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Zusammenfassung/Abstract/ صلختسملا 
 

Zusammenfassung 
Die eukaryotische Grünalge Ulva spp. (Chlorophyta) ist eine weltweit vorkommende 

Makroalge und tritt häufig während so genannter “green tides” massenhaft in eutrophierten 

Küstenregionen auf. Ulva spp. lebt in Gemeinschaft mit Bakterien, die das Wachstum und die 

Morphogenese der Alge ermöglichen. Ulva interagiert hierbei mit den assoziierten Mikroben 

durch Freisetzung spezifischer alellopathischer Substanzen in die Chemosphäre, die die 

Gesamtheit aller Substanzen in einer Biozönose umfasst, in der verschiedene Organismen  

miteinander wechselwirken. 

Algale Oxylipine, wie zum Beispiel die vielfachungesättigten Aldehyde, die aus mehrfach 

ungesättigten Fettsäuren gebildet werden, spielen eine wichtige Rolle in der Ausbildung der 

mikrobiologischen Gemeinschaft. In dieser Studie wurden Ulva Spezies an verschiedenen 

Probenahmestellen in der Lagune Ria Formosa (Portugal) gesammelt, um sie hinsichtlich ihres 

Potenzials zur Produktion von vielfachungesättigten Aldehyde (PUA: polyunsaturated 

aldehydes) zu untersuchen. Lipoxygenase und Hydroperoxid-Lyase vermittelte Reaktionen 

bilden verschiedenste Oxylipine aus vielfachungesättigten Fettsäuren. Diese enzymatischen 

Fettsäureumsetzungen sind sehr divers und spielen eine wichtige Rolle bei der 

Informationsvermittlung, Stressreaktionen und chemischen Verteidigungsstrategien der 

Makroalgen. Daher wurden PUAs im Rahmen einer Reihenuntersuchung quantifiziert. 

Interessanterweise produzieren insbesondere die „Salatblatt“-förmigen Ulva Arten nach 

Zellverletzung PUAs wie z.B. das 2,4,7-Decatrienal oder das 2,4-Decadienal im Gegensatz zu den 

röhrenförmigen Arten, die keine PUAs freisetzten.  

Darüber hinaus haben morphogenetische und phylogenetische Analysen der untersuchten 

Arten eine chemotaxonomische Signifikanz der untersuchten Biosynthesewege aufgezeigt. 

Untersuchungen zu den Biosynthesewegen haben gezeigt, dass die PUAs aus ω3 und ω6 

vielfachungesättigten Fettsäuren (PUFA, polyunsaturated fatty acids) mit 20 und 18 C-Atomen 

(Arachidonsäure (C20:4 n-6), Eicosapentanoensäure (C20:5 n-3), γ-Linolensäure (C18:3 n-3) 

oder Stearidonsäure (C18:4 n-3)) gebildet werden. 11- und 9-Lipoxygenasen katalysieren dabei 

die Umsetzung der C20 und C18 Fettsäuren über den Eicosanoid- und dem Octadecanoid-

Biosyntheseweg in PUAs und kurzkettige hydroxylierte Fettsäuren. 

IX 
 



Zusammenfassung/Abstract/ صلختسملا 
 

Der Modelorganismus Ulva mutabilis Føyn Slender (sl) hat einen röhrenförmigen Morphotype 

und produziert keine PUAs. Diese Art, deren Lebenszyklus unter Laborbedingungen vollständig 

kontrolliert werden kann und in Symbiose mit zwei Bakterien, dem Roseobacter sp. und dem 

Cytophaga sp. lebt, wurde ausgewählt, um die chemisch-vermittelten Interaktionen innerhalb 

der Chemosphäre dieser Dreiecksbeziehung (tripartite community) zu untersuchen. Unter 

axenischen Kulturbedingungen, bildet U. mutabilis undifferenzierte Zellhaufen aus. Nur durch 

die wechselseitigen Beziehungen mit den Bakterien durchläuft die Makroalge die vollständige 

Morphogenese. Im Rahmen dieser Studie wurden in einem explorativen Ansatz das Exo-

Metabolom zusammen mit biotischen Schlüsselparameteren (z.B.: Nährtstoffgehalt, 

Wachstumsraten, Zeitpunkt des Generationswechsels) dieser Lebensgemeinschaft untersucht 

und folgende a posteriori Hypothese aufgestellt:  

 

“Die Chemosphäre der algalen-bakteriellen Lebensgemeinschaft ändert sich mit den 

verschiedenen Wachstumsphasen und Biomarker dieses Exo-Metaboloms können genutzt 

werden, um den Generationswechsel von Ulva vorherzusagen“ 

 

Um diese Hypothese zu testen, wurde U. mutabilis in 25 L Bioreaktoren oder in 200 L 

Aquakulturen kultiviert, die mit sieben Tage alten Keimlingen oder axenischen Kulturen 

angeimpft wurden. In der Tat gelang es den kompletten Lebenszyklus des Gametophyten in 

Kultur unter diesen Bedingungen darzustellen, wenn mit den richtigen Bakterien ebenfalls 

angeimpft worden war. Das Nährmedium musste hierbei nicht zusätzlich gewechselt werden. 

Biotest haben gezeigt, dass Ulva drei wesentliche Phasen durchläuft, die sich durch die 

Befähigung der Alge zur Gametogenese unterscheiden: (1) die Gametogenese ist nicht 

induzierbar, (2) die Gametogenese ist induzierbar oder (3) sie verläuft spontan. Der 

Nährstoffverbrauch war insbesondere hoch während der Wachstumsphase, wenn die 

Gametogenese der Alge auch bereits induzierbar war.   

Mittels Festphasenextraktion wurden die in der Wasserphase vorhanden Substanzen 

extrahiert und nach Separierung durch Ultra-High Performance Liquid Chromatography (UHPLC) 

oder durch Gaschromatographie (nach Derivatisierung) mit einem Flugzeitdetektor- 
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Massenspektrometer (TOF-MS) analysiert. Chemometrische Datenanalysen des Exo-

Metaboloms z.B. mittels Diskriminanzanalyse haben gezeigt, dass sich die phänomenologischen 

Beobachtungen (Wachstumsphasen, reproduktiver Status im Lebenszyklus) durch Metaboliten 

in der Wassersäule beschreiben bzw. vorhersagen lassen. Jeder reproduktive Status konnte 

durch spezifische Biomarker beschrieben werden. Unter diesen signifikanten Biomarkern, die 

sowohl in Bioreaktoren als auch in Aquakulturen gefunden worden sind, sind die meisten 

unbekannt. Nichtsdestoweniger konnten diese Biomarker genutzt werden, um den 

reproduktiven Status der Alge auf der Basis von Veränderungen in der 

Metabolitenzusammensetzung in Aquakulturen vorherzusagen. 

Darüber hinaus hat diese Studie gezeigt, dass sich Änderungen im metabolischen 

Fingerabdruck im Wasserkörper durch U. mutabilis auf veränderten Umwelteinflüsse 

(Mikrobiome, Nährstoffe usw.) zurückführen lassen. Zum Beispiel wurde der algale Biomarker 

2,4,6-Tribromophenol in der Chemosphäre der Dreiecksbeziehung gefunden, nicht aber in den 

Aquakulturen, in der auch weiter Mikroorganismen aufgrund der nicht sterilen Bedingungen zu 

finden waren. 

Zusammenfassend sind die Änderungen zwischen den Wachstumsphasen im metabolischen 

Profil signifikant, sodass sich Änderungen in Bezug auf das algale Wachstum und den 

Lebenszyklus prognostizieren lassen. Das Wissen um die Biomarker für die entsprechenden 

Wachstumsphasen und Lebenszyklen ist essentiell, um Aquakulturen mit ökonomisch 

relevanten Biomassen zukünftig nachhaltig bewirtschaften zu können. 
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Abstract 

The eukaryotic green marine algae Ulva spp. (Chlorophyta), are widespread macroalgae often 

involved in blooms. Ulva spp. are usually associated with marine bacteria to meet their 

physiological needs and exhibit therefore microbe-dependent growth and morphotypes. Ulva 

spp. might actively affect their microbiome by releasing specific compounds in its 

chemosphere. For instance, algal oxylipins including polyunsaturated aldehydes (PUAs) derived 

from polyunsaturated acids (PUFAs) might play an important structuring role for the 

microbiome. In the present study, Ulva spp. collected at various sampling sites in the lagoon of 

the Ria Formosa (Portugal) have been studied with respect to (1) their ability to produce 

polyunsaturated aldehydes and (2) their ability to communicate with their surrounding bacteria 

via infochemicals. 

Lipoxygenase/hydroperoxidelyase mediated transformations convert polyunsaturated fatty 

acids into various oxylipins. These fatty acid transformations are highly diverse in marine algae 

and play a crucial role in e.g., signaling, chemical defense, and stress response often mediated 

through polyunsaturated aldehydes (PUAs). In this study, Ulva spp. were surveyed for PUAs. 

Ulva species with sea-lettuce like morphotype were demonstrated to produce elevated 

amounts of volatile C10-polyunsaturated aldehydes (2,4,7-decatrienal and 2,4-decadienal) upon 

tissue damage in contrast to Ulva species with tube-like morphotype. Moreover, 

morphogenetic and phylogenetic analyses of the collected Ulva species revealed 

chemotaxonomic significance of the perspective biosynthetic pathways. The aldehydes are 

derived from omega-3 and omega-6 polyunsaturated fatty acids (PUFA) with 20 or 18 carbon 

atoms including eicosapentaenoic acid (C20:5 n-3), arachidonic acid (C20:4 n-6), stearidonic 

acid (C18:4 n-3), and γ-linolenic acid (C18:3 n-6). As first evidences in this study, it was found 

that lipoxygenase-mediated (11-LOX and 9-LOX) eicosanoid and octadecanoid pathways 

catalyze the transformation of C20- and C18-polyunsaturated fatty acids into PUAs and 

concomitantly into short chain hydroxylated fatty acids.  

Ulva mutabilis Føyn (sl) with tube-like morphotype was used as an objective to investigate the 

chemical mediated interaction (infochemicals) within the chemosphere of tripartite community 

consisting of U. mutabilis and its associated marine bacteria i.e., Roseobacter and Cytophaga 
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species. In the absence of these bacteria (axenic conditions), U. mutabilis forms callus-like 

colonies. However, the combination of the two bacterial strains, Roseobacter sp. and 

Cytophaga sp. can completely restore the morphogenesis of U. mutabilis forming a symbiotic 

tripartite community. 

The exo-metabolome of the chemosphere of this tripartite community was surveyed along 

with the biological metadata. Following a posteriori hypothesis based on the collected 

biological data was finally tested:  

 

‘‘The chemosphere of the tripartite community changes throughout the growth phases of the 

macroalgae and biomarker of this exometabolome can be used to predict changes in the status 

of gametogenesis inducibility during the life cycle” 

 

To test the hypothesis, two different approaches and cultivation conditions i.e., sterile 25 L 

bioreactor cultures and non-sterile 200 L outdoor aquacultures were conducted which cultures 

were inoculated with axenic cultures or seven days old germlings. Indeed, it was feasible to 

observe the whole life cycle of the gametophyte under these conditions when the appropriate 

bacteria were inoculated as well. Hereby, the medium did not need to be changed. Bioassays 

revealed that U. mutabilis passed through three statuses of gametogenesis inducibility which 

can be distinguished whether Ulva is able to onset the gametogenesis:  (1) gametogenesis is not 

inducible, (2) gametogenesis can be induced or (3) it starts even spontaneously.  

The nutrient depletion over the reproductive cycle shows that the utilization rate of nitrate as 

a limiting growth factor was significantly high during the inducible status, when the macroalgae 

was growing.  

