

—

—

–

1 T00 T01 ¨ ¨ ¨ T0,r´1 T0r

0 T10 T11 ¨ ¨ ¨ T1,r´1 T1r
... ... ... ... ...
0 Tr´2,0 Tr´2,1 ¨ ¨ ¨ Tr´2,r´1 Tr´2,r

0 0 ¨ ¨ ¨ 0 1 0
0 Tr1 ¨ ¨ ¨ Tr,r´2 0 Trr

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, (3.16)

and we obtain the second column of T from
»

—

—

—

—

—

—

—

–

0
1
0
...
0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“ rA

»

—

—

—

—

—

—

—

–

1
0
0
...
0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(3.16)
“ rAT

»

—

—

—

—

—

—

—

–

1
0
0
...
0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“ TA

»

—

—

—

—

—

—

—

–

1
0
0
...
0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“ T

»

—

—

—

—

—

—

—

–

0
1
0
...
0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

—

–

T01

T11

T21
...
Tr1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (3.17)

Analogously, we obtain the third column by
»

—

—

—

—

—

—

—

—

—

–

0
0
1
0
...
0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“ rA

»

—

—

—

—

—

—

—

—

—

–

0
1
0
0
...
0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(3.17)
“ rAT

»

—

—

—

—

—

—

—

—

—

–

0
1
0
0
...
0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“ TA

»

—

—

—

—

—

—

—

—

—

–

0
1
0
0
...
0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“ T

»

—

—

—

—

—

—

—

—

—

–

0
0
1
0
...
0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

—

—

—

–

T02

T12

T22

T32
...
Tr2

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

We proceed by calculating the first r columns of T in this way and arrive at

T “

»

—

—

—

—

—

—

—

–

1 0 . . . 0 T0r

0 1 T1r
... . . . . . . ...
0 . . . 0 1 0
0 . . . 0 0 Trr

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (3.18)

Now the special structure of A, rA and T in (3.2), (3.15) and (3.18), respectively,

68



3.3. The Byrnes-Isidori form

yields
»

—

—

—

—

—

—

—

—

—

–

S ` T0rQ

...
Tr´2,rQ

0
TrrQ

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“ T

»

—

—

—

—

—

—

—

–

S

0
...
0
Q

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“ TA

»

—

—

—

—

–

0
...
0
I

fi

ffi

ffi

ffi

ffi

fl

“ rAT

»

—

—

—

—

–

0
...
0
I

fi

ffi

ffi

ffi

ffi

fl

“ rA

»

—

—

—

—

—

—

—

–

T0r
...

Tr´2,r

0
Trr

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

—

—

—

–

rSTrr

T0r
...

Tr´1,r

Tr´2,r
rQTrr

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

By successively comparing the blocks in order from pr ´ 2qth to first and by finally
considering the last entry, we see that

Tr´2,r “ 0 “ ¨ ¨ ¨ “ Tr0 “ 0 and S “ rSTrr, rQ “ TrrQT
´1
rr .

Finally, we summarize that the transformation has the form

T “

»

—

—

—

—

—

—

—

–

1 0 . . . 0 0
0 1 0
... . . . . . . ...
0 . . . 0 1 0
0 . . . 0 0 Trr

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

This shows that the assertion of the Proposition holds with T :“ Trr.

3.3. The Byrnes-Isidori form
Definition 3.3.1 (Byrnes-Isidori form). Let X be a real Hilbert space. A state
linear system pA, B, C, Dq on pR,X ,Rq is said to be in Byrnes-Isidori form if and
only if X “ Rr ˆ V for some Hilbert space V and the operators A, B, C satisfy the
following conditions.

(i) There exists an operator Q : domQ Ă V Ñ V that generates a strongly
continuous semigroup on V ;

(ii) The operator A has the domain domA “ Rr ˆ domQ, and there are bounded
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3. State space transformations for systems with relative degree

operators p0, . . . , pr´1 : RÑ R, S : V Ñ R, R : RÑ V , such that

A

»

—

—

—

—

—

—

—

—

—

–

α0

α1
...

αr´2

αr´1

η

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

—

—

—

—

–

0 1 ¨ ¨ ¨ 0 0 0
0 0 . . . 0 0 0
... ... . . . 1 0 0
0 0 0 1 0
p0 p1 ¨ ¨ ¨ pr´2 pr´1 S

R 0 ¨ ¨ ¨ 0 0 Q

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

—

—

—

—

–

α0

α1
...

αr´2

αr´1

η

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

for all
”

α0 α1 ¨ ¨ ¨ αr´1 η
ıJ

P domA;

(iii) There exists a br P Rzt0u such that

Bu “

»

—

—

—

—

—

–

0
...
0
bru
0

fi

ffi

ffi

ffi

ffi

ffi

fl

, and C

»

—

—

—

—

—

–

α0
α1
...

αr´1
η

fi

ffi

ffi

ffi

ffi

ffi

fl

“ α0

for all u P R and all
”

α0 α1 . . . αr´1 η
ıJ

P Rr ˆ V .

Lemma 3.3.2. A system pA,B,C,Dq is in Byrnes-Isidori form if and only if its
dual system pA˚, C˚, B˚, D˚q is in zero dynamics form.

Proof. This is obvious from the structure of the operators in Definition 3.3.1 and
Definition 3.2.1.

In order to transform a system pA,B,C,Dq into Byrnes-Isidori form, we may
therefore transform the dual system pA˚, C˚, B˚, D˚q into zero dynamics form via
Theorem 3.2.8, and subsequently adjoin the result. We want to elucidate the trans-
formation used in this process a little more and formulate this statement as a theo-
rem.
We still assume Presumption 3.1.1 in this section. In (3.3) we split the space X

into SA,b‘SKA˚,c. Since the dual system of pA,B,C, 0q is of relative degree r as well,
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3.3. The Byrnes-Isidori form

we may analogously decompose X into

X “ SA˚,c ‘ SKA,b
“ spantcu ‘ spantA˚cu ‘ ¨ ¨ ¨ ‘ spantA˚r´1

cu

‘ tbuK X tAbuK X ¨ ¨ ¨ X tAr´1buK .

Lemma 3.3.3. Define the operators

Pm : X Ñ R, Pmx :“ Pm
m`1x´

r
ÿ

j“m`2
Pm
j x , m “ 0, . . . , r ´ 1 ,

where

Pm
m`1 : X Ñ R, Pm

m`1x :“

〈
x , Ar´pm`1qb

〉
〈c , Ar´1b〉

, m “ 0, 1, . . . , r ´ 1,

and

Pm
j : X Ñ R, Pm

j x :“
˜

Pm
m`1A

˚j´1
c´

j´1
ÿ

k“m`2
Pm
k A

˚j´1
c

¸

〈x , Ar´jb〉
〈c , Ar´1b〉

for j “ m` 2, . . . , r. Then the following holds:

(i) For any `,m P t0, . . . , r ´ 1u we have

PmA˚
`

c “

$

&

%

1, if ` “ m,

0, if ` “ m ;

Pm SKA,b “ t0u.

(ii) The operator

PSK
A,b

: X Ñ X , PA,bx :“
´

I´
r´1
ÿ

j“0
A˚

j

cP j
¯

x,

is a projection onto SKA,b, and every x P X has a unique decomposition of the
form

x “ pP 0xqc` pP 1xqA˚c` ¨ ¨ ¨ ` pP r´1xqA˚
r´1
c ` PA,bx .
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3. State space transformations for systems with relative degree

Proof. This follows by replacing A, b, c by A˚, c, b, respectively, in Lemma 3.2.4.

Lemma 3.3.4. With P 0, . . . , P r´1 and PSK
A,b

defined as in Lemma 3.3.3, the operator

U : X Ñ Rr
ˆ SKA,b, x ÞÑ Ux :“

»

—

—

—

—

—

—

—

–

P 0x

P 1x
...

P r´1x

PSK
A,b
x

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, (3.19)

is bounded and bijective with inverse

U´1 : Rr
ˆ SKA,b Ñ X ,

»

—

—

—

—

—

–

α0
α1
...

αr´1
η

fi

ffi

ffi

ffi

ffi

ffi

fl

ÞÑ

r´1
ÿ

j“0
αjA

˚jc ` η.

Furthermore, with the orthogonal projector πSK
A,b

: X Ñ X onto SKA,b, we have

U´˚ : X Ñ Rr
ˆ SKA,b, x ÞÑ

»

—

—

—

—

—

—

—

–

〈x , c〉
〈x , A˚c〉

...〈
x , A˚

r´1
c
〉

πSK
A,b
x

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (3.20)

and U´˚ maps SKA˚,c bijectively onto t0u ˆ SKA,b.

Proof. The assertions about U and its inverse follow directly from Lemma 3.3.3.
The formula for U´˚ follows since for all rα0 , ¨ ¨ ¨ , αr´1 , ηsJ P Rr ˆ SKA,b and all
x P X we have

ăx, U´1

»

—

—

—

—

—

—

—

–

α0

α1
...

αr´1

η

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

flą “ 〈
x ,

r´1
ÿ

j“0
αjA

˚jc ` η

〉
“ ă

»

—

—

—

—

—

—

—

–

〈x , c〉
〈x , A˚c〉

...〈
x , A˚

r´1
c
〉

πSK
A,b
x

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

»

—

—

—

—

—

—

—

–

α0

α1
...

αr´1

η

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fląRrˆSKA,b

.
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3.3. The Byrnes-Isidori form

The last statement on U´˚ follows from the fact that U is bijective together with
formula (3.20).

Theorem 3.3.5. Define U and Pm as in Lemma 3.3.3 and (3.19). The bounded
and bijective operator U´˚ : X Ñ Rr ˆ SKA,b converts the system pA,B,C, 0q P Σr

into the system

p pA, pB, pC, 0q :“
`

U´˚AU˚, U´˚B,CU˚
˘

, with dom pA :“ U´˚ domA,

which is in Byrnes-Isidori form. More precisely, dom pA “ Rr ˆ pSKA,b X domAq,

pA “

»

—

—

—

—

—

—

—

—

—

–

0 1 0 ¨ ¨ ¨ 0 0
0 0 1 0
... . . . . . . ...
0 0 ¨ ¨ ¨ 0 1 0
p0 p1 ¨ ¨ ¨ pr´2 pr´1 S

R 0 ¨ ¨ ¨ 0 0 Q

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

with
pi “ P iA˚

r
c @ i P t0, . . . , r ´ 1u

R : RÑ SKA,b, Rα “ πSK
A,b
Arb α

〈Ar´1b , c〉 ,

S : SKA,b Ñ R, Sη “
〈
η , PSK

A,b
A˚

r
c
〉

Q : SKA,b X domAÑ SKA,b, Qη “ πSK
A,b
Aη ´R 〈η , c〉 ,

(3.21)

and

pBu “

»

—

—

—

—

—

—

—

–

0
...
0

〈Ar´1b , c〉u
0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, pC

»

—

—

—

—

—

—

—

–

α0

α1
...

αr´1

η

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“ α0

for all u P R, α0, . . . , αr´1 P R and η P SKA,b. Moreover, Q generates a strongly
continuous semigroup AQ in SKA,b.

Proof. We have constructed U in a such away that it transforms pA˚, C˚, B˚, 0q into
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3. State space transformations for systems with relative degree

zero dynamics form, i.e. by Theorem 3.2.8 we have on Rr ˆ domA˚ X SKA,b

UA˚U´1
“

»

—

—

—

—

—

—

—

—

—

—

–

0 0 ¨ ¨ ¨ 0 P 0A˚
r
c P 0A˚

1 0 ¨ ¨ ¨ 0 P 1A˚
r
c 0

0 1 . . . ... ... 0
... . . . 0 P r´2A˚

r
c 0

0 0 1 P r´1A˚
r
c 0

0 0 ¨ ¨ ¨ 0 PSK
A,b
A˚

r
c PSK

A,b
A˚

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

For the operator PSK
A,b
A˚ restricted to SKA,b X domA˚, we use the name

Aö : SKA,b X domA˚ Ă SKA,b Ñ SKA,b, Aö :“ PSK
A,b
A˚.

By (3.12) (interpreted for the dual system) this operator fulfills

Aöη “ PSK
A,b
A˚η “ A˚η ´ c

〈η , Arb〉
〈c , Ar´1b〉

@ η P SKA,b X domA˚. (3.22)

Recall that pTLq˚ “ L˚T ˚ for any densely defined operator L and any bounded
operator T , and if in addition T is boundedly invertible, we also have pLT q˚ “ T ˚L˚

[Wei85, Section 4.4]. Hence, adjoining the equations above yields

U´˚AU˚ “

»

—

—

—

—

—

—

—

—

—

—

–

0 1 0 ¨ ¨ ¨ 0 0
0 0 1 0
... . . . . . . ...
0 0 ¨ ¨ ¨ 0 1 0
p0 p1 ¨ ¨ ¨ pr´2 pr´1

´

αr´1 ÞÑ αr´1PSK
A,b
A˚

r
c
¯˚

pP 0A˚q˚ 0 ¨ ¨ ¨ 0 0 A˚ö

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

It remains to show that the representations of Q, R and S in (3.21) are valid.
The operator P 0A˚ is bounded, see Lemma 3.2.6 (i). Hence pP 0A˚q˚ “ pP 0A˚q˚.
Furthermore, we have for all η P SKA,b and all α P R,

〈
P 0A˚η , α

〉
R

(3.10),(3.3)
“

〈
〈η , Arb〉

〈c , Ar´1b〉
, α

〉
R
“

〈
η , α

πSK
A,b
Arb

〈Ar´1b , c〉

〉
SK
A,b

,
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3.3. The Byrnes-Isidori form

whence pP 0A˚q˚ “ R. The formula for S is merely the definition of the adjoint of
the mapping αr´1 ÞÑ αr´1PSK

A,b
A˚

r
c. Lastly, we prove that Q “ A˚ö. Applying the

orthogonal projection πSK
A,b

to (3.22), we see

Aöη “ πSK
A,b
A˚η ´ πSK

A,b
c

〈η , Arb〉
〈c , Ar´1b〉

@ η P SKA,b X domA˚.

The second summand in this representation is a bounded operator from SKA,b to
itself. Therefore the adjoint of Aö in the Hilbert space SKA,b has the same domain as
the adjoint of πSK

A,b
A˚|SK

A,b
, which is the set πSK

A,b
domA. Writing out the orthogonal

projection shows for every x P domA

πSK
A,b
x “ x´ 〈x , b〉 b´ . . .´

〈
x , Ar´1b

〉
Ar´1b P domA,

whence domA˚ö “ πSK
A,b

domA “ SKA,bXdomA. Now that the domain is determined,
the calculation

〈Aöη , ν〉SK
A,b
“

〈
πSK

A,b
A˚η ´ πSK

A,b
c

〈η , Arb〉
〈c , Ar´1b〉

, ν

〉
SK
A,b

“ 〈A˚η , ν〉´ 〈η , Arb〉
〈c , Ar´1b〉

〈c , ν〉

“
〈
η , πSK

A,b
Aν
〉

SK
A,b

´

〈
η , Ar´1b

〈ν , c〉
〈Arb , c〉

〉

“

〈
η , πSK

A,b
Aν ´ πSK

A,b
Arb

〈ν , c〉
〈Ar´1b , c〉

〉
SK
A,b

for all η P SKA,b X domA˚ and all ν P SKA,b X domA shows that

A˚öν “ πSK
A,b
Aν ´ πSK

A,b
Arb

〈ν , c〉
〈Ar´1b , c〉

.

This is the operator named Q in the theorem, and it generates a strongly continuous
semigroup because its adjoint operator does. The proof is finished.

The next corollary shows an interesting relation between the zero dynamics form
and the Byrnes-Isidori form: The unbounded lower right operators in both forms
are similar to each other and the spaces SKA˚,c and SKA,b are isomorphic.
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3. State space transformations for systems with relative degree

Corollary 3.3.6. The transformation U˚ in Lemma 3.3.4 induces a bijective map-
ping,

pU˚ : SKA,b Ñ SKA˚,c, η ÞÑ U˚
„

0
η



,

with inverse

pU´˚ : SKA˚,c Ñ SKA,b, x ÞÑ πSK
A,b
x.

The operator Q defined in (3.21) on SKA,b is similar to the operator Aœ defined in
(3.11), and

Qη “ pU´˚Aœ
pU˚η @ η P domQ.

Proof. The bijectivity of pU˚ is immediate from Lemma 3.3.4. The definition of Aœ

yields for all η P domQ Ă SKA,b,

pU´˚Aœ
pU˚η “ pU´˚

˜

ApU˚η ´ b

〈
pU˚η , A˚

r
c
〉

〈b , A˚r´1c〉

¸

“ πSK
A,b
ApU˚η ´ πSK

A,b
b

〈
pU˚η , A˚

r
c
〉

〈b , A˚r´1c〉
looooooooooomooooooooooon

“0

“ πSK
A,b
AU˚

„

0
η



“

”

0JRr I
ı

pA

«

0
η

ff

“ Qη,

which proves the assertion.

Proposition 3.3.7. Let pA,B,C, 0q P Σr with Byrnes-Isidori form denoted as in
Theorem 3.3.5. Then

ρpAq X ρpQq “

#

λ P ρpQq

ˇ

ˇ

ˇ

ˇ

ˇ

λr ´
r´1
ÿ

k“0
pkλ

k
´ Spλ´Qq´1R ‰ 0

+

,

and the transfer function G of pA,B,C, 0q is given by

Gpλq “
〈Ar´1b , c〉

λr ´
řr´1
k“0 pkλ

k ´ Spλ´Qq´1R
@λ P ρpAq X ρpQq. (3.23)
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Proof. Since the transformation into the Byrnes-Isidori form p pA, pB, pC, 0q in Theo-
rem 3.3.5 is boundedly invertible, we have ρpAq “ ρp pAq and

Gpλq “ Cpλ´ Aq´1B “ pCpλ´ pAq´1
pB.

Let λ P ρpQq. Then λ´ pA is boundedly invertible if and only if the Schur complement
»

—

—

—

—

—

—

—

–

λ ´1 ¨ ¨ ¨ 0 0
0 λ

. . . 0 0
... ... . . . ´1 0
0 0 λ ´1
´p0 ´p1 ¨ ¨ ¨ ´pr´2 λ´ pr´1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

´

»

—

—

—

—

—

—

—

–

0
0
...
0
´S

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

pλ´Qq´1
”

´R 0 ¨ ¨ ¨ 0 0
ı

is boundedly invertible [Tre08, Theorem 2.3.3]. The latter is equivalent to

λr ´
r´1
ÿ

k“0
pkλ

k
´ Spλ´Qq´1R ‰ 0. (3.24)

Hence, the first claim follows from ρpAq “ ρp pAq. Now let λ P ρpQq X ρpAq.
Then (3.24) holds, and we may define the abbreviations

α :“ 〈Ar´1b , c〉
λr ´

řr´1
k“0 pkλ

k ´ Spλ´Qq´1R
, x :“

»

—

—

—

—

—

–

1
λ
...

λr´1

pλ´Qq´1R

fi

ffi

ffi

ffi

ffi

ffi

fl

α.

It is easily verified that

pλ´ pAqx “
»

—

—

—

—

—

—

—

—

—

—

–

λ ´1 ¨ ¨ ¨ 0 0 0
0 λ

. . . 0 0 0
... ... . . . ´1 0 0
0 0 λ ´1 0
´p0 ´p1 ¨ ¨ ¨ ´pr´2 λ´ pr´1 ´S

´R 0 ¨ ¨ ¨ 0 0 λ´Q

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

—

—

—

—

–

1
λ
...

λr´2

λr´1

pλ´Qq´1R

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

α “

»

—

—

—

—

—

—

—

—

—

–

0
0
...
0

〈Ar´1b , c〉
0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.
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3. State space transformations for systems with relative degree

Hence, x “ pλ´ pAq´1
pB, and we obtain

pCpλ´ pAq´1
pB “ pCx “ α.

This completes the proof of the proposition.

We now investigate the behavior of a system pA,B,C, 0q P Σr. We will show that
the behavior of a system in Byrnes-Isidori form is closely related to the solution of
a functional differential equation. The latter allows for a simpler representation of
the input-output mapping. In this context we use the abbreviation “f.a.a.” which
means “for almost all”, i.e. for all up to a null set.

Proposition 3.3.8. Let pA,B,C, 0q P Σr, x0 P X , u P L1
locpRě0;Rq, and y P

CpRě0;Rq and use the notation of Theorem 3.3.5 for the Byrnes-Isidori form. De-
fine, for fixed η0 P SKA,b, the causal linear operator

Tη0 : L1
locpRě0;Rq Ñ CpRě0;Rq,

y ÞÑ

´

t ÞÑ SAQptqη0 ` S
şt

0 AQpt´ sqRypsq ds
¯

.

Then the following are equivalent:

(i) Dx P CpRě0; X q with xp0q “ x0 and px, u, yq P bhv pA,B,C, 0q.

(ii) The function y is r ´ 1-times continuously differentiable and satisfies
»

—

—

—

—

–

yptq
...

ypr´2qptq

ypr´1qptq

fi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

–

〈x0 , c〉
...

xx0 , A
˚r´2

cy

xx0 , A
˚r´1

cy

fi

ffi

ffi

ffi

ffi

fl

(3.25)

`

»

—

—

—

—

–

şt

0 y
p1qpsq ds
...

şt

0 y
pr´1qpsq ds

şt

0
řr´1
i“0 piy

piqpsq ` Sηpsq ` xAr´1b , cyupsq ds

fi

ffi

ffi

ffi

ffi

fl

,

ηptq “ AQptqπSK
A,b
x0 `

ż t

0
AQpt´ sqRypsq ds, (3.26)

for all t ě 0.
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3.3. The Byrnes-Isidori form

(iii) The function y is r´ 1-times continuously differentiable and its rth derivative
satisfies

yprqptq “
r´1
ÿ

i“0
pi y

piq
ptq ` pTη0yqptq `

〈
Ar´1b , c

〉
uptq f.a.a. t ě 0, (3.27)

and,
»

—

—

—

—

–

yp0q
...

ypr´1qp0q
η0

fi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

–

xx0 , cy
...

xx0 , A
˚r´1

cy

πSK
A,b
x0

fi

ffi

ffi

ffi

ffi

fl

. (3.28)

The functions x and η in (i) and (ii) are related by the equation

xptq “ U˚ryptq , . . . , ypr´1q
ptq , ηptqsJ @ t ě 0,

with the transformation U defined in Lemma 3.3.4.

Proof. (i) ñ (ii): Let px, u, yq P bhvpA,B,C, 0q with xp0q “ x0 and define the
transformation U as in Lemma 3.3.4. By Lemma 2.4.15, the transformed function
px :“ U´˚x satisfies ppx, u, yq P bhvp pA, pB, pC, 0q. Owing to the boundedness of pB this
implies by Lemma A.2.2 (ii) that

pxptq “ pxp0q `
ż t

0

pA
ˇ

ˇ

RrˆSK
A,b

xpsq ` pBupsq ds @ t ě 0,

and that px P C
`

Rě0;Rr ˆ SKA,b
˘

. Since the operators R, S, and

»

–

0 1 ¨¨¨ 0

0 0
... 0

... ... 1
p0 p1 ¨¨¨ pr´1

fi

fl

appearing in pA are bounded, Lemma A.2.3 implies that, if we write the function px

as
pxptq “: rα0ptq , ¨ ¨ ¨ , αr´1ptq , ηptqs

J
@ t ě 0,
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3. State space transformations for systems with relative degree

then
»

—

—

—

—

–

α0ptq
...

αr´2ptq

αr´1ptq

fi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

–

α0p0q
...

αr´2p0q
αr´1p0q

fi

ffi

ffi

ffi

ffi

fl

`

»

—

—

—

—

–

şt

0 α1psq ds
...

şt

0 αr´1psq ds
şt

0
řr´1
i“0 piαipsq ` Sηpsq ` 〈Ar´1b , c〉upsq ds

fi

ffi

ffi

ffi

ffi

fl

, (3.29)

ηptq “ ηp0q `
ż t

0
Q
ˇ

ˇ

SK
A,b

ηpsq `Rα0psq ds (3.30)

for all t ě 0, and
»

—

—

—

—

–

α0p0q
...

αr´1p0q
ηp0q

fi

ffi

ffi

ffi

ffi

fl

“ U´˚xp0q “

»

—

—

—

—

–

〈x0 , c〉
...〈

x0 , A
˚r´1

c
〉

πSK
A,b
x0

fi

ffi

ffi

ffi

ffi

fl

.

Since
yptq “ Cxptq “ pCpxptq “ α0ptq @ t ě 0,

we conclude from (3.29) that ypiq “ α
piq
0 “ αi for all i “ 0, . . . , r´1. Lemma A.2.2 (i)

shows that (3.30) implies (3.26) and therefore (ii) holds.
(ii) ñ (iii): If (ii) holds, then the lower line of (3.25) shows that the function

ypr´1q “ αr´1 is absolutely continuous. Therefore, it is almost everywhere differen-
tiable and its derivative satisfies (3.27).
(iii) ñ (i): Assume y satisfies (iii). Define rα0 , . . . , αr´1s :“ ry , . . . , ypr´1qs

and the function η by (3.26). Then (3.29) is fulfilled, and (3.30) as well because of
Lemma A.2.2. Lemma 2.4.11 and Lemma A.2.3 therefore imply that

¨

˚

˚

˚

˝

»

—

—

—

–

α0
...

αr´1
η

fi

ffi

ffi

ffi

fl

, u, y

˛

‹

‹

‹

‚

P bhvp pA, pB, pC, 0q.

Hence, the function

xp¨q :“ U˚rα0p¨q , . . . , αpr´1qp¨q , ηp¨qs
J
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satisfies px, u, yq P bhvpA,B,C, 0q. Finally (3.28) yields the initial value xp0q “
U˚x0, and the proof of the proposition is complete.

Note that the right hand side of (3.27) may be interpreted as an ordinary differ-
ential term

řr´1
i“0 pi y

piqptq ` 〈Ar´1b , c〉uptq which is perturbed by a functional term
pTη0yqptq. This structure will be exploited in Section 5.1 to control the system.

3.4. Notes and references
Our definition of relative degree is stronger than the frequency domain definition of
[MR07]. More precisely, Presumption 3.1.1 implies by [MR07, Lemma 2.9] that the
transfer function of the system fulfills

lim
sÑ8,sPR

srCps´ Aq´1B ‰ 0, lim
sÑ8,sPR

sr´1Cps´ Aq´1B “ 0. (3.31)

This property is called relative degree r in [MR07, Definition 1.3]. A partial converse
to the implication above is contained in [MR07, Lemma 2.9]: If the state linear
systems pA,B,C, 0q fulfills (3.31) and ranC˚ Ă dompA˚r´1

q, then it has relative
degree r in the sense of Definition 3.1.2.
The largest (infinite-dimensional) feedback invariant subspace of kerC has re-

ceived much attention over the years. Many authors have studied existence and
geometric and invariance properties, even under weaker assumptions than Presump-
tion 3.1.1, e.g. [Cur84, Cur86, MR07, Zwa88]. It is well-known that under Presump-
tion 3.1.1, this space is precisely SKA,b, see [Zwa88, Section 4] and [MR07, Theorem
2.10]. The complete decomposition (3.3) has previously only been considered for
systems with relative degree one, where it is simply X “ kerC ‘ ranB. This fact
has been used in [Byr87, BLGS98, LZ91] for the purpose of high-gain control. Even
for finite-dimensional systems, where it is easy to derive, the zero dynamics form in
the sense of Definition 3.2.1 is not well documented.
Instead of that, the Byrnes-Isidori form for (nonlinear) finite-dimensional sys-

tems, which was first introduced in [BI91], is very popular and well understood,
see [BIW14, IRT07, Isi95]. Despite this popularity, it has not been established for
infinite-dimensional systems before. Furthermore, we believe the relation between
the Byrnes-Isidori form and the zero dynamics form of the dual system that was
established in Lemma 3.3.2 and Corollary 3.3.6 is a new insight and clarifies the
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3. State space transformations for systems with relative degree

relationship between two instruments that are often used to get a hold of the zero
dynamics: the largest feedback invariant subspace of kerC and the Byrnes-Isidori
form.
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4. Zero dynamics

In this chapter we will analyze the behavior that leaves the output completely un-
affected, the so-called zero dynamics.

Definition 4.0.1 (zero dynamics). The zero dynamics of an Lp-well-posed linear
system pA,B,C,Dq is the subspace of the behavior defined by

zdpA,B,C,Dq :“ t px, u, yq P bhvpA,B,C,Dq | y ” 0 u .

If the system is of Pritchard-Salamon type with generators pA,B,C,Dq we write

zdpA,B,C,Dq :“ zdpA,B,C,Dq.

The system is said to have exponentially stable zero dynamics if and only if

DM,µ ą 0 @ px, u, 0q P zdpA,B,C,Dq :

}pxptq, uptqq}XˆU ďMe´µt}xp0q} f.a.a. t ě 0,
(4.1)

and strongly stable zero dynamics if and only if

@ px, u, 0q P zdpA,B,C,Dq : lim
tÑ8

}pxptq, uptqq}XˆU “ 0.

4.1. Zero dynamics for systems with relative degree
In this section we characterize the zero dynamics of systems with relative degree in
the sense of Definition 3.1.2. We will prove that the zero dynamics are completely
determined by the semigroup generator in the lower right corner of the Byrnes-Isidori
form and the zero dynamics form, respectively. We start with the Byrnes-Isidori
form.
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4. Zero dynamics

Theorem 4.1.1. Let Presumption 3.1.1 hold. Then, with the notation as in Theo-
rem 3.3.5, the zero dynamics of the system pA,B,C, 0q P Σr is given by

zdpA,B,C, 0q “
# ˜

U˚

«

0
AQp¨qη0

ff

,´
SAQp¨qη0

〈Ar´1b , c〉
, 0
¸

ˇ

ˇ

ˇ

ˇ

ˇ

η0 P SKA,b

+

, (4.2)

where AQ denotes the semigroup generated by Q in SKA,b.

Proof. Let px, u, yq P zdpA,B,C, 0q and define η0 :“ πSK
A,b
xp0q. By Proposition 3.3.8

ry , . . . , ypr´1qsJ and ηp¨q :“ πSK
A,b
xp¨q satisfy (3.25) and (3.26). Since y ” 0, we have

ypiq ” 0 for all i “ 0, . . . , r ´ 1. Inserting this, we can easily solve (3.25) and (3.26)
for u and η. We obtain ηptq “ AQptqη0 and uptq “ ´ 〈Ar´1b , c〉´1

Sηptq. Since
Proposition 3.3.8 also states that xptq “ U˚ryptq , . . . , ypr´1qptq , ηptqsJ, the triple
px, u, yq belongs to the right hand side of (4.2).
Conversely, let η0 P SKA,b be given and define x0 :“ U˚

“ 0
η0

‰

. Then (3.20) shows

»

—

—

—

—

–

〈x0 , c〉
...〈

x0 , A
˚r´1

c
〉

πSK
A,b
x0

fi

ffi

ffi

ffi

ffi

fl

“ U´˚x0 “

«

0
η0

ff

.

Using this equation, it can be seen that the functions

yptq :“ 0, uptq :“ ´ SAQptqη0

〈Ar´1b , c〉
, ηptq “ AQptqη0 @ t ě 0,

satisfy (ii) of Proposition 3.3.8. Hence, this proposition implies that
˜

U˚

«

0
AQp¨qη0

ff

,´
SAQp¨qη0

〈Ar´1b , c〉
, 0
¸

“

˜

U˚

«

0
ηp¨q

ff

, up¨q, yp¨q

¸

P bhvpA,B,C, 0q.

Since y ” 0, the left hand side belongs to the zero dynamics and (4.2) is shown.

Recall that the operator Aœ in (3.11) is the lower right operator in the zero
dynamics form. With the zero dynamics form it can be shown that this operator
determines the zero dynamics as well. But since we already know that Aœ is similar
to Q, this is a simple corollary to Theorem 4.1.1.
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4.1. Zero dynamics for systems with relative degree

Corollary 4.1.2. Let Presumption 3.1.1 hold, define Fη :“ ´
xη ,A˚

r
cy

〈b , A˚r´1c〉 for η P
SKA˚,c, and let Aœ be the semigroup in SKA˚,c that is generated by the operator Aœ

defined by (3.11). Then

zdpA,B,C,Dq “
 

pAœp¨qx0, FAœp¨qx0 , 0q
ˇ

ˇ x0 P SKA˚,c
(

.

Proof. The bijection pU˚ : SKA,b Ñ SKA˚,c defined in Corollary 3.3.6 satisfies AQptq “
pU´˚AœptqpU

˚ for all t ě 0. Observe that the right hand side of (4.2) is equal to
" ˆ

pU˚AQp¨q η0,´
SAQp¨q η0

〈Ar´1b , c〉
, 0
˙

ˇ

ˇ

ˇ

ˇ

η0 P SKA,b
*

.

Therefore, the claim follows from Theorem 4.1.1 and the calculation

S pU´˚x

〈Ar´1b , c〉
(3.21)
“

〈
pU´˚x , PSK

A,b
A˚

r
c
〉

〈Ar´1b , c〉
“

〈
pU´˚x , r0JRr IsUA˚rc

〉
〈Ar´1b , c〉

“

〈
U´˚x , UA˚

r
c
〉

〈Ar´1b , c〉
“

〈
x , A˚

r
c
〉

〈b , Ar´1˚c〉
“ ´Fx

for all x P SKA˚,c.

These findings allow for a characterization of the stability of the zero dynamics
in terms of the operator Q or, equivalently, Aœ:

Lemma 4.1.3. Let Presumption 3.1.1 hold. Then pA,B,C, 0q has exponentially
stable zero dynamics if and only if the semigroup generated by the operator Q in
Theorem 3.3.5 is exponentially stable, and the system has strongly stable zero dy-
namics if and only if this semigroup is strongly stable.