The waterborne metabolites were extracted by solid phase extraction. The samples were 

directly analyzed by ultra-high performance liquid chromatography (UHPLC) and by gas 

chromatography (after derivatization) coupled with a time-of-flight mass spectrometer (TOF-

MS). Interestingly, chemometric data analysis (e.g. discriminant analysis) proofed that all 

waterborne metabolites obtained either from GC-MS or LC-MS were corresponding to the 

inducibility status of gametogenesis of U. mutabilis in both cultivation conditions. Even more 
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interesting, many unknown biomarkers were found to be common in both bioreactor cultures 

and aquaculture, insuring the high probability of using these biomarkers as indicators to 

determine the growth phases corresponding to the status of gametogenesis inducibility in U. 

mutabilis under any cultivation condition in future land based aquacultures. Moreover, the 

present study revealed remarkable metabolic fingerprints which might due to the adaptation of 

U. mutabilis to changes in its surrounding environment (e.g., in the microbiome, nutrients, life 

cycle of the alga). For instance, the algal biomarker 2,4,6-tribromophenol was detected in the 

chemosphere of the tripartite community under sterile cultivation (bioreactor) but not in the 

well-defined bacterial community under non-sterile cultivation (aquaculture).  

In summary, the changes of the metabolite profile between the growth phases were 

significant. Therefore, various statues in algal growth and life cycle can be predicted based on 

the dynamics of waterborne metabolites. This knowledge will be essential in order to maintain 

land based aquacultures providing economical relevant amounts of biomasses.  
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 المُسْتَخْلَص
 من أنها كما الانتشار، والواسعة المجردة بالعين المرئية الطحالب من ألُْڤـا بفصيلة والمعروفة النواة حقيقية الخضراء البحرية الطحالب تُعد

 البكتريا من فصائل مع متلازمة تكون ما عادة ألُُڤـا طحالب الأخضر. بالمد يُسمى ما مكونة الإزدهار علي القدرة لها التي الطحالب

 من لها. الملازمة الكائنات على الظاهري وشكلها نموها في معتمدة كائنات فهي وبهذا الفسيولوجية احتياجاتها بذلك مكملة البحرية

 الملازم الكائن نمو على تؤثر فعالية ذات مواد  الكيميائي بالمجال تُسمى منطقة في بدورها تُفرز قد الطحالب هذه فـإن أخرى جهةٍ 

 أكسدة من عادة تنتج والتي )أٔ .ع.غ.م( مشبعة غير عديدة روابط ذات ألدهيدات تفرز ألُْڤـا طحالب بعض الحصر، لا الثال سبيل على لها.

 في هام دور تلعب أنها وجُد )أٔ .ع.غ.م( الألدهيدات هذه )،ح.ع.غ.م( المشبعة غير العديدة الروابط ذات الدهنية الأحماض تحلل ثم ومن

  بالطحلب. المحيطة البكتيرية البيئة تركيب

 عدة من جمعها تم قد الفصائل هذه ).أٔ .ع.غ.م( إنتاج على القدرة لها التي ألُْڤـا فصائل استقصاء إلى تهدف الحالية الدراسة فـإن وعليه

 التواصل وسيلة فهم محاولة إلى الداسة هذه تهدف كما  فيرموزا، ريو شاطئ من وبالتحديد البرتغال في الغربي الساحل على مناطق

 الملازمة. البكتيريا وبين الطحالب هذه بين

 إنزيم بتواجد تتم والتي الإنزيمي الحفز عملية طريق عن )أٔ .ع.غ.م( إلى يتحول )ح.ع.غ.م( أن المعروف من فـإنه الأول، الهدف ولتحقيق

 على الطحالب في شتى بطرق تتم هذه التحول عملية الأكسجينة. فوق الهيدرو الدهنية الأحماض تحلل إنزيم و الدهنية الأحماض أكسدة

 الطحلب قبل من تستخدم فقد والبكتيريا، الطحالب بين التواصل عمليات في هاما دوراً  تلعب )أٔ .ع.غ.م( في المتمثلة ونواتجها العموم وجه

 على بناء تحفيز. أو إنذار كوسيلة كذلك تستخدم وقد قـاسية، بيئية لظروف تعرض حال في الطحلب يفرزها قد أو مثلا، دفـاع كوسيلة

 )،أٔ .ع.غ.م( وجود عن للكشف البرتغالي الساحل من والمجموعة ألُْڤـا لطحالب مسح بعملية قـامت الحالية الدراسة فـإن العلمية، الحقيقة هذه

 تنتج فـإنها التمزيق أو للتلف أنسجتها تتعرض عندما الخس ورقة الخارجي مظهرها في تشبه التي ألُْفـا طحالب أن النتائج أسفرت وقد

 تراينال، -٧ ،٤ ،٢ديكا- وَ  -داينال،٤ ،٢ديكا- في والمتمثلة كربون ذرات عشر على تحتوي والتي )أٔ .ع.غ.م( من كبيرة كميات

 التحليل نتائج أثبتت وقد هذا الإطلاق. على الألدهيدات هذه تنتج لا أنها وجد والتي الشكل أنبوبية ألُْڤـا طحالب من العكس على وذلك

 تشير كما للدراسة. الخاضعة ألُْڤـا لطحالب بالنسبة اعتماده يمكن كيموشكلي تصنيف هناك أن إلى والتطور النشوء تحليل مع الشكلي

 كربون؛ ذرة ٢٠ أو ١٨ علي تحتوي التي المشبعة غير الدهنية أوميجا أحماض من تنتج الذكر سابقة الألدهيدات أن إلى النتائج

 )؛٣ أوميجا ثنائية، روابط ٥ كربون: ٢٠( الإيكوسپينتينويك حمض )؛٦ أوميجا ثنائية، روابط ٤ كربون: ذرة ٢٠( الأركودونيك كحمض

 وتعد ).٦ أوميجا ثنائية، روابط ٣ كربون:١٨( جاما-لينولينويك وحمض )؛٣ أوميجا ثنائية، روابط ٤ كربون:١٨( الإستيرودونيك حمض
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 أكسدة بانزيم المُحفزة وأكتازانويد ايكوزانويد الحيوي الاصطناع طريقتي كلا أن أثبتت والتي نوعها من الأولى هي الدراسة هذه

 الأحماض فيها تتأكسد والتي ألُْڤـا طحالب  في تتم المشبعة غير الدهنية الأحماض في ١١  رقم الكربون وذرة ٩ رقم الكربون ذرة

 غير الروابط متعددة ألدهيدات إلى بالتالي وتتحلل كربون ذرة ١٨ و ٢٠ علي والمحتوية المشبعة غير الروابط متعددة الدهنية

 ثانوية. كنواتج القصيرة الكربونية السلاسل ذات الهيدروكسيلية الأحماض إلى بالإضافة المشبعة

ا بطحلب المعروف الصنف اختيار تم قد فـإنه الدراسة؛ من الثاني الهدف ولتحقيق  لدراسة )Ulva mutabilis( مُتابـْلِس ألُڤـْ

 من لها الملازمة والبكتيريا مُتابـْلِس ألُفـا بين تحدث والتي )Infochemicals( الكيميائية بالاشارات المعروفة الكيميائية التفـاعلات

 الذكر سابقة البكتريا نوعي مع الطحلب هذا لأن وذلك ).Cytophaga sp( وسايتوڤـاغا ).Roseobacter sp( روزيوباكتر نوع

 مع طبيعياً  نمواً  الثلاثة الكائنات هذه فيه تنمو ثلاثي مجتمع تكوين علي القدرة بالتالي يمنحهم مما التكافـلي التعايش على القدرة لهم

 ابـْلِس◌ٓ مُت ألُڤـا أن لوحظ حين في البحرية، بيئتها في متواجدة الكائنات هذه كانت لو كما المُعتاد الطبيعي الظاهري الشكل اتخاذ

 وسط عن البكتيريا هذه غياب حال في البثور تشبه مُستعمرة مكونة الطبيعي شكلها تفقد أنها إلى اضافة اطلاقـا النمو على قـادرة غير

 النمو.

 إجراء جانب إلى الثلاثي، المجتمع داخل الكيميائي المجال في الكائنات هذه من المفرزة الأيض نواتج تحليل تم أعلاه، الحقـائق ضوء في

 التالية: الاستدلالية الفرضية اختبار تم فـإنه الحيوية؛ التحاليل على استناداً  حيوية. تحاليل

 
 التكا�ر وضع تغیيرات إلى �شير بیولوجية كعلامات �س�ت�دم قد المنطقة هذه في المفُرَزة ا�یٔضیة المواد فإن و�لیه الط�لب، حياة دورة �لال الكيمیائي ا�ال لمنطقة الك�ئیة البُنية "تتغير 

  "الط�لب حياة دورة �لال

 
 تمّ  حيث النمو وسط من مختلفة احجام اسُْتُخدمت كما مختلفة، بيئية ظروف في الثلاثي المجتمع كائنات إنماء تم المنطلق؛ هذا ومن

 تحت لتر ٢٠٠ سعتها مائية أحياء مزارع انشاء إلى بالإضافة مُعقمة، معملية ظروف تحت أجُريت وقد لتر ٢٥ سعتها حيوية مُفـاعلات تصميم

 وقد فقط). اسبوع لمدة انمائها (تم صغيرة بطحالب أو ممحوضة بطحالب إما التلقيح تم الظروف كلا في مُعقمة. غير ميدانية ظروف

 طيلة النمو وسط تغيير يتم لم أنه علماً  لها، الملائمة البكتريا مع نموها عند مُتابلس ألُْڤـا حياة دورة خلال الأمشاج تكوين عملية ملاحظة تمّت

 بينها التمييز يمكن والتي تكاثر، مراحل بثلاث تمر مُتابلس ألُڤـا بأن التكاثر على القدرة اختبار أسفرت وقد يوماً ). ٤٩( التجربة فترة

 القدرة عدم مرحلة  )١( التوالي: على هي التكاثر مراحل فـإن وعليه الأمشاج. تكوين عملية في البدء على متابلس ألڤـا قدرة علي بناءً 

 الغذائية العناصر تحليل أفـاد كما تلقـائياً . الأمشاج تكوين مرحلة )٣( وأخيراً  بالتحفيز، الأمشاج تكوين مرحلة  )٢(  الأمشاج، تكوين على
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 من تماما يختفي حين في المُحفز، التكاثر مرحلة خلال استهلاكه يبدأ والذي النترات هو مُتابلس ألُْڤـا نمو في المُؤثر الغذائي العنصر أن

 تقنية باستخدام النمو وسط من الأيض نواتج استخلاص تم فـإنه الكيميائي؛ التحليل ضوء في أما التلقـائي. التكاثر مرحلة في النمو وسط

 'الكروماتوغرافي'السائل الاستشرابي التحليل بطرق تحليلها ثم ومن )،Solid phase extraction( صلب سطح على الاستخلاص

)liquid chromatograph, UHPLC،( الغازي بالاستشراب تحليلها تم كما (gas chromatography)  الاشتقـاق. عملية بعد 

 الكيميائي التحليل نتائج اسفرت وقد.)mass spectrometry, TOF-MS( الكتلة مطياف بجهاز متصلين الاستشراب جهازي كلا

 الغازي أو السائل الاستشراب تحليل  من ناتجة كانت سواء الكيميائي المجال في الأيض مواد أن الكيميائي الاحصائي التمايز تحليل مع

 نسبة أن للانتباه والمثير الثلاثي. المجتمع في تواجدها بشرط نمو ظروف أي تحت مُتابلس ألُڤـا بها تمر التي التكاثر بمراحل تتأثر فـإنها

 النمو ظروف كلا في الكيميائي الثلاثي المجتمع مجال داخل تُفرزَ الكيميائي تركيبها على التعرف يتم لم التي الأيض نواتج من كبيرة

 المجتمع تحليل إعدة عند الأيضية النواتج هذه على الحصول إمكانية بذلك مبرهنةً  معقمة، غير أو معقمة كانت سواءً  الدراسة تحت

 النمو، ظروف كلا تحت الكيميائي المجال في مشتركة أيض نواتج وجود رغم أنه إلى الإشارة وتجدر هذا ظروف. أي وتحت لاحقـا الثلاثي

 سيبل فعلى المعقمة، غير تلك عن المعقمة النمو ظروف تمييز يتم بها والتي الأيضية بصمتها لها تزال لا المختلفة النمو ظروف أن إلا

 الثلاثي المجتمع كائنات انماء تم حين الكيمائي المجال في الفينول برومو ثلاثي -٦،٤،٢ مركب استخلاص تم قد فـإنه الحصر لا المثال

 كوسيلة تفسيرها يمكن قد النتيجة هذه المعقمة. غير الظروف تحت المركب هذا على العثور يتم لم حين في معقمة، ظروف تحت

 العناصر وفرة أو النمو، وسط في المتواجدة الدقيقة الكائنات نوع مثل المحيطة البيئة غيُّر◌ٓ لت نتيجة مُتابلس ألُْڤـا تستخدمها تكيُّف

 الغذائية).

 المجال منطقة في الأيضية المواد افراز مجرى في مُعتبرة علمية دلالة ذو تغيير هناك بأن تُفيد مُجتمعة، النتائج هذه فـإن وبهذا

 عاملاً  يُعد العلمية الحقيقة بهذه الإلمام فـإن وعليه مُتابلس. ألُڤـاة حياة مرحلة خلال الأمشاج تكوين على القدرة على يستند الكيميائي

 تخدم حيوية كتلة على الحصول في على فعّال تأثير له الذي الأمر أطول، فترةً  المائية الحياة مزارع ابقـاء على الحفـاظ في يساهم رئيسيا

  البيئية. التطبيقـات
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AA  amino acid 

AAnP  aerobic anoxygenic photobacteria 

AHL(s)  N-acylhomoserine lactone(s) 

αLEA  alpha-linolenic (C18:3 n-3) 

AMDIS  Automated Mass Spectral Deconvolution and Identification System 
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1.1. Marine Chemical Ecology 

In the last two decades, the chemical mediated interactions between marine organisms 

were identified as a fundamental characteristic, which might structure communities in the 

marine habitat. Recent studies provide significant insights into the ecology and evolution of 

marine populations, and the role of chemical interactions in marine ecosystems (Hay, 1996; 

McClintock and Baker, 2001; Ianora et al., 2006; Pohnert et al., 2007). This has challenged 

the pretty novel research field of “Marine Chemical Ecology”, which could evolve 

successfully along with advances in instrumental analytical chemistry. Marine chemical 

ecologists examine the function of the naturally occurring compounds in plants and animals 

interactions (Paul, 1992) and hence perform both chemical and biological research. Using an 

interdisciplinary approach, they aim to combine the in situ determination of often low 

concentrated chemical compounds directly with their effects on the interactions between 

organisms e.g., within the marine food web or in biofouling processes of macroalgae. An 

increasing number of studies has demonstrated the overall meaning of the production and 

release of those metabolites and their physiological significance to other organism. Due to 

the multiple functions of those metabolites the name infochemical was branded. Growing 

interest in chemical ecology of marine organisms has been observed since 1980s (Harborne, 

1989). Since the development of affordable bench top ion trap mass spectrometers in the 

early 1990s, marine chemical ecology started to develop rapidly (Bakus et al., 1986; Hay and 

Fenical, 1988; Fenical, 1993; Hay, 1996; Faulkner, 2002). Marine chemical ecology is one of 

three parallel tracks in marine natural products research in addition of marine toxins, and 

marine biomedicines, which gave marine natural products chemistry its unique characteristic 

and vitality (Faulkner, 2000). Marine natural products play fundamental roles in ecology. 

Williams et al. (1989) concluded that the pressure of natural selection leads to evolve 

natural products to bind to specific receptors, and therefore mediate ecological responses of 

organisms to their environment. Marine organisms are under competitive pressure for 

space, light, and nutrients. On the other hand, Marine organisms need to communicate with 

each other. Thus, it is not surprising that these organisms have developed a range of defense 

mechanisms, and means of communication (Pohnert and Boland, 2002; Arnold and Targett, 

2002; Paul and Puglisi, 2004; König et al., 2006) to ensure survival, and facilitate the 

communication with surrounding neighborhoods.  
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The challenges in this field remain tremendous. Marine ecology is certainly one of the great 

scientific challenges of our time. In addition to the difficulties of collecting marine samples, 

bringing marine organisms into the laboratory is often far from simple (Ianora et al., 2011). 

Moreover, the production and release as well as the reception of compounds by the 

perceiving organism are highly dynamic processes and hard to follow in field studies 

although great advancement was achieved in terms of developing bioassays that are 

relevant to natural systems (Paul, 1992; Harborne, 1999; Watson and Cruz-Rivera, 2003; 

Ianora et al., 2006). However, the majority of algal secondary metabolites have not been 

bioassayed, which to date has been considered as a challenge in the development of this 

research area (Engel et al., 2002). In fact, bioassays are needed in order to overcome the 

e.g., high dilution of metabolites found in the dynamic environment of the seawater body. 

Besides sampling and storage of samples, the low concentrations of intriguing metabolites 

released into the water body are challenging for chemical analyst. The limit of detection of 

e.g., the mass spectrometer is often lower than the biological sensor capacity of the 

organism. Therefore, solid phase extraction approaches were developed to overcome this 

limitation. One advanced technology that has been introduced in the field of marine 

chemical ecology is Metabolomics based on mass spectrometry (MS) and nuclear magnetic 

resonance (NMR) (Seger and Sturm, 2007). Many technical challenges need to be overcome 

in order to increase applications of metabolomics in marine systems. The present study used 

mass spectrometry-based metabolic profiling as a tool to study the chemosphere of the 

green macroalga Ulva mutabilis and its associated bacteria under certain conditions. 

Macroalgae, as representative members of marine organisms, have been taken a lot of 

attentions in terms of their contribution in this particular area of chemical ecology. Thus, 

their potential contribution was introduced in the next section. 

 
1.2. Macroalgal Chemical Ecology: deciphering the multiple inter- and intra-species actions 

Marine algae are particular interesting, because they are a heterogeneous group of 

photosynthetic, aquatic organisms, which vary very much in size, abundance, morphology, 

life cycle, and can be found in both eukaryotic and prokaryotic kingdoms. For instance, algal 

sizes range from single cells to giant seaweeds. Certainly, this implies different ways of 

interactions with other organisms. Whereas several microalgae are well studied, marine 

macroalgae are in general still under investigated, which is due to the lack of stabile lab 
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cultures and standardized methodologies. There are three major divisions of macroalgae: (1) 

Chlorophytes (green algae), (2) Phaeophytes (brown algae), and (3) Rhodophytes (red algae). 

All algae contain chlorophyll. Brown algae, in addition, contain xanthopyll, while red algae 

contain phycoerythrin, and/or phycocyanin. From an ecological standpoint, all of these 

organisms often occupy common niches in the marine environment. Here, macroalgae 

acquire nutrients, need to settle on preferred locations and have to protect themselves from 

grazers. Also, they have to associate and compete with other marine organisms including 

bacteria. Therefore, macroalgae have developed different ways, which are mediated by 

chemical interactions to integrate in this marine environment. In light of this, chemical cues 

become recognized as the “language of marine life”. The understanding of such biotic 

interactions and how they affect marine ecosystems will advance more rapidly if this 

language is studied and understood (Hay, 2009). Many studies have addressed now 

waterborne metabolites, as signals in marine environment, mediate the interaction among 

the organisms in particular macroalgae. 

However, algae were considered long time ago by classic ecological paradigms as 

organisms, fully dependent on an external physiochemical and biological rules to regulate 

their life. However, this description failed to explain many of the structures and dynamics 

shown by aquatic communities (Watson and Cruz-Rivera, 2003). This description, in addition, 

was not able to explain any mechanism supporting the production of huge amount of 

secondary metabolites by algae. Now, it is very well established, that algal secondary 

metabolites are known to play an important role in aquatic ecosystem either by direct or 

indirect way. Many studies reported the strategies employed by algae in order to adapt to 

their biological community by behavioral, physical or chemical means (Steinberg and de Nys, 

2002; Paul et al., 2007; Togashi et al., 2008). 

The outstanding impact of already elucidated secondary metabolites in macroalgae is 

highlighted with five examples regarding their functions (1) in chemical defense, (2) in 

warning the neighbor, (3) in allelopathy, (4) in cross kingdom-cross talk and (5) in mating. 

 (1) Chemical defense: Macroalgal secondary metabolites can be used directly by algae 

against natural enemies such as the brominated and chlorinated sesquiterpene elatol (Fig. 

1a) which is produced by the brown algae Laurencia spp. to deter feeding by reef fishes. But 

smaller consumers sequester secondary metabolites from macroalgae and use them for 

their own defense. For instance, an amphipod Ampithoe longimana reduces its susceptibility 
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to predators by living on and feeding the brown alga Dictyota dichotoma which is chemically 

defended from fish grazing by diterpenoid alcohols like pachydictyol-A (Fig. 1b) (Hay et al., 

1987). Other example is the terpenoids were isolated from brown algae e.g., Dictyota spp. 

were evaluated for their antiadhesion activity against a biofilm-forming marine bacterium 

Pseudoalteromonas sp. (Viano et al., 2009).  

  

Figure 1: Secondary metabolites produced by macroalgae: (a) etatol a direct chemical defense, (b) pachydictyol-A an 
indirect chemical defense. 

 
(2) Warning the neighbor: Toth and Pavia (2000) reported that waterborne cues from flat 

periwinkles Litterbin obtusata induce the production of defensive chemicals (phlorotannins) 

in the brown alga Ascophyllum nodosum. These algae can anticipate predator’s attacks 

without receiving direct damage by inducing the production of phlorotannins upon 

recognition of a waterborne signal (phlorotannins), which is released by wounded A. 

nodosum. The latter scenario was supported by Thomas et al. (2011), who observed that the 

brown alga Laminaria digitata was able to convey a warning message to its neighboring 

algae.  

(3) Allelopathy: The influence of chemical signals also extended to occupy a niche in 

allelopathy, which can be defined as growth’s suppression of one species by another species 

due to the release of deleterious substances. Algal allelopathic interactions have been well 

documented. Generally, there are two mechanisms of allelopathic interactions in the marine 

environment. Firstly, allelopathy relies on sufficient concentration of active compounds 

produced by macroalgae, and emerged into seawater, then reach target species (Lewis, 

1986; Gross, 2003). Secondly, macroalgae release metabolites and target particular 

epiphytes by physical contact, for instance, the red alga Plocamium hamatum exerts 

chloromertense, a tetrachlorinated monoterpene, causing tissue necrosis for the soft coral 

Sinularia cruciata, when they were in direct contact (Denys et al., 1991). Allelopathy covers 

biochemical interactions, both stimulatory and inhibitory, among different primary 

HO

Cl

Br

HO

a b
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producers or between primary producers and microorganisms. For stimulating interaction, 

glycoglycerolipids from the green alga Ulvella lens induce settlement and change in the 

body’s structure of sea urchins Strongylocentrotus intermedius (Takahashi et al., 2002). 

Antifouling activity represents an ecological application of allelopathical inhibitory impact. 

Better known examples include halogenated furanones from the red alga Delisea pulchra 

that inhibit the growth and the settlement of Ulva lactuca gametes (Denys et al., 1995), and 

terpenoids from the brown alga Dictyota menstrualis that prevent bryozoan Bugula neritina 

from colonizing the surface of this alga  (Schmitt et al., 1995).  

(4) Mating: Contrary to adverse effects of chemical defenses and allelopathic effects, intra-

species interactions are mediated e.g., by pheromones. Jaenicke and Boland (1982) 

discussed how pheromones can be released by brown algae females and direct the 

movement of the partner gametes. Pohnert and Boland (2002) reviewed all the six 

pheromones that act as chemical cues to mediate the mating progress in most of brown 

algae. For instance, multifidene, as a sex pheromone, was found to attract the male gametes 

of the brown alga Cutleria multifida (Derenbach et al., 1980). In this context, it is worth 

mentioning that brown algal pheromones tend to serve families or orders rather than being 

species or genus specific e.g., the different species of the same genus Fucus (F. serratus, F. 

vesiculosus, and F. spiralis) often produce the same pheromone termed fucoserratene, 

whereas the pheromone hormosirene is released from both genera Hormosira banksii and 

Xiphophora chondrophylla (Maier and Muller, 1986).  