Proof. Theorem 3.3.5 includes thatQ generates a strongly continuous semigroup AQ.
If this semigroup is exponentially stable, then the assertion is an immediate con-
sequence of Theorem 4.1.1. Assume on the other hand that pA,B,C, 0q has expo-
nentially stable zero dynamics and let η0 P SKA,b be arbitrary. Then equation (4.2)
shows that

ˆ

U˚
„

0
AQp¨qη0



,´
SAQp¨qη0

〈Ar´1b , c〉
, 0
˙

P zdpA,B,C, 0q.
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4. Zero dynamics

Thus, the stability assumption (4.1) implies with pU˚ as in Corollary 3.3.6 that

@ t ě 0 :
›

›

›

pU˚AQptqη0

›

›

›

SK
A˚,c

“

›

›

›

›

U˚
„

0
AQptqη0


›

›

›

›

ďM

›

›

›

›

U˚
„

0
η0


›

›

›

›

e´µt.

Since pU˚ is boundedly invertible, we conclude }AQptqη0} ď }pU
´˚}Me´µt}η0}. This

shows the exponential stability of the semigroup becauseM and µ are by assumption
independent of η0. The part about strong stability follows in the same manner from
Theorem 4.1.1.

Corollary 4.1.4. Let Presumption 3.1.1 hold and assume that pA,B,C, 0q has ex-
ponentially stable zero dynamics. Then its transfer function G satisfies

Gpλq ‰ 0 @λ P ρpAq X Cě0

and

ρpAq X Cě0 “

#

λ P Cě0

ˇ

ˇ

ˇ

ˇ

ˇ

λr ´
r´1
ÿ

k“0
Pkλ

k
´ Spλ´Qq´1R ‰ 0

+

,

with p0, . . . , pr´1, Q,R, and S as in Theorem 3.3.5.

Proof. By Lemma 4.1.3 the exponential stability of the zero dynamics is equivalent
to the exponential stability of AQ. By [CZ95, Theorem 5.15] this is equivalent to the
conditions Cě0 Ă ρpQq and supλPCě0 }pλ´Qq´1} ă 8. Therefore, the denominator
of the transfer function in (3.23) is finite at every point λ P ρpAq X Cě0 and the
claim follows.

In view of the internal loop form in Proposition 3.3.8 we may observe: If the
zero dynamics are exponentially stable, then Lemma 4.1.3 implies that Tη0 maps
bounded functions to bounded functions.

4.2. Zero dynamics of the heat equation with
boundary control

For general well-posed linear systems the zero dynamics are not necessarily char-
acterized by a strongly continuous semigroup; a counterexample is in [MR07, Sec-
tion 4]. However, we will prove in this section that the zero dynamics of the heat
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4.2. Zero dynamics of the heat equation with boundary control

equation system introduced in Section 2.6 are entirely described by an exponentially
stable, contractive and analytic semigroup. First we introduce the operator that will
turn out to be the generator of this semigroup.
As in Section 2.6 Ω is a bounded domain with uniformly C2-boundary BΩ. The

following is a deep regularity result from [HT08, Proposition 5.26 (ii)].

Lemma 4.2.1. Let x P W 1,2pΩq and f P L2pΩq, satisfy
ż

Ω
∇xpξq ¨∇ϕpξq dξ “

ż

Ω
fpξq ¨ ϕpξq dξ

for all ϕ P C8pΩq with Bνϕ|BΩ ” 0. Then x P W 2,2pΩq and Bνx|BΩ ” 0.

Theorem 4.2.2. Consider the operator

A0 : domA0 Ă L2
pΩq Ñ L2

pΩq, A0x :“ ∆x,

domA0 :“
#

x P W 2,2
pΩq

ˇ

ˇ

ˇ

ˇ

ˇ

Bνx|BΩ ”
ş

Ω ∆xpξq dξ
|BΩ|

and
ş

BΩ xpξq dσξ “ 0.

+

.

(4.3)

Then the following is true:

(i) A0 is self-adjoint and has compact resolvent;

(ii) A0 generates an analytic, contractive, and exponentially stable semigroup on
L2pΩq.

Proof. Step 1: We construct an associated sesquilinear form for A0: Define the space

H “

"

x P W 1,2
pΩq

ˇ

ˇ

ˇ

ˇ

ż

BΩ
xpξq dσξ “ 0

*

. (4.4)

Then H is dense in L2pΩq. We deduce from the Trace theorem, [HT08, Theorem
4.24], that H is the kernel of a continuous linear mapping, and therefore a closed
subspace of W 1,2pΩq. More precisely, H is a Hilbert space inheriting the inner
product of W 1,2pΩq. We define the sesquilinear form

a0 : H ˆH Ñ C, px, zq ÞÑ

ż

Ω
∇xpξq ¨∇zpξq dξ, (4.5)
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which is continuous and symmetric. We prove that there is an α ą 0 with

Re a0px, xq ě αxx, xyH @x P H. (4.6)

Assume that this is false. Then there exists a bounded sequence pxnq in H with

}xn}W 1,2pΩq “ 1 @n P N, (4.7)

and
a0pxn, xnq

nÑ8
ÝÑ 0. (4.8)

The Rellich-Kondrachov theorem, [HT08, Theorem 4.17 (i)], implies that there exists
some z P L2pΩq and a subsequence pxnkq with }z ´ xnk}L2pΩq

kÑ8
ÝÑ 0. Together with

(4.8) and (4.5) this implies that pxnkq is a Cauchy sequence in W 1,2pΩq. Thus
we have z P W 1,2pΩq and }z ´ xnk}W 1,2pΩq

kÑ8
ÝÑ 0. Since differentiation as well as

boundary evaluation are continuous with respect to the W 1,2pΩq norm, it follows
that ∇z “ 0 and

ş

BΩ zpξq dξ “ 0. Hence, z is a constant function whose boundary
integral vanishes. This implies z “ 0, which is in contradiction to (4.7).
Step 2: With the definition of H and a0 as in Step 1 and A0 as in (4.3), we show

that

domA0 “
 

x P H
ˇ

ˇ D z P L2
pΩq : a0px, ϕq “ xz, ϕyL2pΩq @ϕ P H

(

, (4.9)

and
〈A0x , ϕ〉L2pΩq “ ´a0px, ϕq @x, ϕ P domA0. (4.10)

For x P domA0 the equation (4.10) follows with Green’s formula since all ϕ P H
satisfy

a0px, ϕq “

ż

Ω
∇xpξq ¨∇ϕpξq dξ

“ ´

ż

Ω
∆xpξq ¨ ϕpξq dξ `

ż

BΩ
Bνxpξq ¨ ϕpξq dσξ

“ ´

ż

Ω
∆xpξq ¨ ϕpξq dξ ` 1

|BΩ|

ż

Ω
∆xpξq dξ ¨

ż

BΩ
ϕpξq dσξ

loooooomoooooon

“0

“ ´ 〈∆x , ϕ〉L2pΩq .
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4.2. Zero dynamics of the heat equation with boundary control

This computation also gives rise to the inclusion “Ă” in (4.9). To prove the converse
inclusion, assume that x P H and there exists some z P L2pΩq with

ż

Ω
∇xpξq ¨∇ϕpξq dξ “ a0px, ϕq “ 〈z , ϕ〉L2pΩq @ϕ P H. (4.11)

Then (4.11) holds true for all ϕ P C8c pΩq in particular. Consequently, we have
z “ ´∆x. We choose an W 2,2pΩq-function h with

Bνh
ˇ

ˇ

BΩ ”

ş

Ω ∆xpξq dξ
|BΩ| ,

and claim that x´ h fulfills
ż

Ω
∇px´ hqpξq ¨∇ψpξq dξ “ ´

ż

Ω
∆px´ hqpξq ¨ ψpξq dξ @ψ P W 1,2

pΩq.

Let ψ P W 1,2pΩq. Then ϕ :“ ψ ´
ş

BΩ ψpξq dξ
|BΩ| is in H and ∇ψ “ ∇ϕ. Thus we have

ż

Ω
∇px´ hqpξq ¨∇ψpξq dξ

“

ż

Ω
∇xpξq ¨∇ϕpξq dξ ´

ż

Ω
∇hpξq ¨∇ψpξq dξ

“

ż

Ω
zpξq ¨ ϕpξq dξ ´

ż

Ω
∇hpξq ¨∇ψpξq dξ

“

ż

Ω
zpξq ¨ ϕpξq dξ `

ż

Ω
∆hpξq ¨ ψpξq dξ ´

ż

BΩ
Bνhpξq ¨ ψpξq dξ

“ ´

ż

Ω
∆xpξq ¨ ϕpξq dξ `

ż

Ω
∆hpξq ¨ ψpξq dξ ´

ż

BΩ

ş

Ω ∆xpζq dζ
|BΩ| ¨ ψpξq dξ

“ ´

ż

Ω
∆xpξq ¨

ˆ

ϕpξq `

ş

BΩ ψpξq

|BΩ|

˙

dξ `
ż

Ω
∆hpξq ¨ ψpξq dξ

“

ż

Ω
∆phpξq ´ xpξqq ¨ ψpξq dξ.

Now Lemma 4.2.1 implies that x ´ h P W 2,2pΩq and Bνpx ´ hq|BΩ “ 0. Hence,
x P W 2,2pΩq and Bνx|BΩ ”

ş

Ω ∆xdξ
|BΩ| .

Step 3: We conclude statement (i) and (ii): Since we have the relations (4.6) and
(4.10), and a0p¨, ¨q is symmetric, Theorem VI.2.6 in [Kat80, p. 323] implies that A0
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is self-adjoint and negative definite. In particular, 0 P ρpA0q, and

A´1
0 L2

pΩq Ă domA0.

SinceW 2,2pΩq is compactly embedded in L2pΩq by the Rellich-Kondrachov theorem,
we infer that A0 has compact resolvent. Therefore, its spectrum consists of isolated
eigenvalues [Kat80, Theorem 6.29, p.187], which are strictly negative. This shows
that A0 is a sectorial operator, and by [Sta05, Theorem 3.10.5], it generates an
analytic semigroup A0p¨q. The fact that its largest eigenvalue ´ω0 is negative further
implies that

}A0ptq}BpL2pΩqq ď e´ω0t @ t P Rě0,

by [TW09, Proposition 2.6.5]. Hence, the semigroup is contractive and exponentially
stable.

As a consequence of this theorem the input-output-interchanged triple pΛ, C|W ,Γq
consisting of the operators defined in Lemma 2.6.1 is a system node as well (although
not a well-posed one). In particular, Λ|kerC|W “ A0 is the generator of a strongly
continuous semigroup A0. The following result shows that this semigroup indeed
gives a full characterization of the zero dynamics. Note that the analyticity of A0

implies that A0ptqx0 P domA0 for all t ą 0 and therefore the expression ΓA0ptqx0 is
well-defined for all t ą 0.

Theorem 4.2.3. Consider the L2-well-posed system pA,B,C,Dq in Lemma 2.6.12.
Let A0 be as in Theorem 4.2.2 and A0p¨q be the semigroup generated by A0. The
space

Z :“
 

x0 P X
ˇ

ˇ ΓA0p¨qx0 P L
2
locpRě0; Uq

(

is an A0-invariant, dense subspace of X and the zero dynamics are given by

zdpA,B,C,Dq “ t pA0p¨qx0,ΓA0p¨qx0, 0q | x0 P Z u . (4.12)

Proof. It is trivial that Z is an A0-invariant linear vector space. Since Γ maps
domA0 continuously into U , the function ΓA0p¨qx0 is bounded and continuous for
all x0 P domA0. Hence, domA0 Ă Z, which shows the density of Z in X .
We first show the inclusion “Ă” in (4.12). Assume that px, u, 0q P CpRě0;Xq ˆ

L2
locpRě0q ˆ L2

locpRě0q is in the zero dynamics of pA,B,C,Dq. We know from
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4.2. Zero dynamics of the heat equation with boundary control

Lemma 2.6.6 that dompI´Aq 1
2 is the Sobolev space W 1,2pΩq. Therefore, with the

complex interpolation functor r¨ , ¨sθ in Definition A.1.2, we have

dompI´Aq 3
8

(A.2)
“

”

X , dompI´Aq 1
2

ı

3{4
“
“

L2
pΩq , W 1,2

pΩq
‰

3{4 “ W
3
4 ,2pΩq,

where the last equality follows from the interpolation of Sobolev spaces in [Tri95,
Section 4.3.1, Theorem 1] and [Tri95, Equation 2.4.2/11]. Since Bu is for every
u P C a continuous functional on W 3

4 ,2pΩq, we have

ranB Ă pW 3
4 ,2pΩqq1 “ pdompI´Aq 3

8 q
1.

Due to the smoothing property of A described in (A.1) there exists an M ě 1 such
that

›

›

›
Aptq

ˇ

ˇ

pdompI´Aq3{8q1x
›

›

›

dompI´Aq1{2
ďM

`

1` t´7{8˘
@x P pdompI´Aq3{8q1, t ą 0,

and consequently }AptqB}BpU ;W 1,2pΩqq ďMp1` t´7{8q. Now let T ą 0. Then the last
estimate and the fact that u is locally integrable yield

ż T

0

ż t

0
}Apt´ τqBupτq}W 1,2pΩq dτ dt

ďM

ż T

0

ż t

0

`

1` pt´ τq´7{8˘
}upτq}U dτ dt

“M

ż T

0

ż T

τ

`

1` pt´ τq´7{8˘
}upτq}U dt dτ

ďM

ż T

0
}upτq}U dτ ¨ sup

τPp0,T q

ż T

τ

1` pt´ τq´7{8 dt

“MpT ` 8T 1{8
q ¨

ż T

0
}upτq}U dτ.

Hence, Tonelli’s theorem implies that the mapping t ÞÑ Btu is in L1 pr0, T s;W 1,2pΩqq.
The norm estimate on A implies that Ap¨qx0 P L

1 pr0, T s;W 1,2pΩqq as well. The
state x is the sum of these two integrable functions and therefore we have x P
L1 pr0, T s;W 1,2pΩqq. Thus, the following holds for all t ą 0 and all ϕ P domA by
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4. Zero dynamics

[TW09, Remark 4.1.2]:

〈xptq ´ xp0q , ϕ〉L2pΩq “

ż t

0
〈xptq , A˚ϕ〉L2pΩq ` 〈u , B˚ϕ〉U dτ

“ ´

ż t

0
〈∇xptq , ∇ϕ〉L2pΩq ` 〈u , B˚ϕ〉U dτ.

Since the right hand side depends continuously on ϕ with respect to the W 1,2pΩq
norm, this equation extends to all ϕ P W 1,2pΩq. Since x is in the zero dynamics, we
have Cxptq “ 0 for almost all t ą 0, which means that xptq is in the domain of the
sesquilinear form a0 defined in (4.4). Hence, for ϕ P domA0 Ă W 1,2pΩq the equation
above becomes

xxptq ´ xp0q, ϕyL2pΩq “ ´

ż t

0
〈∇xptq , ∇ϕ〉L2pΩq dτ “ ´

ż t

0
a0pxptq, ϕq dτ

“

ż t

0
〈xptq , A˚0ϕ〉L2pΩq dτ.

This implies xptq “ A0ptqxp0q via Lemma A.2.2 (i). As a consequence, we have
xptq P domA0 and the derivative of x with respect to the L2pΩq-norm satisfies

d
dtxptq “ A0xptq P X @ t ą 0.

By definition of domA0 and W in (2.14) we see that domA0 Ă W , and Lemma 2.5.2
therefore implies

d
dtxptq “ A0xptq “ ∆xptq “ A

ˇ

ˇ

Xxptq `Buptq P X @ t ą 0.

Remark 2.5.2 now implies that uptq must equal Γxptq.
Now we proof the inclusion “Ą” in (4.12). Let x0 P L

2pΩq and define xptq :“
A0ptqx0. Since the semigroup A0 is analytic we have xptq P domA0 for all t ą 0.
Hence, xptq is an element of the space W defined in (2.14), and the derivative of x
with respect to the L2pΩq-norm satisfies

d
dtxptq “ A0xptq “ ∆xptq (2.12)

“ A|Xxptq `BΓxptq @ t ą 0.

Since x P CpRě0;L2pΩqq and Γxp¨q is by assumption in L2pRě0; Uq, this implies that
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4.2. Zero dynamics of the heat equation with boundary control

px, u, Cxp¨qq is in the behavior of pA,B,C,Dq with Lemma A.2.2 (i). Finally, the
representation of domA0 in (4.3) shows that Cxptq “ 0 for all t ą 0, hence px, u, 0q
is in the zero dynamics.

Remark 4.2.4. (i) Theorem 4.2.3 can be seen as an analog to Corollary 4.1.2.
There it was shown that the zero dynamics of certain state linear systems are
determined by a strongly continuous semigroup on some proper subspace of the
state space, the codimension of which was determined by the relative degree.
In contrast to this, the subspace Z that characterizes the zero dynamics in
Theorem 4.2.3 is dense in X .

(ii) For all x0 P X , the function u :“ ΓA0p¨qx0 is well-defined and an element
of L1

locpRě0; Uq. This can be shown as follows: The estimate (A.1) for the
semigroup A0 implies that

DM ě 1 @ t ą 0 : }A0ptq}domp´A0qθ ďMp1` t´θqe´ωA0 t.

For θ P p0, 1q the expression on the left is therefore integrable over finite in-
tervals. Since domA0 Ă W 2,2pΩq, the interpolation result in [Tri95, Theorem
4.3.1] implies

domp´A0q
θ (A.2)
“ rX , domp´A0qsθ Ă

“

X , W 2,2
pΩq

‰

θ
“ W 2θ,2

pΩq.

Furthermore, the mapping

Γ : W 2θ,2
pΩq Ñ W 2θ´ 3

2 ,2pBΩq, x ÞÑ pξ ÞÑ Bνxpξqq , 2θ ě 3{2,

is bounded [HT08, Theorem 4.24 (ii)]. Hence, for any choice of θ P p3
4 , 1q the

function up¨q :“ ΓA0p¨qx0 is in L1
locpRě0; Uq.

(iii) As mentioned in Remark 2.4.10 the behavior, and thereby the zero dynamics,
can be defined in a weaker sense, such that it allows for inputs in L1

locpRě0; Uq.
Under these conditions an analogous result to Theorem 4.2.3 will be published
in [RS15b]. In that setup, the space Z is replaced by

 

x0 P X
ˇ

ˇ ΓA0p¨qx0 P L
1
locpRě0; Uq

(

,
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4. Zero dynamics

which is equal to the whole state space L2pΩq by part (ii) of this remark.

4.3. Notes and references
As mentioned in Section 3.4, the largest feedback invariant subspace in the ker-
nel of C has been extensively studied in many publications [Cur84, Cur86, MR07,
Zwa88]. Furthermore, [MR10] shows the relation to the invariant zeros of the sys-
tem. But a meaningful definition of the zero dynamics in the sense of a subspace
of the behavior was missing so far: In [BLGS98] the zero dynamics were simply
defined to be the dynamics induced by the closed-loop operator on the largest feed-
back invariant space. This kind of definition is also referred to in [MR07, MR10]. By
exploiting the zero dynamics form we have established this missing link for systems
with natural relative degree.
Similarly, the word zero dynamics was used in some articles treating parabolic

partial differential equations: The zero dynamics of a one-dimensional parabolic
partial differential equation with boundary control and observation is mentioned in
[BGH94]. For a multidimensional parabolic partial differential equation the authors
of [BGIS06, BG09] also exploit the zero dynamics. In all three papers the authors
simply define the zero dynamics to be the semigroup generated by the main operator
restricted to the kernel of the observation operator, either knowing beforehand that
this operator generates a strongly continuous semigroup or assuming so. In contrast,
we have given a reasonable definition of zero dynamics for general well-posed linear
systems and established the connection to the zero dynamics semigroup for our
example of the heat equation with boundary control and observation. Interestingly
enough, Theorem 4.2.3 shows that the zero dynamics are described by the zero
dynamics semigroup restricted to a dense subspace.
The question, what trajectories the zero dynamics should cover, is of course

a philosophical one: Allowing for distributional inputs or initial values and weaker
concepts of solutions gives more and more trajectories. The setup presented here
is consistent with the concept of Lp-well-posed linear systems. A description of our
example that allows for inputs in L1

locpRě0; Uq will be given in [RS15b].
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5. Funnel control

t
γ0 Fϕ

1
ϕptq

eptq

Figure 5.1.: Error evolution within the funnel Fϕ with “width 8” in r0, γ0s. The
boundary of the funnel is determined by the functions ˘ 1

ϕ
.

In this section we are going to design a special time-varying, nonlinear output
feedback in order to achieve two control objectives: The first one is approximate
tracking, by the output y, of reference signals yref of class W 1,8pRě0;Rq. More
precisely, for arbitrary λ ą 0, the feedback strategy should ensure for every yref P

W 1,8pRě0;Rq that the closed-loop system has a bounded solution and the tracking
error eptq “ yptq ´ yrefptq satisfies }eptq} ď λ for all t sufficiently large. The second
control objective is prescribed transient behavior of the tracking error signal. We
capture both objectives in the concept of a performance funnel

Fϕ :“
" „

t
e



P Rě0 ˆ R
ˇ

ˇ

ˇ

ˇ

|e|ϕptq ă 1
*

, (5.1)
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5. Funnel control

which is determined by a function ϕ that belongs to the class

Φγ0 :“
#

ϕ P W 1,8
pRě0q

ϕ|r0,γ0s ” 0 , and
@ δ ą 0 : inf t ϕptq | t ą γ0 ` δ u ą 0

+

for some γ0 ą 0. In other words,

ϕ P Φ :“
ď

γ0ą0
Φγ0 . (5.2)

Note that the boundary of the funnel is determined by the reciprocal of ϕ as depicted
in Figure 5. An output feedback strategy that forces the tracking error to evolve
within the funnel Fϕ will achieve both control objectives.
For example, if lim inftÑ8 ϕptq ą 1{λ, then evolution within the funnel ensures

that the first control objective is achieved. If ϕ is chosen as the function t ÞÑ

mintt{T, 1u{λ, then evolution within the funnel ensures that the prescribed tracking
accuracy λ ą 0 is achieved within the prescribed time T ą 0.
For ϕ P Φ, the funnel controller is

uptq “ γ kpt, yptq ´ yrefptqq ¨ pyptq ´ yrefptqq, kpt, eq “
ϕptq2

1´ ϕptq2e2 , (5.3)

where γ P t´1, 1u depends on the high gain amplification of the system.
Loosely speaking, funnel control exploits an inherent benign high-gain property

of the system. The input can be interpreted as a proportional feedback uptq “

´kptq eptq with the property that the gain kptq becomes large if |eptq| approaches
the funnel boundary (equivalently, if ϕptq|eptq| approaches the value 1), thereby
precluding contact with the funnel boundary. We emphasize that the gain is non-
monotone and decreases as the error recedes from the funnel boundary.
The essence of the proof of the main result lies in showing that the closed-loop

system possesses a solution and that the error does not hit the boundary of the
performance funnel. We will prove this for two kinds of systems: First we consider
systems with relative degree r “ 1 and exponentially stable zero dynamics. Later
we will consider systems with a special type of unbounded impulse response that is
motivated by the example in Section 2.6. To this end we will use an approximation
argument and have to sharpen results for the approximating finite-dimensional sys-
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5.1. Funnel control for systems with relative degree one

tems tightly before we can treat the infinite-dimensional class. Since this class is
determined by its input-output map alone, we prove the existence of a global closed-
loop solution, but cannot give a global bound on any norm of the state. However,
such a global bound on the state space norm is established for the boundary control
system introduced in Section 2.6 as an example.

5.1. Funnel control for systems with relative degree
one

We consider systems that have relative degree r “ 1 in the sense of Definition 3.1.2.
In particular this implies that the high gain amplification CB is not zero. In this
situation, the sign γ of the funnel controller in (5.3) is chosen as γ “ ´ sgnpCBq to
obtain the following theorem.

Theorem 5.1.1. Consider a state linear system pA,B,C, 0q on pR, X , Rq with
relative degree r “ 1 and exponentially stable zero dynamics. Let ϕ P Φ specify the
performance funnel Fϕ and yref P W

1,8pRě0;Rq be the reference signal. There exists
exactly one triple px, u, yq P bhvpA,B,C, 0q such that

uptq “ ´
sgnpCBqϕptq2

1´ ϕptq2|yptq ´ yrefptq|2
pyptq ´ yrefptqq @ t ě 0.

Moreover,

sup
tě0
p}xptq}X ` |uptq| ` |yptq|q ă 8,

and
D ε P p0, 1q @ t ą 0 : |yptq ´ yrefptq|

2
ď ϕptq´2

´ ε. (5.4)

Proof. We use the equivalence of (i) and (iii) in Proposition 3.3.8. In view of Propo-
sition 3.3.8 (iii) we seek a function y that solves the equations

9yptq “ p0yptq `

ż t

0
SAQpt´ sqRypsq ds` SAQptqπSK

A,b
x0 ` CBuptq,

uptq “
´ sgnCB

1´ ϕptq2|yptq ´ yrefptq|2
pyptq ´ yrefptqq,

yp0q “ Cx0.

(5.5)
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5. Funnel control

Due to our assumption on the relative degree we have CB ‰ 0. The exponential
stability of the zero dynamics is by Lemma 4.1.3 equivalent to the exponential
stability of the semigroup AQ, which implies that the functions defined by hptq :“
SAQptqR and t ÞÑ SAQptqπSK

A,b
x0 are in L1 XL8pRě0;Rq. Introducing the auxiliary

variable eptq :“ yptq ´ yrefptq as well as the abbreviation

fptq :“ p0yref `

ż t

0
hpt´ τqyrefpτq dτ ´ 9yrefptq ` AQptqπSK

A,b
x0,

we can write (5.5) equivalently as

9eptq “ p0eptq `

ż t

0
hpt´ τqepτq dτ ´ |CB|kpt, eptqqeptq ` fptq, f.a.a. t ě 0,

ep0q “ Cx0 ´ yrefp0q.
(5.6)

Note that this is a perturbed linear integrodifferential equation in the sense of
[GLS90, Section 11.4]. The forcing function f is in L8pRě0q and the nonlinear
perturbation, k : Fϕ Ñ R, is continuous and locally Lipschitz in the second compo-
nent. Therefore, a standard fixed point argument in the spirit of the Picard-Lindelöf
theorem shows that there exists a unique local solution to this equation around every
point r t0e0 s P Fϕ, cf. [GLS90, Theorem 11.4.1]. The fact that ϕp0q “ 0 guarantees
that the point

“ 0
Cx0´yrefp0q

‰

is in Fϕ. Hence, there exists a solution to the initial
value problem (5.6). We denote the maximal interval of existence for this solution
by r0, ωq and the solution itself by e : r0, ωq Ñ R. Let γ0 be such that ϕ P Φγ0 .
The solution exists on r0, γ0s because the nonlinear term in (5.6) disappears on this
interval. Therefore, we know ω ą γ0, and we can choose an arbitrary t0 P pγ0, ωq.
By definition of the class Φγ0 we have

0 ă m :“ inf
tPrt0,ωq

1
ϕptq2

ďM :“ sup
tPrt0,8q

1
ϕptq2

ă 8.

Let L be the Lipschitz constant of the function ϕ´2|rt0,8q, and define

ε :“ min
#

m

2 ,
1
2 |CB|m

Mp0 `M }h}L1pRě0q
`
?
M }f}L8pRě0q

` L
,

1
ϕpt0q2

´ ept0q
2

+

.

98



5.1. Funnel control for systems with relative degree one

We will prove that
|eptq|2 ď ϕptq´2

´ ε @ t P rt0, ωq. (5.7)

To this end, we observe that

1
2

d
dteptq

2
“ eptq 9eptq

“ p0eptq
2
` eptq

ż t

0
hpt´ τqepτq dτ ` eptqfptq ´ |CB|kpt, eptqq ¨ eptq2

ďMp0 `M }h}L1pRě0q
`
?
M }f}L8pRě0q

´ |CB|kpt, eptqq ¨ eptq2

for all t P rt0, ωq. Assume that (5.7) is false and there exists a t1 P rt0, ωq such that

ept1q
2
ą ϕpt1q

´2
´ ε.

Then t1 must be strictly greater than t0 due to the definition of ε, and the continuity
of ϕ and e implies that the maximum

tε :“ max
 

t P rt0, t1q
ˇ

ˇ eptq2 “ ϕptq´2
´ ε

(

is attained. Furthermore, we have

eptq2 ą ϕptq´2
´ ε @ t P ptε, t1q,

which implies

eptq2 ą
1

ϕptq2
´ ε ě m´

m

2 “
m

2 @ t P ptε, t1q,

and
kpt, eptqq “

ϕptq2

1´ eptq2ϕptq2 ě
1
ε

@ t P ptε, t1q.

With our previous calculation and the definition of ε, we obtain

1
2

d
dteptq

2
ďMp0 `M }h}L1pRě0q

`
?
M }f}L8pRě0q

´ |CB|kpt, eptqq ¨ eptq2

ďMp0 `M }h}L1pRě0q
`
?
M }f}L8pRě0q

´ |CB| ¨
m

2ε
ď ´L.
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5. Funnel control

Since L is the Lipschitz constant of ϕp¨q´2, this implies

ept1q
2
´ eptεq

2
ď ´2Lpt1 ´ tεq ď ´2|ϕpt1q´2

´ ϕptεq
´2
| ď ϕpt1q

´2
´ ϕptεq

´2,

and we have the contradiction

ε “ ϕptεq
´2
´ eptεq

2
ď ϕpt1q

´2
´ ept1q

2
ă ε.

Therefore, we have (5.7). Since furthermore ϕptq2eptq2 ă 1 on the compact interval
r0, t0s, the inequality (5.4) holds after shrinking ε if necessary. This implies the
boundedness of the functions e and kp¨, ep¨qq.
We prove that the solution is global, i.e. that ω “ 8. Seeking a contradiction,

suppose that ω ă 8. From (5.6) we see that e P W 1,8pr0, ωqq. Therefore, the limit
epωq :“ limtÑω eptq exists, and because of the estimate (5.4) the point r ω

epωq s lies in
the interior of Fϕ. But this means that the solution e can be extended further, in
contradiction to the maximality of r0, ωq. Hence, the maximal interval of existence
of the solution e must be r0,8q.
Since e solves (5.6), the bounded functions uptq :“ kpt, eptqqeptq and yptq “ eptq`

yrefptq, t ě 0 satisfy (5.5). Proposition 3.3.8 therefore implies that the function

xptq :“ U˚

«

yptq

AQptqπSK
A,b
x0 `

şt

0 AQpt´ sqRypsq ds

ff

@ t ě 0,

satisfies px, u, yq P bhvpA,B,C, 0q. The exponential stability of AQ implies the
boundedness of the function x and the proof is complete.

5.2. Funnel control for self-adjoint systems
In this section we apply funnel control to systems that have an input-output map
of the form

pDuqptq “

ż t

´8

8
ÿ

k“0
cke´λkpt´τqupτq dτ, u P L8c,locpRq,

like the example in Section 2.6. However, the results are independent of that section
and based solely on the following presumption, which is assumed to hold throughout
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5.2. Funnel control for self-adjoint systems

Section 5.2.

Presumption 5.2.1. The real sequences pckqkPN0 and pλkqkPN0 have the following
properties:

(i) c0 ą 0 and λ0 “ 0;

(ii) λk, ck ą 0 for all k P N;

(iii) pλkqkPN0 is nondecreasing;

(iv)
ř8

k“1
ck
λk
ă 8.

First of all, we make sure that the operatorD above is a well-defined time-invariant
causal operator, D P TIC8locpC;Cq.

Lemma 5.2.2. Let Presumption 5.2.1 hold. As nÑ 8, the functions

hnptq :“
n´1
ÿ

k“0
ckeλkt, t ě 0, (5.8)

converge in L1
locpRě0q to

h :“
8
ÿ

k“0
cke´λkp¨q, (5.9)

and there holds

}h}L1pr0,tsq “ c0t`
8
ÿ

k“1

ck
λk
p1´ e´λktq @ t ě 0.

The operators

Dtnu : L8c,locpRq Ñ L8c,locpRq, Dtnuu :“
ˆ

t ÞÑ

ż t

´8

hnpt´ τqupτq dτ
˙

. (5.10)

and

D : L8c,locpRq Ñ L8c,locpRq, Du :“
ˆ

t ÞÑ

ż t

´8

hpt´ τqupτq dτ
˙

, (5.11)

are in TIC8locpC;Cq and for all t ě 0,

›

›D|L8pr0,tsq ´Dtnu
|L8pr0,tsq

›

›

BpL8pr0,tsqq Ñ 0, nÑ 8. (5.12)
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Proof. With the nonnegativity of ck, a simple calculation gives
ż t

0
|cke´λkτ | dτ “

ck
λk
p1´ e´λktq @ k P N,

and
ż t

0
|c0e´λ0τ | dτ “

ż t

0
c0 dτ “ c0t.

Hence, condition (iv) in Presumption 5.2.1 implies that the series in (5.9) converges
in L1pr0, tsq, and we may interchange the order of integration and summation to
obtain

}h}L1pr0,tsq “

ż t

0

8
ÿ

k“0
cke´λkτ “ c0t`

8
ÿ

k“1

ck
λk
p1´ e´λktq.

Young’s inequality [Bog07, Theorem 3.9.4] shows thatDtnu andDmap L8c,locpRě0q

into itself. Owing to their convolution nature it is easily checked that Dtnu and
D are time-invariant and causal, see [Sta05, Theorem A.3.7]. Young’s inequality
furthermore shows for all u P L8pr0, tsq that

›

›Du´Dtnuu
›

›

L8pr0,tsq “ sup
sPr0,ts

ż s

0
ph´ hnqps´ τqupτq dτ

ď }h´ hn}L1pr0,tsq }u}L8pr0,tsq

ď

8
ÿ

k“n

ck
λk
p1´ e´λktq }u}L8pr0,tsq ,

which implies (5.12) because ck
λk

is summable.