(5) Cross-kingdom-cross talk: An example of the inter-species chemical interaction in the 

marine environment, in which macroalgae take part, is the interference with the regulatory 

quorum sensing system used by marine bacteria to respond to their environment. Algae 

excrete some chemicals that affect adversely on bacterial regulatory system with no or 

minimal effects on bacterial growth. N-Acylated homoserine lactones (AHLs) (Salmond et al., 

1995; Fuqua et al., 1996; Robson et al., 1997) are examples of regulatory systems of bacteria 

that can regulate their population and aid their association with higher organisms. These 

include the induction of colonization relevant phenotypes such as swarming (Eberl et al., 

1996), and biofilm formation (Davies et al., 1998), as well as other phenotypes such 

bioluminescence (Swift et al., 1994). Recent works in this area of the marine chemical 

ecology have led to the observation that this regulatory system is down regulated by 

halogenated furanones released by the red alga D. pulchra (Denys et al., 1995; Rice et al., 
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1999). Such interference represents another type of cross-kingdom signaling between 

bacteria and macroalgae. 

 Table 1: Representative chemical mediated interactions between macroalgae and associated organisms in the marine 
environment. 

Species Class Waterborne 

metabolites 

Associated organism Function Reference 

Ascophyllum 
nodosum 

Brown 
alga 

Phlorotannins Litterbin obtusata External signals to 
induce phlorotannins 
in unharmed 
individuals of A. 
nodosum. 

(Toth and 
Pavia, 2000) 

Laminaria 
digitata 

Brown 
alga 

Volatile organic 
compounds 

Neighboring algae Warning message (Thomas et 
al., 2011) 

Plocamium 
hamatum 

Red 
alga 

Chloromertense Sinularia cruciata Tissue necrosis (Denys et al., 

1991) 

 

Ulvella lens Green 
alga 

Glycoglycerolipids Strongylocentrotus 
intermedius 

Induce settlement 
and metamorphosis 

(Takahashi et 
al., 2002) 

Delisea pulchra Red 
alga 

Halogenated 
furanones 

1) Ulva lactuca 

 

2) Associated bacteria 

Chemical defense: 
1) Antifouling 

2) Biomimics  AHL, 
interfering with 
expression of AHL 
driven phenotypes 

(Denys et al., 
1995; Rice et 

al., 1999) 

Dictyota 
menstrualis 

Brown 
alga 

Terpenoids  Bugula neritina Protection from 
colonization 

(Schmitt et 
al., 1995) 

Laminaria 
digitata 

Brown 
alga 

Unsaturated, 
oxygenated cyclic C11-
hydrocarbones  

Neighboring male 
gametes 

Attraction of the 
mating partner 

(Müller et al., 
1979) 

Dictyota spp. Brown 
algae 

Terpenoids Pseudoalteromonas sp. Antiadhesion activity 
against a biofilm-
forming marine 
bacterium 

(Viano et al., 
2009) 

 
All these examples indicate that multiple interactions are evident in the marine habitat and 

are mediated by released compounds by either of the involved organism. Therefore, it is 

evident that standardized biological systems are necessary in order to investigate the 

“Chemosphere” (= the space where organism are interacting via molecules) under 
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reproducible conditions. Therefore, the tripartite system between Ulva and its associated 

bacteria established by Spoerner et al. (2012) was selected within this study. Moreover, the 

interaction of macroalgae with their microbiome is of special interest as it is an interaction 

between eukaryotes and prokaryotes.       
 

1.3. Eavesdropping the cross-kingdom crosstalk: Macroalgae and bacteria 

Bacteria are highly abundant in seawater and play important ecological roles within marine 

communities in nutrient cycling and organic matter decomposition (Azam et al., 1983; 

Cotner and Biddanda, 2002). Bacteria associated with macroalgae have a well-known impact 

on algal health (Matsuo et al., 2005), and interactions with other organisms acting as 

pathogens (Ashen and Goff, 2000; Weinberger, 2007), symbionts (reviewed by Armstrong et 

al, 2001), or mediators either as promoters or inhibitors of the settlement of fouling 

organisms (Rao et al., 2006; 2007; reviewed by Qian et al, 2007).  

Many factors can influence the microbial community dynamics in aquatic systems. For 

instance, physical factors (e.g., weather and water temperature) (White et al., 1991 Felip et 

al., 1996), chemical factors (e.g., pH, availability of N, P) (Vanwambeke and Bianchi, 1990; 

Lebaron et al., 2001; Joint et al., 2011) and biological factors (e.g., grazer pressure, 

competition for resources, or symbiotic interactions) (Jurgens et al., 1999; Hahn and Hofle, 

2001). Biological interactions are thought to be a major factor determining bacterial 

community composition in aquatic systems (Lachnit et al., 2009). In this context, Wahl 

(1989) highlighted epibiosis as a common phenomenon occurring when surfaces of living 

organisms exposed to seawater and rapidly covered with an organic layer and subsequently 

colonized by microorganisms (e.g., bacteria, diatoms, and fungi), and/or macroorganisms 

(e.g., larvae, algal spores). The epiphytic bacterial profile and their temporal and spatial 

variability on host algae are poorly understood. Croft et al. (2006) pointed out to the key role 

of epibiotic bacteria in the colonization process of an algal thallus for several reasons: (1) 

they are fast colonizers, (2) highly adaptive, and (3) capable of quick metabolization of algal 

exudates. Despite the negative impact of epibiotic bacteria on algae as pathogens (Michel et 

al., 2006), epibiotic bacteria may provide algae with nutrients under certain condition (Croft 

et al., 2006). They may supply growth factors for algae (Tsavkelova et al., 2006). Species of 

Cytophaga-Flavobacter-Bacteroides, for example, have a strong impact on the morphology 

of green algae Monostroma oxyspermum by secreting an exogenous growth factor called 
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thallusin (Fig. 3a) (Matsuo et al., 2003; Matsuo et al., 2005). Bacteria, in turn, benefit 

through the ready availability of organic carbon sources produced by algae (Armstrong et al., 

2000). It was reported that primary metabolites which are produced by macroalgae such as 

carbohydrates, amino acids, peptides, and proteins induce the colonization by microbes 

(reviewed by Steinberg et al.  2002). In this respect, the surface of macroalgae represents a 

protected habitat for bacterial colonization and reproduction. The mean by which 

macroalgae and bacteria can find their right partner are Infochemicals representing the 

chemical compounds excreted by aquatic organisms that can be used by other individuals as 

an information carrier. These infochemicals may affect the metabolism and subsequently the 

behavior, or physiology of the receiver which results in an (1) alteration of the structure, (2) 

functioning, and (3) evolution of food webs, or habitat, respectively (Verschoor et al., 2007). 

However, if an infochemical plays a role in the interaction between two individuals, certainly 

the producer will be one of the organisms involved in this reaction (Dicke and Sabelis, 1988). 

Marine bacteria and algae are thought to closely interact in the Phycosphere as a zone may 

exist, extending outward from an algal cell or colony for an undefined distance, in which 

bacterial growth is stimulated by extracellular products of the alga (Bell and Mitchell, 1972). 

Therein, bacteria may be free-living (planktonic) (Blackburn et al., 1998), or may be attached 

to the algal surface (epibacteria) (Kogure et al., 1981). Taking into account the compounds 

produced and released into the water by all organisms in a specific habitat, this space is 

defined as the Chemosphere of the interacting organism (Alsufyani and Wichard, 2011). 

Dudler and Eberl (2006) summarized the recent advances in understanding the origin of 

secondary metabolites, and predicted that those metabolites often produced by symbiotic 

bacteria, rather than by the eukaryotic host (e.g., sponges, corals). Moreover, bacterial cell-

to-cell signaling plays an important role in bacteria–host interactions. On the other hand, 

macroalgae are known to release large amounts of organic carbon into the surrounding 

environment providing a nutrient-rich habitat for microorganisms and triggering chemotactic 

behavior of bacteria (Armstrong et al., 2001) in addition to the organic-rich algal surfaces. 

Because of the latter reason, Croft et al. (2005) and Lachnit et al. (2010) suggested that the 

surface chemistry of algal thalli mediates associations with beneficial microorganisms.  

Lachnit et al. (2009) found out that epibacterial communities differ less between regions 

than between host species, and they are more similar on closely related host species. For 

instance, epibacterial communities on thalli of the algal species Fucus serratus, Fucus 
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vesiculosus, Laminaria saccharina, Ulva compressa, Delesseria sanguinea and Phycodrys 

rubens were analyzed using 16S ribosomal RNA gene-based DGGE (Denaturing Gradient Gel 

Electrophoresis) and resulted in first evidence for lineage-specific bacterial associations to 

algal thalli. Furthermore, the results suggested that these algal species may control their 

epibiotic bacterial communities. Lam and Harder (2007) observed that the bacterial 

community composition in algae-conditioned seawater was reduced in comparison to 

natural seawater, and this was attributed to waterborne antimicrobial macroalgal 

metabolites. This observation was supported by Sneed and Pohnert (2011b), as they found 

that the green macroalga Dictyosphaeria ocellata significantly influnced the bacterial 

community composition. Seven bacterial phylotypes were eliminated in the presence of D. 

ocellata and five were found exclusively with the alga. Associations between algae 

(photosynthetic eukaryotes) and bacteria (heterptrophic) have been described for over a 

hundred years. Although a wide range of beneficial and detrimental interactions between 

macroalgae and epi- and endo-symbiotic bacteria residing either on the surface or within the 

algal cells respectively are doubtless important to the marine ecosystem, and marine-

product industry as well (Suzuki et al., 2001). Based on the data obtained by Gonzalez et al. 

(2000), Roseobacter (α-proteobacteria) together with two other groups of bacteria lineages 

account for over 50% of the bacteria associated with oceanic algal blooms in surface water. 

Bacteroidetes represents an efficient proportion in oceanic habitats as highlighted by the 

study of Kirchman (2002).  

Due to the fact that the algal morphogenesis inducing Roseobacter sp. and Cytophaga sp. 

are associated microorganisms to Ulva mutabilis, representing the model system of the 

present study, some of the biological traits of these two bacteria will be introduced briefly. 

 Members of the Roseobacter clade are widespread, and abundant among marine bacteria. 

Moreover, Roseobacter spp. are often associated with organic surfaces in different marine 

environments (Lafay et al., 1995), suggesting that a sessile lifestyle is central to the ecology 

of such lineage members (Slightom and Buchan, 2009). They are well-known by producing 

acylated homoserine lactones (AHLs) and other secondary metabolites (Gram et al., 2002; 

Wagner-Dobler et al., 2005). Thus, 22 strains belong to the Roseobacter clade were screened 

by Martens et al. (2007) for the production of signaling molecules, and antibiotics against 

bacteria of different phylogenetic groups, and they found that ten isolates produced AHLs, 

and three of them exhibited in addition antibacterial effect. Furthermore, the potential of (1) 
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the production of signal molecules e.g., AHLs, (2) antibacterial metabolites inhibiting non-

Roseobacter species, and (3) biofilm formation could be ecologically important and partially 

explain the succession of these organisms (Bruhn et al., 2007). Roseobacter clade has been 

classified as aerobic anoxygenic photobacteria (AAnP) (Lafay et al., 1995) contains a range of 

carotenoid pigments. Roseobacter clade is not able to use light as energy source, and relies 

on various organic compounds to obtain carbon and energy being heterotrophs (Allgaier et 

al., 2003; reviewed by Eiler, 2006).  