It is well-known that the convolution with an integrable function results in a uni-
formly continuous function [Bog07, Corollary 3.9.6]. For the convolution kernel hn,
we sharpen this result by giving an estimate that is independent of n P N.

Lemma 5.2.3. Let Presumption 5.2.1 hold and define Dtnu and D by (5.10) and
(5.11), respectively. Then, for all u P L8c,locpRq, the function Dtnuu is uniformly
continuous. More precisely, for all t1, t2 ě 0 and all n P N
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5.2. Funnel control for self-adjoint systems

|pDtnuuqpt1q ´ pD
tnuuqpt2q|

ď

˜

c0|t2 ´ t1| ` 2
8
ÿ

k“1

ck
λk

`

1´ e´λk|t2´t1|
˘

¸

¨ sup
sďmaxtt1,t2u

|upsq|.

The same estimate holds with D instead of Dtnu.

Proof. We assume without loss of generality that t1 ď t2, and keeping in mind that
the support of u is bounded from below, we calculate

ˇ

ˇpDtnuuqpt1q ´ pD
tnuuqpt2q

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż t1

´8

hnpt1 ´ τqupτq dτ ´
ż t2

´8

hnpt2 ´ τqupτq dτ
ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ż t1

´8

phnpt1 ´ τq ´ hnpt2 ´ τqqupτq dτ
ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ż t2

t1

hnpt2 ´ τqupτq dτ
ˇ

ˇ

ˇ

ˇ

ď

ˆ
ż 8

0
|phnpτq ´ hnpt2 ´ t1 ` τqq| dτ `

ż t2´t1

0
|hnpτq| dτ

˙

}u}L8pp´8,t2sq

“

˜

ż 8

0

ˇ

ˇ

ˇ

ˇ

ˇ

n´1
ÿ

k“0
cke´λkτ p1´ e´λkpt2´t1qq

ˇ

ˇ

ˇ

ˇ

ˇ

dτ `
ż t2´t1

0

n´1
ÿ

k“0
cke´λkτ dτ

¸

}u}L8pp´8,t2sq

“

˜

ż 8

0

n´1
ÿ

k“1
cke´λkτ p1´ e´λkpt2´t1qq dτ `

ż t2´t1

0

n´1
ÿ

k“0
cke´λkτ dτ

¸

}u}L8pp´8,t2sq

“

˜

n´1
ÿ

k“1

ck
λk
p1´ e´λkpt2´t1qq

` c0pt2 ´ t1q `
n´1
ÿ

k“1

ck
λk
p1´ e´λkpt2´t1qq

¸

}u}L8pp´8,t2sq

“

˜

2
8
ÿ

k“1

ck
λk
p1´ e´λkpt2´t1qq ` c0pt2 ´ t1q

¸

}u}L8pp´8,t2sq.

The estimate for D can be shown by the same calculation with n replaced by 8,
or alternatively, with the convergence in (5.12).

We are going to analyze a Volterra equation that is motivated by the following
consideration: If pA,B,C,Dq is a well-posed realization of D then, by (2.8), the
output of this system with initial value x0 and input u is y “ Du` Cx0. In view of
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5. Funnel control

the funnel controller, it is therefore natural to consider a Volterra equation of the
form

yptq “

ż t

0
hpt´ τqupτq dτ ` pCx0qptq,

uptq “ ´
ϕ2ptq

1´ ϕ2ptqpyptq ´ yrefptqq2
pyptq ´ yrefptqq.

It is convenient to formulate this equation in terms of the error e :“ y ´ yref and
regard

f :“ Cx0 ´ yref

as an inhomogeneity. This means, we seek a solution e to

eptq “ ´

ż t

0
hpt´ τq ¨ kpτ, epτqq ¨ epτq dτ ` fptq, @ t ě 0

with
kpt, eq :“ ϕptq2

1´ ϕptq2 ¨ e2 . (5.13)

In order to allow for problems where Cx0 is not bounded on Rě0, but Cx0|rt0,8q P

W 1,8prt0,8qq for some t0, the class of funnels in (5.2) has been chosen in such a way
that ϕ, and thereby k, are zero on some small initial interval r0, γ0s.
To solve the nonlinear Volterra equation globally, we will first treat the case

where the kernel is given by the finite sum hn, and then exploit the fact that Dtnu

approximates D locally in the sup norm by Lemma 5.2.2.

5.2.1. Finite-dimensional systems

We treat the case where the convolution kernel is given by the finite sum hnptq “
řn´1
k“0 ckeλkt. The corresponding convolution operator,

`

Dtnuu
˘

ptq “

ż t

´8

n´1
ÿ

k“0
ckeλkpt´τqupτq dτ,

has an n-dimensional realization that is of relative degree one and in Byrnes-Isidori
form as the following lemma shows.

Lemma 5.2.4. Under Presumption 5.2.1, define hn and Dtnu by (5.8) and (5.10),
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5.2. Funnel control for self-adjoint systems

respectively. Then there exists some R P Rn´1 and a symmetric negative definite
matrix Q P Rpn´1qˆpn´1q such that, with the real numbers

Γtnu :“
n´1
ÿ

k“0
ck, p0 :“ ´

n´1
ÿ

k“0
ckλk,

the matrix A :“
”

p0 RJ

R Q

ı

is negative semi-definite, and the n-dimensional system

pA ,B,C , 0q :“
˜«

p0 RJ

R Q

ff

,

«

Γtnu

0Rn´1

ff

,
”

1 0JRn´1

ı

, 0
¸

is a realization of Dtnu.

Proof. Define

A :“

»

—

—

–

´λ0
. . .

´λn´1

fi

ffi

ffi

fl

, b :“

»

—

—

–

?
c0
...

?
cn´1

fi

ffi

ffi

fl

. (5.14)

Then the fact that hnptq “ bJeAtb for all t ě 0, shows that
`

A, b, bJ, 0
˘

is an n-
dimensional realization ofDtnu. The relative degree is one, since bJb ‰ 0. In order to
transform this system into Byrnes-Isidori form, we use the following transformation.
Choose rU :“ rru1, . . . , run´1s such that the matrix r b

}b}
, rU s P Rnˆn is unitary and

define
T :“ 1

}b}

”

b
}b}

rU
ı

.

The inverse of T is given by

T´1
“ }b}

”

b
}b}

rU
ıJ

.

A short calculation shows that the matrices

R :“ rUJAb}b}´1, Q :“ rUJArU,

fulfill
`

T´1AT, T´1b, bJT
˘

“

˜«

p0 RJ

R Q

ff

,

«

Γtnu

0Rn´1

ff

,
”

1 0JRn´1

ı

¸

.
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It is clear from the definition of A that Q “ rUJArU ď 0. Suppose that

vJ rUJArUv “ 0 for some v P Rn´1
zt0u.

Then the fact that λ1, . . . , λn´1 ą 0 yields rUv P spante1u and, by our choice of rU ,
we have vJ rUJb “ 0. Hence the first entry of b is zero, which contradicts the fact
that c0 ą 0. Thus, Q must be negative definite. This completes the proof.

Remark 5.2.5. (i) The system node
“

A b
bJ 0

‰

of the realization (5.14) is self-adjoint.
This is the reason for the title of Section 5.2.

(ii) It can be shown that the realization considered in this lemma is impedance
passive in the sense of [Sta02].

Since the realization in Lemma 5.2.4 is in Byrnes-Isidori form and Q is negative
definite, the zero dynamics are exponentially stable by Lemma 4.1.3. The relative
degree is obviously one, and therefore Theorem 5.1.1 can readily be applied. How-
ever, we crave more. In order to make use of the approximation in (5.12), we will
show that the funnel control applied to this system results in a control function
bounded by some constant that is independent of n P N. The crucial part that will
lead us to this independence is the following lemma.

Lemma 5.2.6. Let A22 P Rn´1ˆn´1 be symmetric and negative definite, and let
A12 P R1ˆn´1, A11 P R be such that the matrix A “

”

A11 A12
AJ12 A22

ı

is singular and
negative semi-definite. Furthermore, define

T : L8locpRě0q Ñ L8locpRě0q,

Tx :“
ˆ

t ÞÑ A11xptq `

ż t

0
A12eA22pt´τqAJ12xpτq dτ

˙

.

Then the following claims hold:

(i) A11 “ A12A
´1
22 A

J
12.

(ii) For all x P L8locpRě0q and t ě 0, there holds
ż t

0
xpτqpTxqpτq dτ ď 0.
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5.2. Funnel control for self-adjoint systems

(iii) For all y P W 1,8
0 pRě0q,

} 9y ´ Ty}L8pRě0q ď lim
sÑ0

1
s

¨

˝

”

1 0JRn´1

ı

«

s´ A11 ´A12

´AJ12 s´ A22

ff´1 «
1

0Rn´1

ff

˛

‚

´1

}y}W 1,8 .

Proof. (i) By using elementary row transformations and the singularity of A, we
obtain

0 “ det
«

A11 A12

AJ12 A22

ff

“ detpA22q ¨ pA11 ´ A12A
´1
22 A

J
12q.

Then the result follows from detpA22q ‰ 0, which holds true since A22 is nega-
tive definite.

(ii) By using the Cauchy-Schwarz and Young’s inequality, we obtain for all t ě 0
ˇ

ˇ

ˇ

ˇ

ż t

0
xpσq

ż σ

0
A12eA22pσ´τqAJ12xpτq dτ dσ

ˇ

ˇ

ˇ

ˇ

ď }x}L2pr0,tsq ¨

›

›

›

›

›

ż p¨q

0
A12eA22p¨´τqAJ12xpτq dτ

›

›

›

›

›

L2pr0,tsq

ď }x}2L2pr0,tsq ¨ }A12eA22¨AJ12}L1pr0,tsq

ď }x}2L2pr0,tsq ¨ p´A12A
´1
22 A

J
12q.

This gives rise to the estimate
ż t

0
xpτqpTxqpτq dτ “A11}x}

2
L2pr0,tsq `

ż t

0
xpσq

ż σ

0
A12eA22pσ´τqAJ12xpτq dτ dσ

ď A11}x}
2
L2pr0,tsq ´ A12A

´1
22 A

J
12}x}

2
L2pr0,tsq

(i)
“ 0.

(iii) Let y P W 1,8
0 pRě0q. Then integration by parts yields

ż t

0
A12eA22pt´τqAJ12ypτq dτ

“ A12eA22t

ż t

0
e´A22τAJ12ypτq dτ

“ A12eA22t

ˆ

´A´1
22 e´A22τAJ12ypτq

ˇ

ˇ

ˇ

τ“t

τ“0
` A´1

22

ż t

0
e´A22τAJ12 9ypτq dτ

˙
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“ ´A12eA22tA´1
22 e´A22tAJ12yptq ` A12eA22tA´1

22

ż t

0
e´A22τAJ12 9ypτq dτ

“ ´A12A
´1
22 A

J
12yptq ` A12

ż t

0
A´1

22 eA22pt´τqAJ12 9ypτq dτ

piq
“ ´A11yptq ` A12

ż t

0
A´1

22 eA22pt´τqAJ12 9ypτq dτ.

Therefore,

Tpyqptq “ A11yptq `

ż t

0
A12eA22pt´τqAJ12ypτq dτ

“

ż t

0
A12A

´1
22 eA22pt´τqAJ12 9ypτq dτ.

Since A22 is symmetric and negative definite, the expression A12A
´1
22 eA22tAJ12 is

nonpositive for all t ě 0 and

›

›A12A
´1
22 eA22p¨qAJ12

›

›

L1pRě0q
“

ż 8

0
´A12A

´1
22 eA22τAJ12 dτ “ A12A

´2
22 A

J
12.

Hence, we have
}Ty}L8pRě0q

ď A12A
´2
22 A

J
12 } 9y}L8pRě0q

and
} 9yp¨q ´ Ty}L8pRě0q

ď p1` A12A
´2
22 A

J
12q ¨ }y}W 1,8pRě0q (5.15)

for all y P W 1,8
0 pRě0q. The Schur complement [GvL83, p. 103] gives rise to the

equation
¨

˝

”

1 0JRn´1

ı

«

s´ A11 ´A12

´AJ12 s´ A22

ff´1 «
1

0Rn´1

ff

˛

‚

´1

“ s´ A11 ´ A12ps´ A22q
´1AJ12

piq
“ s´ A12pA

´1
22 ` ps´ A22q

´1
qAJ12,
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and using de l’Hôpital’s rule, we obtain

lim
sÑ0

1
s

¨

˝

”

1 0JRn´1

ı

«

s´ A11 ´A12

´AJ12 s´ A22

ff´1 «
1

0Rn´1

ff

˛

‚

´1

“ 1´ A12 lim
sÑ0

1
s
pA´1

22 ` ps´ A22q
´1
qAJ12

“ 1` A12 lim
sÑ0
ps´ A22q

´2AJ12 “ 1` A12A
´2
22 A

J
12.

(5.16)

The combination of (5.15) with (5.16) gives the desired result.

Theorem 5.2.7. Let Presumption 5.2.1 hold and define hn and k by (5.8) and
(5.13), respectively. Let t0 ą 0 and f P W 1,8prt0,8qq, and let ϕ P Φ satisfy ϕpt0q ą 0
and |fpt0q| ă 1

ϕpt0q
. Then, for all n P N, the Volterra equation

etnuptq “ ´

ż t

t0

hnpt´ τq ¨ kpτ, e
tnu
pτqq ¨ etnupτq dτ ` fptq @ t ě t0, (5.17)

has a bounded, absolutely continuous solution etnu : rt0,8q Ñ R. There further
exists a constant ε ą 0 independent of n such that

|etnuptq|2 ď ϕptq´2
´ ε @n P N, t ě t0. (5.18)

Proof. We define Dtnu by (5.10) and the auxiliary functions

f0ptq :“

$

&

%

t
t0
fpt0q, t P r0, t0q,

fptq, t ě t0,

k0pt, eq :“

$

&

%

0, t P r0, t0q,
ϕptq2

1´ϕptq2e2 , t ě t0.

Now we seek a solution to

etnuptq “ ´
`

Dtnuk0p ¨ , e
tnu
q ¨ etnu

˘

ptq ` f0ptq, t P r0,8q. (5.19)

For t P r0, t0s the functions etnuptq “ f0ptq solves this equation because k0pt; ¨q “ 0
on this interval. In view of the realization of Dtnu given in Lemma 5.2.4, the solution
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5. Funnel control

of (5.19) can be extended beyond t0 if and only if there is a solution z of the initial
value problem

9zptq “

«

p0 RJ

R Q

ff

zptq ´

«

Γtnu

0Rn´1

ff

k0pt, e
tnu
ptqq ¨ etnuptq,

etnuptq “
”

1 0JRn´1

ı

zptq ` f0ptq,

zpt0q “ 0.

(5.20)

The right hand side of this ordinary differential equation is defined on the open set

D :“
 

pt, zq P rt0,8q ˆ Rn
ˇ

ˇ pt, z1ptq ` fptqq P Fϕ

(

,

with the performance funnel Fϕ as in (5.1). It is readily verified that the right
hand side of (5.20) satisfies a local Lipschitz condition with respect to zptq on the
(relatively open) domain D Ă rt0,8q ˆ Rn. Hence, by the standard theory of
ordinary differential equations (see e.g. [Wal98, Theorem III.10.VI]), the initial-value
problem (5.20) has a unique maximal solution

ztnup¨q : rt0, ωq Ñ Rn, t0 ă ω ď 8,

and moreover,
graphpztnuq :“ tpt, ztnuptqq| t P rt0, ωqu Ă D

does not have compact closure in D.
Now we show that the solution etnu does not approach the boundary of D. Define

yptq :“

$

&

%

0, t P r0, t0q,

r1 , 0JRn´1s ztnuptq, t P rt0, ωq.

By Proposition 3.3.8 the function y satisfies, for almost all t P rt0, ωq, the integrod-
ifferential equation

9yptq “ p0yptq `R
J

ˆ
ż t

0
eQpt´τqRypτq dτ

˙

´ Γtnuk0pt, e
tnu
ptqq ¨ etnuptq,

“
`

Ttnuy
˘

ptq ´ Γtnuk0pt, e
tnu
ptqq ¨ etnuptq,

(5.21)
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5.2. Funnel control for self-adjoint systems

where
Ttnu : L8locpRě0q Ñ L8locpRě0q,

`

Ttnuy
˘

ptq :“ p0yptq `R
J

ż t

0
eQpt´τqRypτq dτ.

In order to prove that ω “ 8, we will exploit two crucial properties of the operator
Ttnu. Firstly, Ttnu is negative semi-definite in the sense that

@ t ě 0, @ e P L8pr0, tsq :
ż t

0
epτqpTtnueqpτq dτ ď 0. (5.22)

This follows from Lemma 5.2.6 (ii), because Q is a negative definite matrix. The
second property is that

›

›

›

9f0 ´ Ttnuf0

›

›

›

L8pr0,8qq
ď

Γtnu
c0

¨ }f0}W 1,8pRě0q. (5.23)

This holds because the transfer function of Dtnu satisfies, for all s P Cą0,

n
ÿ

k“0

ck
s` λk

“zDtnupsq “

«

1
0Rn´1

ffJ «

s´ p0 ´RJ

´R s´Q

ff´1 «
Γtnu

0Rn´1

ff

,

and by Lemma 5.2.6 (iii),
›

›

›

9f0 ´ Ttnuf0

›

›

›

L8pRě0q

ď lim
sÑ0

1
s

¨

˝

«

1
0Rn´1

ffJ «

s´ p0 ´RJ

´R s´Q

ff´1 «
1

0Rn´1

ff

˛

‚

´1

}f0}W 1,8pRě0q

“ lim
sÑ0

1
s
¨

˜

řn
k“0

ck
s`λk

Γtnu

¸´1

¨ }f0}W 1,8pRě0q

“
Γtnu
c0

¨ }f0}W 1,8pRě0q.

We use the representation (5.21) to show that the solution of (5.20) is global. Dif-
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ferentiating the second line of (5.20) shows for almost all t ě t0 that

9etnuptq “ 9yptq ` 9f0ptq

“ pTtnuyqptq ´ Γtnuk0pt, e
tnu
ptqq ¨ etnuptq ` 9f0ptq

“ pTtnuetnuqptq ` p 9f0ptq ´ pT
tnuf0qptqq ´ Γtnuk0pt, e

tnu
ptqq ¨ etnuptq.

(5.24)

Now define

m :“ inf
tPrt0,ωq

ϕptq´2, (5.25)

L :“ Lipschitz constant of ϕ|rt0,8qp¨q
´2, (5.26)

M :“ sup
tPrt0,ωq

ϕptq´1, (5.27)

ε :“ min
#

m

2 , m
ˆ

4M
c0
}f0}W 1,8pr0,8qq ` inf

nPN

2L
Γtnu

˙´1

, ϕpt0q
´2
´ etnupt0q

2

+

. (5.28)

We show that (5.18) holds for all t P rt0, ωq. Seeking a contradiction, we suppose
that

D t1 P rt0, ωq : ϕpt1q
´2
´ petnupt1qq

2
ă ε.

By continuity of ϕ and etnu, the maximum

tε :“ max
 

t P rt0, t1q
ˇ

ˇϕptq´2
´ petnuptqq2 “ ε

(

is attained and
@ t P ptε, t1q : ϕptq´2

´ petnuptqq2 ă ε.

Therefore, the definitions (5.25) and (5.28) imply

@ t P ptε, t1q : petnuptqq2 ą ϕptq´2
´ ε ě m´m{2 “ m{2 . (5.29)

Moreover, for all t P ptε, t1q,

4M}f0}W 1,8pr0,8qq

mc0
`

2L
Γtnum

(5.28)
ď

1
ε
ă

1
ϕptq´2 ´ petnuptqq2

(5.13)
“ kpt, etnuptqq,
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and thus

@ t P ptε, t1q : 2M
c0
}f0}W 1,8pr0,8qq ´

mkpt, etnuptqq

2 ď ´
L

Γtnu . (5.30)

Finally, integrating d
dtpe

tnuptqq2 and invoking (5.24), we get

petnupt1qq
2
´ petnuptεqq

2
“

ż t1

tε

d
dτ e

tnu
pτq2 dτ “ 2

ż t1

tε

etnupτq 9etnupτq dτ

“ 2
ż t1

tε

etnupτqpTtnuetnuqpτq ` etnupτq
´

9f0pτq ´ pT
tnuetnuqpτq

¯

´ Γtnukpτ, etnupτqq petnupτqq2 dτ

(5.22)
ď 2

ż t1

tε

|etnupτq|
›

›

›

9fpτq ´ pTtnuetnuqpτq
›

›

›

8
´ Γtnukpτ, etnupτqq petnupτqq2 dτ

(5.27),(5.23)
ď 2

ż t1

tε

M
Γtnu
c0
}f0}W 1,8r0,8q ´ Γtnukpτ, etnupτqq petnupτqq2 dτ

(5.29)
ď

ż t1

tε

Γtnu
ˆ

2M
c0
}f0}W 1,8r0,8q ´

mkpτ, etnupτqq

2

˙

dτ

(5.30)
ď

ż t1

tε

´L dτ.

This implies

petnupt1qq
2
´ petnuptεqq

2
ď ´Lpt1 ´ tεq

(5.26)
ď ´|ϕpt1q

´2
´ ϕptεq

´2
|,

whence the contradiction

ε “ ϕptεq
´2
´ petnuptεqq

2
ď ϕpt1q

´2
´ petnupt1qq

2
ă ε.

This proves (5.18) since ε was chosen independently of n.
Finally, we show that ω “ 8. Seeking a contradiction, suppose that ω ă 8.

Because of (5.18), the tuple pt, etnuptqq is for all t P rt0, ωq in the set

K :“
 

pt, eq P Fϕ t P rt0, ωs, |e|
2
ď ϕptq´2

´ ε
(

Ă Fϕ.

But the set K is compact, which contradicts the fact that the closure of the graph
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of etnu|rt0,ωq is not compact. Hence ω “ 8.

We have shown that (5.17) possesses for each n P N a solution etnu, and that these
solutions are bounded away from the funnel boundary by a constant independent
of n. We are now going use these findings to show that the set tetnu : n P Nu is
equicontinuous.

Lemma 5.2.8. The set of solutions
 

etnu
ˇ

ˇ n P N
(

to equation (5.17) that are
given by Theorem 5.2.7, is uniformly equicontinuous. That is,

@ ε ą 0 D δ ą 0 @n P N @ t1, t2 P rt0,8q :

|t1 ´ t2| ă δ ñ |etnupt1q ´ e
tnu
pt2q| ă ε.

Proof. Define the input signal corresponding to etnu by

utnuptq :“

$

&

%

´
ϕptq2

1´pϕptqetnuptqq2 e
tnuptq, t P rt0,8q,

0, t P r0, t0q,
(5.31)

so that (5.17) reads

etnuptq “ pDtnuutnuqptq ` fptq @ t P rt0,8q.

Then the uniform estimate (5.18) in Theorem 5.2.7 implies that there is a C ą 0
with }utnu}L8prt0,8qq ă C for all n P N. By Presumption 5.2.1 (iv) there exists some
N P N with

8
ÿ

k“N`1

ck
λk
ă

ε

8C .

Since f P W 1,8pRě0q is uniformly continuous we may choose δ P p0, ε
4c0C q such that

|fpt1q ´ fpt2q| ă
ε

4 for all t1, t2 ě 0 with |t1 ´ t2| ă δ,

and
N
ÿ

k“1

ck
λk
p1´ e´λkδq ă ε

8C .
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For all t1, t2 P rt0,8q with |t1 ´ t2| ă δ we obtain with Lemma 5.2.3

|etnupt1q ´ e
tnu
pt2q|

“|pDtnuutnuqpt1q ` fpt1q ´ pD
tnuutnuqpt2q ´ fpt2q|

ď |fpt1q ´ fpt2q|
looooooomooooooon

ă ε
4

`
ˇ

ˇpDtnuutnuqpt1q ´ pD
tnuutnuqpt2q

ˇ

ˇ

ď
ε

4 `
˜

c0|t1 ´ t2| ` 2
8
ÿ

k“1

ck
λk
p1´ e´λkδq

¸

¨ }utnu}L8pRě0q
loooooomoooooon

ăC

ď
ε

4 `
ˆ

c0δ
loomoon

ă ε
4C

` 2
N
ÿ

k“1

ck
λk
p1´ e´λkδq

loooooooooomoooooooooon

ď ε
4C

` 2
8
ÿ

k“N`1

ck
λk

looooomooooon

ď ε
4C

˙

¨ C ă ε.

5.2.2. Infinite-dimensional systems

Theorem 5.2.9. Let Presumption 5.2.1 hold and define h by (5.9). Let t0 ą 0 and
f P W 1,8prt0,8qq, and let ϕ P Φ satisfy ϕpt0q ą 0 and |fpt0q| ă 1

ϕpt0q
. Then the

equation

eptq “ ´

ż t

t0

hpt´ τq ¨ kpτ, epτqq ¨ epτq dτ ` fptq, t ě t0, (5.32)

with
kpt, eq “

ϕptq2

1´ ϕptq2 ¨ e2

has a bounded, global solution e P BUCprt0,8qq, which is uniformly bounded away
from the funnel boundary in the sense that

D ε ą 0 @ t ě t0 : |eptq|2 ď ϕptq´2
´ ε. (5.33)

Proof. Let
 

etnu
ˇ

ˇ n P N
(

be the set of solutions of (5.17) from Theorem 5.2.7. and
let t ě t0 be arbitrary. Since the sequence petnu|rt0,tsqnPN is bounded by 1{}ϕ}L8prt0,8qq
and, by Lemma 5.2.8, equicontinuous, we can conclude from the Arzelà-Ascoli theo-
rem [Rud87, Theorem 11.28] that petnu|rt0,tsqnPN contains a subsequence petnku|rt0,tsqkPN
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that converges uniformly to some e P Cprt0, tsq. The limit of (5.18) as nÑ 8 shows
that (5.33) holds true. Hence, there is some δ ą 0 such that }ϕ2e2}L8prt0,tsq ď 1´ δ,
which is why the inputs u and utnu defined by

upτq :“

$

&

%

´
ϕpτq2

1´pϕpτqepτqq2 epτq, τ P rt0,8q,

0, τ P r0, t0q,

and (5.31), respectively, are well-defined and satisfy

}u´ utnku}L8pr0,tsq

“

›

›

›

›

ϕ2pe´ etnkuq ` ϕ4eetnkupe´ etnkuq

p1´ ϕ2e2qp1´ ϕ2petnkuq2q

›

›

›

›

L8prt0,tsq

ď 1
δ2

`

}ϕ}2L8prt0,tsq ` }ϕ}
4
L8prt0,tsq}e}L8prt0,tsq}e

tnku}L8prt0,tsq
˘

}e´ etnku}L8prt0,tsq.

For k Ñ 8 this implies limkÑ8 }u ´ utnku|r0,ts}L8pr0,tsq “ 0. Furthermore, in the
inequality

}e´ pDu` fq}L8prt0,tsq

“ }pe´ etnkuq ´ pDu` fq ` pDtnkuutnku ` fq}L8prt0,tsq

ď }e´ etnku}L8prt0,tsq ` }Du´Dtnkuutnku}L8prt0,tsq

ď }e´ etnku}L8prt0,tsq ` }pD´Dtnkuqu`Dtnkupu´ utnkuq}L8prt0,tsq

ď }e´ etnku}L8prt0,tsq ` }D´Dtnku}BpL8pr0,tsqq ¨ }u}L8pr0,tsq

` }Dtnku}BpL8pr0,tsqq}u´ u
tnku}L8pr0,tsq,

the right hand side tends to zero because }D ´ Dtnku}BpL8pr0,tsqq Ñ 0 as k Ñ 8.
This proves that the function e satisfies (5.32) on rt0, ts. Since this construction was
done with arbitrary t P rt0,8q, it enables us to construct a function e : rt0,8q Ñ R
that fulfills all the claims of the theorem. Finally, the uniform continuity of e is
a consequence of the fact that e satisfies by (5.32) the convolution equation e “

Du` f , and that Du P L8prt0,8qq is bounded and uniformly continuous.

Corollary 5.2.10. Under Presumption 5.2.1, let γ0 ą 0, ϕ P Φγ0 and a function
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f P W 1,8prγ0,8qq be given. Then the equation

eptq “ ´

ż t

γ0

hpt´ τq ¨ kpτ, epτqqepτq dτ ` fptq, t ě γ0 (5.34)

with k as in (5.13) has a unique global solution e P BUCprγ0,8qq. This solution is
uniformly bounded away from the funnel boundary in the sense that

D ε ą 0 @ t ą γ0 : |eptq|2 ď ϕptq´2
´ ε .

Proof. First of all it follows with standard fixed point arguments, see [GLS90, Chap-
ter 12, Theorem 1.1], that for sufficiently small t0 ą γ0 there exists a unique solution
e0 P BUCprγ0, t0sq of (5.34). Choosing t0 small enough guarantees that the function
rf P W 1,8prt0,8qq defined by

rfptq “ ´

ż t0

γ0

hpt´ τq ¨ kpτ, e0pτqq ¨ e0pτq dτ ` fptq @ t ě t0,

satisfies the prerequisites of Theorem 5.2.9. This gives rise to the existence of a so-
lution re P BUCprt0,8qq of the Volterra integral equation

reptq “ ´

ż t

t0

hpt´ τq ¨ kpτ, repτqq ¨ repτq dτ ` rfptq, @ t ě t0

Combined with e0 on rγ0, t0s this becomes a bounded and uniformly continuous
solution of (5.34) on the entire interval rγ0,8q.
In order to prove the uniqueness of the solution e we assume that, for some

t P rγ0,8q, there are two functions e1, e2 P Cprγ0, tsq that solve (5.34). This means
in particular that

ϕpsqe1psq ă 1 and ϕpsqe2psq ă 1 @ s P rγ0, ts.

Define t1 :“ inf t τ P rγ0, ts | e1pτq ‰ e2pτq u. We show that t1 ă t leads to a contra-
diction. Pick ε ą 0 such that, for all τ in the compact interval rγ0, ts, the following
inequalities hold:

ϕ2
pτqe2

1pτq ď 1´ ε2, ϕ2
pτqe2

2pτq ď 1´ ε2.
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Further, choose δ such that
ż δ

0
hpτq dτ ă ε4

2}ϕ}2L8pr0,tsq
.

Then defining for i P t1, 2u the abbreviations

ui :“ pt ÞÑ kpt, eiptqq ¨ eiptqq “ ´
ϕ2

1´ ϕ2e2
i

¨ ei,

we obtain for all t P rt1, t1 ` δs

|e1ptq ´ e2ptq|

ď

ż t

t1
|hpt´ τq||u1pτq ´ u2pτq| dτ

ď

ż t´t1

0
|hpτq| dτ ¨ sup

τPrt1,t1`δs

|u1pτq ´ u2pτq|

ď
ε4

2}ϕ}28
¨

›

›

›

›

ϕ2 ` ϕ4e1e2

p1´ ϕ2e2
1qp1´ ϕ2e2

2q
pe1 ´ e2q

›

›

›

›

L8prt1,t1`δsq

ď
ε4

2}ϕ}28
¨ }ϕ}28 }1´ ϕ2e1e2}L8prt1,t1`δsq

looooooooooooomooooooooooooon

ă1`1

¨

›

›

›

›

1
1´ ϕ2e2

1

›

›

›

›

L8prt1,t1`δsq
loooooooooooomoooooooooooon

ă 1
ε2

¨

›

›

›

›

1
1´ ϕ2e2

2

›

›

›

›

L8prt1,t1`δsq
loooooooooooomoooooooooooon

ă 1
ε2

¨}e1 ´ e2}L8prt1,t1`δsq

ă }e1 ´ e2}L8prt1,t1`δsq.

Now taking the supremum of all t P rt1, t1 ` δs leads to the contradiction

}e1 ´ e2}L8prt1,t1`δsq ă }e1 ´ e2}L8prt1,t1`δsq.

Thus, the corollary is true.
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5.2.3. Funnel control for the heat equation with boundary
control

Since the input-output map of the heat equation in Section 2.6 is of the type de-
scribed in Lemma 5.2.2, we can apply the results from the previous section to this
example. This readily provides a global solution to the closed-loop system. In
addition, we are going to show that the corresponding state function is bounded.

Existence of a closed-loop solution

Theorem 5.2.11. Let pA, B, C, Dq be the L2-well-posed system corresponding to
the heat equation as in Lemma 2.6.12. Let yref P W

1,8pRě0q, x0 P L
2pΩ;Rq be given.

Pick any ϕ P Φ and define the funnel feedback gain function k by (5.13). Then there
exists a unique triple px, u, yq P bhvpA,B,C,Dq that satisfies xp0q “ x0 and

uptq “ ´kpt, yptq ´ yrefptqqpyptq ´ yrefptqq @ t ą 0. (5.35)

Moreover,

(i) the input fulfills u P BUCpRą0q;

(ii) the output function satisfies y P CpRą0q and y|rδ,8q P BUCprδ,8qq for all δ ą 0;

(iii) the tracking error e :“ y ´ yref evolves within the funnel Fϕ with uniform
distance to the funnel boundary in the sense that there is an rε ą 0 such that

eptq2ϕptq2 ď 1´ rε @ t ą 0.

Remark 5.2.12. For general x0 P L
2pΩ;Rq the output signal y cannot be defined at

the point zero. That is why the function y cannot be bounded on Rě0 in general.
However, if x0 is in W 1,2pΩ;Rq, then the upcoming Theorem 5.2.17 and the fact
that C P BpW 1,2pΩq;Cq imply that y is bounded on Rě0.

Proof. By Theorem 2.6.8 and Corollary 2.6.11, the input-output map D has a rep-
resentation

Du “

˜

t ÞÑ

ż t

0

8
ÿ

k“0
cke´λkpt´τqupτq dτ

¸

@u P L2
locpRě0q,
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with ck and λk fulfilling Presumption 5.2.1. Let γ0 ą 0 be such that ϕ P Φγ0 . By
Lemma 2.6.12 (ii) we have Cx0|rγ0,8q P W

1,8prγ0,8qq, which together with yref P

W 1,8pRě0q implies that the function f :“ Cx0´ yref fulfills f |rγ0,8q
P W 1,8prγ0,8qq.