Cytophaga sp. is a gram-negative, anaerobic genus and belongs to Bacteriodates, which 

forms the second major group within the Cytophaga-Flavobacter-Bacteroides (CFB). Many 

marine isolates of Cytophaga have unusual carotenoid pigments (Achenbach et al., 1979; 

Fautz and Reichenbach, 1980; Reichenbach et al., 1980). Munn, (2004) summarized the 

distinctive characteristics of Cytophaga sp. including the production of various extracellular 

compounds which are responsible for the degradation of polymers such as cellulose and 

chitin. Thus, it was demonstrated to degrade cellulose derivatives by cellulase. Spoerner et 

al. (2012) therefore, supposed that these bacteria may be capable to invade or even 

permeate the cellulose- containing cell walls. In the marine environment, Cytophaga sp. was 

demonstrated also to have a strong impact on the morphology of green alga Monostroma by 

secreting an exogenous growth factor termed thallusin (Matsuo et al., 2005).  

Moreover, other bacterial species from the CFB, α-proteobacteria, and γ-proteobacteria 

have been demonstrated to induce morphogenic effects (Nakanishi et al., 1996; Matsuo et 

al., 2003; Marshall et al., 2006; Singh et al., 2011).  

Another interesting phenomenon is the bacteria guided settlement of algal zooids. 

Cytophaga, Polaribacter, Pseudoalteromonas, Pseudomonas, Psychroserpens, Shewanella, 

Vibrio, and Zobellia species have been described as either stimulatory (Patel et al., 2003), or 

inhibitory (Egan et al., 2001) of the zoospore settlement of Ulva spp. via quorum sensing 

signals. 

  The availability of any organism for experimentation in the laboratory is essential to 

achieve its scope (Joint et al., 2010). From this respect, Amann et al. (1995) reported that the 

percentage of cultivability of seawater bacteria ranged between 0.001 and 0.1 % compared 

to the values between 0.1 and 1 % of freshwater bacteria. Eilers et al. (2000) tested the 

cultivability of the bacterioplankton in the North Sea and found out that the easily cultivable 

abundant group of marine bacteria is related to the Roseobacter species in contrast to 
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Cytophaga-Flavobacter-Bacteroides and some strain of γ-proteobacteria species which could 

never or rarely be cultured. However, cultures remain an essential approach for marine 

microbial ecologists to understand the role of microbes in the environment (Joint et al., 

2010). 

Table 2: Representative interactions between macroalgae and associated bacteria.  

Species Macroalgae Associated bacteria Function of bacteria 
type of 

Interaction 
References 

Codium fragile  Green alga Azotobacter sp. Nitrogen fixation Symbiosis 

(Head and 

Carpenter, 

1975) 

Monostroma 

oxyspermum 
Green alga 

Cytophaga-Flavobacter-

Bacteroides 

Morphology and growth 

promoting 
Symbiosis 

(Matsuo et 

al., 2005) 

Laminaria 

japonica 
Brown alga 

Pseudoalteromonas 

porphyrae 
Growth-promoting Symbiosis 

(Dimitrieva et 

al., 2006) 

Ulva linza Green alga 

α-Proteobacteria 

γ-Proteobacteria 

Bacteroidetes 

Zoospore settlement, 

growth rate and 

morphology promoting 

Symbiosis 
(Marshall et 

al., 2006) 

Ulva mutabilis Green alga 
Roseobacter sp. 

Cytophaga sp. 

Algal morphogenesis 

biofilm formation 
Symbiosis 

(Spoerner et 

al., 2012) 

Prionitis spp. Red algae  Roseobacter sp. Gall formations Allelopathy 
(Ashen and 

Goff, 2000) 

Laminaria 

religiosa 
Brown alga Alteromonas sp. Disease- causing Allelopathy 

(Vairappan et 

al., 2001) 

Fucus 

evanescens 
Brown alga Pseudo alteromonas Disease- causing Allelopathy 

(Ivanova et 

al., 2002) 

 

In the last decade, significant progress towards understanding of the cross-kingdom 

interactions between Ulva and its associated bacteria has been made (Joint et al., 2007). As 

U. mutabilis requires at least two bacteria, Roseobacter sp. and Cytophaga sp., to complete 

its morphogenesis in laboratory experiments (Spoerner et al., 2012), it might actively 

structure their microbiome by releasing specific compounds. 
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1.4. Ulva mutabilis-Roseobacter sp.-Cytophaga sp.: a novel tripartite model system in 
marine ecology 
 

Ulva is a cosmopolitan algal genus causing massive green tides in coastal regions that suffer 

from eutrophication (Fletcher, 1996; Smetacek and Zingone, 2013). Ulvophyceae are mostly 

marine groups of multicellular algae combining typical properties of higher plants with those 

of unicellular microorganisms such as Chlamydomonas or yeast (Hori et al., 1985; Lewis and 

McCourt, 2004). The species Ulva mutabilis Føyn (Fig. 2) is the only green alga of this class 

that has been well established as a laboratory organism. U. mutabilis was first discovered by 

Føyn in the south coast of Portugal in 1952 (Føyn, 1958; Føyn, 1959). Since that time, U. 

mutabilis has been cultivated in various laboratories. The original isolates of Føyn (Føyn, 

1958) and many spontaneous and induced developmental mutants previously described are 

still in culture as defined laboratory strains (Føyn, 1959; Fjeld, 1970; Bryhni, 1974). During 

the last half-century, U. mutabilis had been used as a convenient model system for studying 

algal development mainly by classical methods of plant physiology and genetics (Loevlie, 

1964; Hoxmark and Nordby, 1974; Nilsen and Nordby, 1975).  

To study the interaction between macroalgae and bacteria, axenic cultures of macroalgae 

are the most essential tools, whereas several studies tried to establish those cultures 

through application of a cocktail of antibiotics (Provasoli, 1958; Marshall et al., 2006), or 

using protoplast as a feeding stock (Reddy and Fujita, 1991; reviewed by Reddy et al., 2008)     

Stratmann et al. (1996) and Wichard and Oertel (2010) developed a method to obtain 

bacteria-free Ulva cultures via purification of gametes. Briefly, gametophytes of U. mutabilis 

were artificially induced to form gametangia by removal of at least two sporulation 

inhibitors. After this treatment, gametes were discarded from the gametangia on the third 

morning in daylight and upon sufficient dilution of a swarming inhibitor (SWI). Released 

gametes were separated from their accompanying bacteria by taking advantage of the 

gametes fast movement towards light. As observed earlier for U. lactuca by Provasoli and 

Pintner (1980), Stratmann et al. (1996) found that U. mutabilis shows a complete 

deregulation of morphogenesis when cultured axenically in fully defined seawater medium. 

Axenic gametes develop into callus-like colonies consisting of undifferentiated cells without 

normal cell walls (Fig. 5). 
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Figure 2: Ulva mutabilis Føyn (a) wild type, (b) mutant (slender) which is investigated in the present study. 
 
From the accompanying microbial flora of the established laboratory strains of U. mutabilis 

with normal morphology, Spoerner et al. (2012) isolated two essential strains, a Roseobacter 

sp. and a Cytophaga sp., which can completely replace the bacterial flora of U. mutabilis 

forming a symbiotic tripartite community (Fig. 5) and induce readily algal morphogenesis via 

diffusible molecules. Each organism in this tripartite community contributes to this 

community by sufficient functions. U. mutabilis as seaweed is supposed to provide this 

community with an organic- and nutrient-rich habitat. 

Roseobacter sp. stimulates the Ulva cell division by excreting an unknown factor into the 

medium (Spoerner et al., 2012). This factor induces the development of the Ulva gametes 

into thalli composed of blade cells with characteristic deficiencies represented in (1) an 

enhancement of cell division rate not followed by cell expansion, (2) bubble-like structures 

cover the cell wall, and (3) secondary rhizoid cells are not formed. Interestingly, the factors 

of the isolated species Sulfitobacter, and Halomonas resulted in the same effect on U. 

mutabilis when added separately into axenic U. mutabilis culture indicating a non species 

specific compound (Spoerner et al., 2012).  

Likewise, the third partner exists in this tripartite community ‘’Cytophaga sp.’’ promotes U. 

mutabilis cell development by stimulating vacuole extension and cell differentiation, so that 

blade cell can be distinguished from stem and rhizoid cells (Spoerner et al., 2012). In 2005, 

Matsuo et al. succeeded to identify a growth factor termed thallusin (Fig. 3a) from a much 

U. Mutabilis wt G(mt-)a

U. mutabilis sl G(mt+)b
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related strain to Cytophaga. Thallusin promotes solely the growth, development and 

morphogenesis of the green alga Monostroma (Matsuo et al. 2005).  

  

Figure 3: Algal compounds, which might influence the tripartite community of Ulva mutabilis and its associated bacteria. (a) 
Thallusin (C25H31NO7) isolated from the Cytophaga-Flavobacterium-Bacteroides associated to Monostroma. (b) DMSP 
produced by U. curvala. (c) 2,4 decadienal produced by Ulva conglobate. 

 
In this particular model system, Cytophaga-factor in contrast to Roseobacter-factor could 

never be replaced by any other isolates (Spoerner et al., 2012). Functionally, Roseobacter-, 

Sulfitobacter-, and Halomonas-factors resemble a cytokinin, while Cytophaga-factor acts 

similar to auxin. Neither factor could be replaced by any known phytohormone (Spoerner et 

al., 2012). It is essential to point out that the motile unicellular, spores ad gametes, need to 

complete a succession of processes initiated by attachment, followed by adhesion, and 

ended by germination before achieving a successful settlement.  Spores use their apical 

papilla to contact the surface by discharging elastic material (Maggs and Callow, 2001). It is 

predicted that attachment of Ulva spores is enhanced via quorum sensing (QS) produced by 

bacteria as already described above. QS involves the use of diffusible chemical of signal 

molecules by bacteria that, upon reaching a threshold cell concentration level, activate 

target genes that are used by the bacteria to regulate population growth. Ulva spores 

appear to be able to ’’listen’’ into such bacterial conversations (QS) by sensing and 

responding to e.g., acylhomoserine lactones (AHLs) produced by bacteria and the settlement 

of the spores seems to be guided by the AHLs (Joint et al., 2002; Dudler and Eberl, 2006; 

Wheeler et al., 2006; Joint et al., 2007). Therefore, zoospores settle in the vicinity of specific 

bacteria that they require for normal development, growth and survival to the next 

generation. For example, Roseobacter sp. was described for both its ability to attract 

zoospores and its influence on growth development (Spoerner et al., 2012), although by 
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Marshall et al. (2006) no absolute correlation was found between isolates that influenced 

morphology of U. linza and those that enhanced zoospore settlement.  

From the bacterial side, the colonization process, including chemotactic responses and 

factors affecting the holdfast formation and the firm attachment of cells to a substratum 

(Spoerner et al., 2012; Wichard unpublished results). Bacteria respond tactically to a variety 

of metabolites, including attraction to algal extracellular products and repulsion from tannic 

acid (Wahl et al., 1994). Roseobacter sp. e.g., has shown a specific chemotactic affinity 

towards rhizoid cells of U. mutabilis (Spoerner et al., 2012). Little is known of the exact 

mechanism(s) that Roseobacter employ to physically associate with eukaryotic cell surfaces 

or particles, several cultivated strains have been shown to be capable of surface colonization 

(Rao et al., 2006; Bruhn et al., 2007). Spoerner et al. (2012) suggested a work model for the 

interactions between all these three organisms within this community including the 

interaction between Roseobacter and Cytophaga species. In this model, Ulva cells excrete a 

diffusible substance such as a specific nutrient or regulatory factor, which attracts motile 

Roseobacter cells toward the holdfast. They successively assemble and deposit a layer of 

mucilage produced by them. This mucilage may form the matrix of an organized biofilm. 

Afterwards, the rod shaped bacterium Cytophaga may be recruited by incidental direct 

contact with the algal cell surface where they may move by gliding on a mucilage layer. 

Cytophaga species are known to recognize and adhere specifically to surfaces composed of 

cellulose, agarose, or other cell wall components which they degrade enzymatically. 

Spoerner et al. (2012) also predicted that Roseobacter sp. may promote Cytophaga sp. 

viability.  