Thus, by Corollary 5.2.10, there exists a solution e P BUCprγ0,8qq of the Volterra
equation (5.34) with f as above. The corollary also states that

D ε ą 0 @ t ą γ0 : |eptq|2 ď ϕptq´2
´ ε.

Define the function

uptq :“

$

&

%

0, t P r0, γ0q,

´kpt, eptqq ¨ eptq, t ě γ0.

The estimate above and the definition of k imply that the function t ÞÑ kpt, eptqq is
bounded. Hence, u is bounded and a short calculation using the boundedness of k
and the uniform continuity of e on rγ0,8q shows that u is uniformly continuous on
Rą0. So u satisfies (i).
With this u we define the functions x and y to be the state and output corre-

sponding to the initial value x0 by (2.8). Then we have

yptq “ pCx0qptq ` pDuqptq “ pCx0qptq, @ t P p0, γ0q,

and
yptq “ pCx0qptq ` pDuqptq “ yrefptq ` fptq ` pDuqptq

(5.34)
“ yrefptq ` eptq, f.a.a. t ě γ0.

(5.36)

This equation shows that y is continuous, and the restriction of y to rγ0,8q is in
BUCprγ0,8qq since e and yref are. This implies (ii) because the uniform continuity
on any compact interval rδ, γ0s is trivial.
We claim that (5.35) holds for all t ą 0. On p0, γ0q, the function ϕ P Φγ0 is zero

by definition. Hence, kpt, yptq ´ yrefptqq “ 0 for t P r0, γ0q and (5.35) is fulfilled by
the definition of u. For t P rγ0,8q, inserting (5.36) into the definition of u shows
(5.35).
It remains to prove (iii). Extending e to Rą0 by e :“ y ´ yref , we get

ϕptq2eptq2 ď 1´ ϕptq2 ¨ ε @ t ą 0
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because ϕ|p0,γ0q “ 0. Due to the continuity of e at γ0 and the properties of ϕ, this
implies that assertion (iii) holds for a suitable rε ą 0.
Finally, the uniqueness of the triple px, u, yq follows from the uniqueness of the

solution in Corollary 5.2.10 and the proof is complete.

Boundedness and regularity of the closed-loop solution

Note that Theorem 5.2.11 does not yet say anything about the norm of the func-
tion x. In this section we will show that x is bounded in the norm of the state
space L2pΩq. To do this, we will exploit the fact that any constant output feedback
stabilizes the system exponentially. Well-posedness of regular infinite-dimensional
systems under output feedback is well understood, see [Wei94a]. The following
lemma summarizes [Wei94a, Proposition 3.6, Theorem 6.1 & Theorem 7.2].

Lemma 5.2.13. Let X be a Hilbert space and let pA,B,C,Dq be a strongly regular
L2-well-posed linear system on pU ,X ,Yq with transfer function G. Let K P BpY ; Uq
and ω P R be such that I`KGpsq is invertible in BpUq for all s P Cěω and

sup
sPCěω

›

›p1`KGpsqq´1›
›

BpUq ă 8.

Let x and y be the state and output function corresponding to the initial value x0 P X
and input u P L2

locpRě0; Uq. With the function v :“ u ` Ky P L2
locpUq, the state x

satisfies
xptq “ AKptqx0 `BK,tv @ t ě 0.

Here, AK is a strongly continuous semigroup on X generated by

AKx “ pA´KBCqx, domAK “ t x P domCex | pA´KBCexqx P X u , (5.37)

and
BK,tv :“

ż t

0
AKpt´ τq|pdomA˚Kq

1Bvpτq dτ,

where AKptq|pdomA˚Kq
1 is the extension of AKptq to pdomA˚Kq

1, and the integral is
computed in pdomA˚Kq

1. In particular, the range of B is contained in this space.

Theorem 5.2.14. Let pA,B,C,Dq be the regular L2-well-posed linear system on
pC;L2pΩq;Cq constructed from the heat equation in Lemma 2.6.12 and denote its
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transfer function by G. For all K ą 0 and all s P Cą0, the expression 1 `KGpsq
is nonzero and

sup
sPCą0

ˇ

ˇ

ˇ

ˇ

1
1`KGpsq

ˇ

ˇ

ˇ

ˇ

ă 8.

The operator AK that is associated to K via Lemma 5.2.13 has the following prop-
erties:

(i) AKx “ ∆x, and

domAK “

"

x P W 2,2
pΩq

ˇ

ˇ

ˇ
Bνxpξq “ ´K

ż

BΩ
xpζq dσζ @ ξ P BΩ

*

. (5.38)

(ii) The operator AK is self-adjoint, σpAKq Ă p´8, 0q, and AK has a compact
resolvent. For all s P ρpAq with KGpsq ‰ ´1 we have s P ρpAKq and

ps´ AKq
´1
“ ps´ Aq´1

´ ps´ Aq´1B

ˆ

1
K
`Gpsq

˙´1

Cps´ Aq´1. (5.39)

(iii) AK generates an exponentially stable analytic semigroup AK in L2pΩq.

Proof. By Corollary 2.6.10 the transfer function G is uniformly regular and has the
feedthrough D “ 0. Moreover, we have for all k ą 0 and all s P Cą0,

|1`KGpsq| ě Rep1`KGpsqq “ 1`K
ÿ

kPJc

Re ck
s` λk

ě 1`K
ÿ

kPJc

ck
Reps` λkq
|s` λk|2

ě 1.

This shows that 1`KGpsq is boundedly invertible in the complex right half plane
and therefore Lemma 5.2.13 applies. Now we prove the properties (i)–(iii):
(i) We show that the set defined in (5.38) is a subset of the domain given in

(5.37). Let x be in the former set. Then x is in domCex because the trace operator
is well-defined on W 2,2pΩq. Moreover, we have the following equation for all ϕ P
domA˚ “ domA:

〈Ax , ϕ〉L2pΩq ´ 〈BKCx , ϕ〉L2pΩq

“

ż

Ω
xpξq ¨∆ϕpξq dξ ´K

ż

BΩ
xpζq dσζ

ż

BΩ
ϕpξq dσξ
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“

ż

Ω
∆xpξq ¨ ϕpξq dξ ´

ż

BΩ
pBνxpξqq ¨ ϕpξq dσξ

`

ż

BΩ
xpξq ¨ Bνϕpξq dσξ ´

ż

BΩ
K

ż

BΩ
xpζq dσζ ϕpξq dσξ

“

ż

Ω
∆xpξq ¨ ϕpξq dξ

´

ż

BΩ

ˆ

Bνxpξq dξ `K
ż

BΩ
xpζq dσζ

˙

ϕpξq dσξ

“

ż

Ω
∆xpξq ¨ ϕpξq dξ.

This shows that Ax ´ BKCx P X because it can be represented by the function
∆x P L2pΩq. For the converse inclusion, take any x P domCex with Ax´BKCx P X .
Then x is by definition an element of the space pX `BCq1 defined in Lemma 2.2.4.
By Lemma 2.5.2 this space equals the space W defined in (2.14). Therefore, x P
W 2,2pΩq, and Remark 2.5.3 (i) implies Bνx ” ´KCx “ ´K

ş

BΩ xpξq dξ.
(ii) Let s P ρpAq and KGpsq ‰ ´1. Then, combining the Equations (6.14) and

(7.3) of [Wei94a], we get that s P ρpAKq and that (5.39) holds. Since the resolvent
of A is compact, this formula shows that the resolvent of AK is compact as well.
Therefore, the spectrum of AK is a countable set of isolated eigenvalues [Kat80,
Theorem 6.29, p.187]. With Gauß’s theorem we get for all x, z P domAK

〈AKx , z〉L2pΩq “

ż

Ω
∆xpξq ¨ zpξq dξ “ ´

ż

Ω
∇xpξq ¨∇zpξq dξ `

ż

BΩ
Bνxpξq ¨ zpξq dσξ

“´

ż

Ω
∇xpξq ¨∇zpξq dξ ´K

ż

BΩ
xpξq dσξ

ż

BΩ
zpξq dσξ.

By further reversing the roles of x and z in the above formula, we can conclude that

〈AKx , z〉L2pΩq “ 〈x , AKz〉L2pΩq @x, z P domAK .

Since the spectrum ofAK consists of isolated eigenvalues, we have RXρpAKq ‰ H. In
other words, there exists some λ P R such that λ´A is onto. Thus, we conclude from
[TW09, Proposition 3.2.4] that AK is self-adjoint. Furthermore, AK is nonpositive
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since for all x P domAK ,

〈AKx , x〉L2pΩq “ ´

ż

Ω
∇xpξq ¨∇xpξq dξ ´K

ˆ
ż

BΩ
xpξq dσξ

˙2

ď 0. (5.40)

We show that zero is not an eigenvalue of AK . Assume that AKx “ 0 for some
function x P domAK , x ı 0. Then (5.40) implies ∇x “ 0 everywhere and
ş

BΩ xpξq dσξ “ 0. Hence, x must be the constant zero function, which leads to
a contradiction. Consequently zero is not an eigenvalue of AK .
(iii) With the spectrum containing only isolated eigenvalues, statement (ii) implies

supλPσpAKq Repλq ă 0 and the claim follows with [TW09, Proposition 3.8.5].

In order to prove the boundedness and regularity results, we need to determine
the domain of the operator root of the closed-loop generator AK . To this end, we
determine the symmetric sesquilinear form associated to AK in the sense of [Kat80]
because its domain is exactly the domain of p´AKq

1
2 , see Theorem A.1.5 or [Kat80,

Section VI.2].

Lemma 5.2.15. Let K ą 0 and define AK by (5.38) Then the bilinear form associ-
ated to AK in the sense of Theorem A.1.5 has the domain dom aK “ domp´AKq

1
2 “

W 1,2pΩq and is given by

aKpx, ψq “

ż

Ω
∇xpξq∇ψpξq dξ `K

ż

BΩ
xpξq dσξ ¨

ż

BΩ
ψpξq dσξ.

Proof. It is easy to see that aK is a continuous, symmetric, nonnegative sesquilinear
form on W 1,2pΩq. Hence, aK fulfills the prerequisites of Theorem A.1.5. By this
theorem it suffices to show that the domain domAK defined in (5.38) satisfies

domAK “
 

x P W 1,2
pΩq

ˇ

ˇ Dz P L2
pΩq : apx, ψq “ xz, ψyL2pΩq @ψ P W

1,2
pΩq

(

.
(5.41)

We show “Ă”: Let x P domAK . Then ∆x P L2pΩq, and the inclusion follows since
for all ψ P W 1,2pΩq the following holds:

aKpx, ψq “

ż

Ω
∇xpξq∇ψpξq dξ `K

ż

BΩ
xpξq dσξ ¨

ż

BΩ
ψpξq dσξ

“ ´

ż

Ω
∆xpξqψpξq dξ `

ż

BΩ
Bνxpξqψpξq dσξ `K

ż

BΩ
xpξq dσξ ¨

ż

BΩ
ψpξq dσξ
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“ ´

ż

Ω
∆xpξqψpξq dξ `

ˆ

´K

ż

BΩ
xpξq dσξ `K

ż

BΩ
xpξq dσξ

˙
ż

BΩ
ψpξq dσξ

“ ´

ż

Ω
∆xpξqψpξq dξ.

Now for the inclusion “Ą”: Let x be an element of the right hand set in (5.41).
Then in particular for all compactly supported and smooth functions ψ : Ω Ñ C
the equation

ż

Ω
xpξq∆ψpξq dξ “ ´aKpx, ψq “ ´

ż

Ω
zpξqψpξq dξ

holds. This implies ∆x “ ´z P L2pΩq. In order to show that x is in W 2,2pΩq,
we pick some function h P W 2,2pΩq that satisfies Bνhpζq “ ´K

ş

BΩ xpξq dσξ for all
ζ P BΩ. Then for all ψ P W 1,2pΩq the following holds:

ż

Ω
∇px´ hqpξq∇ψpξq dξ

“

ż

Ω
∇xpξq∇ψpξq dξ ´

ż

Ω
∇hpξq∇ψpξq dξ

“ aKpx, ψq ´K

ż

BΩ
xpξq dσξ ¨

ż

BΩ
ψpξq dσξ `

ż

Ω
∆hpξqψpξq dξ

´

ż

BΩ
Bνhpξqψpξq dσξ

“ aKpx, ψq `

ż

Ω
∆hpξqψpξq dξ

“

ż

Ω
zpξqψpξq dξ `

ż

Ω
∆hpξqψpξq dξ

“ ´

ż

Ω
∆px´ hqpξqψpξq dξ.

This implies by Lemma 4.2.1 that x ´ h P W 2,2pΩq, and therefore we conclude
x P W 2,2pΩq. With this information we can finally apply Gauß’s theorem, which
yields

aKpx, ψq “

ż

Ω
∇xpξq∇ψpξq dξ `K

ż

BΩ
xpξq dσξ ¨

ż

BΩ
ψpξq dσξ

“ ´

ż

Ω
∆xpξqψpξq dξ `

ż

BΩ
Bνxpξqψpξq dσξ `K

ż

BΩ
xpξq dσξ ¨

ż

BΩ
ψpξq dσξ.

The left hand side is by the previous considerations equal to ´
ş

Ω ∆xpξqψpξq dξ, so
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we have
ż

BΩ
Bνxpξqψpξq dσξ `K

ż

BΩ
xpξq dσξ ¨

ż

BΩ
ψpξq dσξ “ 0 @ψ P W 1,2

pΩq.

This implies Bνx ” ´K
ş

BΩ xpξq dσξ.

Lemma 5.2.16. Let θ P r0, 1s and denote by p¨q1 the duality with respect to the pivot
space L2pΩq. Then the extension AKptq|pdomA˚Kq

1 maps W θ,2pΩq1 into W 1,2pΩq, and
there are c, ω ą 0 such that

}AKptq|pdomA˚Kq
1x}W 1,2pΩq ď c

´

1` t´ 1`θ
2

¯

e´ωt}x}W θ,2pΩq1 @x P W θ,2
pΩq1.

Proof. This is an application of the complex interpolation functor r¨ , ¨sθ in Defi-
nition A.1.2. With the self-adjointness of AK it follows from (A.2), [Tri95, Sec-
tion 4.3.1, Theorem 1] and [Tri95, Equation 2.4.2/11] that

domp´AKqθ{2 “ rX , domp´AKq1{2sθ “ rL2
pΩq,W 1,2

pΩqsθ “ W θ,2
pΩq @ θ P r0, 1s.

Consequently, the dual spaces satisfy pdomp´AKqθ{2q1 “ W θ,2pΩq1 @ θ P r0, 1s. By
Lemma A.1.1 and Lemma A.1.4 the semigroup AK |pdomA˚Kq

1 restricts to an analytic
semigroup on pdomp´AKqθ{2q1, whose generator has the domain domp´AKq1´θ{2.
Lemma A.1.1 implies further that this extended semigroup maps pdomA

θ{2
K q

1 into
domA

1´θ{2
K Ă domp´AKq1{2 and that

D c, ω ą 0 @x P pdomp´AKqθ{2q1 :

}AKptq|pdomA˚Kq
1x}domp´AKq1{2 ď c

´

1` t´ 1`θ
2

¯

e´ωt}x}pdomp´AKqθ{2q1 .

A further use of domp´AKq1{2 “ W 1,2pΩq gives rise to the desired result.

Theorem 5.2.17. The solution in Theorem 5.2.11 satisfies x P CpRą0;W 1,2pΩqq,

sup
tě0
}xptq}L2pΩq ă 8, (5.42)

and there are ω, c ą 0 such that

}xptq}W 1,2pΩq ă c
´

1` t´
1`θ

2 e´ωt
¯

@ t ą 0. (5.43)
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5.2. Funnel control for self-adjoint systems

If x0 P W
1,2pΩq, then x P CpRě0;W 1,2pΩqq and

sup
tě0
}xptq}W 1,2pΩq ă 8.

Proof. Let γ0 as in Theorem 5.2.11. By definition, u is equal to zero on r0, γ0s, and
the state x satisfies

xptq “ Aptqx0, @ t P r0, γ0s.

Consequently, the smoothing property of A (Lemma 2.6.12) yields that

}xpγ0q}W 1,2pΩq ď }Apγ0q}BpL2pΩq;W 2,2pΩqq }x0}L2pΩq ď c
`

1` γ´1
0
˘

}x0}L2pΩq ,

and that x P C pp0, γ0s;W 1,2pΩqq. Obviously, if x0 P W 1,2pΩq then x is actually
continuous in the point 0 as well.
To analyze the behavior of x on rγ0,8q we exploit the exponential stability of the

semigroup with constant output feedback. Choose any K ą 0 and define vptq :“
uptq`Kyptq. Then v P BUCprγ0,8qq and, by Lemma 5.2.13, the function x satisfies

xptq “ AKpt´ γ0qxpγ0q `BK,t´γ0vp¨ ` γ0q. (5.44)

We use Lemma 5.2.16 to show that BK,t has a smoothing effect. Let w P BUCpRě0q

and pick some θ P p1
2 , 1q. Then B maps continuously into W θ,2pΩq1 because B˚ is

well-defined and continuous from W θ,2pΩq into C, see Remark 2.6.5. For the rest of
this proof we use the notation }B} :“ }B}BpR;W θ,2pΩq1q. Lemma 5.2.16 implies that
AKpt´ τq|W θ,2pΩq1Bwpτq is in W 1,2pΩq and

›

›AKpt´ τq|W θ,2pΩq1Bwpτq
›

›

W 1,2pΩq ď c
´

1` pt´ τq´
1`θ

2

¯

e´ωpt´τq}B}}w}8.

Since the real-valued function on the right hand side is integrable over r0, tq, the
integral in BK,tw converges in W 1,2pΩq and

}BK,tw}W 1,2pΩq ď c

ż t

0
e´ωpt´τq ` pt´ τq´ 1`θ

2 e´ωpt´τq dτ ¨ }B}}w}8

“ c}B}}w}8

ż t

0
e´ωτ ` τ´

1`θ
2 e´ωτ dτ

ď c}B}}w}8

ˆ

1´ e´ωt
ω

`

ż 1

0
τ´

1`θ
2 e´ωτ dτ `

ż 8

1
τ´

1`θ
2 e´ωτ dτ

˙
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5. Funnel control

ď c}B}}w}8

ˆ

1´ e´ωt
ω

`

ż 1

0
τ´

1`θ
2 dτ `

ż 8

1
e´ωτ dτ

˙

“ c}B}}w}8

ˆ

1´ e´ωt
ω

`
2

1´ θ `
e´ω

ω

˙

.

This shows that BK,tw is a bounded function. We show continuity of this function
with respect to the norm of W 1,2pΩq at an arbitrary point t P Rě0. We have

}BK,t`hw ´BK,tw}W 1,2pΩq

“

›

›

›

›

ż t`h

0
ApτqBwpt` h´ τq dτ `

ż t

0
ApτqBwpt´ τq dτ

›

›

›

›

W 1,2pΩq

“

›

›

›

›

ż t`h

t

ApτqBwpt`h´τq dτ `
ż t

0
ApτqBpwpt`h´τq ´ wpt´τqq dτ

›

›

›

›

W 1,2pΩq

ď

ż t`h

t

}ApτqBwpt` h´ τq}W 1,2pΩq dτ

`

ż t

0
}ApτqBpwpt` h´ τq ´ wpt´ τqq}W 1,2pΩq dτ

ď c}B}}w}8

ż t`h

t

1` τ´ 1`θ
2 dτ

` c}B}

ż t

0
1` τ´

1`θ
2 dτ sup

τPr0,t`hs
|wpt` h´ τq ´ wpt´ τq|

ď c}B}}w}8

ż t`h

t

1` τ´ 1`θ
2 dτ

` c}B}

ż t

0
1` τ´ 1`θ

2 dτ sup
τPr0,t`hs

|wpt` h´ τq ´ wpt´ τq|
hÑ0
ÝÑ 0

because w is uniformly continuous and the function 1 ` τ´
1`θ

2 is integrable on
the compact interval r0, t ` hs. This proves that the mapping t ÞÑ BK,tw is in
CpRě0;W 1,2pΩqq.
With vp¨ ` γ0q being in BUCpRě0q, these results applied to (5.44) show x P

CpRą0;W 1,2pΩqq. Finally, the norm bounds (5.42) and (5.43) follow from the bound-
edness of BK,t´γ0vp¨ ` γ0q and the estimates

}AKptqx0}W 1,2pΩq ď c
´

1` t´ 1
2

¯

e´ωt and }AKptqx0}L2pΩq ď e´ωt.
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5.3. Notes and references

5.3. Notes and references
The funnel control principle was first introduced in [IRS02] and has since than
been extended to a variety of systems, including systems of relative degree greater
than one [IRT06], nonlinear systems with hysteresis [IRS02, IRT07] and differential
algebraic systems [BIR12a, BIR12b]. For all these systems the funnel control strat-
egy is the same, namely to amplify the output error by the simple nonlinear gain
function (5.13) and feed it back to the input. The challenge is to prove that the
system properties guarantee the existence of a stable global solution to the closed-
loop system. To the variety of systems for which this works, we have added the
infinite-dimensional systems of relative degree one with stable zero dynamics and
the (infinite-dimensional) systems whose input-output map is of the form (5.11).
Thereby we have sharpened existing results on self-adjoint, finite-dimensional sys-
tems in Section 5.2.1 and provided a new proof for these systems.
The proof of Theorem 5.1.1 is not entirely new: Once the problem is written in the

form (5.5), a slight modification of [IRS02, Theorem 7] can be applied to complete
the proof. However, we chose to give a standalone proof that is much simpler than
the one for nonlinear functional differential equations given in [IRS02].
The results on self-adjoint systems in Section 5.2 are already published in [RS15a].
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6. State space transformations for
systems with compact Hankel
operator

In the subsequent sections we construct –by means of state space transformation–
some very useful realizations of time-invariant causal operators with compact Han-
kel operators. The generators of these normalized and balanced realizations have
matrix-like representations and they order the state coordinates according to their
contribution to the input-output map. They are therefore suitable for approximating
the input-output map by finite-dimensional realizations.
In contrast to the transformations in Chapter 3, the normalizing and balancing

transformations in the present chapter far from being similarity transformations:
Firstly, they are in general not continuous, and secondly they cut off any unobserv-
able or uncontrollable part of the system.

6.1. Shift realizations
There are two canonical realizations of D P TIC2

0pU ; Yq which are well-known as
shift realizations. These are partial differential equations of transport type. We will
use the results of Section 2.7 to construct minimal versions of the shift realizations
and determine their generators. The Hankel operator

H : L2
pRď0; Uq Ñ L2

pRě0; Yq, H “ π`D
ˇ

ˇ

L2pRď0;Uq,

plays an important role for these realizations and so do the shift operators

τ t´ : L2
pRď0; Uq Ñ L2

pRď0; Uq, τ t` : L2
pRě0; Yq Ñ L2

pRě0; Yq
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6. State space transformations for systems with compact Hankel operator

defined in Section 2.3. Note that pτ t´qtě0 and pτ t`qtě0 are strongly continuous semi-
groups. We assume that U , X , Y are Hilbert spaces, and we will make use of the
reflection operator defined in (2.10).

Lemma 6.1.1. Let D P TIC2
0pU ; Yq with Hankel operator H and define Z :“

pkerHqK Ă L2pRď0; Uq. The system
´

πZτ´|Z , πZ , H|Z , D
¯

(6.1)

is a minimal 0-bounded L2-well-posed linear system on pU ,Z,Yq. The main operator
of this system is the following differential operator:

A : domA Ă Z Ñ Z, domA “ πZW
1,2
0 pRď0; Uq,

Az “ πZ 9x @ z P domA, @x P W 1,2
0 pRď0; Uq with πZx “ z,

and its adjoint is

A˚ : domA˚ Ă Z Ñ Z, domA˚ “ Z XW 1,2
pRě0; Uq,

A˚z “ ´ 9z @ z P domA˚.

The control operator is the evaluation functional at zero, i.e.

B : U Ñ pdomA˚q1, u ÞÑ pϕ ÞÑ 〈ϕp0q , u〉Uq .

The Hankel operator maps domA into W 1,2pRě0; Yq and the observation operator is

C : domAÑ Y , Cx “ pHxqp0q.

This system is called the exactly controllable shift realization of D on pkerHqK.

Proof. It is well-known that the so-called exactly controllable shift realization of D,
´

τ´, I, H, D
¯

,

is an L2-well-posed linear system on pU , L2pRď0; Uq,Yq, see [Sta05, Example 2.6.5].
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6.1. Shift realizations

The generator of the left shift semigroup τ´ is the differential operator

d
dξ : W 1,2

0 pRď0; Uq Ă L2
pRď0; Uq Ñ L2

pRď0; Uq, x ÞÑ 9x,

see [Sta05, Example 3.2.3 (iii)], whose adjoint is known to be

´ d
dξ : W 1,2

pRď0; Uq Ă L2
pRď0; Uq Ñ L2

pRď0; Uq, x ÞÑ ´ 9x.

This together with Lemma 2.7.1 proves the well-posedness of (6.1) and the form
of A and A˚. Since the observation operator is clear by Definition 2.4.5, it only
remains to determine the control operator B. By (2.7) the control operator satisfies
the following for all ϕ P pkerHqK XW 1,2pRď0; Uq, u P U :

〈ϕ , Bu〉domA˚,pdomA˚q1 “
〈
pλ´ A˚qϕ , πZ eλu

〉
Z

“
〈
λϕ` 9ϕ , eλu

〉
L2pRď0;Uq

“

ż 0

´8

〈
λϕptq , eλtu

〉
U

dt`
ż 0

´8

〈
9ϕptq , eλtu

〉
U

dt

“ 〈ϕp0q , u〉U .

Now the proof is complete.

Remark 6.1.2. It can be shown that the exactly controllable shift realization belongs
to a boundary control system in the sense of Lemma 2.5.2. Thus, every operator
D P TIC2

0pU ; Yq can be realized by a boundary control system.

Lemma 6.1.3. Let D P TIC2
0pU ; Yq with Hankel operator H and define Z :“ ranH.

Then
´

τ`|Z , H, IZ , D
¯

(6.2)

is a minimal 0-bounded L2-well-posed linear system on pU ,Z,Yq. The main operator
is

A : domA Ă Z Ñ Z, domA “ W 1,2
pRě0; Yq X Z,

Az “ 9z.
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6. State space transformations for systems with compact Hankel operator

The adjoint of this operator is the differential operator

A˚ : domA˚ Ă Z Ñ Z, domA˚ “ πZW
1,2
0 pRě0; Yq,

A˚z “ ´πZ 9x @ z P domA˚, @x P W 1,2
0 pRď0; Uq with πZx “ z.

The operator H˚ maps W 1,2
0 pRě0; Yq into W 1,2pRď0; Uq and the control operator

of (6.2) satisfies

B : U Ñ pdomA˚q1, 〈z , Bu〉domA˚,pdomA˚q1 “ 〈pH˚xqp0q , u〉U

for all z P domA˚ and all x P W 1,2
0 pRě0; Yq with πZx “ z. The observation operator

is given by

C : domAÑ Y , Cz “ zp0q.

We call the system (6.2) the exactly observable shift realization of D on ranH.

Proof. Analogously to the previous proof we now apply Lemma 2.7.2 to the exactly
observable shift realization on L2pRě0; Yq,

´

τ`, H, I, D
¯

,

which can be found in [Sta05, Example 2.6.5 (ii)]. It has the main operator

d
dξ : W 1,2

pRě0; Yq Ă L2
pRě0; Yq Ñ L2

pRě0; Yq, x ÞÑ 9x,

see [Sta05, Example 3.2.3 (iii)], with adjoint

´ d
dξ : W 1,2

0 pRě0; Yq Ă L2
pRě0; Yq Ñ L2

pRě0; Yq, x ÞÑ ´ 9x.

Therefore Lemma 2.7.2 yields the form of A and A˚. The verification of the operator
C is straightforward from the definition of an observation operator. To calculate B
we observe that the dual input-output map RD˚ Ris in TIC2

0pY ; Uq by Lemma 2.4.17.
The corresponding Hankel operator is

RH˚ R: L2
pRď0; Yq Ñ L2

pRě0; Uq.
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6.2. Output normalizing transformations

Since it is the input operator of the exactly observable shift realization of RD˚ R,
´

τ`, RH˚ R, I, RD˚ R
¯

,

we conclude from Lemma 2.4.3 (i) that H˚ maps W 1,2
0 pRě0; Yq to W 1,2pRď0; Uq and

that H˚ 9x is the derivative of H˚x. Let λ P Cą0 and u P U . Then for all z P domA˚

we take an arbitrary x P W 1,2
0 pRě0; Yq with πZx “ z and obtain

〈z , Bu〉domA˚,pdomA˚q1 “
〈
pλ´ A˚qz , Heλu

〉
Z

“
〈
λz ` πZ 9x , Heλu

〉
Z

“
〈
λx` 9x , Heλu

〉
L2pRě0;Uq

“
〈
λH˚x` H˚ 9x , eλu

〉
L2pRě0;Uq

“

ż 0

´8

〈
λpH˚xqptq , eλtu

〉
U

dt`
ż 0

´8

〈
d
dtpH

˚xqptq , eλtu
〉

U
dt

“ 〈pH˚xqp0q , u〉U .

This is the desired expression for Bu.

Remark 6.1.4. The adverb “exactly” indicates that the input operator of the exactly
controllable shift realization is onto, which is stronger than controllability. Similarly
it indicates in the exactly observable shift realization, that the adjoint of the output
operator is onto, which is stronger than observability.

6.2. Output normalizing transformations
The exactly observable shift realization in the previous Section has the outstanding
property that its observability Gramian is the identity operator. Similarly, the
controllability Gramian of the exactly controllable shift realization is the identity
operator. We call systems of this kind normalized, more precisely, we make the
following definition.

Definition 6.2.1 (normalized system). We say that a 0-bounded L2-well-posed
linear system pA,B,C,Dq on three Hilbert spaces pU ,X ,Yq is input normalized if
and only if BB˚ “ IX , and output normalized if and only if C˚C “ IX .
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6. State space transformations for systems with compact Hankel operator

Remark 6.2.2. Since the Gramians are solutions of so-called Lyapunov equations
[Sta05, Section 10.4], input or output normalized systems are sometimes said to be
“Lyapunov normalized”.

The shift realizations in the last section are the most popular normalized realiza-
tions. The goal of this section is to construct yet another realization that is output
normalized and has the state space `2pNq. This can for example be achieved by
choosing an appropriate basis of ranH if the Hankel operator is known and com-
pact. In practice however, one is usually stuck with the generators of a system and
an explicit representation of the Hankel operator is difficult to obtain. Therefore, we
introduce amenable state space transformations that carry us from the generators
of a given realization to a normalized realization.
For the rest of this chapter the following is a standing presumption.

Presumption 6.2.3. We have the Hilbert spaces U , X , Y, where U and Y are finite-
dimensional. pA,B,C,Dq is a 0-bounded L2-well-posed linear system on pU ,X ,Yq
with compact Hankel operator H “ CB. Moreover, XR and XS are Hilbert spaces,
and R P BpXR,X q, S P BpXS,X q are operators such that the controllability and
observability Gramians satisfy

BB˚
“ RR˚ and C˚C “ SS˚. (6.3)

Remark 6.2.4. The factors may for instance be R “ B, S “ C˚, or R “ pBB˚q1{2,
S “ pC˚Cq1{2. The motivation for the formulation of Presumption 6.2.3 is that the
so-called “ADI method” [ORW13] directly provides factors R and S of the Gramians,
which can be used.

A first consequence of Presumption 6.2.3 is that

ranR “ ranB, ranC˚ “ ranS, (6.4a)

kerB˚
“ kerR˚, kerS˚ “ kerC. (6.4b)

The equations in (6.4a) are consequences of the fact that the operator square roots
fulfill

ranR “ ran
?
RR˚ “ ran

?
BB˚ “ ranB and

ranC˚ “ ran
?
C˚C “ ran

?
SS˚ “ ranS,
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6.2. Output normalizing transformations

see e.g. [Kat80, pp. 334–336]. The remaining assertions in (6.4b) follow by regarding
the orthogonal complements in (6.4a). With this, the restricted operators

R : pkerRqK Ă XR Ñ ranB, S : pkerSqK Ă XS Ñ pkerCqK,

B : pkerBqK Ă L2
pRď0; Uq Ñ ranB, C : pkerCqK Ă X Ñ ranC.

are injective and have dense range. We denote their inverses (and adjoints of their
inverses) by R´1, B´1, S´1 and C´1 (R´˚, B´˚, S´˚ and C´˚ ). Recall e.g. from
[Sta05, Lemma 3.5.2] that any injective closed and densely defined operator T with
dense range satisfies pdomT´1q˚ “ ranT ˚, and T´˚ :“ pT´1q˚ “ pT ˚q´1 is well
defined.