The current study aimed to investigate the chemical compounds released by the living 

organisms in this community mediating the cross-kingdom interaction between Roseobacter 

sp., Cytophaga sp. and U. mutabilis and how this interaction will influence the growth, ability 

of reproduction, and morphological development of U. mutabilis.  

Few compounds released by Ulva sp. have been already identified, DMSP and 2,4-

decadienal (Van Alstyne et al., 2001; Akakabe et al., 2003) which might be candidates for 

mediating cross kingdom interactions. DMSP (Fig. 3b) is a sulfur-containing compatible 

solute that is produced in high concentrations in many marine algae particularly in green and 

red macroalgae (Dickson et al., 1980; Karsten et al., 1990; Steinke and Kirst, 1996; Stefels, 

2000; Van Alstyne et al., 2003; Van Alstyne et al., 2001). DMSP is often released in senescent 
16 

 



Introduction 
 

algae or when algae undergo oxidative stress, particularly under high light intensities 

(Karsten et al., 1990). However, it has been documented that DMSP (1) controls internal 

osmotic pressure, (2) serves as a cryoprotectant (Andreae and Barnard, 1984; Kwint and 

Kramer, 1996), and (3) can expel excess sulfur and energy (Stefels, 2000). Likewise, the 

products of DMSP cleavage play a role as an activated defense system. DMS and acrylic acid, 

deter feeding on macroalgae (Alstyne et al., 2001; Wiesemeier and Pohnert, 2007). In the 

context of the DMSP role in the cross-kingdom interaction, it is reported that DMSP (Fig. 3b) 

produced by U. australis influences biofilm formation by associated bacteria 

Pseudalteromonas tunicata and Roseobacter gallaeciensis (Rao et al., 2006). It was found 

that DMSP decreased the colonization of U. sustralia by P. tunicate, whereas stimulative 

effect of DMSP was observed for the colonization by R. gallaeciensis due to the ability of 

Roseobacter spp. to metabolize DMSP, and their presence and activity on algal surfaces are 

significantly correlated with DMSP-producing algae (Gonzalez and Moran, 1997). 

Furthermore, member of the Halomonas genus, from the surface of DMSP-containing U. 

curvala, grows on DMSP as the sole carbon source and emitted DMS (deSouza et al., 1996). 

It is notable that Kiene et al. (1999) and Johnston et al. (2008) pointed out that some marine 

bacteria affect the cycling of dissolved DMSP and DMS. For instance, multiple metabolic 

pathways exist in prokaryotes that catabolise DMSP, but some of them don’t emit DMS. 

Moreover, DMS consumption has also been described in various bacteria (Schaefer et al., 

2010). 

Besides DMSP, oxylipins are metabolites produced by a variety of Ulva spp. and considered 

as chemical defense, and have various effects on bacterial growth and the final cell density 

of cultures in the laboratory.  

 
1.5. Polyunsaturated aldehydes, a potential role in chemical communication of Ulva sp. 

Lipoxygenase mediated pathways provide a wide variety of fatty acid derived metabolites, 

which are involved in signaling, chemical defense and cell-cell interactions in plant and 

animal kingdoms. In these pathways, molecular oxygen is introduced into a polyunsaturated 

fatty acid (Andreou et al., 2009; Kachroo and Kachroo, 2009). The intermediate hydroperoxy 

fatty acid can be cleaved into shorter chain-length oxygenated products (Andreou et al., 

2009; Noordermeer et al., 2001). Up to now, a huge variety of transformations have been 

identified, but macroalgae such as the sea lettuce Ulva (Ulvales, Chlorophyta) are still under 
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investigated. Algal oxylipins including polyunsaturated aldehydes (PUAs) derived from 

polyunsaturated acids (PUFAs) might play an important structuring role for the microbiome 

(Leflaive and Ten-Hage, 2009). Indeed, Ribalet et al. (2008) demonstrated that PUAs, such as 

2,4-decadienal, have various effects on bacterial growth. “PUA-sensitive” bacteria are often 

also associated with certain Ulva species including U. mutabilis, U. linza or U. australicus 

(Burke et al., 2009; Spoerner et al., 2012). Interestingly, members of the Roseobacter 

clade/genus, which induce partly the morphogenesis of Ulva in a tripartite symbiosis of U. 

mutabilis, are sensitive to elevated amounts of PUAs added to the culture medium (Ribalet 

et al., 2008; Spoerner et al., 2012). 

The biosynthesis of PUAs is wide spread in algae, lower and higher plants (Feussner and 

Wasternack, 2002). PUAs are often only released upon cell damage in diatoms 

(Bacillariophyceae), mosses and higher plants (Pohnert, 2000). However, the amount and 

structural diversity of released PUAs varies greatly depending on the species and also 

environmental conditions e.g., in diatoms (Wichard et al., 2005a; d'Ippolito et al., 2005), 

which makes case-sensitive studies necessary. 

In marine ecosystems, the production and release of PUAs in diatoms have been 

particularly intensively investigated in the last two decades. Several studies have 

demonstrated the adverse effects of diatom-derived 2,4-decadienal on the reproduction of 

their grazers in laboratory experiments (Ianora et al., 2004), but field-near experiments have 

also questioned the ecological relevance of those compounds (Wichard et al., 2008; Dutz et 

al., 2008). More recently, Vidoudez et al. (2008) observed that 2,4-octadienal, 2,4,7-

octatrienal and 2,4-heptadienal are also directly released by the intact cells of diatom 

Skeletonema marinoi into the surrounding seawater (Vidoudez and Pohnert, 2008). This 

release can be associated to cell lyses during diatom bloom termination (Ribalet et al., 2014) 

and trigger further cell death of “PUA- sensitive” diatoms in the vicinity (Vardi et al., 2006; 

Dittami et al., 2010). An analogous process might be part of macroalgal blooms like green 

tides, which may result in a massive emission of PUAs into the environment, in particular, 

when Ulva accumulates on the shore and remains for long periods as happened in Bretagne 

(France) or Quingdao (Yellow Sea, China) (Ding et al., 2009; Hu et al., 2010). Here, the algal 

tissue might decompose and release elevated amounts of PUAs. Besides the study by 

Akakabe and co-workers (2003), the production of PUAs and their biosynthesis have not 

been investigated on the species level in the genus of Ulva. The study has shown that 
18 

 



Introduction 
 

(2E,4Z)-2,4-decadienal is derived from (R)-11-hydroperoxy-arachidonic acid (HpETE) 

indicating a stereo selective lipoxygenase/hydroperoxide pathway in Ulva conglobata. 

Akakabe et al. (2003) purified a crude enzyme from Ulva that catalyzed the formation of (R)-

11-HpETE and the breakdown product 2,4-decadienal upon addition of arachidonic acid 

(ARA). In addition, long-chain aldehydes including (8Z,11Z,14Z)-8,11,14-heptadecatrienal and 

(7Z,10Z,13Z)-7,10,13-hexadecatrienal were found in Ulva (Akakabe et al., 2000; Akakabe et 

al., 2005). All these aldehydes along with a typical release of dimethyl sulfide (DMS) are 

responsible for the seaweed like odor (deSouza et al., 1996). Recently, three 

monounsaturated fatty acid (MUFA) derivatives were isolated from U. lactuca; a novel keto-

type C18 fatty acid, the corresponding shorter chain C16 acid, and an amide derivative of the 

C18 acid (Wang et al., 2013).The most extensive study of Ulva oxylipins was provided by 

Abou-Elwafa (2009), where three new fatty acids ((E)-11-oxo-octadeca-12-enoic acid, 11-

hydroxy-octadeca-12-enoic acid and 6-hydroxy-oct-7-enoic acid) were isolated from a 

dichloromethane extract of Ulva fasciata (Delile), collected at the Mediterranean coast of 

Egypt (Abou-Elwafa et al., 2009). Products of lipid peroxidation processes mediated by 

lipoxygenases (LOX) result in hydroperoxide fatty acids, which might decompose 

enzymatically via hydroperoxide lyases or in degradation reactions to breakdown products 

including polyunsaturated aldehydes. In particular, 2,4-decadienal can degrade to further 

short chain aldehydes (Spiteller et al., 2001). Thus, to determine 2,4-decadienal and other 

PUAs in seawater upon cell wounding, the compounds have to be trapped and stabilized 

with the derivatization reagent pentaflurobenzylhydroxylamine (PFBHA) for quantification 

(Wichard et al. 2005 a,b). 

In this study, Ulva species collected in the lagoon Ria Formosa (Faro, Portugal) in 2010 were 

surveyed for their production of PUAs. Several studies have shown that Ulva harbors large 

amounts of C18 PUFAs including linoleic (LA, 18:2 n-6) and α-linolenic (αLEA, 18:3 n-3) acids 

but only minor amounts of arachidonic acid or even no C20-PUFAs in certain cases (Pereira et 

al., 2012). As Ulva produces high concentrations of α-linolenic acid, the ratio between 

ω6/ω3 PUFAs differs significantly from other green algae. Pereira et al. (2012) hence 

concluded that macroalgae can be considered as a potential source for large-scale 

production of essential PUFAs with wide applications in the pharmacological industries. Ulva 

is an autotrophic organism with simple growing requirements that can produce lipids and 

proteins in large amounts over short periods of time in simple land based aquacultures. 
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Although this is also well known for microalgae (Brennan and Owende, 2009), wound 

activated transformation of lipids into oxylipins could also result in a depletion of valuable 

unsaturated fatty acids and might hence jeopardize the value of Ulva as a resource for e.g., 

PUFAs in aquacultures (Wichard et al., 2007). 

Whereas central metabolic pathways are well described and genetically and biochemically 

explored in higher plants and animals, these tools are not yet established for Ulva. Using an 

analytical chemistry approach, our study aims to (1) survey the plasticity of PUA-production 

of freshly sampled Ulva species from the lagoon Ria Formosa in Portugal, to (2) compare the 

PUA amount within algal cultures, and to (3) elucidate the biosynthetic pathways of PUAs 

using stable isotope labeled PUFAs and mass spectrometric analyses. 

 A comprehensive investigation to understand the cross-kingdom interactions between U. 

mutabilis and its associated bacteria is needed. The present study extended the coverage of 

the compounds used as signals among these organisms by using exo-metabolmoic approach. 
 

1.6. The broader view: the explorative metabolomic approach – a brief introduction 

Metabolomics is a relatively new member to the ‘-omics’ family of systems biology 

technologies (Bino et al., 2004). The term ‘metabolome’ was coined in 1998 and was used to 

describe the metabolite complement of living tissues (Oliver et al., 1998). Despite its relative 

youth (in comparison to genomics and proteomics), metabolomics as a field of study is now 

firmly established as a functional genetics approach to understand the molecular complexity 

of life (Wagner et al., 2003).  

Metabolomics uncovers many possibilities that were masked before such as new 

biomarker discovery and hypothesis generation. Thus, this approach delivers a metabolic 

signature of biological sample (Walsh et al., 2008). Depending on the goal of experiment, the 

approach used will differ. The three principal approaches for the analysis of the metabolome 

are Metabolic Profiling, Metabolic Fingerprinting, and Metabonomics/Metabolomics (Hall, 

2006). On the other hand, (Nielsen and Oliver, 2005) subdivided Metabolic profiling into 

Fingerprinting, covering “intercellular metabolites”, and Footprinting, dealing with 

“extracellular metabolites”. Fiehn (2006) divided the metabolom analyses regarding its 

scopes into: Target Analysis, Metabolite Profiling, Metabolomics, and Metabolite 

Fingerprinting. Typically, the metabolome analyses can be separated into two different 

types: targeted and non-targeted analyses. In targeted analysis, the metabolomics data are 
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scanned for specific compounds normally collected in a reference library. Non-targeted, in 

contrast, is an approach does not aim to identify the compounds and the spectroscopic 

features of all potential compounds are considered for further analyses (Kell, 2006).  

In the present study, metabolomic analysis was used to cover the specific intracellular 

metabolites of U. mutabilis as a targeted analysis, and extracellular metabolites of U. 

mutabilis and its associated bacteria as a non-targetd analysis.  

No single analytical platform is currently capable of extracting and detecting all metabolites 

(Phuc et al., 2010). Optimal selection of a particular technology depends on the goals of the 

study and is usually a compromise among sensitivity, selectivity and speed (Lei et al., 2011). 

Although NMR is in principle the most uniform detection approach and it is essential for the 

unequivocal identification of unknown compounds, NMR-based metabolomics approaches 

still suffer from a relatively low sensitivity compared with mass spectrometry. As yet, MS-

based techniques are most widely used in plant metabolomics (De Vos et al., 2007; Hall, 

2006). Mass spectrometry techniques offer a good combination of sensitivity and selectivity. 

Modern MS provides highly specific chemical information that is directly related to the 

chemical structure, such as accurate mass, isotope distribution pattern for elemental 

formula determination, and characteristic fragmentations for structural illustration or 

identification via spectral matching to the provided reference library. Moreover, the high 

sensitivity of MS allows detection and measurement of picomole to femtomole levels of 

many primary and secondary metabolites. Thus, MS becomes an important tool in 

metabolomics (Lei et al., 2011). Mass spectroscopy systems in combination with nuclear 

magnetic resonance systems are ideally the best platforms for identification of unknown 

chemical compounds, but are prohibitively expensive for most scientific laboratories (Dixon 

et al., 2006). The preferred method for analyzing semi-polar metabolites is liquid 

chromatography (LC) coupled to mass spectrometry (MS), with a soft ionization technique, 

such as electrospray ionization (ESI), resulting in protonated (in positive mode) or 

deprotonated (in negative mode) molecular masses. Compounds detectable by LC-MS 

include the large and often economically important group of secondary metabolites such as 

alkaloids, saponins, phenolic acids, phenylpropanoids, flavonoids, glucosinolates, polyamines 

and derivatives thereof (Huhman and Sumner, 2002; Tolstikov et al., 2003; Moco et al., 

2006; Rischer et al., 2006; Farag et al., 2007). These compounds can be effectively extracted 

with aqueous alcohol solutions and directly analyzed without derivatization. LC-MS 
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particularly important additional, versatile technology for metabolomic analysis as it also 

provides broader coverage of molecules which more readily either gain or lose a proton by 

working in positive and negative ion modes. Unlike GC-MS, few mass spectral libraries are 

available for LC-MS and this is a key topic being given considerable attention at present. 

Nevertheless, LC-MS as an untargeted metabolomics aims to gather information on as many 

metabolites as possible in biological systems by taking into account all information present 

in the data sets (De Vos et al., 2007). In fact, gas chromatography-mass spectrometry (GC-

MS) is probably the most popular analytical platform used in metabolic analyses as a 

targeted analysis (Lisec et al., 2006). GC coupled to electron impact (EI) time-of-flight (TOF) 

MS was the first approach used in large-scale plant metabolomics (Fiehn et al., 2000). 

Biological extracts to be analyzed via GC-MS must first be chemically derivatized with agents 

that make the analytes more volatile (Wagner et al., 2003; Lisec et al., 2006; Seger and 

Sturm, 2007). Once the sample is injected into the gas chromatograph, there is two-fold 

separation of sample components based on differences in volatility and polarity. Larger 

molecules take a longer time to move through the column than do small molecules and 

amongst molecules of similar size, different molecular species display different volatilities. 

Upon outflow from the chromatograph column, individual volatilized chemicals are funneled 

into the mass spectrometer where identification and quantification of individual chemical 

compounds is facilitated. Data obtained by the GC-MS is deconvoluted by special software to 

produce two graphs corresponding to the chromatogram and mass spectra of the sample. 

Graphs from different samples can be overlaid to aid in comparison and detection. Individual 

chemical ‘‘biomarkers’’ can be identified based on the retention time (the time it takes for 

the compound to become vaporized and to flow through the chromatographic column) and 

the mass spectrum. GC-MS approach is suitable for a high variability of nonvolatile 

metabolites, mainly those involved in primary metabolism, including organic and amino 

acids, sugars, sugar alcohols, phosphorylated intermediates (in the polar fraction of 

extracts), as well as lipophilic compounds such as fatty acids and sterols (in the apolar 

fraction) (De Vos et al., 2007).  

One problem that persists in metabolomic analyses is the lack of comprehensive 

identification of metabolic components, particularly in pathways outside of primary carbon 

metabolism (Wagner et al., 2003). Therefore, there is a movement in the scientific 

community towards a cooperative approach for creating open-access libraries of compounds 
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based on standardized analytical procedures (Bino et al., 2004; Dixon et al., 2006). Several 

libraries already exist and are immensely helpful in chromatogram analysis, though they are 

far from being comprehensive. In the next section, the analytical strategy, which was used in 

this study, was addressed in detail. 
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2.1. Goals 

The relationship between U. mutabilis and its associated bacteria is still poorly understood. 

In particular, with respect to chemical-mediated interactions taking place in the 

chemosphere, which is defined as a part of the biocoenose, where the organisms interact 

with each other via infochemicals. In order to study this relation between U. mutabilis and 

its associated bacteria, the study will try to mimic the natural community of U. mutabilis and 

at the same time to simplify its complexity without losing the normal biological traits of U. 

mutabilis such as growth, capability of reproduction and morphological development. In this 

perspective, I will use the simple model system, which was established by Stratmann et al. 

(1996) and Spoerner et al. (2012) to investigate the chemical compounds released by U. 

mutabilis, Cytophaga sp. and Roseobacter sp. into the culture medium (Fig. 5). The natural 

mutant U. mutabilis slender, which is characterized by its fast growing and subsequently its 

short lifecycle, is selected for this study. 

In this study, I aim 

• to survey the potential production of polyunsaturated aldehydes (PUAs) in Ulva spp. 

collected at various sampling sites in the lagoon of the Ria Formosa (Portugal) as a 

first candidate infochemical mediating bacterial growth by the alga.  

• to test the chemotaxonomic significance of collected Ulva species in terms of PUAs 

production, morphogenetic and phylogenetic analyses in cooperation with CCMAR, 

Algarve University, Portugal. 

• to establish (1) metabolomics in Ulva and to decipherer the (2) chemosphere of the 

tripartite community defined by U. mutabilis, Roseobacter sp. and Cytophaga sp.  

• to scale up the experiment from laboratory scale to aquacultures at the marine field 

station Ramalhete in Faro (Portugal). 

• to apply the chemometric approach in order to an understanding deeply the dynamic 

of the chemosphere over the lifecycle of U. mutabilis under different treatments: 

axenic alga and with its associated bacteria. 

Specific analytical strategies have to be developed to achieve these goals. In this study, it is 

of a particular challenge to use metabolomics that provides a comprehensive qualitative 

overview of the metabolites present in the culture medium of the tripartite community. 

Both GC and LC techniques coupled with a time-of-flight mass spectrometer (TOF-MS) will be 
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used as non-targeted analyses. In addition, targeted analysis is going to be applied for the 

survey of PUAs and the elucidation of their biosynthesis. 
 

 2.2. Analytical strategy 

2.2.1. Targeted analyses 

Fiehn (2006): “Target analysis is constrained to one or a very few target compounds [such 

as phytohormones]. Such targets are usually quantified in an absolute manner using 

calibration curves and/or stable isotope labeled internal standards.” 

Polyunsaturated aldehydes (PUAs), a specific class of oxylipins derived from 

polyunsaturated fatty acids, will be investigated in detail, as there are evidences that Ulva 

spp. might negatively interfere the growth of Roseobacter sp. via 2,4-decadienal and may 

contribute to the chemical-mediated interactions between Ulva spp. and its community. 

Therefore, the potential production of PUAs by the algal cells and the amount of dissolved 

PUAs in the culture medium will be addressed using an in situ derivatization approach with 

O-(2,3,4,5,6-pentafluorobenzyl) hydroxylamine hydrochloride (PFBHA.HCl) which leads to an 

in situ derivatization without inhibition of the biosynthesis of the aldehydes (Wichard et al. 

2005). For elucidation of the biosynthesis, stable isotope labeled precursors will be used. GC-

MS is the chosen approach. 
 

2.2.2. Metabolomics 

Fiehn (2006): “Metabolomics seeks for a truly unbiased quantitative and qualitative 

analysis of all biochemical intermediates in a sample. It must not be restricted by any 

physiochemical property of the metabolites, such as molecular weight, polarity, volatility, 

electrical charge, chemical structure and others. Since there is currently no single technology 

available that would allow such comprehensive analysis, metabolomics is characterized by 

the use of multiple techniques and unbiased software. Metabolomics also uses relative 

quantification. In addition, it must include a strong focus on de novo identification of 

unknown metabolites whose presence is demonstrated.” 

Extraction of metabolites from marine system is a great challenge. However, the external 

chemosphere of most marine organisms (including microorganisms) has remained 

overlooked until recent applications of MS-based chemical profiling and metabolomic 

approaches for chemical ecology studies (Goulitquer et al., 2012). A statistical evaluation of 

data provides insights into the released metabolites that might represent a message sent by 
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emitter organism(s) to potential receiver organism(s) as was addressed in sections (cf. 1.2 

1.3). The scheme bellow (Fig. 4) summarizes the stepwise procedure which is recommended 

by several studies to obtain a robust result (Jenkins et al., 2004; Dunn and Ellis, 2005; 

Beckonert et al., 2007; Moco et al., 2007). 

 

Figure 4: Metabolic pipeline. 
 

The research question: Deciphering the dynamics of the chemosphere within the 

community of U. mutabilis and its associated bacteria (Fig. 5).  

To describe the chemosphere of the tripartite community (Fig. 5), it is necessary to identify 

significant numbers of metabolites in the biological samples. In the present metabolomic 

study, I try to avoid biases against certain compound classes by chemical structure or by 

apparent abundance in the algal tissue in order to identify these compounds, which are 

produced by the three organisms and released into the culture medium. The experimental 

design must assure that the metabolites’ abundance can be directly compared in different 

samples. 
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Figure 5: Bacterial dependent morphogenesis of U. mutabilis, Photos courtesy of Jan Grüneberg (Friedrich Schiller 
University Jena). 

 
Study design: The experiment will start in the laboratory with small volumes of 1 L as batch 

cultures using Erlenmeyer flasks under sterile and controlled conditions, and then the 

experiment under the same conditions will scale up to a volume of 25 L in bioreactors using 

Carboy vessels. After that, aquacultures using huge volume of 200 L will be performed in the 

lagoon Ria Formosa (Portugal) in order (1) to get elevated concentrations of biomarkers over 

lifecycle of U. mutabilis, and (2) to test the repeatability, and reproducibility of the stepwise 

scaling of the metabolomic analysis of U. mutabilis in the tripartite community. 

Axenic U. mutabilis

Tripartite community

Chemosphere ? Axenic +
Cytophaga sp.

Axenic +
Roseobacter sp.
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It is important to highlight that all the experiments will start with purified gametes as it is 

conceptually a novel approach to work with a well defined seed stock, particularly, in 

aquaculture.   

Sampling and storage: The culture medium will be sampled once weekly, and storage at      

- 80 °C in parallel to the metadata collection.  

In the word of Jenkins et al. (2004): “metadata is data about the data, providing context - 

represents a large part of the system. This allows dataset comparability to be assessed”. It is 

essential to collect extensively metadata such as fundamental biological parameters along 

the metabolomic analysis in order to interpret the omics-data and guarantee comparability 

between explorative studies. Data driven research such as omics benefits from high 

qualitative biological data as a posteriori hypothesis can be also generated for subsequent 

multivariant data analyses of the chemical data (Pedro, 2002; Goodacre et al., 2004). 