Lemma 6.2.5. The mappings

V : ranS˚RÑ ranH, V :“ CS´˚|ranS˚R,

where CS´˚ is the continuous extension of CS´˚|ranS˚R with respect to the norms of
XS and L2pRě0; Yq, and

U : pkerS˚RqK Ñ pkerHqK, U :“ B´1R|pkerS˚RqK . (6.5)

are unitary with inverses V˚ “ S˚C´1 and U˚ “ R´1B, respectively. Furthermore,

V˚HUx “ S˚Rx @x P pkerS˚RqK. (6.6)

Proof. From the fact that ranR “ ranB and

}CS´˚x}2L2pRě0;Yq “ xS
´˚x,C˚CS´˚xyX “ xS

´˚x, SxyX “ }x}
2
XS

for all x P ranS˚, we deduce that CS´˚ : ranS˚RÑ ranH is an isometry with dense
range and left inverse S˚C´1. Therefore, it can be extended to a unitary operator
V between the closures of these two spaces. Analogously, we can deduce that the
concatenation R˚B´˚ : ranB˚C˚ Ñ ranR˚S satisfies

}R˚B´˚x}XR “ }x}L2pRď0;Uq @x P ranB˚,

and has a unitary extension that we denote by U˚ : pkerHqK Ñ pkerS˚RqK. Further-
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6. State space transformations for systems with compact Hankel operator

more, because of (6.3), the identity R˚B´˚x “ R´1Bx holds for all x P ranB˚C˚,
which is a dense subset of pkerHqK. The operator R´1B|pkerHqK is defined on the
complete space pkerHqK and it is closed because R´1 is closed. By the closed graph
theorem it is continuous and hence, it must be equal to the unique unitary extension
U˚ of R˚B´˚. This implies that its inverse is its adjoint, i.e. U “ B´1R|pkerS˚RqK .
The equation

H|pkerHqK “ CπpkerS˚qKB|pkerHqK “ CS´˚S˚RR´1B|pkerHqK

“ VpS˚Rq|pkerS˚RqKU
˚
|pkerHqK

shows (6.6) and completes the proof.

As a consequence of this lemma and the compactness of H, the operator S˚R
is compact as well. It therefore admits a singular value decomposition (sometimes
called “canonical form for compact operators”) in the sense of [RS72, pp. 203]. That
is, there are orthonormal systems punqnPN in XR and pvnqnPN in XS and a nonincreas-
ing, positive null sequence pσnqnPN with

S˚Rx “
8
ÿ

n“1
σn 〈x , un〉XR vn @x P XR.

The numbers σn are called singular values, and pun, vnq is the so-called Schmidt pair
associated to σn. Note that we allow consecutive σn to be equal. A more convenient
way of writing the singular value decomposition is

S˚R “ V ΣU˚, (6.7)

where the operators Σ P Bp`2q, U P Bp`2; XRq, V P Bp`2; XSq are defined by

ΣpxnqnPN :“ pdiagpσnqnPNq pxnqnPN :“ pσnxnqnPN (6.8)

and
UpxnqnPN :“

8
ÿ

n“0
xnun, V pxnqnPN :“

8
ÿ

n“0
xnvn.

Here, we have assumed that there are infinitely many singular values, or, equiva-
lently, that ranS˚R is infinite-dimensional. In case that this range is k-dimensional,
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6.2. Output normalizing transformations

the results in this chapter hold with `2 replaced by Ck and obvious modifications.
In any case, there holds ran V “ ranS˚R, ranU “ pkerS˚RqK, U˚U “ V ˚V “ I`2 ,
V V ˚ “ πranS˚R and UU˚ “ πpkerS˚RqK . Note that the restrictions U˚|ranS˚R and
V ˚|pkerS˚RqK are both unitary. It can be seen that Σ is injective, self-adjoint and has
dense range, and therefore we have

Σ “ V ˚S˚RU “ U˚R˚SV.

Likewise, there is a singular value decomposition of the Hankel operator itself. The
singular values of H are called Hankel singular values. The following corollary to
Lemma 6.2.5 shows that these coincide with the singular values of S˚R.

Corollary 6.2.6. The singular values pσnqnPN of S˚R are the singular values of the
Hankel operator H.

Proof. The equalities

pS˚RqpS˚Rq˚|ranS˚R “ V˚HH˚V|ranS˚R and

pS˚Rq˚pS˚Rq|pkerS˚RqK “ U˚H˚HU|pkerS˚RqK

show that vi is an eigenvector of S˚RpS˚Rq˚ to the eigenvalue σ2
i ą 0 if and only

if rvi :“ Vv is an eigenvector of HH˚ corresponding to the same eigenvalue and,
analogously, ui is an eigenvector of pS˚Rq˚S˚R if and only if rui :“ Uui is an eigen-
vector of H˚H. Hence it follows that the singular values of S˚R and H are equal. In
particular,

Hu “
8
ÿ

i“1
rviσixu, ruiy @u P L2

pRď0; Uq (6.9)

is a singular value decomposition of H.

We will write the singular value decomposition in (6.9) as operator equation

H “ rV ΣrU˚, where
rU :“ UU P Bp`2; pkerHqKq,
rV :“ VV P Bp`2; ranHq,

(6.10)

where U, V are defined in Lemma 6.2.5, and Σ P Bp`2q is precisely the operator
defined in (6.8).
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6. State space transformations for systems with compact Hankel operator

Lemma 6.2.7. Let S˚R “ V ΣU˚ be the singular value decomposition (6.7) and
define

M :“ πpkerS˚qK ranR “ πpkerC˚qK ranB,

i.e. as in Theorem 2.7.3. The mapping

V ˚S˚
ˇ

ˇ

M : M Ñ Σ`2

is an isomorphism with inverse given by

S´˚V pxnq “ πpkerS˚qKRUΣ´1
pxnq @ pxnq P Σ`2. (6.11)

Proof. With (6.7) and V V ˚ “ πranS˚R it can be seen that V ˚S˚|M is an isomorphism
between the asserted spaces with inverse S´˚V . (The important part here is that
the spaces were chosen correctly.) The singular value decomposition further shows
immediately that V ˚S˚ is the left inverse of πpkerS˚qKRUΣ´1 on Σ`2. To prove that
it is a right inverse we calculate for given y “ πpkerS˚qKRx with x P XR

πpkerS˚qKRUΣ´1V ˚S˚y “ πpkerS˚qKRUΣ´1V ˚S˚Rx “ πpkerS˚qKRUU
˚x

“ πpkerS˚qKRπpkerS˚RqKx “ πpkerS˚qKRx “ y.

Theorem 6.2.8. Let S˚R “ V ΣU˚ be the singular value decomposition of the op-
erator S˚R. Then the operators

T : X Ñ `2, T ` : Σ`2
Ă `2

Ñ X ,

x ÞÑ V ˚S˚x, x ÞÑ RUΣ´1x

are well-defined, and the following assertions hold true:

(i) There exists a constant c ą 0 such that, for all x P Σ`2, u P L2pRď0; Uq and
t ě 0, there holds

}T AptqT `x}`2 ď c }x}`2 , }T Bu}`2 ď c }u}L2pRď0;Uq,

}CT `x}L2pRě0;Yq ď c }x}`2 .
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6.2. Output normalizing transformations

(ii) With the unique continuous extensions

T AT ` : Rě0 Ñ Bp`2
q, t ÞÑ T AptqT `, and CT` P Bp`2;L2

pRě0; Yqq,

the quadruple

pAo,Bo,Co,Dq :“ pT AT `, T B,CT `,Dq (6.12)

is a minimal 0-bounded L2-well-posed linear system on pU , `2,Yq and output
normalized. Furthermore, the system (6.12) is unitarily similar to the exactly
observable shift realization of D on ranH via the unitary transformation rV in
(6.10), and its controllability Gramian is Σ2.

In the following, we are going to refer to (6.12) as the output normalized realization
of D on `2. But there exist of course other output normalized realization on `2.

Proof. We are going to show that the mapping rV in (6.10) transforms the shift
realization (6.2) into the system (6.12). The boundedness of the operators in (i)
then follows because rV is unitary, and all the properties of the shift realization are
preserved under this transformation by Lemma 2.4.15.
First note that, owing to the equality kerC “ kerS˚ and Definition 2.4.1 (iii), we

have the following expression for all x P ranS˚R

S˚AptqS´˚x “ S˚πpkerCqKAptqπpkerCqKS
´˚x “ S˚C´1CAptqC´1CS´˚x “

“ V˚CAptqC´1Vx “ V˚τ t`|ranHVx.

Furthermore, we can substitute (6.11) to obtain for all x P ranH

rV T AptqT `
rV ˚x “ VV V ˚S˚AptqπpkerS˚qKRUΣ´1V ˚V˚x

“ VV V ˚S˚AptqS´˚V V ˚V˚x “

“ VπranS˚RS
˚AptqS´˚πranS˚RV

˚x

“ VπranS˚RV
˚τ t`VπranS˚RV

˚x “ τ t`x,

and by continuous extension it follows that this formula holds on the closure of
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6. State space transformations for systems with compact Hankel operator

ranH. Furthermore, one gets

CT `
rV ˚x “ CRUΣ´1V ˚V˚x “ CπpkerS˚qKRUΣ´1V ˚V˚x

“ CS´˚V V ˚V˚x “ VπranS˚RV
˚x “ x.

Again, continuous extension yields that CRUΣ´1 is similar to IranH via the unitary
transformation V ˚V˚. The equation

rV T B “ VV V ˚S˚B “ CS´˚S˚B “ CS´˚πranS˚RS
˚B “ CB “ H,

completes the proof of the asserted similarity.
Finally, the controllability Gramian computes to

BoB
˚
o “ V ˚S˚BB˚SV “ V ˚S˚RR˚SV “ Σ2.

Remark 6.2.9. It is relatively easy to check that the mapping V ˚S˚ : M Ñ `2 is
a pseudo-similarity transformation (Definition 2.4.16) between the output normal-
ized system pAo,Bo,Co,Dq and the realization

`

πpkerCqKA|M, πpkerCqKB,C|M,D
˘

in
Theorem 2.7.3. It is shown in [RS14, Section 11] that the inverse of this pseudo-
similarity transformation is the closure of the operator πpkerCqKRUΣ´1 : Σ`2 Ñ M.

The following corollary shows the relation between the generators of the last
theorem and the generators of the exactly observable shift realization.

Corollary 6.2.10. Define rV as in the singular value decomposition (6.10) of H.
The output normalized realization (6.12) on `2 satisfies

pAo,Bo,Co,Dq “
´

rV ˚τ`rV , rV ˚H, rV ,D
¯

, (6.13)

and its generators are determined by the following relations:

domAo “

#

pxnq P `
2 :

8
ÿ

n“1
xnrvn P W

1,2
pRě0; Yq

+

, (6.14a)

Aopxnq “ rV ˚ d
dξ
rV pxnq, (6.14b)
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6.2. Output normalizing transformations

domA˚o “

#

pxnq P `
2 :

8
ÿ

n“1
xnrvn P πranHW

1,2
0 pRě0; Yq

+

, (6.15a)

A˚opxnq “ ´
rV ˚ d

dξy @ y P W 1,2
0 pRě0; Yq with πranHy “

rV pxnq. (6.15b)

For each u P U , the image Bou is an element of pdomA˚oq
1 acting as

〈Bou , pxnq〉pdomA˚o q1,domA˚o
“
〈
u , pH˚rV pxnqqp0q

〉
U

(6.16)

Furthermore,

Copxnq “

˜

8
ÿ

n“1
xnrvn

¸

p0q @ pxnq P domAo. (6.17)

All the series here are limits in the L2pRě0; Yq norm.

Proof. We have already shown in Theorem 6.2.8 that rV is a unitary similarity trans-
formation between (6.12) and (6.2), i.e. (6.13) holds. The generators of (6.12) are
therefore obtained by applying the same similarity transformation to the genera-
tors of (6.2) given in Lemma 6.1.3, in the sense of Lemma 2.4.15. This proves the
corollary. We only have to observe that

domAo “
!

pxnq P `
2

rV pxnq P ranHXW 1,2
pRě0; Yq

)

becomes (6.14a) because rV pxnq is always in ranH.

Now we show that the generators of the output normalized realization on `2 can
also be computed via the state space transformations in Theorem 6.2.8.

Theorem 6.2.11. Let T and T ` be as in Theorem 6.2.8 Then the following is true
for the generators Ao ,Bo and Co of the output normalized realization (6.12) on `2:

(i) The space Z :“ T BW 1,2
0 pRď0; Uq is a subset of Σ`2 and a core for Ao, i.e. it

is dense in pdomAo, }¨}domAo
q. Moreover,

Aoz “ T rAπpkerS˚qKT `z @ z P Z, (6.18)

where the quotient operator rA of A is defined as in Theorem 2.7.3.
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6. State space transformations for systems with compact Hankel operator

(ii) The adjoint operator pT |Mq˚ of T |M is given by πMSV and maps domA˚o into
dom rA˚. The operator T |M has a continuous extension T´1 : pdom rA˚q1 Ñ

pdomA˚oq
1 given by

xT´1x
1, pynqypdomA˚o q1,domA˚o “ xx

1 , πMSV pynqy`2 (6.19)

for all x1 P pdom rA˚q1 and pynq P domA˚o .

(iii) The space T `Z is a subset of the domain of the Cesàro extension Cex and the
following formulas hold:

Ao|`2x “ T´1 rA|MπpkerS˚qKT `x, @x P Σ`2 (6.20)

Bo “ T´1 rB, (6.21)

Coz “ CexT `z @x P Z. (6.22)

Moreover, Ao and pAoq´1 are obtained by taking the closures of the respective oper-
ators above.

Proof. We start with proving (i): Lemma 2.4.3 (i) states that B maps the set
W 1,2

0 pRď0; Uq into domA, so the relation

Z “ V ˚S˚BW 1,2
0 pRď0; Uq Ă V ˚S˚pdomAX ranRq Ă Σ`2

holds. This means that for arbitrary z P Z, we may write z “ V ˚S˚y with y P

domAX ranR. Then S˚y P ranS˚R, and with V V ˚ being the identity on this set,
one gets

πpkerCqKy “ S´˚S˚y “ S´˚V V ˚S˚y “ S´˚V z
(6.11)
“ πpkerS˚qKRUΣ´1z.

Recall that by Theorem 2.7.3, πpkerCqKA|M is a semigroup whose generator rA has
the domain MX πpkerCqK domA. Since πpkerCqKy is in this domain, the calculation

lim
tÓ0

1
t

`

T AptqT `z ´ z
˘

“ lim
tÓ0

1
t

`

V ˚S˚AptqπpkerS˚qKRUΣ´1z ´ z
˘

“ lim
tÓ0

1
t

`

V ˚S˚AptqS´˚V pV ˚S˚qy ´ pV ˚S˚qy
˘
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“ lim
tÓ0

1
t
V ˚

`

S˚πpkerS˚qKAptqπpkerS˚qKy ´ S
˚πpkerS˚qKy

˘

“ V ˚S˚ lim
tÓ0

1
t

`

πpkerS˚qKAptqπpkerS˚qKy ´ πpkerS˚qKy
˘

“ V ˚S˚πpkerS˚qK rAπpkerS˚qKy

“ V ˚S˚ rAπpkerS˚qKRUΣ´1z

shows Aoz “ V ˚S˚ rAS´˚V z and V ˚S˚pdomAXranRq Ă domAo. By [EN00, Propo-
sition II.1.7], Z is already a core for Ao if it is Ao-invariant and dense in domAo. It
is indeed invariant: We can write any z P Z as z “ V ˚S˚Bu with u P W 1,2

0 pRď0; Uq
and the equality

Aoz “ V ˚S˚AptqS´˚V z “ V ˚S˚AptqS´˚V pV ˚S˚Buq

“ V ˚S˚AptqπpkerS˚qKBu “ V ˚S˚AptqBu “ V ˚S˚Bτ t´u

holds. Now the left shift of u is obviously again in W 1,2
0 pRď0; Uq and the overall

expression therefore in Z. Regarding density, we have that the continuous mapping
V ˚S˚B maps the dense subset W 1,2

0 pRď0; Uq of L2pRď0; Uq into a dense subset of
its image, ran V ˚S˚B, which is Σ`2. Since this is dense in `2, we conclude that Z is
dense in `2 and in particular in domAo. This proves (i).
Now we proof (ii). A simple calculation shows that the adjoint pT |Mq˚ of T |M :

M Ñ `2 equals πMSV . In order to show that pT |Mq˚ maps domA˚o into dom rA˚,
we prove the following three auxiliary statements:

(I) For all pxnq P `2 there holds SV pxnq “ C˚rV pxnq with rV as in (6.10): Due to
continuity, the equality

Sx “ SS˚S´˚x “ C˚CS´˚x “ C˚Vx,

which is true for all x P ranS˚R, must hold on ranS˚R “ ran V as well, and
the assertion follows because rV “ VV .

(II) The operator C˚ mapsW 1,2
0 pRě0; Yq into domA˚: This follows because C˚ Ris

the input operator of the dual system, and therefore, C˚ Rmaps W 1,2
0 pRď0; Yq

into domA˚ by Lemma 2.4.3.

(III) The last assertion is that πMC˚ “ πMC˚πranH: If we take an arbitrary y P
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6. State space transformations for systems with compact Hankel operator

L2pRě0; Yq, then pranHqK “ kerB˚C˚ shows that

ry :“ C˚πranHKy P ranC˚ X kerB˚ Ă pkerCqK X pranBqK.

Hence, taking the scalar product with any x P M, which must be of the form
x “ πpkerCqKb for some b P ranB yields

xx , ryyX “ xb´ πkerCb , ryyX “ xb , ryyX
loomoon

“0

´xπkerCb , ryyX
loooooomoooooon

“0

“ 0.

It follows ry P MK, and therefore

πMC˚y “ πMC˚πranHy ` πMC˚πpranHqKy

“ πMC˚πranHy ` πMry

“ πMC˚πranHy,

which is what we wanted to show.

In order to prove our original claim, we pick pxnq P domA˚o . Because rV was the
similarity transformation between (6.12) and the output normalized shift realization,
we have rV domA˚o “ πranHW

1,2
0 pRě0; Yq by (6.15a). Hence, rV pxnq “ πranHy for some

y P W 1,2
0 pRě0; Yq, and with (I) and (III) we get

pT |Mq
˚
pxnq “ πMSV pxnq “ πMC˚rV pxnq “ πMC˚πranHy “ πMC˚y.

Now, because of (II), the latter is an element of πMpdomA˚ X pkerCqKq, which was
shown to be dom rA˚ in Theorem 2.7.3. Finally, Lemma 2.1.1 implies that (6.19) is
an extension of T |M as claimed.
It remains to show (iii). Observe that, on the set Z, the operators Ao|`2 and

T´1 rA|MπpkerS˚qKT ` reduce to their unextended versions and therefore coincide ac-
cording to (i). Since Z is a core of the closed operator Ao|`2 , whose domain contains
Σ`2, this shows that T´1 rA|MπpkerS˚qKT ` is closable and its closure is Ao|`2 . In par-
ticular, both operators coincide on the larger set Σ`2. Hence, the assertion (6.20) is
true. We make use of this fact to determine the control operator via (2.7). For any
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6.2. Output normalizing transformations

u P U and λ in ρpAoq X ρp rAq it can be calculated by

Bou “ pλ´ Ao|`2qBoeλu “
´

λ´ T´1 rA|MπpkerS˚qKT `
¯

T πpkerS˚qKBeλu

“ T´1pλ´ rA|MqπpkerS˚qKBeλu “ T´1pλ´ rA|Mq
rBeλu “ T´1 rBu.

Here we have used that T maps M into Σ`2 and that πpkerS˚qKT `T is the identity
on M. Now for the output operator Co: We take an element z P Z. Then there is
an x P domAX ranB such that z “ T x, but in general T `z ‰ x. So the first thing
we have to check is that T `z is in the domain of Cex. An immediate consequence
of the definition of domCex is that kerS˚ “ kerC Ă pdomCex X kerCexq. Since
domCex is a linear space, we deduce

πpkerCqKT `z “ πpkerCqKx “ x
loomoon

PdomCex

´ πkerCx
loomoon

PdomCex

P domCex.

With this we get indeed

T `z “ πpkerCqKT `z ` πkerCT `z P domCex.

Hence,

Coz “ lim
tÑ0

1
t

ż t

0
pCT `zqpτq dτ “ CexT `z.

Remark 6.2.12. If kerC “ t0u, i.e. the original system is observable, the projec-
tion πpkerS˚qK is just the identity and rA may be replaced by A. In the non-
observable case, one might be tempted to omit the projection in the expression
V ˚S˚AπpkerS˚qKRUΣ´1 as well, since A maps domA X kerS˚ into kerS˚ anyway.
However, this is not allowed because for arbitrary z P Z, the vector RUΣ´1z will in
general not be in the domain ofA, even though the projected vector πpkerS˚qKRUΣ´1z

lies in πpkerS˚qK domA.

Truncation

The output normalized realization on `2 proves beneficial for approximation of the
input-output map, or more precisely the Hankel operator: An approximating se-
quence of finite dimensional systems arises by truncating the output normalized
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realization on `2. In order to define such truncations properly, an additional pre-
sumption has to be made.

Presumption 6.2.13. Presumption 6.2.3 holds and, in addition, the compact Han-
kel operator has a special representation: There exists an h P L1pRě0; BpU ; Yqq such
that, for all u P L2pRď0; Uq,

pHuqptq “

ż 0

´8

hpt´ τqupτq dτ, f.a.a. t ě 0. (6.23)

The function h is the so-called impulse response of the input output map D.

Remark 6.2.14. (i) A short calculation shows that the adjoint of H is the mapping

H˚ :L2
pRě0; Yq Ñ L2

pRď0; Uq,

pH˚yqptq “

ż 8

0
phpτ ´ tqq˚ ypτq dτ, f.a.a. t ě 0,

(6.24)

cf. [GO14, Lemma 4.9]. Note that our Hankel operator differs from the Hankel
operator defined in [GO14] and [GCP88] by multiplication from the left with
the reflection operator Rdefined in (2.10).

(ii) The representation (6.23) implies compactness of the Hankel operator accord-
ing to [GCP88, Appendix 1, p.895].

(iii) Recall that an operator is nuclear if only if it is compact and its singular values
are summable. It has been proven in [Gui12, Corollary 5.1.18.] that nuclearity
of the Hankel operator implies that a representation of the form (6.23) exists.
Further characterizations of nuclearity of Hankel operators can be found in
[CS01, Opm08, Opm10].

Lemma 6.2.15. Under Presumption 6.2.3, the following implications hold:

(i) If Presumption 6.2.13 holds, then D is strongly regular.

(ii) If Presumption 6.2.13 holds, then the Schmidt pairs prui, rviq of the Hankel op-
erator satisfy rui P W

1,1pRď0; Uq and rvi P W
1,1pRě0; Yq.

(iii) If Presumption 6.2.13 holds and moreover h P L1 X L2pRě0; BpU ; Yqq, then
the Schmidt pairs prui, rviq of the Hankel operator satisfy rui P W

1,2pRď0; Uq and
rvi P W

1,2pRě0; Yq.
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(iv) If the system pA,B,C,Dq is of Pritchard-Salamon type on pU , pW ,X ,Vq,Yq
with control operator B, then (6.23) holds with h “ CB P L2pRě0; BpU ; Yqq.
If, in addition, C P BpW ;L1pRě0; Yqq then Presumption 6.2.13 is fulfilled.

Proof. (i) We will prove the regularity with the help of the the output normalized
shift realization of D. Since regularity is independent of the realization, we may use
the non-minimal output normalized shift realization of D on L2pRě0; Yq. So let A,
B and C be as in Lemma 6.1.3 with Z replaced by L2pRě0; Yq, and let u P U be
arbitrary. We want to show that pI´A|L2pRě0;Yqq

´1Bu is in domCex. From (6.24)
we get that

〈Bu , ϕ〉 “
ż 8

0
〈u , hptq˚ϕptq〉 dt.

We will use that pI´A|L2pRě0;Yqq
´1Bu is the unique function x in L2pRě0; Yq that

satisfies

〈
pI´A|L2pRě0;Yqqx , ϕ

〉
L2pRě0;Yq

“

ż 8

0
〈u , hptq˚ϕptq〉U dt @ϕ P W 1,2

0 pRě0; Yq,

or equivalently,
ż 8

0
〈hptqu , ϕptq〉Y dt “ 〈x , pI´A˚qϕ〉L2pRě0;Yq .

Now we define the function

xpξq :“ eξ
ˆ
ż 8

ξ

e´τhpτqu dτ
˙

@ ξ ě 0,

and claim that it solves the above equation. It can be shown by standard estimates
that this function is in L1 X L8pRě0; Yq. Hence, Hölder’s inequality implies that
this defines indeed an L2pRě0; Yq function. Furthermore, the derivative,

9xpξq “ xpξq ´ hpξqu,

is integrable as well. Therefore, we can use partial integration, and we obtain for all
ϕ P W 1,2

0 pRě0; Yq

〈x , pI´A˚qϕ〉L2pRě0;Yq “

ż 8

0
〈xpξq , ϕpξq ` 9ϕpξq〉Y dξ
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“

ż 8

0
〈xpξq , ϕpξq〉Y ´ 〈 9xpξq , ϕpξq〉Y dξ ´ 〈xp0q , ϕp0q〉Y

“

ż 8

0
〈hpξqu , ϕptq〉Y dξ.

This shows that x “ pI´A|L2pRě0;Yqq
´1Bu. Since x is easily seen to be continuous,

it follows that x P domCex with Cexx “ xp0q “
ş8

0 e´τhpτqu dτ . By [Sta05, Theo-
rem 5.6.5] the fact that pI´A|L2pRě0;Yqq

´1Bu P domCex for all u P U implies that D
is strongly regular.
The assertions (ii) and (iii) are proven in [GO14, Theorem 4.4] and [GO14,

Lemma 4.11], respectively.
The first part of (iv) follows from [CLTZ94, Lemma 3.5 and Corollary 3.6], and

the additional assumption guarantees that h P L1 X L2pRě0; BpU ; Yqq.

For the rest of this Section, Presumption 6.2.13 is assumed to hold. The special
case where h P L2pRě0; BpU ; Yqq is considerably easier and will arise in Chapter 7,
where we treat Pritchard-Salamon systems.
The above lemma makes the following definition of the output normalized trun-

cation possible.

Definition 6.2.16 (output normalized truncation). Let Presumption 6.2.13 hold
and denote by pσnqnPN the sequence of singular values of the Hankel operator H with
corresponding Schmidt pairs prvj, rujq. Choose r such that σr`1 ‰ σr and denote by
d
dξ the differential operator d

dξ : W 1,1pRě0; Yq Ñ L1pRě0; Yq. The r-th order output
normalized truncation of D is the finite-dimensional system pAr, Br, Cr, Dq defined
by

Ar “

»

—

—

–

a11 ¨ ¨ ¨ a1r
... ...
ar1 ¨ ¨ ¨ arr

fi

ffi

ffi

fl

P Cr,r, Br “

»

—

—

–

b1
...
br

fi

ffi

ffi

fl

P BpU ,Cr
q,

Cr “
”

c1 ¨ ¨ ¨ cr

ı

P BpCr,Yq, D “ lim
λÑ8

pDpλq,

(6.25)

and

aij “
〈
rvi ,

d
dξ rvj

〉
L8pRě0;Yq,L1pRě0;Yq

P C,

bi “ σi 〈¨ , ruip0q〉U P BpU ,Cq,

cj “ rvjp0q P Y .
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Remark 6.2.17. The output normalized truncation is called “balanced truncation”
in [GO14]. We prefer the expression “output normalized” and reserve the name
“balanced truncation” for the realization that actually is balanced in the sense of
Definition 6.4.1.

The input-output map of the output normalized truncation approximates the
input-output behavior of the original system. More precisely, Guiver and Opmeer
have proven the following theorem in [GO14, Theorem 2.3 and Proposition 5.12]:

Theorem 6.2.18. Under Presumption 6.2.13, the output normalized truncation of
pA,B,C,Dq is a minimal 0-bounded output-normalized state linear system on pU ,
Cr, Yq with an exponentially stable semigroup. Its input-output map Dr approxi-
mates D in the sense that

}D´Dr}TIC2
0pU ;Yq “ }

pD´ pDr}H8pCě0q ď 2
ÿ

tnąr|σn‰σk@kănu

σn. (6.27)

Note that our presumptions do not guarantee summability of the Hankel singular
values. If they are not summable, the right hand side in (6.27) is to be interpreted
as infinity.
The remainder of the current section shows that the output normalized truncation

is obtained by some kind of truncation of the output normalized realization on `2

and therefore deserves its name. If h P L2pRě0; BpU ; Yqq, then Lemma 6.2.15 and
Corollary 6.2.10 imply that ej P domAo for all j P N and that the coefficients of the
output normalized truncation satisfy

aij “ 〈ei , Aoej〉`2 , cj “ Coej.

Without the additional assumption on h the situation is much more difficult for the
following reason. Since rvi is only in W 1,1pRě0; Yq, the unit vector ej is not in the
domain of Ao described in (6.14b). It is therefore necessary to use the extension
Ao|`2 on ej instead. The functional Ao|`2ej P pdomA˚oq

1 is by Lemma 2.1.1 defined
through the adjoint (6.15b), and can, by partial integration, be shown to equal

〈pxnq , Ao|`2ej〉domA˚o ,pdomA˚o q1
“ ´

ż 8

0

〈
d
dξ

8
ÿ

n“1
rvnpξqxn , rvjpξq

〉
Y

dξ,
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6. State space transformations for systems with compact Hankel operator

“

ż 8

0

8
ÿ

n“1

〈
rvnpξqxn ,

d
dξrvjpξq

〉
Y

dξ,

with d
dξrvj P L

1pRě0; Yq. This representation is valid for all pxnq in the domain of A˚o ,
which means

ř8

n“1 rvnxn P W
1,2
0 pRě0; Yq. Unfortunately, ei is not in this domain. At

a first glance, it may seem straight forward to extend this expression via

〈ei , Ao|`2ej〉 :“
ż 8

0

〈
rvipξq ,

d
dξrvjpξq

〉
Y

dξ “
〈
rvi ,

d
dξrvj

〉
L8pRě0;Yq,L1pRě0;Yq

,

which is well-defined because rvi P L8pRě0; Yq. To do this properly, however, we need
to extend the functional Ao|`2ej to the set tpxnq P `2 :

ř8

n“1 rvnxn P W
1,1pRě0; Yqu.

Since W 1,2
0 pRě0; Yq X W 1,1

0 pRě0; Yq is not dense in W 1,1pRě0; Yq, this extension
can not simply be obtained from continuity. Instead we must explicitly declare
the construction of this extension to be the following: First, the subspace of all
functionals in pW 1,1

0 pRě0; Yqq1 that can be represented by an L1-function is identified
with the actual space L1pRě0; Yq, and then it is embedded into the dual space of
W 1,1pRě0; Yq. For the operator Bo, which experiences the same difficulties only
with the L1-function hp¨qu instead of d

dξrvj, one can either proceed in the same way
or, more elegantly, by using the Cesàro extension of its adjoint. The next theorem
formalizes the construction explained above.

Theorem 6.2.19. Let Presumption 6.2.13 hold, and let Ao, Bo and Co be the gener-
ators of the output normalized realization (6.12). Then there exists a space Wo ãÑ `2

such that the following holds true:

(i) For all i P N the canonical unit vector ei is an element of Wo;

(ii) Ao|`2ei P W 1
o for all i, ranBo Ă W 1

o and Wo Ă dompCoqex;

(iii) The matrix entries aij, bi, cj of the output normalized truncation in Defini-
tion 6.2.16 satisfy

aij “ 〈ei , Aoej〉Wo,W 1
o

P C,

bip¨q “ 〈ei , Bo¨〉Wo,W 1
o
“ 〈pB˚o qexei , ¨〉U P BpU ;Cq,

cj “ pCoqexej P Y .

(6.28)

152



6.2. Output normalizing transformations

where pB˚o qex is the Cesàro extension of B˚o .

If, in addition, h is in L2pRě0; BpU ; Yqq, then it is possible to choose Wo “ `2.

Proof. Let us first assume that h P L1 X L2pRě0; BpU ; Yqq and set W0 “ `2. The
representation of H˚ in (6.24) and Bo in (6.16) show that the following holds for all
pxnq P domA˚o and u P U :

〈Bou , pxnq〉pdomA˚o q1,domA˚o
“

ż 8

0

〈
u , h˚pτqrV pxnq

〉
U

dτ “
A

rV ˚hp¨qu, pxnq
E

`2
.

Recall that pdomA˚oq
1 is by definition the dual space of domA˚o with respect to the

pivot space `2. Whence `2 is by definition considered as a subset of pdomA˚oq
1, and in

this sense the functional Bou P pdomA˚oq
1 is equivalent to the `2 sequence rV ˚hp¨qu.

In this way, we can make sense of the following scalar product:

〈Bou , ei〉`2 “
〈
rV ˚hp¨qu , ei

〉
`2
“ 〈hp¨qu , rvi〉L2pRě0;Yq

“ 〈u , pH˚rviqp0q〉U “
〈
u , prUΣrV ˚rviqp0q

〉
U

“ 〈u , σiruip0q〉U “ bipuq.

As mentioned before this theorem, the other equations in (6.28) follow immediately
from Corollary 6.2.10 since ej is in domAo. So the case where h P L2pRě0; BpU ; Yqq
is settled.
For h P L1pRě0; BpU ; Yqq, we show that the space

Wo :“
!

pwnq P `2

ˇ

ˇ

ˇ

rV pwnq P W
1,1
pRě0; Yq

)

with the norm }pwnq}Wo :“ }rV pwnq}W 1,1pRě0;Yq has the asserted properties. Because
the Schmidt vectors rvi “ rV ei are in W 1,1pRě0; Yq, the vector ei is by definition in
Wo and (i) is true. We claim that the space

W̊o :“

$

’

’

’

’

&

’

’

’

’

%

f P pdomA˚oq
1

D f̊ P L1
pRě0; Yq @ pxnq P domA˚o :

xf , pxnqypdomA˚o q1,domA˚o “

ż 8

0
xf̊pξq, ypξqyY dξ

for some y P W 1,2
0 pRě0; Yq with πranHy “

rV pxnq.

,

/

/

/

/

.

/

/

/

/

-
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6. State space transformations for systems with compact Hankel operator

with norm }f}W̊o
:“ }f̊}L1pRě0;Yq is continuously embedded into W 1

o via the injection

ι : W̊0 Ñ W 1
o, xιf , pznqyW 1

o,Wo :“
ż 8

0

A

f̊pξq ,
8
ÿ

n“1
znrvnpξq

E

Y
dξ @ pznq P Wo.

A simple estimate shows |xιf , pznqyW 1
o,Wo | ď }ιf}L1pRě0;Yq}pznq}Wo and hence, ιf is

a functional on Wo. The estimate }ιf}W 1
o
ď }f}W̊o

moreover shows the continuity
of the embedding ι. To conclude the injectivity of ι, observe that the statement
xιf , pznqyW 1

o,Wo “ 0 for all pznq P Wo is equivalent to
ş8

0 xf̊pξq, wpξqyY dξ “ 0 for
all w P W 1,1pRě0; Yq X ranH, which implies f̊ P pranHqK. Hence, f is the zero
functional on domA˚o if ιf “ 0. Note that the embedding of `2 into pdomA˚oq

1 that
we used in the previous case is inherent in the definition of pdomA˚oq

1. The analogous
embedding ι that we have now does not come automatically with any definition. We
had to define it manually.
In order to prove that Ao|`2ej P W 1

o, it suffices now to show that Ao|`2ej P W̊o for
all j P N. Choose an arbitrary pznq in domA˚o . Recalling the formula (6.15b) for
A˚o , we choose y P W 1,2

0 pRě0; Yq with πranHy “
rV pznq and have

〈pznq , Ao|`2ej〉domA˚o ,pdomA˚o q1
“ 〈A˚opznq , ej〉`2
“
〈
´rV ˚ d

dξy , ej
〉
`2

“
〈
´ d

dξy ,
rV ej

〉
L2pRě0;Yq

“

ż 8

0

〈
ypξq , d

dξrvjpξq
〉

Y
dξ.

In the last line we have used partial integration between aW 1,1- and aW 1,2
0 -function,

which is justified by approximation with smooth functions. The equation above
shows that Ao|`2ej is an element of W̊o with ˚Ao|`2ej “

d
dξrvj. Now it is merely

a matter of definition to see that xei , ιAo|`2ejyWo,W 1
o
equals the desired formula for

the matrix entries aij.
Similar to the previous case, the representations of Bo and H˚ in (6.16) and (6.24)

imply for all pxnq P pdomAoq
˚ and u P U

〈Bou , pxnq〉pdomA˚o q1,domA˚o
“

A

hp¨qu , rV pxnq
E

L2pRě0;Yq
.
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6.3. Input normalizing transformations

Since h is in L1pRě0; BpU ; Yqq, this shows Bou P W̊o with B̊ou “ hu. Hence, the
embedding ι gives

xBou, eiyW 1
o,Wo “

ż 8

0
xhpξqu, rvipξqyY dξ (6.24)

“ xu, pH˚rviqp0qyU

“ xu, σiruip0qyU “ bipuq.

The alternative representation of bi uses the Cesàro extension of B˚o , which is defined
as

pB˚o qexx :“ lim
tÑ0

1
t

ż t

0
pB˚

oxqp´τq dτ @x P dompB˚o qex.

For ei we have

B˚
oei

(6.13)
“ H˚rV ei “ rUΣrV ˚rvi “ σirui P W 1,1

pRď0; Uq.

Since dompB˚o qex is by definition the set where the limit above exists, we conclude
that ei P dompB˚o qex for all i P N and that

xu, pB˚o qexeiyU “ xu , σiruip0qyU “ bipuqp0q.

Analogously, Wo is contained in the domain of pCoqex since W 1,1-functions are con-
tinuous and therefore posess a Cesàro limit at zero. Thus,

pCoqexej “ lim
tÑ0

1
t

ż t

0
pCoejqpτq dτ “ lim

tÑ0

1
t

ż t

0
rvjpτq dτ “ rvjp0q “ ci,

and the proof is complete.

6.3. Input normalizing transformations
In analogy to Section 6.2, it is possible to construct an input normalized realization
on `2, which is unitary similar to the input normalized shift realization on pkerHqK

via the transformation rU in (6.10). We will not carry this out here explicitly. Instead
we only give one lemma highlighting another interesting aspect: The restriction of
the output normalized realization to the subspace Σ`2 is input normalized. This
lemma is based on the same principle.
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6. State space transformations for systems with compact Hankel operator

We equip the space Σ`2, i.e. the image of Σ, with the scalar product

〈¨ , ¨〉Σ`2 :“ xΣ´1
¨ , Σ´1

¨y`2 .

Lemma 6.3.1. Let Presumption 6.2.3 hold. The output normalized system (6.12)
restricted to Σ`2, i.e.

pA,B,C,Dq :“ pAo|Σ`2 ,Bo,Co|Σ`2 ,Dq , (6.29)

is an input normalized 0-bounded L2-well-posed linear system on pΣ`2, } ¨ }Σ`2q. The
generator A of A satisfies

domA “ Z “ tx P domAo X Σ`2 : Aox P Σ`2
u, (6.30)

A : domA Ă Σ`2
Ñ Σ`2, Ax “ Aox @x P domA,

where the space Z “ V ˚S˚BW 1,2
0 pRď0; Uq is as in Theorem 6.2.11.

Proof. In analogy to the proof of Theorem 6.2.8, we claim that the operator

rUΣ´1 : Σ`2
Ñ pkerHqK,

with rU as in the singular value decomposition (6.10), is a unitary similarity trans-
formation between the system (6.29) and the input normalized shift realization (6.1)
on pkerHqK. We know that rU is unitary. With respect to the scalar product of Σ`2,
the operator Σ P Bp`2; Σ`2q is unitary as well. So it suffices to show that rUΣ´1

transforms (6.29) into (6.1). In Lemma 6.2.5 we proved that R´1B maps pkerHqK

into pkerS˚RqK and the restriction R´1B|pkerHqK was named U˚. Using the readily
verified fact that R´1B also maps kerH into kerS˚R, we therefore have

πpkerS˚RqKpR
´1Bqu “ U˚πpkerHqKu @u P L2

pRď0; Uq,

and consequently for all x P ranB

V ˚S˚x “ V ˚S˚RR´1BB´1x “ V ˚S˚RπpkerS˚RqKpR
´1BqB´1x

“ ΣU˚U˚πpkerHqKB
´1x “ ΣrU˚πpkerHqKB

´1x.
(6.31)
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6.3. Input normalizing transformations

Using this and the A-invariance of ranB, we get

Aoptq|Σ`2 “ V ˚S˚AptqRUΣ´1

“ ΣrU˚πpkerHqKB
´1AptqBUUΣ´1

“ ΣrU˚πpkerHqKτ
t
´|pkerHqK rUΣ´1.

This shows that the semigroup Ao|Σ`2 is unitarily similar to the strongly continuous
semigroup of the shift realization on pkerHqK. For the input operator, equation
(6.31) immediately gives the asserted equality

V ˚S˚B “ ΣrU˚πpkerHqKπpkerBqK “ ΣrU˚πpkerHqK ,

and finally, the output operator C equals

CRUΣ´1
“ CBpB´1RqUΣ´1 (6.5)

“ H|pkerHqKUUΣ´1
“ H|pkerHqK rUΣ´1.

Altogether we have shown that (6.29) is unitary similar to the system (6.1). There-
fore, its well-posedness follows from Lemma 2.4.15 and moreover, the unitary trans-
formations keep the system input normalized.
Also by Lemma 2.4.15, the domain of A is given by the transformation ΣrU˚

applied to the domain of the exactly controllable shift realization. With (6.31) this
becomes

domA “ ΣrU˚πpkerHqKW
1,2
0 pRď0; Uq “ V ˚S˚BW 1,2

0 pRď0; Uq “ Z.

On the other hand, we know that A is the restriction of Ao and strongly continuous
with respect to }¨}Σ`2 . Hence, the generator A must be the part of Ao in Σ`2 by
Lemma A.1.4. The latter is by definition the last term in (6.30) and therefore the
proof is complete.

Remark 6.3.2. (i) We point out that the crucial property of the space Z is that
x P BW 1,2

0 pRď0; Uq does not only imply x P domA X ranB, but also Ax P
ranB. This explains the fact that V ˚S˚Ax is again an element of Σ`2 and
thus the relation (6.30).

(ii) A further similarity transformation with the unitary operator Σ´1 : Σ`2 Ñ `2
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6. State space transformations for systems with compact Hankel operator

yields an input normalized system on the state space `2 as mentioned at the
beginning of this section. This gives a completely analogous result to Theorem
6.2.8 with output normalization replaced by input normalization. For the
upcoming interpolation step however, the present system with state space Σ`2

is more convenient.

6.4. Balancing transformations
In the previously constructed realizations on `2 one of the Gramians was the identity
operator and the other was the diagonal operator Σ2. The most popular realization
for finite-dimensional systems is the one in which both Gramians are equal to Σ.
This realization is called balanced and is the eponym of the balanced truncation.
For infinite-dimensional systems, equality of the Gramians can also be achieved,
but with a lot of technical effort: The balanced realization has to be constructed by
interpolating the input normalized and the output normalized realization.

Definition 6.4.1 (balanced system). We say that a 0-bounded L2-well-posed linear
system pA,B,C,Dq on pU , `2,Yq is balanced if and only if there exists a diagonal
operator Σ P Bp`2q such that the Gramians satisfy

BB˚
“ C˚C “ Σ.

Theorem 6.4.2. Let Presumption 6.2.3 hold and let S˚R “ V ΣU˚ be the singular
value decomposition of the operator S˚R. Then the operators

T : ranR Ă X Ñ `2, T` : Σ1{2`2 Ă `2 Ñ X,

x ÞÑ Σ´1{2V ˚S˚x, x ÞÑ RUΣ´1{2x
(6.32)

are well-defined, and the following assertions are true:

(i) ranR “ ranB, and thus Aptq ranR Ă ranR for all t ě 0.

(ii) There exists a constant c ą 0 such that, for all x P Σ1{2`2, u P L2pRď0; Uq and
t ě 0,

}TAptqT`x}`2 ď c }x}`2 , }TBu}`2 ď c }u}L2pRď0;Uq,
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6.4. Balancing transformations

}CT`x}L2pRě0;Yq ď c }x}`2 .

(iii) With the unique continuous extensions

TAT` : Rě0 Ñ Bp`2q, t ÞÑ TAptqT`,

and
CT` P Bp`2;L2

pRě0; Yqq,

the quadruple
pAb,Bb,Cb,Dq :“ pTAT`, TB,CT`,Dq (6.33)

forms a minimal balanced 0-bounded L2-well-posed linear system on pU , `2,Yq.

The idea behind the proof of Theorem 6.4.2 is to obtain the balanced system by
interpolating between the output normalized realization (6.12) of D on p`2, x¨, ¨y`2q

and its restriction to pΣ`2, x¨, ¨yΣ`2q described in (6.29). So an important ingredient
for the proof is the following auxiliary result about well-posedness of an interpolated
system.

Lemma 6.4.3. Let X , X and X be Hilbert spaces with X ãÑ X ãÑ X . Assume that
there exists a positive operator Σ P BpX q such that X “ ran Σ1{2, X “ ran Σ and

xx, yyX “ xΣ1{2x,Σ1{2yyX “ xΣx,ΣyyX @x, y P X .

Let pA,B,C,Dq and pA,B,C,Dq be two 0-bounded L2-well-posed linear systems on
the Hilbert spaces pU ,X ,Yq and pU ,X ,Yq respectively, with the same input map B,
the same input-output map D and A “ A|X , C “ C|X . Then X is invariant under
A and pA|X ,B,C|X ,Dq is a 0-bounded L2-well-posed linear system on pU ,X ,Yq.
Moreover, the domain of the generator A of A is the part of A in X and the domain
of A is a core for A.

Proof. The claim about well-posedness is a special case of Lemma 9.5.7 in [Sta05].
That the generator of a semigroup restricted to an invariant subspace is given by
the part of the generator in the subspace, is Lemma A.1.4. To see that domA is a
core, it suffices by [EN00, Proposition II.1.7] to see that it is invariant under A and
a dense subset of domA. The latter is true because X ãÑ X .
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6. State space transformations for systems with compact Hankel operator

Proof of Theorem 6.4.2. Part (i) has been shown before, see (6.4a) and Defini-
tion 2.4.1 (ii). It is restated in the theorem to underpin that the concatenations
in (ii) are well-defined.
We apply the interpolation Lemma 6.4.3 to the output normalized system (6.12)

on `2 and its restriction (6.29) to Σ`2. This guarantees the well-posedness of the
system

`

pA, pB, pC, D
˘

:“
`

Ao|Σ1{2`2 , Bo, Co|Σ1{2`2 , D
˘

(6.34)

on the interpolated state space Σ1{2`2. In particular, Σ1{2 is invariant under Ao and
Ao|Σ1{2`2 is strongly continuous with respect to }¨}Σ1{2`2

.
In order to determine the Gramians of this system, we calculate some adjoints

with respect to x¨, ¨yΣ1{2`2 . For all y P L2pRě0; Yq we have

xCox , yyL2pRě0;Yq “ xx , C
˚
oyy`2

“ xΣ´1{2x , Σ´1{2ΣC˚oyy`2

“ xx , ΣC˚oyyΣ1{2`2 @x P Σ1{2`2,

and for all u P L2pRď0; Uq

xBou , xyΣ1{2`2 “ xΣ
´1{2Bou , Σ´1{2xy`2

“ xu , B˚
oΣ´1xyL2pRď0;Uq @x P Σ`2.

Thus, the Gramians with respect to the scalar product x¨, ¨yΣ1{2`2 are given by

pC˚pC “ ΣC˚oCo “ Σ idΣ1{2 ,

and

pBpB˚x “ BoB
˚
oΣ´1x “ V ˚S˚BB˚SV Σ´1x “ V ˚S˚RR˚SV Σ´1x

“ V ˚S˚RπpkerS˚RqKR
˚SV Σ´1x “ V ˚S˚RUU˚R˚SV Σ´1x

“ Σx @x P Σ`2,

where the last equation can be extended to the whole space Σ1{2`2, because both of
the operators pBpB˚ and Σ are in BpΣ1{2`2q. The system (6.34) is therefore balanced.
The last step of the proof is to transfer this system to the favored state space `2
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6.4. Balancing transformations

via another unitary transformation Σ´1{2 : Σ1{2`2 Ñ `2. The result of this is the
system

´

Σ´1{2
pAΣ1{2, Σ´1{2

pB, pCΣ1{2, D
¯

“

´

Σ´1{2V ˚S˚ARUΣ´1Σ1{2, Σ´1{2V ˚S˚B, CRUΣ´1Σ1{2, D
¯ (6.35)

on `2. Since we are transforming unitarily with respect to the scalar products
〈¨ , ¨〉Σ1{2`2

and 〈¨ , ¨〉`2 , the Gramians do not change and the resulting system is
still balanced. In order to complete the proof, it suffices to check that the operators
defined in (6.33) and (6.35) are the same. For Bo and D there is nothing to prove.
For Aoptq and Co it follows since all the operators are bounded with respect to the
`2-norm and coincide on the dense subset Σ`2 of `2. Thus, parts (ii) and (iii) are
proven as well.

Remark 6.4.4. (i) As an immediate consequence of Lemma 6.2.7 and the fact that
Σ1{2 : `2 Ñ Σ1{2`2 is an isomorphism the mapping

T |M : M Ă X Ñ Σ1{2`2, T :“ Σ´1{2V ˚S˚,

is an isomorphism with inverse

T` : Σ1{2`2
Ă `2

Ñ M, πpkerS˚qKT
` :“ πpkerS˚qKRUΣ´1{2.

(ii) It is shown in [RS14, Section 11] that the closure of T is a pseudo-similarity
transformation between the system pAb,Bb,Cb,Dq and the Kalman-compres-
sed realization

`

πpkerCqKA|M, πpkerCqKB,C|M,D
˘

in Theorem 2.7.3.

Theorem 6.4.5. Let T and T` be as in Theorem 6.4.2. Then the following is true
for the generators Ab ,Bb and Cb of the balanced realization in (6.33):

(i) The space W :“ TBW 1,2
0 pRď0; Uq is a subset of Σ1{2`2 and a core for Ab.

Moreover, πpkerS˚qKT
`W Ă πpkerCqK domA and the quotient operator rA of A

defined in Theorem 2.7.3 satisfies

Abx “ T rAπpkerS˚qKT
`x @x P W . (6.36)

161



6. State space transformations for systems with compact Hankel operator

(ii) There exists a space ĂW Ă Σ1{2`2 X domA˚b , which is a core for A˚b , such that
the adjoint

pT |Mq
˚ : Σ1{2`2 Ă `2 Ñ X , x ÞÑ πMSV Σ´1{2x

fulfills pT |Mq˚ĂW Ă dom rA˚. For all x P ĂW and u P U the control operator
fulfills

〈Bbu , x〉
pdomA˚

b
q1,domA˚

b
“ xBu, pT |Mq

˚xy
pdomA˚q1,domA˚ . (6.37)

Consequently, Bbu is obtained by continuous extension of this functional to
domA˚b .

(iii) The observation operator fulfills

Cbx “ CexT
`x @x P W .

Proof. By Remark 6.4.4 we have

πpkerS˚qKT
`W “ πpkerS˚qKT

`TBW 1,2
0 pRď0; Uq “ πpkerCqKBW

1,2
0 pRď0; Uq.

Theorem 2.7.3 and Lemma 2.4.3 (i) show that rA maps this set into M and therefore
the right hand side in (6.36) is well-defined. Recall that the system (6.34) in the
proof of Theorem 6.4.2 was obtained by interpolation. Thus, by Lemma 6.4.3 the
space domA is a core for pA and the domain of pA is the part of Ao in Σ1{2`2. This
means in particular

dom pA “
 

x P Σ1{2
X domAo : Aox P Σ1{2`2

(

,

pAz “ Aoz “ V ˚S˚ rAπpkerS˚qKRUΣ´1x @ z P domA.

Formula (6.30) shows that W “ Σ´1{2 domA. Since the semigroups Ab and pA are
unitarily similar via the transformation Σ´1{2 P BpΣ1{2`2; `2q, their generators are
related by

domAb “ Σ´1{2 dom pA “ Σ´1{2  x P Σ1{2
X domAo : Aox P Σ1{2`2

(

Abz “ Σ´1{2
pAΣ1{2z “ Σ´1{2V ˚S˚ rAπpkerS˚qKRUΣ´1{2z @ z P W ,

162



6.4. Balancing transformations

and W is a core for Ab. This shows all the assertions in (i).
We do not determine the domain of the adjoint A˚b exactly, but we will prove

that ĂW :“ Σ1{2 domA˚o is a core for A˚b and has the properties claimed in (ii). Take
y P ĂW and x P domAb Ă Σ´1{2 domAo. Then the right hand side of the equation

xAbx, yy`2 “ xΣ´1{2AoΣ1{2x, yy`2 “ xx,Σ1{2A˚oΣ´1{2yy`2

is continuous in x, which implies y P domA˚b and

A˚by “ Σ1{2A˚oΣ´1{2y @ y P ĂW . (6.38)

So we have shown ĂW Ă domA˚b . We now prove that ĂW is dense in `2 and A˚b -
invariant. The continuity of Σ1{2 P Bp`2q implies that Σ1{2 domA˚o is dense in Σ1{2`2

with respect to the topology of `2. Because Σ1{2`2 itself is dense in `2, it follows that
ĂW is dense in `2. Furthermore, for x P `2 and y P ĂW Ă Σ1{2`2, the equation

xAbptqx, yy`2 “ xΣ´1{2AoptqΣ1{2x, yy`2 “ xx,Σ1{2A˚optqΣ´1{2yy`2

shows A˚b ptqy “ Σ1{2A˚optqΣ´1{2y. This representation together with the definition
of ĂW shows the Ab-invariance of ĂW , since the Aoptq maps domA˚o into itself. So
altogether ĂW must be a core of A˚b by [EN00, Proposition II.1.7].
To complete the proof of (ii), we observe that pT |Mq˚ “ pT |Mq˚Σ´1{2 and therefore

pT |Mq
˚
ĂW “ pT |Mq

˚Σ´1{2Σ1{2 domA˚o “ pT |Mq
˚ domA˚o .

The latter set was shown to be a subset of dom rA˚ in Theorem 6.2.11. Choose λ in
the resolvent sets of Ab and Ao, and let y P ĂW and u P U . Knowing from (i) that
y P domA˚b and using (6.38) we obtain with (6.21)

xBbu, yypdomA˚
b
q1,domA˚

b
“ xpλ´ Ab|`2qBbeλu, yypdomA˚

b
q1,domA˚

b

“ xBbeλu, pλ´ A
˚
b qyy`2

“ xΣ´1{2Boeλu,Σ1{2
pλ´ A˚oqΣ´1{2yy`2

“ xBoeλu, pλ´ A
˚
oqΣ´1{2yy`2

“ xpλ´ Ao|`2qBou,Σ´1{2yypdomA˚o q1,domA˚o

“ xBou,Σ´1{2yypdomA˚o q1,domA˚o
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6. State space transformations for systems with compact Hankel operator

“ x rBu, pT |Mq
˚yy

pdom rA˚q1,dom rA˚ .

The functional Bbu P pdomA˚b q
1 is obtained by continuous extension of this expres-

sion to all y P domA˚b because the core ĂW is dense in domA˚b with respect to the
graph norm of A˚b . Thus, the assertion in (ii) is shown, and (iii) follows from the fact
that Cbx “ CoΣ1{2x for all x P W and the definition of the observation operator.

Remark 6.4.6. In view of Corollary 6.2.10 the generator Ab of Ab is also equal to

domAb “ Σ´1{2

#

pxnq P Σ1{2`2

rV pxnq P W
1,2
pR`; Yq and

rV ˚ d
dξ
rV pxnq P Σ1{2`2

+

,

Abx “ Σ´1{2
rV ˚ d

dξ
rV Σ1{2x.

Truncation

Definition 6.4.7 (balanced truncation). Let Presumption 6.2.13 hold and denote by
pσnqnPN the sequence of singular values of the Hankel operator H with corresponding
Schmidt pairs prvj, rujq. Choose r such that σr`1 ‰ σr and denote by d

dξ the differential
operator d

dξ : W 1,1pRě0; Yq Ñ L1pRě0; Yq. The r-th order balanced truncation of D
is the r-dimensional system pAr, Br, Cr, Dq defined by the matrices in (6.25) with
coefficients

aij “

?
σj

?
σi

〈
rvi ,

d
dξ rvj

〉
L8pRě0;Yq,L1pRě0;Yq

P C, (6.39a)

bi “
?
σi 〈¨ , ruip0q〉U P BpU ,Cq, (6.39b)

cj “
1
?
σj
rvjp0q P Y . (6.39c)

Note that the output normalized truncation in Definition 6.2.16 and the balanced
truncation are related by a simple state space transformation with the diagonal
matrix Σr :“ diagp?σ1 , . . . ,

?
σrq P Crˆr. In particular they are realizations of the

same input-output map.
It is shown in [RS14, Theorem 5.6] that the balanced truncation is obtained

by truncating the balanced realization on `2 in analogy to Theorem 6.2.19. An
easier way to obtain the balanced truncation is to determine the output normalized
truncation and then transform it with the matrix Σr.
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6.5. Notes and references
The balancing technique that makes use of the factorizations RR˚ and SS˚ of the
Gramians was first introduced in [TP87] for finite-dimensional systems. The pop-
ularity of this balancing approach is mainly based on two facts: Firstly, there are
various numerical methods for the determination of Gramians which directly provide
the factors S and R instead of the Gramians themselves (see [Ant05, Chapter 6] for
an overview). Secondly, this balancing approach can be easily modified to directly
construct the truncated balanced realization without determining the parts of Ab,
Bb, Cb which are truncated anyway. This is done by simply truncating the singular
value decomposition of S˚R.
Balancing for infinite-dimensional systems has been considered in various articles

[Cur03, CG86, GCP88, GLP90, Gui12, GO14, Obe86, Obe87, Obe91, OMS91].
The error bound in terms of neglected Hankel singular values has been first shown

in [GCP88] for the class of systems with square integrable impulse response, and has
recently been generalized to systems with nuclear Hankel operator [Gui12, GO14].
All mentioned approaches to balancing or output normalizing of infinite-dimensional
systems have in common that they rely on a construction by means of the Schmidt
pairs of the Hankel operator and not on transformations of the state space. The
closest to our approach is [Sta05, Chapter 9], which defines pseudo-similarity trans-
formations. In Sections 6.2–6.4 we have essentially worked out the concepts that are
described on the level of input-to-state and state-to-output maps in [Sta05, Chap-
ter 9], in more detail. The novelties in the present work are that we have used factors
of the Gramians instead of the input-to-state and the state-to-output map, that we
have applied the transformations to non-minimal systems and, most importantly, we
have given detailed characterization of the generators and highlighted the relation
to the balanced truncation defined in [Gui12, GO14].
The generators of a balanced realization on `2 have also been considered in

[GCP88] for impulse responses in L1XL2. However, the proof of [GCP88, Lemma 3.3]
is flawed as it suggests without justification that the limit in Ab

ř8

k“1 ckrvk is ex-
changeable with Ab.
By [Sta05, Theorem 9.2.5] two minimal realizations of the same input-output

map are pseudo-similar. In particular, the output normalized and the balanced
realization on `2 are pseudo-similar to pA,B,C,Dq if this system is minimal. In
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6. State space transformations for systems with compact Hankel operator

[RS14] we have shown that the corresponding pseudo-similarity transformations in
this case are the mapping T in Theorem 6.2.8 and the closure of the mapping T in
Theorem 6.4.2, respectively.
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7. H8-balancing and truncation for
Pritchard-Salamon systems

In this chapter we consider an ω-bounded Pritchard-Salamon system pA,B,C,Dq

on pU , pW ,X ,Vq, Y). We aim to construct a controller K P TIC2
locpY ; Uq that

stabilizes the system in an input-output sense defined later. This controller should
have a finite-dimensional realization in order to be implemented in practice. To
this end, we use the approximation theory by balanced truncation that was already
described in Section 6.2. The main obstacle is that this approximation is only
valid for 0-bounded systems. The idea here is to stabilize the system first by an
exponentially stabilizing feedback pair in the sense of Definition 2.8.10 and then
perform balanced truncation on the closed-loop system described in (2.34), which
is 0-bounded. We do not use an arbitrary exponentially stabilizing feedback pair,
but the one that arises in the solution of the following linear quadratic minimization
problem. Consider, for an initial value x0 P W , the following set of admissible
controls:

Uadmpx0q :“

$

’

’

’

’

&

’

’

’

’

%

u P L2
pRě0; Uq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ż 8

0
}xptq}2V dt ă 8 for all x, y

with px, u, yq P bhvpA,B,C,Dq

and xp0q “ x0.

,

/

/

/

/

.

/

/

/

/

-

. (7.1)

We try to find, for β P p0, 1s, the minimizer of the set
!

}Cx0 `Du}2L2pRě0;Yq `
1
β2 }u}

2
L2pRě0;Uq

ˇ

ˇ

ˇ
u P Uadmpx0q

)

.
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7. H8-balancing and truncation for Pritchard-Salamon systems

In other words, if we assume for a moment that u is smooth, we try to minimize the
functional

ż 8

0
}Cxptq `Duptq}2Y `

1
β2 }uptq}

2
U dt

where px, u, yq P bhvpA,B,C,Dq, xp0q “ x0,

over all u P Uadmpx0q. This problem has been studied extensively under various
conditions, for example in [vK93, Mik02, PS87, Sta98c] to name but a few. The
result is that there exists a self adjoint, so-called Riccati operator, X8 P BpV ; V 1q,
such that

〈x0 , X8x0〉 “ inf
uPUadmpx0q

´

}Cx0 `Du}2L2pRě0;Yq `
1
β2 }u}

2
L2pRě0;Uq

¯

, (7.2)

and this Riccati operator solves an algebraic operator equation, known as control
algebraic Riccati equation. However, it is usually not the only solution to this
equation. Furthermore, an admissible feedback pair can be constructed from X8

such that the input-output map of the closed-loop system is in TIC2
0pU ; YˆUq. This

feedback pair is often assumed to be exponentially stabilizing which distinguishes
a unique solution of the Riccati equation [vK93, Theorem 3.10]. The clue to this
whole approach is that the closed-loop system pAœ,Bœ,Cœ,Dœq has some usable
properties. Firstly, its Hankel operator fulfills Presumption 6.2.13. Secondly, if v
is the minimizer of (7.2), then the (autonomous) output of the closed-loop system
with initial value x0 is

Cœx0 “

„

Cx0 `Dv
v



.

Therefore (7.2) implies that the observability Gramian C˚œCœ equals X8. Recall that
knowledge of both Gramian is required for balanced truncation. The controllability
Gramian is related to a dual, so-called filter algebraic Riccati equation. With these
tools at hand, we can carry out balancing and truncation of the closed-loop system.
The procedure is called H8-balanced truncation because, following the idea of

[MG91], the factor β P p0, 1s makes it possible to consider the minimization problem
above, together with a dual problem, as a special case of H8-control problem. This
will be exploited in Section 7.4 to construct a robust controller.
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7.1. Riccati equations
The notion of a control algebraic Riccati equation varies heavily in the literature,
depending on the associated control problem. We use a definition in the spirit of
[vK93]. In this chapter we use p¨q˚ for the Hilbert space adjoint of an operator and
p¨q1 for the adjoint between the dual spaces (which are by Section 2.8 represented
with respect to a pivot space).

Definition 7.1.1 (Riccati equations). Let pA,B,C,Dq be a smooth Pritchard-
Salamon system on the Hilbert spaces pU , pW ,X ,Vq,Yq. An operatorX8 P BpV ; V 1q
is said to be a solution of the HCARE (H8 Control Algebraic Riccati Equation) if
X 1
8 “ X8, xX8x, xyV 1,V ě 0 for all x P V , and the following equation holds for all

x, y P domAV Ă W :

xX8x,A
VyyV 1,V ` xA

Vx,X8yyV,V 1 ` xCx,CyyY

“ β2
〈
pI`β2D˚Dq´1

pD˚C `B1X8qx , pD
˚C `B1X8qy

〉
U
.

(7.3)

For β “ 1, the HCARE is simply called CARE (Control Algebraic Riccati Equation).
An operator Y8 P B pW 1; Wq is said to be a solution of the HFARE (H8 Filter

Algebraic Riccati Equation) if Y 18 “ Y8, xx, Y8xyW 1,W ě 0 for all x P W 1, and the
following equation holds for all x, y P dompAWq1 Ă V 1:

xY8x, pA
W
q
1yyW,W 1 ` xpAW

q
1x, Y8yyW 1,W ` 〈B1x , B1y〉U

“ β2
〈
pI`Dβ2D˚q´1

pDB1 ` CY8qx , pDB
1
` CY8qy

〉
Y
.

(7.4)

For β “ 1, the HFARE is simply called FARE (Filter Algebraic Riccati Equation).

Note that the HFARE is well-defined because the smoothness of the Pritchard-
Salamon system implies by [vK93, Theorem 2.17 (iii)] that dompAWq1 Ă V 1. This
means that the dual system is smooth as well.
The HCARE may be interpreted as the CARE with respect to a different scalar

product. To this end, we introduce the space Uβ, which is defined as the input space
U equipped with the new scalar product 〈¨ , ¨〉Uβ :“

〈
1
β2 ¨ , ¨

〉
U
. Adjoint operators

with respect to this scalar product are indicated by p¨qd. The relation

〈Du , y〉Y “ 〈u , D˚y〉U “
〈
u , β2D˚y

〉
Uβ

@u P U , y P Y ,
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7. H8-balancing and truncation for Pritchard-Salamon systems

shows that the adjoint of D with respect to 〈¨ , ¨〉Uβ is Dd “ β2D˚. An analogous
calculation yields Bd “ β2B1.

Lemma 7.1.2. The operator X8 solves (7.3) if and only if it satisfies the following
CARE for all x, y P domAV :

xX8x,A
VyyV 1,V ` xA

Vx,X8yyV,V 1 ` xCx,CyyY

“
〈
pI`DdDq´1

pDdC `BdX8qx , pD
dC `BdX8qy

〉
Uβ
.

(7.5)

The operator Y8 solves (7.4) if and only if Y2 :“ β2Y8 satisfies the following FARE
for all x, y P dompAWq1:

xβ2Y8x, pA
W
q
1yyW,W 1 ` xpAW

q
1x, β2Y8yyW 1,W ` xB1x,B1yyUβ

“
〈
pI`DDdq´1

pDBd ` Cβ2Y8qx , pDB
d
` Cβ2Y8qy

〉
Y
.

(7.6)

Proof. Note that (7.3) can equivalently be written as

xX8x,A
VyyV 1,V ` xA

Vx,X8yyV,V 1 ` xCx,CyyY

“
1
β2

〈
pI`β2D˚Dq´1

pβ2D˚C ` β2B1X8qx , pβ
2D˚C ` β2B1X8qy

〉
U
,

and multiplication of (7.4) by β2 yields

xβ2Y8x, pA
W
q
1yyW,W 1 ` xpAW

q
1x, β2Y8yyW 1,W ` β2

xB1x,B1yyU

“
〈
pI`Dβ2D˚q´1

pDβ2B1 ` Cβ2Y8qx , pDβ
2B1 ` Cβ2Y8qy

〉
Y
.

As mentioned before, the adjoints with respect to 〈¨ , ¨〉Uβ satisfy Dd “ β2D˚ and
Bd “ β2B1. This shows the claim.

Throughout this chapter we will make the following hypothesis.

Presumption 7.1.3. The quadruple pA,B,C,Dq is a smooth Pritchard-Salamon
system on the Hilbert spaces pU , pW ,X ,Vq,Yq. It generates the ω-bounded well-
posed linear system pA,B,C,Dq. There exists a solution X8 to the HCARE such
that, with the definitions

L :“ pI`β2D˚Dq, K :“ ´L´1
pβ2D˚C ` β2B1X8q, (7.7)
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7.1. Riccati equations

the block operator rL 1
2K , I´L 1

2 s P B pW ˆ U ; Uq is an exponentially stabilizing ad-
missible feedback pair for pA,B,C,Dq. Moreover, there exists a solution Y8 to the
HFARE.

Remark 7.1.4. We will not need any exponentially stabilizing condition on Y8.

Theorem 7.1.5. Under Presumption 7.1.3 the following holds:

(i) The closed-loop system

pAœ, Bœ, Cœ, Dœq :“
˜

pAV
`BKq|domAœ

, BL´1{2,

«

C `DK

K

ff

,

«

DL´1{2

L´1{2

ff¸

,
(7.8)

with
domAœ :“

 

x P domAV ˇ

ˇ AVx`BKx P X
(

,

is a 0-bounded Pritchard-Salamon system on pU , pW ,X ,Vq,Y ˆ Uq.

(ii) The input-output map of (7.8), which we denote by rN , MsJ P TIC2
0pU ; YˆUq,

satisfies
β2N˚N`M˚M “ I . (7.9)

The operator M is invertible in TIC2
locpU ; Uq and Du “ NM´1u for all u P

L2
c,locpRě0; Uq.

(iii) The operator X8 equals the observability Gramian Q of (7.8) with respect to
the output space Y ˆ Uβ, i.e. X8 “ Q :“ CdœCœ.

(iv) The operator
I`X8β2Y8

ˇ

ˇ

X : X Ñ X ,

has an inverse, pI`X8β2Y8q
´1 P BpX q, and the controllability Gramian P

of (7.8) satisfies

pI`X8β2Y8q
´1β2Y8 “ P :“ BœB

d
œ “ β2BœB

˚
œ.

Remark 7.1.6. (i) The operator rN , MsJ is a right factorization of D in the sense
of Definition 2.3.3. Such factorizations are usually considered to be “coprime”
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7. H8-balancing and truncation for Pritchard-Salamon systems

in some sense, see e.g. [CWW96, Mik06]. But coprimeness does not play a role
here.

(ii) The reason for choosing the feedback pair rL 1
2K , I´L 1

2 s instead of rK , 0s is
that this choice “normalizes” the factorization in the sense that (7.9) holds,
cf. [CZ95, Theorem 7.3.11].

(iii) In the theory of Riccati equations for state linear systems (i.e. when W “

V “ X ) it is often assumed that D “ 0 without loss of generality, e.g. in
[CZ95, CO06]. If D is zero, then the term D˚C in the definition of K vanishes,
and thus K P BpV ; Uq. In general however, K is only in BpW ; Uq. That is
why we can not assume D “ 0 without loss of full generality for all Pritchard-
Salamon systems.

Proof of Theorem 7.1.5. (i) This follows from the assumption that the feedback pair
is exponentially stabilizing, Lemma 2.8.9, and some standard estimates. It also
contained in [Mik06, Lemma 4.4].
(ii) By [vK93, Theorem 3.10] our assumptions imply that, for every x0 P W and

the admissible control set Uadmpx0q defined in (7.1), the function

vp¨q :“ KAœp¨qx0

solves the linear quadratic minimization problem (7.2). More precisely, there holds

inf
!

}Cx0 `Du}2L2pRě0;Yq ` }u}
2
L2pRě0;Uβq

ˇ

ˇ

ˇ
u P Uadmpx0q

)

“ }Cx0 `Dv}2L2pRě0;Yq ` }v}
2
L2pRě0;Uβq “ 〈x0 , X8x0〉V .

Therefore, [Mik06, Lemma 4.4] can be invoked and implies the property (7.9). The
fact that the closed-loop input-output map rN , MsJ is a right factorization of D is
well-known, see e.g. [Mik06, Corollary 5.2] or [CWW96].
(iii) As in Lemma 2.8.9 we denote the extension of Aœ to domAV by AV

œ. Since
the closed loop system is exponentially stable, Lemma 2.8 of [CZ94] implies that Q
is the unique solution of the following observability Lyapunov equation for all x, y P
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domAV :

0 “
〈
Qx , AV

œy
〉

V 1,V
`
〈
AV

œx , Qy
〉

V,V 1
` 〈Cœx , Cœy〉YˆUβ

(7.8)
“

〈
Qx , AVy

〉
V 1,V

`
〈
AVx , Qy

〉
V,V 1

` 〈Qx , BKy〉V 1,V ` 〈BKx , Qy〉V,V 1

` 〈pC `DKqx , pC `DKqy〉Y ` 〈Kx , Ky〉Uβ

“
〈
Qx , AVy

〉
V 1,V

`
〈
AVx , Qy

〉
V,V 1

` 〈Qx , BKy〉V 1,V ` 〈BKx , Qy〉V,V 1

` 〈Cx , Cy〉Y ` 〈D˚Cx , Ky〉U ` 〈Kx , D˚Cy〉U

`

〈
´

1
β2 `D

˚D
¯

Kx , Ky
〉

U

“
〈
Qx , AVy

〉
V 1,V

`
〈
AVx , Qy

〉
V,V 1

` 〈Cx , Cy〉Y

` 〈pB1Q`D˚Cqx , Ky〉U ` 〈Kx , pB1Q`D˚Cqy〉U

` 1
β2 〈LKx , Ky〉U

(7.7)
“

〈
Qx , AVy

〉
V 1,V

`
〈
AVx , Qy

〉
V,V 1

` 〈Cx , Cy〉Y

` 〈pB1Q`D˚Cqx , Ky〉U ´ β
2
〈
L´1

pB1X8 `D
˚Cqx , pB1Q`D˚Cqy

〉
U

´ 〈pB1X8 `D˚Cqx , Ky〉U .

We see that with Q “ X8 this equation becomes the HCARE for X8. Thus, X8
solves the Lyapunov equation, and since there is only one solution, it must be equal
to Q.
(iv) Before we turn to the controllability Gramian, we calculate a useful represen-

tation for the expression CdœCœ : W Ñ W 1. We have

CdœCœ “ C 1C ` C 1DK `K 1D˚C `K 1D˚DK `K 1 1
β2K

“ C 1C ` C 1DK `K 1D˚C `
1
β2K

1LK

“ C 1C ´ C 1DL´1β2
pD˚C `B1X8q ´ β

2
pC 1D `X8BqL

´1D˚C

` β2
pC 1D `X8BqL

´1
pD˚C `B1X8q

“ C 1C ´ C 1Dβ2L´1D˚C `X8Bβ
2L´1B1X8

“ C 1
´

I´β2DD˚
`

I`β2DD˚
˘´1

¯

C `X8Bβ
2L´1B1X8

“ C 1
`

I`β2DD˚
˘´1

C `X8Bβ
2L´1B1X8

(7.10)
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on W . The second observation is that Y8 maps dompAWq1 continuously into the
space domAV . This follows because the HFARE together with the continuity of Y8
and B1 on V 1 shows that the estimate

|xY8x , pA
W
q
1yyW,W 1 | ď c }x}dompAW q1 }y}V 1 @x, y P dompAW

q
1

holds for some constant c ą 0, and this implies by definition that

Y8x P domAV
@x P dompAW

q
1.

Hence, the observability Lyapunov equation above still holds if we replace x and
y by the expressions β2Y8x and β2Y8y for some x, y P dompAWq1. Together with
(7.10) this means for all x, y P dompAWq1

0 “
〈
X8β

2Y8x , A
V
œβ

2Y8y
〉

V 1,V
`
〈
AV

œβ
2Y8x , X8β

2Y8y
〉

V,V 1

`
〈
Cœβ

2Y8x , Cœβ
2Y8y

〉
YˆUβ

“
〈
X8β

2Y8x , A
V
œβ

2Y8y
〉

V 1,V
`
〈
AV

œβ
2Y8x , X8β

2Y8y
〉

V,V 1

`
〈
`

I`β2DD˚
˘´1

Cβ2Y8x , Cβ
2Y8y

〉
Y

`
〈
β2L´1B1X8β

2Y8x , B
1X8β

2Y8y
〉

U
.

(7.11)

On the other hand we multiply the HFARE by β2 and use the relation

β2L´1
“ β2

´ β4D˚
`

I`Dβ2D˚
˘´1

D

to obtain

0 “ xβ2Y8x, pA
W
q
1yyW,W 1 ` xpAW

q
1x, β2Y8yyW 1,W

` β2 〈B1x , B1y〉U ´ β
4
〈
D˚pI`Dβ2D˚q´1DB1x , B1y

〉
Y

´ β4
〈
pI`Dβ2D˚q´1DB1x , CY8y

〉
Y

´ β4
〈
pI`Dβ2D˚q´1CY8x , DB

1y
〉

Y

´ β4
〈
pI`Dβ2D˚q´1CY8x , CY8qy

〉
Y

“ xAVβ2Y8x, yyV,V 1 ` xx,A
Vβ2Y8yyV 1,V
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` β2
〈
L´1B1x , B1y

〉
U

´ β4
〈
L´1B1x , D˚CY8qy

〉
Y

´ β4
〈
L´1D˚CY8x , B

1y
〉

Y

´
〈
pI`Dβ2D˚q´1Cβ2Y8x , Cβ

2Y8qy
〉

Y
.

Adding this equation to (7.11) gives

0 “
〈
X8β

2Y8x , A
V
œβ

2Y8y
〉

V 1,V
`
〈
AV

œβ
2Y8x , X8β

2Y8y
〉

V,V 1

` xAVβ2Y8x, yyV,V 1 ` xx,A
Vβ2Y8yyV 1,V

` β2
〈
L´1B1x , B1y

〉
U
` β2

〈
L´1B1X8β

2Y8x , B
1X8β

2Y8y
〉

U

´ β4
〈
L´1B1x , D˚CY8qy

〉
Y

´ β4
〈
L´1D˚CY8x , B

1y
〉

Y

“
〈
X8β

2Y8x , A
V
œβ

2Y8y
〉

V 1,V
`
〈
AV

œβ
2Y8x , X8β

2Y8y
〉

V,V 1

` xAVβ2Y8x, yyV,V 1 ` xx,A
Vβ2Y8yyV 1,V

` β2
〈
L´1B1pI`X8β2Y8qx , B

1
pI`X8β2Y8qy

〉
U

´ β2
〈
L´1B1x , pD˚C `B1X8qβ

2Y8qy
〉

Y

´ β2
〈
L´1

pD˚C `B1X8qβ
2Y8x , B

1y
〉

Y

“
〈
X8β

2Y8x , A
V
œβ

2Y8y
〉

V 1,V
`
〈
AV

œβ
2Y8x , X8β

2Y8y
〉

V,V 1

` xAV
œβ

2Y8x, yyV,V 1 ` xx,A
V
œβ

2Y8yyV 1,V

` β2
〈
L´1B1pI`X8β2Y8qx , B

1
pI`X8β2Y8qy

〉
U

“
〈
pI`X8β2Y8qx , A

V
œβ

2Y8y
〉

V 1,V
`
〈
AV

œβ
2Y8x , pI`X8β2Y8qy

〉
V,V 1

` β2
〈
L´1B1pI`X8β2Y8qx , B

1
pI`X8β2Y8qy

〉
U
.

Up to know we have not used the invertibility of I`X8β2Y8|X which we are go-
ing to show now. The operator X8|X : X Ñ X is nonnegative and possesses
therefore an operator root

?
X8 P BpX q. The operator I`X8β2Y8|X is bound-

edly invertible if and only if ´1 R σpX8β2Y8q which holds by Jacobson’s lemma
[Mü07, Corollary 30 in Section I.1] if and only if ´1 R σp

?
X8β

2Y8
?
X8q. Since

the operator
?
X8β

2Y8
?
X8 is nonnegative its spectrum is contained in Rě0. Thus,
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7. H8-balancing and truncation for Pritchard-Salamon systems

I`X8β2Y8|X maps X onto itself and has a bounded inverse.
Analogous to the previous considerations for Y8 it can be shown that X8 maps

domAV continuously into dompAWq1. With the bijectivity of I`X8β2Y8 it follows
that the image of dompAWq1 under I`X8β2Y8 is a dense subset of dompAWq1.
Hence, we deduce from the equation above that, for all x, y in this dense subset, the
following controllability Lyapunov equation holds:

0 “
〈
x , AV

œβ
2Y8pI`X8β2Y8q

´1y
〉

V 1,V
`
〈
AV

œβ
2Y8pI`X8β2Y8q

´1x , y
〉

V,V 1

`
〈
L´1B1x , B1y

〉
U2
β

.

Since the smoothness of the dual system implies dompAW
œ q

1 “ dompAWq1, this shows
that P :“ β2Y8pI`X8β2Y8q

´1 solves for all x, y P dompAW
œ q

1 the controllability
Lyapunov equation

0 “
〈
pAW

œ q
1x , Py

〉
W 1,W

`
〈
Px , pAW

œ q
1y
〉

W,W 1
`
〈
L´1B1x , B1y

〉
U2
β

.

Thus, P must be the controllability Gramian by [CZ94, Lemma 2.8].

7.2. H8-balancing
In this section we transform the system pA,B,C,Dq in order to diagonalize the
solutions X8 and Y8 of the two algebraic Riccati equations. To this end, we will
diagonalize the Gramians of the closed-loop system pAœ, Bœ, Cœ, Dœq by the means
developed in Section 6.2. In analogy to Presumption 6.2.3, we assume that the in-
and output spaces are finite-dimensional and that we have some factors, S and R,
of the Gramians at hand. The compactness of the Hankel operator in Presump-
tion 6.2.3 is superfluous here, since it is automatically fulfilled for exponentially
stable Pritchard-Salamon systems owing to Lemma 6.2.15.

Presumption 7.2.1. Presumption 7.1.3 holds. In addition, U and Y are finite-
dimensional, XR and XS are two further Hilbert spaces, and the operators R P

BpXR; X q and S P BpXS; X q satisfy

RR˚ “ pI`β2Y8X8q
´1β2Y8, SS˚ “ X8.
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7.2. H8-balancing

Remark 7.2.2. Solving a Lyapunov equation is numerically much easier than solving
a Riccati equation. In practice, it therefore makes sense to compute the controllabil-
ity Gramian pI`β2Y8X8q

´1β2Y8 of the closed-loop system instead of the solution
Y8 of the HFARE. This can for example be done by solving the controllability
Lyapunov equation with the ADI algorithm [ORW13]. This algorithm computes
a factor R and motivates our presumption.

Lemma 7.2.3. Let Presumption 7.2.1 hold. Then the Hankel operator of the closed-
loop system (7.8) satisfies Presumption 6.2.13 with impulse response

h “ CœBœ P L
1
X L2

pRě0; BpU ; Y ˆ Uqq.

The operators Y8X8|X : X Ñ X and S˚R : X Ñ X are compact. The nonin-
creasingly ordered sequence pνnqnPN of the square-roots of the non-zero eigenvalues
of Y8X8 is related to the singular values pσnqnPN of S˚R by

σn “
βνn

a

1` β2ν2
n

@n P N. (7.12)

Proof. Since the closed-loop semigroup is exponentially stable we conclude with
standard estimates that

Cœ P L
1
X L2

pRě0; BpV ; Y ˆ Uqq.

By [CLTZ94, Corollary 3.6], the function CœB is the impulse response, i.e. the
Hankel operator has a representation of the form (6.23). With this and [GCP88,
Appendix 1] it follows that the Hankel operator CœBœ is compact. This implies the
compactness of the operator CœBœB

d
œC

d
œ. Hence, the spectrum of this operator,

with exception of the value zero, consists of countably many eigenvalues pσ2
nqnPN.

Jacobson’s Lemma [Mü07, Corollary 30 in Section I.1] implies that

σpCœBœB
d
œC

d
œqzt0u “ σpBœB

d
œC

d
œCœqzt0u,

and therefore, BœB
d
œC

d
œCœ is a compact operator as well. Since we have by Theo-

rem 7.1.5 that

BœB
d
œC

d
œCœ “ pI`β2Y8X8q

´1β2Y8X8 “ SS˚RR˚,
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7. H8-balancing and truncation for Pritchard-Salamon systems

it follows that Y8X8|X “ pI`β2Y8X8q|XBœB
d
œC

d
œCœ is the concatenation of a com-

pact and a continuous operator and therefore compact. Hence the, spectrum of this
operator with exception of the value zero consists of eigenvalues and for all n P N,

ν2
n P σpY8X8q ô

β2ν2
n

1` β2ν2
n

P σpSS˚RR˚q.

Another application of Jacobson’s Lemma implies that S˚RR˚S is compact and

σpS˚RR˚Sqzt0u “ σpSS˚RR˚qzt0u “ tσ2
n : n P Nu.

This implies (7.12) and the compactness of the operator root pS˚RR˚Sq 1
2 . Finally,

the polar decomposition
S˚R “ EpS˚RR˚Sq

1
2

for some unitary operator E shows that S˚R itself is compact and completes the
proof.

Definition 7.2.4 (H8-characteristic values). Let Presumption 7.2.1 hold. Then
the square roots of the countably many non-zero eigenvalues of Y8X8 are called
H8-characteristic values of pA,B,C,Dq. We always order them non-increasingly in
a sequence pνnqnPN.

Remark 7.2.5. With the diagonal operator Υ :“ diagpνnq P Bp`2q and Σ as in the
singular value decomposition S˚R “ V ΣU˚, the equation (7.12) implies that

Υ “ 1
β

`

I´Σ2˘´ 1
2 Σ.

Now we apply the output normalizing transformations from Section 6.2 to the
closed-loop system.

Lemma 7.2.6. Let Presumption 7.2.1 hold and let S˚R “ V ΣU˚ be the singular
value decomposition of S˚R with Σ “ diagpσnq P Bp`2q. Define the transformations

T :“ V ˚S˚ P B
`

V ; `2˘ ,

T` :“ RUΣ´1
P B

`

Σ`2; W
˘

,
(7.13)

and let pAœ, Bœ, Cœ, Dœq be the closed-loop system in (7.8) with input-output map
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7.2. H8-balancing

rN , MsJ. We define the quotient operator ĂAœ as in Lemma 2.9.4, and as in Theo-
rem 6.2.11 we can define Aœo to be the closure of the operator

T ĂAœπW{ kerS˚T
`z @ z P Z :“ TBœW

1,2
0 pRď0; Uq

in `2. Then the operators

pAœo, Bœo, Cœo, Dœoq :“
´

T ĂAœπW{ kerS˚T`, TBœ, CœT
`, Dœ

¯

(7.14)

generate a Pritchard-Salamon system on pU , pΣ`2, `2, `2q,Y ˆ Uq, which is a re-
alization of rN , MsJ. The output normalized truncation pAœr, Bœr, Cœr, Dœq of
rN , MsJ in the sense of Definition 6.2.16 satisfies

〈ei , Aœrej〉Cr “ 〈ei , Aœoej〉`2 P C,

〈ei , Bœr¨〉Cr “ 〈ei , Bœo¨〉`2 “ 〈pB˚o qexei , ¨〉U P BpU ;Cq,

Cœrej “ pCœoqexej P Y .

(7.15)

and its input-output map rNr , Mrs
J approximates rN , MsJ with the error bound

›

›

›

›

›

«

N

M

ff

´

«

Nr

Mr

ff
›

›

›

›

›

TIC2
0pU ;YˆUq

ď 2
ÿ

tnąr|σn‰σk@kănu

σn.

Proof. We apply Theorem 6.2.11 to the system (7.8). Note that the transformations
in (7.13) are indeed bounded because the transformation V and U in Lemma 6.2.5
show

T “ V ˚S˚ “ V ˚V˚Cœ P B
`

V ; `2˘ ,

T` “ RUΣ´1
“ BœUUΣ´1

P B
`

Σ`2; W
˘

.

Theorem 6.2.11 states that pAœo, Bœo, Cœo, Dœoq generates a 0-bounded well-posed
linear system which is unitarily similar to the minimal output normalized shift real-
ization of rN , MsJ. We still need to prove that this system is of Pritchard-Salamon
type. To this end, we take a closer look at the generators. According to Lemma 6.3.1,
the part of Aœo in Σ`2 is the operator

AΣ`2
œo :“ T ĂAœrπW{ kerS˚T

`z @ z P TBœW
1,2
0 pRď0; Uq
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7. H8-balancing and truncation for Pritchard-Salamon systems

and generates the restriction of the semigroup Aœo to Σ`2.
By Lemma 7.2.3 the impulse response of the closed-loop system is square inte-

grable. Therefore, we may choose Wo “ `2 in Theorem 6.2.19, which shows the
boundedness of

Bœo “ TBL´
1
2 P BpU ; `2

q.

Furthermore, we have the output operator

Cœo “

«

pC `DKqT`

KT`

ff

P BpΣ`2; Y ˆ Uq,

and the feedthrough

Dœo “

«

DL´
1
2

L´
1
2

ff

.

So these are indeed mappings between the correct spaces. The admissibility of B is
equivalent to the boundedness of

TBœ “ V ˚S˚Bœ P B
`

L2
pRď0; Uq; Σ`2˘ ,

which is contained in Lemma 6.3.1, and the admissibility of C follows because the
operator

CœT
`
“ CœRUΣ´1

“ VS˚RUΣ´1
“ VV

admits a continuous extension to `2. Altogether, we see that pAœo, Bœo, Cœo, Dœoq

is a Pritchard-Salamon system.
Now the matrix coefficients in (7.15) follow directly from Theorem 6.2.19, and the

error bound follows from Theorem 6.2.18.

Remark 7.2.7. We point out that the two larger state spaces in the triple pΣ`2, `2, `2q

coincide because Bœo maps into `2. Therefore, there are only two different semigroup
generators, AΣ`2

œo and Aœo “ A`
2

œo.

Theorem 7.2.8. Let Presumption 7.2.1 hold and define the quotient operator

rA : rπX { kerS˚ domA Ă X Ñ X ,

rArx :“ rπX { kerS˚Az @ rx P dom rA, @ z P rxX domA,
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7.2. H8-balancing

as in Lemma 2.9.4. Define the transformations T and T` and the space Z as in
Lemma 7.2.6, and let A8 be the closure of the operator

T rA rπW{ kerS˚T
`z @ z P Z

in `2. Then
pA8, B8, C8, Dq :“

´

T rAT`, TB,CT`, D
¯

(7.16)

is a Pritchard-Salamon system on pU , pΣ`2, `2, `2q,Yq and a realization of D.

Proof. With the above assumptions we can define the closed-loop system pAœ, Bœ,
Cœ, Dœq with input-output map rN , MsJ as in Theorem 7.1.5, and the output
normalized realization pAœo, Bœo, Cœo, Dœoq of this mapping as in Lemma 7.2.6. The
idea of the proof is to “undo” the feedback by application of the inverse feedback
pair r´KT` , I´L´ 1

2 s P BpΣ`2 ˆ U ; Uq. We need to ensure that this process is
compatible with the state space transformation, in other words that closing the
loop and applying the transformations commute.
Note that the feedback pair above is admissible for Aœo. Define the corresponding

state feedback

Ko :“
´

I´pI´L´ 1
2 q

¯´1
`

´KT`
˘

“ ´L
1
2KT` P BpΣ`2; Uq.

The admissibility implies by [vK93, Lemma 2.13 (ii)] that the operator defined via

Aœox`BœoKox @x P
 

x P Σ`2
X domAœo

ˇ

ˇ Aœox`BœoKox P Σ`2 (

generates a strongly continuous semigroup in Σ`2 which extends to a strongly con-
tinuous semigroup on `2. The generator of this extended semigroup is denoted by
pAœo ` BœoKoq

`2 . Moreover, by [vK93, Lemma 2.13] the domain of this operator
equals domAœo with equivalent norm, and it satisfies

pAœo `BœoKoq
`2x “ Aœox`BœoKox @x P domAœo X Σ`2.

The admissibility further implies that
´

pAœo `BœoKoq
`2 , BœoL

1
2 , Cœo,1 `Dœo,1Ko, Dœo,1L

1
2

¯
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7. H8-balancing and truncation for Pritchard-Salamon systems

“

´

pAœo `BœoKoq
`2 , TB,CT`, D

¯

is a Pritchard-Salamon system on pU , pΣ`2, `2, `2q,Yq. Here Cœo,1 and Dœo,1 denote
the first components of the block operators Cœo andDœo, respectively. What remains
to be proven is that A8 coincides with pAœo`BœoKoq

`2 . It suffices to verify this on
the space Z Ă domAœoXΣ`2, which is by Lemma 6.3.1 a core of Aœo, and therefore
also a core of pAœo`BœoKoq

`2 . With the notation of the Kalman compression as in
Lemma 2.9.4, we have for all z P Z

rπW{ kerS˚T
`z P dom rA

ĂW
œ Ă dom rA

rV
X ĂW .

Hence, kerS˚ XW “ kerCœ|W Ă kerK yields

pAœo `BœoKoq
`2z “ Aœoz `BœoKoz

“ T ĂAœrπW{ kerS˚T
`z ´ TBKT`z

“ T rA
rV
rπW{ kerS˚T

`z ` TBKrπW{ kerS˚T
`z ´ TBKT`z

“ T rArπW{ kerS˚T
`z

“ A8z,

and the proof is complete.

Remark 7.2.9. (i) It can be shown that the compressed spaces ĂW and rV defined
in Lemma 2.9.4 satisfy

rπW{ kerC|WT
`Σ`2W

“ ĂW , rπV{ kerC|VT
`Σ`2V

“ rV .

(ii) For all w P Σ`2 we have

´β2B1X8T
`w “ β2B1SS˚RUΣ´1w “ ´β2B1SV ei “ ´β

2B˚8w, (7.17)

and since B8 P BpU ; `2q this shows that the left hand side extends continuously
to ´β2B˚8 P Bp`2; Uq. In regard of K “ ´β2pD˚C ` B1X8q, this implies that
if D “ 0, then KT` “ ´β2B1X8T

` has a continuous extension to Bp`2; Uq.

Theorem 7.2.10. Let Presumption 7.2.1 hold and let pA8, B8, C8, Dq be the sys-
tem in Theorem 7.2.8. Let Υ :“ diagpνnq be the diagonal operator built from
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the H8-characteristic values pνnq of pA,B,C,Dq. Then all unit vectors ei satisfy
ei P domA8 and the following Riccati-like equations hold for all i, j P N:

xI ei, A8ejy`2 ` xA8ei, I ejy`2 ` xC8ei, C8ejyY
“ 1

β2

〈
pI`β2D˚Dq´1

pβ2D˚C8 ` β
2B˚8 Iqei , pβ2D˚C8 ` β

2B˚8 Iqej
〉

U
,

(7.18)

and 〈
A8Υ2ei , ej

〉
`2
`
〈
ei , A8Υ2ej

〉
`2
` 〈B˚8ei , B˚8ej〉U

“
〈
pI`DD˚β2

q
´1
pDB˚8β

2
` C8Υ2

qei , pDB
˚
8β

2
` C8Υ2

qej
〉

Y
.

(7.19)

Remark 7.2.11. Since peiqiPN is in general not dense in domA8, these equations do
not imply that the operators I and Υ2 solve the HCARE and HFARE in the sense
of Definition 7.1.1.

Proof of Theorem 7.2.10. The idea of the proof is to use that the operators Σ2 and I
solve certain Lyapunov equations of the closed-loop system. This follows from the
Lyapunov equations of the output normalized shift realization that are given in
[Gui12], modulo a unitary transformation. Algebraically the upcoming calculations
reverse the ones in the proof of Theorem 7.1.5. But because of the unboundedness
of T` we have to be careful not to make any forbidden steps.
Recall from the definitions (7.8), (7.14), and the proof of Theorem 7.2.8 that we

have

pAœo, Bœo, Cœo, Dœoq

“

˜

pA8 ` TBKT
`
q
`2
ˇ

ˇ

domAœo
, TBL´1{2,

«

CT` `DKT`

KT`

ff

,

«

DL´1{2

L´1{2

ff¸

.

Let H be the Hankel operator of this system and H “ rV ΣrU˚ its singular value
decomposition as in (6.10). By Corollary 6.2.10, the mapping rV is unitary simi-
larity transformation between this system and the exactly observable (and output
normalized) shift realization of its input-output map on ranH. Since rV ei “ rvi P

W 1,2 pRě0; Yq X ranH, and the latter is the domain of the differential operator that
generators the shift semigroup, we have

ei “ rV ˚rvi P domAœo X Σ`2.

183
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The shift realization satisfies the Lyapunov equation in [Gui12, Equation (5.105)],
which becomes after application of rV

0 “ 〈Aœoei , ej〉`2 ` 〈ei , Aœoej〉`2 ` 〈Cœoei , Cœoej〉Uβ

for all i, j P N. Hence,

0 “ 〈Aœoei , ej〉`2 ` 〈ei , Aœoej〉`2 `
〈
C8ei `DKT

`ei , C8ej `DKT
`ej

〉
Y

` 1
β2

〈
KT`ei , KT

`ej
〉

U

“ 〈Aœoei , ej〉`2 ` 〈ei , Aœoej〉`2 ` 〈C8ei , C8ej〉Y

`

〈
´

1
β2 `D

˚D
¯

KT`ei , KT
`ej

〉
U

`
〈
D˚CT`ei , KT

`ej
〉

U
`
〈
KT`ei , D

˚CT`ei
〉

U

“ 〈Aœoei , ej〉`2 ` 〈ei , Aœoej〉`2 ` 〈C8ei , C8ej〉Y `
1
β2 〈Koei , Koej〉U

`
〈
D˚C8ei , KT

`ej
〉

U
`
〈
KT`ei , D

˚C8ej
〉

U
.

With the two equations

〈
D˚C8ei , KT

`ej
〉

U
`
〈
KT`ei , D

˚C8ej
〉

U
“ ´2

〈
L´1β2D˚C8ei , D

˚C8ej
〉

U

´
〈
D˚C8ei , L

´1β2B˚8ej
〉

U
´
〈
L´1β2B˚8ei , D

˚C8ej
〉

U

and

1
β2 〈Koei , Koej〉U “ β2

〈
L´1B˚8ei , B

˚
8ej

〉
U
`
〈
L´1β2D˚C8ei , D

˚C8ej
〉

U

`
〈
D˚C8ei , L

´1β2B˚8ej
〉
`
〈
L´1β2B˚8ei , D

˚C8ej
〉

U
,

(in which we have used (7.17)), the above becomes

0 “ 〈Aœoei , ej〉`2 ` 〈ei , Aœoej〉`2 ` 〈C8ei , C8ej〉Y

´
〈
L´1β2D˚C8ei , D

˚C8ej
〉

U
`
〈
L´1β2B˚8ei , B

˚
8ej

〉
U

(7.20)
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for all i, j P N. Using that

Aœoei “ A8ei ´BœoKoei “ A8ei ` TBKT
`ei

“ A8ei ´ TBL
´1β2

pB1X8 `D
˚CqT`ei

(7.17)
“ A8ei ´B8L

´1β2B˚8ei ´B8L
´1β2D˚C8ei

(7.21)

for all ei, we end up with

0 “
〈
pA8 ´B8L

´1β2D˚C8qei , ej
〉
`2
`
〈
ei , pA8 ´B8L

´1β2D˚C8qej
〉
`2

´
〈
L´1β2B˚8ei , B

˚
8ej

〉
U
` 〈C8ei , C8ej〉Y ´

〈
L´1β2D˚C8ei , D

˚C8ej
〉

U

“ 〈A8ei , ej〉`2 ` 〈ei , A8ej〉`2 ` 〈C8ei , C8ej〉Y ´
〈
L´1β2B˚8ei , B

˚
8ej

〉
U

´
〈
L´1β2D˚C8ei , B

˚
8ej

〉
U
´
〈
B˚8ej , L

´1β2D˚C8ei
〉

U

´ β2
〈
L´1D˚C8ei , D

˚C8ej
〉

U

“ 〈A8ei , ej〉`2 ` 〈ei , A8ej〉`2 ` 〈C8ei , C8ej〉Y

´ β2
〈
L´1

pD˚C8 `B
˚
8qei , pD

˚C8 `B
˚
8qej

〉
U
.

This shows (7.18).
In order to prove the second equation we invoke the controllability Lyapunov

equation [Gui12, Equation (5.106)] which implies with rV ˚HH˚rV “ Σ2 that

0 “
〈
AœoΣ2ei , ej

〉
`2
`
〈
ei , AœoΣ2ej

〉
`2
`
〈
Bdœoei , B

d
œoej

〉
Uβ

“
〈
AœoΣ2ei , ej

〉
`2
`
〈
ei , AœoΣ2ej

〉
`2
` β2

〈
L´1B˚8ei , B

˚
8ej

〉
U

for all unit vectors ei, ej. Multiplying this equation by p 1
β2 ` νiqp1` β2νjq and using

Σ2p 1
β2 `Υ2q “ Υ2 we conclude that zero equals to

〈
AœoΣ2

´

1
β2 `Υ2

¯

ei , p1` β2Υ2
qej

〉
`2
`

〈
´

1
β2 `Υ2

¯

ei , AœoΣ2
p1` β2Υ2

qej

〉
`2

` β2
〈
L´1B˚8

´

1
β2 `Υ2

¯

ei , B
˚
8p1` β2Υ2

qej

〉
U

“
〈
AœoΥ2ei , p1` β2Υ2

qej
〉
`2
`
〈
p1` β2Υ2

qei , AœoΥ2ej
〉
`2

`
〈
L´1B˚8

`

1` β2Υ2˘ ei , B
˚
8p1` β2Υ2

qej
〉

U

“
〈
AœoΥ2ei , ej

〉
`2
`
〈
ei , AœoΥ2ej

〉
`2
`
〈
AœoΥ2ei , β

2Υ2ej
〉
`2
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`
〈
β2Υ2ei , AœoΥ2ej

〉
`2
`
〈
L´1B˚8ei , B

˚
8ej

〉
U
`
〈
L´1B˚8β

2Υ2ei , B
˚
8ej

〉
U

`
〈
L´1B˚8ei , B

˚
8β

2Υ2ej
〉

U
`
〈
L´1B˚8β

2Υ2ei , B
˚
8β

2Υ2ej
〉

U

“
〈
pAœo `B8L

´1β2B˚8qΥ2ei , ej
〉
`2
`
〈
ei , pAœo `B8L

´1β2B˚8qΥ2ej
〉
`2

`
〈
AœoΥ2ei , β

2Υ2ej
〉
`2
`
〈
Υ2ei , Aœoβ

2Υ2ej
〉
`2
`
〈
L´1B˚8ei , B

˚
8ej

〉
U

`
〈
L´1B˚8β

2Υ2ei , B
˚
8β

2Υ2ej
〉

U
.

Since Υ2ei “ ν2
i ei and β2Υ2ej “ ν2

j ej, we can use (7.20) multiplied by ν2
i β

2ν2
j to

substitute the second line of this equation and get

0 “
〈
pAœo `B8L

´1β2B˚8qΥ2ei , ej
〉
`2
`
〈
ei , pAœo `B8L

´1β2B˚8qΥ2ej
〉
`2

`
〈
L´1β2D˚C8Υ2ei , D

˚C8β
2Υ2ej

〉
U
´
〈
C8Υ2ei , C8β

2Υ2ej
〉

Y

`
〈
L´1B˚8ei , B

˚
8ej

〉
U
.

Inserting (7.21) into this yields with the abbreviation L˛ :“ I`β2DD˚, which sat-
isfies L´1D˚ “ D˚pL˛q´1,

0 “
〈
pA8 ´B8L

´1β2D˚C8qΥ2ei , ej
〉
`2
`
〈
ei , pA8 ´B8L

´1β2D˚C8qΥ2ej
〉
`2

`
〈
pL´1

´ IqB˚8ei , B˚8ej
〉

U
` 〈B˚8ei , B˚8ej〉U

`
〈
`

DL´1β2D˚ ´ I
˘

C8Υ2ei , C8β
2Υ2ej

〉
Y

“
〈
A8´B8D

˚
pL˛q´1β2C8qΥ2ei , ej

〉
`2
`
〈
ei , pA8´B8D

˚
pL˛q´1β2C8qΥ2ej

〉
`2

´
〈
β2
pL˛q´1DB˚8ei , DB

˚
8ej

〉
Y
` 〈B˚8ei , B˚8ej〉U

´
〈
pL˛q´1C8Υ2ei , C8β

2Υ2ej
〉

Y

“
〈
A8Υ2ei , ej

〉
`2
`
〈
ei , A8Υ2ej

〉
`2
` 〈B˚8ei , B˚8ej〉U

´
〈
β2
pL˛q´1 `DB˚8 ` C8Υ2˘ ei , DB

˚
8ej

〉
Y

´
〈
pL˛q´1 `DB˚8 ` C8Υ2˘ ei , C8β

2Υ2ej
〉

Y
.

This proves (7.19).
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7.3. H8-balanced truncation
Now we define the H8-balanced truncation in analogy to the balanced truncation
in Definition 6.2.16. The main theorem in this section states that the H8-balanced
truncation has essentially the same properties as the original system.

Definition 7.3.1. Let Presumption 7.2.1 hold, let pνnqnPN be the H8-characteristic
values of pA,B,C,Dq, and let pA8, B8, C8, Dq be the system in (7.16). We define
the r-th H8-balanced truncation of the Pritchard-Salamon system pA,B,C,Dq to
be the r-dimensional system pAr, Br, Cr, Dq consisting of

Ar “

»

—

—

–

a11 ¨ ¨ ¨ a1r
... ...
ar1 ¨ ¨ ¨ arr

fi

ffi

ffi

fl

P Crˆr, Br “

»

—

—

–

b1
...
br

fi

ffi

ffi

fl

P BpU ,Cr
q,

Cr “
”

c1 ¨ ¨ ¨ cr

ı

P BpCr,Yq,

with coefficients

aij :“ ν
´ 1

2
i 〈ei , A8ej〉 ν

1
2
j , i, j P t1, . . . , ru,

biu :“ ν
´ 1

2
i 〈ei , B8u〉 , i P t1, . . . , ru, u P U ,

cj :“ C8ejν
1
2
j , j P t1, . . . , ru.

Recall that the H8-balanced system was constructed in the following way: First,
the feedback loop was closed, then the closed-loop system was balanced, and then
the loop was re-opened, before the system was finally truncated. The following
theorem is a consequence of the fact that the truncation and the re-opening of the
closed-loop in this process can be interchanged.

Theorem 7.3.2. Let Presumption 7.2.1 hold and pνnqnPN be the H8-characteristic
values of pA,B,C,Dq. Choose r P N such that νr`1 ‰ νr. Then the HCARE and
the HFARE of the H8-balanced truncated system pAr, Br, Cr, Dq are both solved by
the matrix

Υr :“ diagpν1, . . . , νrq;
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7. H8-balancing and truncation for Pritchard-Salamon systems

in other words,

ΥrAr ` A
˚
rΥr ` C

˚
rCr “ β2

pΥrBr ` C
˚Dq pI`β2D˚Dq´1

pD˚C `B˚rΥrq ,

ΥrA
˚
r ` ArΥr `BrB

˚
r “ β2

pΥrC
˚
r `BD

˚
q pI`Dβ2D˚q´1

pDB˚ ` CrΥrq .
(7.22)

With L as in (7.7) and Kr “ ´β
2L´1pB˚rΥr`D

˚Crq, the matrix Ar`BrKr generates
an exponentially stable semigroup in Cr, and the input-output map rNr , Mrs

J of the
closed-loop system,

˜

Ar `BrKr, BrL
´ 1

2 ,

«

Cr `DKr

Kr

ff

,

«

DL´
1
2

L´
1
2

ff¸

, (7.23)

is a right factorization of the input-output map Dr of pAr, Br, Cr, Dq. Moreover,

β2N˚
rNr `M˚

rMr “ I, (7.24)

and
›

›

›

›

›

«

N

M

ff

´

«

Nr

Mr

ff
›

›

›

›

›

ď 2
ÿ

tnąr|νn‰νk@kănu

βνn
a

1` β2ν2
n

. (7.25)

Proof. The equations in (7.22) are a direct consequence of Theorem 7.2.10: Just
multiply (7.18) by ?νi

?
νj, and (7.19) by 1

?
νi

1
?
νj
.

We prove that (7.23) is similar to the system pAœr, Bœr, Cœr, Dœq in Lemma 7.2.6,
i.e. the r-th output normalized truncation of the factor system in (7.8). More pre-
cisely, we show the following equations for all i, j P t1, . . . , ru:

〈
ei , Υ

1
2
r pAr `BrKrqΥ

´ 1
2

r ej

〉
`2
“ 〈ei , pA8 `B8Koqej〉`2 ,

〈
ei , Υ

1
2
r BrL

´ 1
2

〉
`2
“
〈
ei , B8L

´ 1
2
〉
`2
,

«

pCr `DKrqΥ
´ 1

2
r

KrΥ
´ 1

2
r

ff

ej “

«

pC8 `DKoq

Ko

ff

ej.

In view of Definition 7.3.1 these equations are immediate if the equation KrΥ
´ 1

2
r ej “
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7.4. Robust control under right factor perturbation

Koej holds. This is equivalent to

pB˚rΥr `D
˚CrqΥ

´ 1
2

r ej “ pB
1X8T

`
`D˚CT`qej,

which holds because

B1X8T
`ej “ B1SS˚RUΣ´1ej “ B1SV ej

(7.17)
“ B˚8ej “ B˚r

?
νjej

“ B˚rΥ
1
2
r ej.

So Υ
1
2
r is indeed a similarity transformation between (7.23) and pAœr, Bœr, Cœr, Dœq.

Since Aœr generates by Theorem 6.2.18 an exponentially stable semigroup, so does
Ar `BrKr. The error bound (7.25) also follows from Theorem 6.2.18.
Now that we know that Kr is an exponentially stabilizing feedback, we may apply

Theorem 7.1.5 to the finite-dimensional system pAr, Br, Cr, Dq to prove (7.24) and
the lemma is shown.

7.4. Robust control under right factor perturbation
In this section we show that a certain norm estimate guarantees robustness with
respect to right factor perturbations. This result is independent of the rest of this
thesis. We are going to apply it to the H8-balanced truncation in an ensuing
corollary. For better reading, we write }¨} for all norms in this section. This should
not lead to confusion.

Definition 7.4.1. A controller K P TIC2
locpY ; Uq is said to stabilize D P TIC2

locpU ; Yq
if I´DK has an inverse in TIC2

0pY ; Yq and the operator

F pD,Kq :“
«

pI´DKq´1D pI´DKq´1DK

KpI´DKq´1D KpI´DKq´1

ff

“

«

DpI´KDq´1 DpI´KDq´1K

pI´KDq´1KD pI´KDq´1K

ff (7.26)

is stable, i.e. F pD,Kq P TIC2
0pU ˆ Y ; Y ˆ Uq.

Remark 7.4.2. F pD,Kq is the operator, that maps rw1 w2s
J to rz1 z2s

J in the closed-
loop system depicted in Figure 7.4. Some literature requires boundedness of the
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D`

K

`
w1 z1

z2

w2

Figure 7.1.: Illustration of rz1 , z2s
J “ F pD,Kqrw1 , w2s

J.

operator

F pD,Kq `

«

0 I
I 0

ff

instead of F pD,Kq for the definition of stability. This is obviously an equivalent
condition and amounts to placing the signals z1 and z2 in Figure 7.4 behind the
summations.

Theorem 7.4.3. Let Dr,D P TIC2
locpU ; Yq, and let rN , MsJ P TIC2

0pU ; Y ˆ Uq be
a right factorization of D satisfying

β2N˚N`M˚M “ I . (7.9)

for some β P p0, 1s. Let rNr , Mrs
J P TIC2

0pU ; Y ˆ Uq be a right factorization of Dr

satisfying
β2N˚

rNr `M˚
rMr “ I (7.27)

and define

ε :“

›

›

›

›

›

«

M

N

ff

´

«

Mr

Nr

ff
›

›

›

›

›

. (7.28)

If Kr P TIC2
locpU ; Yq stabilizes Dr in such a way that, for some γ ą 0,

}F pDr,Krq} ď γ ă
1
ε
´ 1, (7.29)

then Kr stabilizes D as well, and

}F pD,Krq} ď
γ ` γε` ε

1´ γε´ ε . (7.30)
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Before we proof this theorem, let us explain the ideas by means of state flow
diagrams. We abbreviate the perturbations by ∆M :“M´Mr and ∆N :“ N´Nr.
Then, D “ pNr `∆NqpMr `∆Mq

´1, so the plant D may be replaced by the plant
in Figure 7.2.

M´1
r` Nr `

´∆M ∆N

u y

Figure 7.2.: Illustration of y “ Du “ pNr `∆NqpMr `∆Mq
´1u.

Inserting this into the closed-loop system F pD,Krq gives the plant in Figure 7.3.
The main assertion of Theorem 7.4.3 is that this plant is stable.

M´1
r` Nr `

´∆M ∆N

Kr

`

w1

w2

z1

z2

Figure 7.3.: Illustration of rz1 , z2s
J “ F pD,Krqrw1 , w2s

J with D as in Fig-
ure 7.2.

In order to prove this, we take a look at the reduced system and observe two
things: Firstly, removing the perturbation ∆M and ∆N yields the closed-loop system
F pDr,Krq which is stable by assumption; and secondly, the perturbations act like
an output feedback of the auxiliary output z3 marked in Figure 7.4.
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M´1
r` Nr `

Kr

w1
w2

z3 z1

z2

Figure 7.4.: Illustration of rz1 , z2s
J “ F pNrM

´1
r ,Krqrw1 , w2s

J.

Therefore, the following lemma about stability under feedback perturbation will
be substantial in the proof. This lemma is readily verified and known as Small gain
theorem.

Lemma 7.4.4 (Small gain theorem). Let K P TIC2
0pY ; Uq and D P TIC2

0pU ; Yq both
be stable and assume

}D} }K} ă 1.

Then K stabilizes D.

Proof of Theorem 7.4.3. We define the auxiliary operator

F :“M´1
r pI´KrDrq

´1
”

I Kr

ı

P TIC2
0pU ˆ Y ; Uq,

which is the input-output map from rw1 , w2s
J to z3 in Figure 7.4. It is verified by

looking at Figure 7.4 or short calculation that it fulfills the important equation
«

Nr

Mr

ff

F :“ F pDr,Krq `

«

0 0
I 0

ff

P TIC2
0pU ˆ Y ; Y ˆ Uq. (7.31)

Now we proceed in three steps.
Step 1 : We show that (7.29) implies

}F} ă
1
ε
. (7.32)

Equation (7.9) implies for all u P L2pR; Uq

›

›

›

›

›

«

Mu

Nu

ff
›

›

›

›

›

2

“ xMu,Muy ` xNu,Nuy ě xMu,Muy ` xβ2Nu,Nuy “ xu, uy “ }u}2,
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and analogously, (7.27) implies
›

›

›

›

›

«

Mru

Nru

ff
›

›

›

›

›

ě }u}.

The second inequality gives
›

›

›

›

›

F

«

y1

y2

ff
›

›

›

›

›

ď

›

›

›

›

›

«

Nr

Mr

ff

M´1
r pI´KrDrq

´1
”

I Kr

ı

«

y1

y2

ff
›

›

›

›

›

(7.31)
“

›

›

›

›

›

˜

F pDr,Krq `

«

0 0
I 0

ff¸«

y1

y2

ff
›

›

›

›

›

ď pγ ` 1q

›

›

›

›

›

«

y1

y2

ff
›

›

›

›

›

ď
1
ε

›

›

›

›

›

«

y1

y2

ff
›

›

›

›

›

@ y1, y2 P L
2
pR; Yq.

This proves (7.32).
Step 2 : We show that (7.32) guarantees stability of F pD,Krq. With the definition

∆ :“
«

´∆M

∆N

ff

:“
«

Mr ´M

N´Nr

ff

,

and (7.28), the estimate (7.32) implies }F}}∆} ă 1. Thus, by Lemma 7.4.4, the
operator ∆ stabilizes F. This means that I´F∆ is invertible, that

pI´F∆q´1
“

˜

I´M´1
r pI´KrDrq

´1
”

I Kr

ı

«

´∆M

∆N

ff¸´1

“
`

I`M´1
r pI´KrDrq

´1
p∆M ´ Kr∆Nq

˘´1

“ ppI´KrDrqMr `∆M ´ Kr∆Nq
´1
pI´KrDrqMr

“ pM´ KrNq
´1
pI´KrDrqMr

is in TIC2
0pU ; Uq, and that

pI´F∆q´1F “
”

pM´ KrNq
´1

pM´ KrNq
´1 Kr

ı

193



7. H8-balancing and truncation for Pritchard-Salamon systems

“M´1
pI´KrDq´1

”

I Kr

ı

is in TIC2
0pU ˆ Y ; Uq. In analogy to (7.31), multiplying this equation by rN , MsJ

gives
«

N

M

ff

pI´F∆q´1F “ F pD,Krq `

«

0 0
I 0

ff

. (7.33)

Since the left hand side is an element of TIC2
0pU ˆ Y ; Y ˆ Uq, this shows that Kr

stabilizes D.
Step 3 : We prove (7.30). Combining equations (7.33) and (7.31), we obtain

F pD,Krq ´ F pDr,Krq “

«

N

M

ff

pI´F∆q´1F´

«

Nr

Mr

ff

F

“

«

Nr

Mr

ff

pI´F∆q´1F`

«

∆N

∆M

ff

pI´F∆q´1F´

«

Nr

Mr

ff

F

“

«

Nr

Mr

ff

`

pI´F∆q´1
´ I

˘

F`

«

∆N

∆M

ff

pI´F∆q´1F

“

«

Nr

Mr

ff

F∆pI´F∆q´1F`

«

∆N

∆M

ff

pI´F∆q´1F

“

˜

F pDr,Krq `

«

0 0
I 0

ff¸

∆pI´F∆q´1F

`

«

∆N

∆M

ff

pI´F∆q´1F

“

˜

F pDr,Krq∆`

«

∆N

0

ff¸

pI´F∆q´1F.

Since rN , MsJ is an isometry, we deduce for the norm

}F pD,Krq} ď }F pDr,Krq} `

›

›

›

›

›

F pDr,Krq∆`

«

∆N

0

ff
›

›

›

›

›

}pI´F∆q´1F}

ď }F pDr,Krq} ` p}F pDr,Krq}ε` εq

›

›

›

›

›

«

N

M

ff

pI´F∆q´1F

›

›

›

›

›

194



7.4. Robust control under right factor perturbation

ď }F pDr,Krq} ` p}F pDr,Krq}ε` εq

›

›

›

›

›

F pD,Krq `

«

0 0
I 0

ff
›

›

›

›

›

ď }F pDr,Krq} ` p}F pDr,Krq}ε` εq p}F pD,Krq} ` 1q .

Since assumption (7.29) guarantees

1´ }F pDr,Krq}ε´ ε ą ε,

we may conclude from the inequality above that

}F pD,Krq} ď
}F pDr,Krq}p1` εq ` ε
1´ }F pDr,Krq}ε´ ε

.

This proves the claim (7.30)

If we have a robust controller for the reduced system in Theorem 7.3.2, then
Theorem 7.4.3 shows that this controller will also stabilize the original, infinite-
dimensional system. Fortunately, sufficient conditions for the existence of such
a controller are well-known, see e.g. [TSH01, Chapter 14] or [MG90, Chapter 7].
In fact, the controller we are looking for is the solution to a special version of the
so-called H8-four block problem, which is the following:

Problem (H8-four block problem). Given γ ą 0 and
«

D11 D12

D21 D22

ff

P TIC2
locpU1 ˆ U2; Y1 ˆ Y2q,

find K P TIC2
locpY2; U2q such that pI´D22Kq has an inverse in TIC2

0pY2; Y2q, and
D11 `D12KpI´D22Kq

´1D21 is in TIC2
0pU1; Y1q with

}D11 `D12KpI´D22Kq
´1D21} ă γ. (7.34)

If we define for our Dr P TIC2
locpU ; Yq the auxiliary input-output map

«

D11 D12

D21 D22

ff

:“

»

—

–

Dr 0 Dr

0 0 I
Dr I Dr

fi

ffi

fl

, (7.35)
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then (7.34) becomes the closed-loop map F pDr,Kq as defined in (7.26). This means,
if Kr solves the H8-four block problem for the auxiliary input-output map in (7.35),
then it has the desired property F pDr,Krq ă γ. If pAr, Br, Cr, Dq is a realization of
Dr, then

¨

˚

˝

Ar,
”

Br 0 Br

ı

,

»

—

–

Cr

0
Cr

fi

ffi

fl

,

»

—

–

D 0 D

0 0 I
D I D

fi

ffi

fl

˛

‹

‚

(7.36)

is a realization of (7.35). Therefore, it suffices to solve the well-known finite-
dimensional H8-four block problem for this auxiliary system. Solutions to this
problem can for example be found in [Sto92, TSH01, ZDG96]. The idea of using the
auxiliary input-output map is exploited in [MG90]. In order to solve this auxiliary
four block problem, one has to assume that the diagonal of the feedthrough operator
consists of zero matrices. For the system in (7.36), this means D “ 0. Under this
condition, we obtain our final corollary.

Corollary 7.4.5. Let γ ą 1, and let Presumption 7.2.1 hold with D “ 0 and
β :“ p1 ´ 1

γ2 q
1
2 . Let pνnqnPN be the H8-characteristic values of pA,B,C, 0q, and

choose r P N such that νr`1 ‰ νr. Assume that the r-th H8-balanced truncation
pAr, Br, Cr, 0q of D is detectable (in the sense of [MG90]) and that νr ă γ. Then
there is a controller Kr that stabilizes the input-output map D of pA,B,C, 0q and
has the r-dimensional state space realization

ˆ

Ar ´ β
2ΥrC

˚
rCr ´BrB

˚
rΥr

`

I´γ´2Υ2
r

˘

, ΥrC
˚
r , ´B

˚
rΥr

`

I´γ´2Υ2
r

˘

, 0
˙

,

where Υr :“ diagpν1, . . . , νrq. Moreover, the performance estimate in (7.30) holds.

Proof. The H8-balanced truncation pAr, Br, Cr, 0q is by assumption detectable, and
by Theorem 7.3.2 stabilizable. Moreover, by the same theorem, the operator Υr

solves the HCARE and the HFARE in (7.22). A simple calculation shows that with
D “ 0 and β :“ p1 ´ 1

γ2 q
1
2 , the Riccati equations in (7.22) reduce to the Riccati

equations in [MG90, Proposition 7.3.3]. By our previous consideration, Υr therefore
solves these equations and, with the additional condition νr ă γ, Proposition 7.3.3
of [MG90] states that the controller Kr stabilizes D with F pDr,Krq ă γ. Finally,
Theorem 7.4.3 shows that Kr stabilizes D.

Remark 7.4.6. If D ‰ 0, there is still a way to solve the auxiliary H8-four block
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problem [Sto92, Section 5.6]. In contrast to the situation in Corollary 7.4.5, this
method does not lead to the HCARE and HFARE in Definition 7.1.1 with D ‰ 0 as
one might hope. Thus, the H8-balancing and truncation method described in this
chapter is not applicable in this case.

7.5. Notes and references
The overall idea of the H8-balancing and truncation procedures in Chapter 7 fol-
lows the finite-dimensional analog in [MG91], although there are some conceptional
differences: We use a right factorization instead of a left factorization and we intro-
duce a new scalar product instead of scaling the input-output map. This leads to
a different measure of the error bound, which is neither better nor worse. The ap-
proach is based on the idea that the H8-four block problem for the auxiliary system
(7.36) is closely related to the LQG problem for pA,B,C, 0q. According to [MG90,
Chapter 7], it can also be interpreted as the problem of minimizing the so-called
“entropy” of pA,B,C, 0q.
Coprime factorizations arising from exponentially stabilizing feedback are well un-

derstood for regular well-posed linear systems [CWW96]. There are extensions for
non-exponentially stabilizing feedbacks as well [Sta98a, Mik02, Mik06]. The con-
nection to Riccati equations is made in [Mik02, Mik06, CO06, OS14]. In particular,
the construction of normalized factorizations is discussed in [CO06, Mik06].
The robustness results in Section 7.4 are standard algebraic calculations, similar to

the ones for left factorizations in [Cur90], [CZ95, Chapter 9], or [ZDG96, Chapter 9].
A similar procedure for H8-balanced truncation can be carried out for discrete

time systems, see [Sel15]. The works [CO04, Opm06, Opm07, OS14] make use of
the discrete time theory and the Cayley transformation to transform the Riccati
equations into simpler equations with bounded operators. In [Opm06, Opm07] this
was exploited to construct an LQG-balanced truncation for continuous time infinite-
dimensional systems. This approach can be exploited in various ways: either only
the balancing and truncation is performed in discrete time, or even the controller is
constructed in discrete time, before transforming back to continuous time. In any
case, this method leads to a different controller since the Cayley transform does not
commute with the process of truncating. Moreover, the state space realization of
the resulting controller not as practical to compute as the one in Corollary 7.4.5.
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A.1. Analytic semigroups and interpolation
We recap some facts about analytic semigroups and fractional powers of their gen-
erators. These standard results are documented in e.g. [Sta05, Sections 3.9–3.10],
[Paz83, Section 2.6].
An analytic semigroup in the Hilbert space X is a strongly continuous semigroup A

in X which can be extended to an analytic mapping A : S0,θ Ñ BpX q on a sector

S0,θ :“ t λ P C | arg λ P p´θ, θq u for some θ P p0, π2 q,

such that ApsqAptq “ Aps` tq for all s, t P S0,θ and

lim
tÑ0, tPS0,θ

Aptqx “ x @x P X .

A densely defined operator A is the generator of an analytic semigroup if and only
if A is sectorial in the sense of [Sta05, Definition 3.10.2].
Let A : domA Ă X Ñ X be the generator of an analytic semigroup A in a Hilbert

space X and let λ P CěωA
. The negative powers of λ´A are defined by the formula

pλ´ Aq´αx :“
ˆ
ż 8

0
tα´1e´t dt

˙´1 ż 8

0
tα´1e´λtAptqx dt, @α ą 0, x P X .

This formula defines an injective, bounded linear operator. The positive positive
powers of A are defined by

pλ´ Aqα : ranpλ´ Aq´α Ñ X , pλ´ Aqα :“
`

pλ´ Aq´α
˘´1

, @α ą 0.

These operators are closed and densely defined in X . For α ą 0, the domain of
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pλ´ Aqα is equipped with the norm

}x}α :“ }pλ´ Aqαx}X ,

and named Xα. The space X´α is defined as the dual space of Xα with respect to the
pivot space X , and therefore it is a subspace of the rigged space X´1 “ pdomA˚q1 in
Section 2.1. Different choices of λ P CěωA

yield equivalent norms. As a consequence
of [Sta05, Lemma 3.10.9] we may state the following Lemma.

Lemma A.1.1. Let A be an analytic semigroup in X , α P r´1, 1s and define Xα as
above. The extension A|X´1 restricts to an analytic semigroup on Xα. Furthermore,

DM ě 1 :
›

›AX´1ptqx
›

›

Xα`θ
ďM

`

1` t´θ
˘

eωAt }x}Xα @x P Xα, t ą 0. (A.1)

The estimate in (A.1) is an interpolation inequality. Let us briefly summarize
the simplest form of the complex interpolation functor r¨, ¨sθ defined in [Tri95, Sec-
tion 1.9.2].

Definition A.1.2 (complex interpolation functor). Let W , X be Banach spaces
with W ãÑ X . Define S :“ Cą0zCě1 and Sα :“ t α ` it | t P R u for α “ 0, 1.
Furthermore, define the function space

FpSq :“
!

f P CpS; X q XH8
pS; X q

ˇ

ˇ

ˇ
f
ˇ

ˇ

S0
P CpS0; X q ^ f

ˇ

ˇ

S1
P CpS1; Wq

)

.

Then for θ P p0, 1q, the interpolation space of exponent θ is defined as

rX , Wsθ :“ t x P X | D f P FpSq : fpθq “ x u

with norm

}x}θ :“ inf
"

max
"

sup
tPS0

}fptq}X , sup
tPS1

}fptq}W

*
ˇ

ˇ

ˇ

ˇ

f P FpSq ^ fpθq “ x

*

.

By [Tri95, Section 1.18.10] the following theorem holds.

Theorem A.1.3. Let A be the self-adjoint generator of an analytic semigroup in
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X , and let 0 ď β ă α ď 1. For the spaces Xα, Xβ defined as above, we have

Xp1´θqα`θβ “ rXα , Xβsθ @ θ P p0, 1q. (A.2)

The next lemma, which is found for example in [EN00, p. 60], helps determine
the generator of A|Xα .

Lemma A.1.4. Let the Banach space W be continuously embedded into the Banach
space X , and let A be the generator of a semigroup A in X . Assume that W is
A-invariant and t ÞÑ Aptq|W is strongly continuous with respect to the norm of W.
Then the generator of A|W is the part of A in W, i.e. the operator

AWx :“ Ax @x P domAW :“ t x P W X domA | Ax P W u .

Thus, for α P r´1, 1s, the generator of the semigroup A|Xα is the part of A|X´1

in Xα.
Another powerful means to determine the space X1{2 is Kato’s Second represen-

tation theorem. We summarize Kato’s First and Second representation theorem
[Kat80, Section VI.2] in the following theorem.

Theorem A.1.5. Let W and X be Hilbert spaces with W ãÑ X , and let a : WˆW Ñ

C be a continuous, hermitian symmetric sesquilinear form that fulfills

Re apx, xq “ apx, xq ě 0 @x P X .

Then there exists a unique operator A with

domA :“
 

x P W
ˇ

ˇ Dzpxq P X : apx, ψq “ xzpxq , ψyX @ψ P W
(

,

Ax :“ ´zpxq @x P domA

Furthermore, A is self-adjoint and nonnegative, domA is dense in W, and for every
λ ą 0 we have

domppλ´ Aq 1
2 q “ W , and xp´Aq

1
2x, p´Aq

1
2yyX “ apx, yq @x, y P W .
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A.2. Solutions to inhomogeneous Cauchy problems
Definition A.2.1. Let A : domA Ă X Ñ X be the generator of a strongly con-
tinuous semigroup A on the Banach space X , and denote by X´1 the rigged space
defined in Section 2.1. Furthermore, let x0 P X and f P L1

locpRě0; X´1q. A function
x is a strong solution of the Cauchy problem

9xptq “ Axptq ` fptq, xp0q “ x0, (A.3)

in X if and only if x P CpRě0; X q and

xptq “ x0 `

ż t

0
A|Xxpτq ` fpτq dτ @ t ě 0,

where this Bochner-integral is defined with respect to the norm of X´1.

In view of [Sta05, Definition 3.2.2 (i)], our definition of strong solutions is just
a reformulation of [Sta05, Definition 3.8.1]. Hence, we may excerpt the following
assertions from [Sta05, Theorem 3.8.2.]:

Lemma A.2.2. Let x0 P X and f P L1
locpRě0; X´1q.

(i) The Cauchy problem (A.3) has at most one strong solution in X . This solution
is given by

xptq “ Aptqx0 `

ż t

0
Apt´ sq|X´1 fpsq ds, t ě 0. (A.4)

(ii) If f P L1
locpRě0; X q, then the function x defined by (A.4) is a strong solution

of (A.3) in X .

(iii) If f P W 1,1
loc pRě0; X´1q, then the function x defined by (A.4) is a strong solution

of (A.3) in X .

Lemma A.2.3. Let A11 and A22 generate strongly continuous semigroups on the
Hilbert spaces X and Z, respectively, and let A12 P BpZ; X q, A21 P BpX ; Zq. Then
the operator

A : domA11 ˆ domA22 Ă X ˆ Z Ñ X ˆ Z, A :“
“

A11 A12
A21 A22

‰

,
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generates a strongly continuous semigroup in X ˆ Z. Let rx0
1 , x

0
2s
J P X ˆ Z and

rf1 , f2s
J P L1

locpRě0; X ˆZq. Then rx1 , x2s
J P CpRě0; X ˆZq is the strong solution

of
«

9x1ptq

9x2ptq

ff

“ A

«

x1ptq

x2ptq

ff

`

«

f1ptq

f2ptq

ff

,

«

x1p0q
x2p0q

ff

“

«

x0
1

x0
2

ff

, (A.5)

in X ˆ Z if and only if the functions x1 and x2 satisfy for all t ě 0 the equations

x1ptq “ x0
1 `

ż t

0
A11

ˇ

ˇ

Xx1psq ` A12x2psq ` f1psq ds, (A.6)

x2ptq “ x0
2 `

ż t

0
A22

ˇ

ˇ

Zx2psq ` A21x1psq ` f2psq ds, (A.7)

where the integrals are computed in pdomA˚11q
1 and pdomA22q

1, respectively. In
particular, there exists a unique pair of functions x1 P CpRě0; X q, x2 P CpRě0; Zq
that fulfills (A.6) and (A.7). If, in addition, A11 is bounded, then the component x1

of this solution is differentiable almost everywhere with respect to the norm of X ,
and

9x1ptq “ A11x1ptq ` A12x2ptq ` f1ptq f.a.a. t ě 0. (A.8)

Proof. We observe that the operator diagpA11, A22q with domain domA11ˆdomA22

generates a strongly continuous semigroup in X ˆ Z. Due to the boundedness of
the perturbation

“ 0 A12
A21 0

‰

P BpX ˆZq, the operator A is well-defined and generates
a strongly continuous semigroup in X ˆ Z. Moreover, an elementary proof shows
that the adjoint of A fulfills

domA˚ “ pdomA˚11 ˆ domA˚22q, A˚ “
”

A˚11 A
˚
21

A˚12 A
˚
22

ı

,

and therefore the rigged space corresponding to A is pdomA˚q1 “ pdomA˚11 ˆ

domA˚22q
1. By definition and owing to the Uniform boundedness principle, r x1

x2 s

is a strong solution of (A.5) in X ˆ Z if and only if all r ϕ1
ϕ2 s P domA˚11 ˆ domA˚22

satisfy the equation

〈«
x1ptq

x2ptq

ff

,

«

ϕ1

ϕ2

ff〉
XˆZ

“

〈«
x0

1

x0
2

ff

,

«

ϕ1

ϕ2

ff〉
XˆZ

`

ż t

0

〈«
x1psq

x2psq

ff

, A˚

«

ϕ1

ϕ2

ff〉
XˆZ

`

〈«
f1psq

f2psq

ff

,

«

ϕ1

ϕ2

ff〉
XˆZ

ds
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“
〈
x0

1 , ϕ1
〉

X
`
〈
x0

2 , ϕ2
〉

Z

`

ż t

0
〈x1psq , A

˚
11ϕ1 ` A

˚
21ϕ2〉X ` 〈x2psq , A

˚
12ϕ1 ` A

˚
22ϕ2〉Z

` 〈f1psq , ϕ1〉X ` 〈f2psq , ϕ2〉Z ds.

This holds if and only if, for all ϕ1 P domA˚11 and all ϕ2 P domA˚22, the equations

〈x1ptq , ϕ1〉X “
〈
x0

1 , ϕ1
〉

X

`

ż t

0
〈x1psq , A

˚
11ϕ1〉X ` 〈x2psq , A

˚
12ϕ1〉Z ` 〈f1psq , ϕ1〉X ds

and

〈x2ptq , ϕ2〉X “
〈
x0

2 , ϕ2
〉

Z

`

ż t

0
〈x2psq , A

˚
22ϕ2〉Z ` 〈x1psq , A

˚
21ϕ2〉Z ` 〈f2psq , ϕ2〉Z ds

hold. Again by the Uniform boundedness principle, these two equations are equiv-
alent to (A.6) and (A.7).
For the additional claim assume now that the operator A11 is bounded. The rigged

space pdomA˚11q
1 then coincides with X , and therefore x1 satisfies

x1ptq “ x0
1 `

ż t

0
A11x1psq ` A12x2psq ` f1psq ds @ t ě 0,

where the integration is carried out in X . This equation and Corollary 2 of [HP57,
Theorem 3.8.5] imply that, for almost all t, the limit

lim
hÑ0

x1pt` hq ´ x1ptq

h
“ A11x1ptq ` A12x2ptq ` f1ptq

with respect to } ¨ }X exists. This shows (A.8) and completes the proof of the
lemma.
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