Sampling work-up: In the present study, non-targeted analysis will be used based on the 

methodology established by Barofsky et al. (2009) and Vidoudez and Pohnert, (2012). In 

these studies, LC-MS and GC-MS approaches were applied to investigate the exo- and endo-

metabolites excreted by Skeletonema marinoi and Thalassiosira pseudonana. UPLC-MS 

approach, designed by Barofsky et al., showed the influence of S. marinoi growth phases on 

the cellular metabolic profile of a copepod, suggesting that changes in infochemicals within 

or surrounding the diatom regulate selective feeding of the zooplankton (Barofsky et al., 

2009; Barofsky et al., 2010). Also with S. marinoi, GC-MS analysis revealed clearly that the 

excreted metabolites differ between growth phases (Vidoudez and Pohnert, 2012). 

Consequently, in this study both non-targeted analyses using liquid chromatography and 

gas chromatography (which needs derivatization steps) coupled to mass spectrometry (GC-

MS and UHPLC-MS) will be applied to monitor a wide range of excreted compounds in the 

culture medium of the tripartite community. Using this adjusted the methodology in the 

current study, I aim to explore the exometabolome of Ulva mutabilis and its associated 

bacteria Cytophaga and Roseobacter species.  

Data extraction: MarkerlynxTM will be used to collect the biomarkers from LC-MS-based 

dataset. To extract the metabolites from GC-MS-based dataset, the Automated Mass 

Spectral Deconvolution and Identification System (AMDIS) deconvolutes chromatograms and 

generates lists of spectra, the lists are then fed to the Metabolomics Ion-based Data 

Extraction Algorithm (MET-IDEA) for quantification (Hiller et al., 2009). Here, I aim to define 
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a robust parameter setting for the automated and reliable data mining from LC-MS and GC-

MS analyses. 

Data analysis: Chemometric analyses will be applied: unconstrained principle component 

analysis (PCA) and the constrained canonical analysis of principle coordinate (CAP). Clarke 

and Ainsworth (1993) pronounced the data analysis philosophy “lets the data speak for 

themselves’’ through PCA clusters and encouraged an exploratory attitude towards data. 

Unconstrained ordinations are generally extremely useful for visualizing broad patterns 

across the entire data cloud as well as any differences in within-group variability. Although 

group differences may be seen in an unconstrained ordination, they can also be masked by 

high variability and high correlation structure among variables unrelated to group 

differences (Anderson and Willis, 2003). This unconstrained analysis is not ideal for analyzing 

data with high variety in abundance because of the limitations of the Euclidean distance, 

which is the only ecological distance investigated with PCA. The Euclidean distance is not a 

very good distance for investigating how species (biomarkers) are shared between sites 

(groups) (Legendre and Legendre, 1998). A constrained ordination such as CAP, on the other 

hand, does not allow any assessment of either total or relative within-group variability, but it 

does allow the differences among groups to be seen due to the flexibility to use any 

ecological distance such as Bray-Curtis distance. Although Bray-Curtis is known to be overly 

sensitive to differences in absolute abundances, with the (1) transformation, in this case to 

y’ = �𝑦𝑦, this effect is largely reduced (Clarke and Ainsworth, 1993) and (2) standardization by 

dividing cell abundance by the total abundance of each sample, so that biomarkers sum up 

to 1 for each sample (Legendre and Legendre, 1998). By using this statistical strategy, one 

will compare differences in metabolites proportions within each sample and between all 

samples. 
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3.1. Prevalence and mechanism of polyunsaturated 
aldehydes production in the green tide forming 
macroalgal genus Ulva (Ulvales, Chlorophyta)1 

 

 

 

 

 

 

 

 

 

 

1 This chapter is based on the publication of Alsufyani et al. (2014) 
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Results and Discussion 

3.1.1. Identification of Ulva species in the lagoon Ria Formosa (Portugal) 

Ulva spp. were collected in the lagoon Ria Formosa (Faro, Portugal) in spring 2010 in order 

to survey the potential production of α,β,γ,δ-unsaturated aldehydes (Fig. 6). About 100 algal 

isolates were transferred to Ulva culture medium (UCM) and cultured under standardized 

conditions (Stratmann et al., 1996). Those algae, which survived cleaning, transfer and 

cultivation (Tab. 3), were described briefly by their morphology. However, gene sequencing-

based classifications of Ulva are critical for proper species identification. Therefore, the 

sequences of the chloroplast-encoded RuBisCo gen (rbcL) were analyzed and compared with 

GenBankTM sequences archived by NCBI (Tab. 3). Based on the rbcL data seven operational 

taxonomic groups including those rbcL haplotypes were identified, which correspond to e.g., 

U. rigida or U. compressa complexes (Guidone et al., 2013). For instance, U. mutabilis 

(UM_2), U. compressa and U. pseudocurvata (GenBankTM data) corresponded to the same 

complex. Sequencing data revealed the identity of several isolates, which were used as 

biological replicates for further chemical analysis including quantification of PUAs (Tab. 4). 

For comparison, two isolates were collected outside of Portugal at marine stations on the 

North Sea Island Helgoland (Germany) and at Puerto Montt (Bay of Puerto Montt, Chile).  

 
3.1.2. Survey and quantification of α,β,γ,δ -unsaturated aldehydes (PUAs) 

2,4-heptadienal and 2,4-decadienal were the most prominent PUAs, whereas 2,4,7-

decatrienal was often found only in minor amounts (Fig. 6, Tab. 4) determined at pH 8.2 in 

sterile seawater medium. 2,4-octadienal or 2,4,7-octatrienal known to be derived from C16-

polyunsaturated fatty acids such as 6Z,9Z,12Z,15-hexadecatetraenoic acid (Pohnert et al. 

2004) could not be determined. The strongest PUA-producer collected in the Ria Formosa 

was identified as a species close to U. rigida. For instance, upon cell damage 2.8 ± 0.5 nmol 

g−1 (fresh weight) of 2E,4Z-hepatdienal and 2E,4E-hepatdienal, 1.9 ± 1.0 nmol g−1 of 2E,4Z-

decadienal and 2E,4E-decadienal and minor amounts of 2,4,7-decatrienal were measured in 

U. rigida (RFU_77). Interestingly, a comparable amount (2.3 nmol g−1 fresh weight) of 2,4-

decadienal was exclusively detected in U. conglobata (Akakabe et al., 2003). Isolate RFU_11, 

most closely related to U. ohnoi or U. reticulata (Hiraoka et al., 2006), contributed 

significantly to PUA production as well as isolate RFU_93, which was identified as U. rotunda 

(Fig. 6, Tab. 4). Overall, the total amount of released PUAs of the identified producers ranged 

from 0.6 – 5.1 nmol g−1 (fresh weight) within this survey. In this context, it is interesting to 
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note that some of the most abundant green tide forming species like U. ohnoi or U. rigida 

released high amounts of PUA. Most of the collected algae did however not produce any 

PUAs under standardized laboratory conditions upon cell damage (Figs. 6,7; Tab. 3). 

Production of volatile aldehydes was not observed in our model organism Ulva mutabilis 

Føyn upon cell damage. This species was originally collected at the Portuguese Coast close 

by Olhão (Portugal) and was particularly characterized by its morphological plasticity as it 

appears in blade and tube morphology. As the PUA-production within different isolates of 

the genus Ulva seems to range widely, additional case-specific chemical investigations are 

required in future studies. Therefore, the oxylipins production of mature thallus of the 

parental was also compared with the filial generation, because sporulation (i.e. release of 

gametes or zooids) can be occasionally induced under laboratory conditions (Stratmann et 

al., 1996; Wichard and Oertel, 2010). These findings show no significant difference of PUA-

production in RFU_77 (Fig. 7) indicating that the laboratory conditions did not influence the 

amount of PUA production over half a year. However, further studies have to be performed 

to show if the amount and pattern of PUAs varies throughout the different growth phases of 

Ulva. Indeed, this is of particular interest in algal aquaculture, where stable and predictable 

conditions are desirable e.g., regarding the transformation of PUFAs and oxylipins 

production. Interestingly, all PUA producers, including the previously identified producer of 

2,4-decadienal, U. conglobata (Akakabe et al., 2003), corresponded to the sea lettuce 

morphotype. This observation indicates a phylogenetic relationship, which was also 

supported by the analysis of the phylogenetic tree, based on rbcL data (Fig. 6). Due to this 

chemotaxonomic significance of PUAs, It is concluded that sea lettuce like morphotypes of 

Ulva indicates a high potential production of PUAs during green tides with potential 

allelopathic effects on e.g., the microbiome and grazers. 
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Figure 6: Maximum likelihood phylogram of Ulva spp. inferred from the rbcL gene. Species were collected in the Ria Formosa (Portugal) except isolate C_210, which was from the Bay of Puerto 
Montt (Chile). ML bootstrap values are reported for nodes that received > 50% support (based on 1000 replicates). All isolates were submitted for PUAs analysis. Filled circles indicate the 
determination of significant amount of PUAs: C7:2 = 2,4-heptadienal, C8:2 = 2,4-octadienal, C8:3 = 2,4,7-octatrienal, C10:2 = 2,4-decadienal, C10:3 = 2,4,7-decatrienal. Open symbols indicates no 
PUA. Accession numbers of GenBankTM are shown for reference taxa. 
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Table 3: Sample information of collected Ulva species: Strain numbers, morphology, PUA production and GenBankTM accession 
number for the rbcL gene sequence. The closest related species according GenBankTM information is given.  

Strain 
Closest related 

species 
Morphology C7:2 C8:2 C8:3 C10:2 C10:3 

Accession no# 

rbcL 

UM_ 2 * Various morphotypes - - - - - KJ417451 

RFU _7 U. rigida Blade + - - + + KJ417448 

RFU_11 U. ohnoi Blade + - - + + KJ417449 

RFU_58 U. compressa Branched tube - - - - - KJ417456 

RFU_59 U. compressa Branched tube - - - - - KJ417455 

RFU_61 U. compressa Branched tube - - - - - KJ417454 

RFU_71 U. muscoides Highly branched tubes - - - - - KJ417440 

RFU_76 U. muscoides Highly branched tubes - - - - - KJ417441 

RFU_77 U. rigida Blade + - - + + KJ417445 

RFU_81 U. compressa Branched tube - - - - - KJ417457 

RFU_82 U. compressa Branched tube - - - - - KJ417453 

RFU_91 U. rigida Blade - - - - - KJ417446 

RFU_92 U. rigida Blade - - - - - KJ417447 

RFU_93 U. rotundata Blade + - - + + KJ417450 

RFU_95 U. rigida Blade + - - + + KJ417444 

RFU_96 U. rigida Blade + - - + + KJ417442 

RFU_97 U. rigida Blade + - - + + KJ417443 

RFU_200 U. mutabilis Unbranched tube - - - - - KJ417452 

C_ 210 Ulva sp. Blade + - - + + KJ417458 

H _211 Ulva sp. Blade + - - + + 
not 

determined 

 

The presence of PUAs is given by (+). C7:2 = 2,4-heptadienal, C8:2 = 2,4-octadienal, C8:3 = 2,4,7-octatrienal, C10:2 = 2,4-
decadienal, C10:3 = 2,4,7-decatrienal. * UM = Ulva mutabilis Føyn: specimen cultivated in the laboratory in Jena (Germany), but 
originally collected in the Ria Formosa (Portugal) in 1952. 

 

 

 

 

36 
 



Results and Discussion 

Table 4. Quantification of PUAs (sum of the isomers in nmol g-1 wet biomass) in Ulva spp. sampled in 2010/2011. Mean ± 
standard deviation of biological replicates is given (n = 3).  

Strain Closest related 
species 

Collection 
Site 

Heptadienal 
nmol g-1 biomass 

Decadienal 
nmol g-1 biomass 

Decatrienal 
nmol g-1 biomass 

RFU_7,77, 95, 96, 97 Ulva rigida Ria Formosa (Portugal) 2.8 ± 0.5 1.9 ± 1.0 0.4 ± 0.4 
RFU_93 Ulva rotunda Ria Formosa (Portugal) 0.3 0.3 * 
RFU_11 Ulva ohnoi Ria Formosa (Portugal) 0.6 1.9 0.2 
 H_211 Ulva sp. Helgoland (Germany) 1.2 ± 0.1 1.1 ± 0.2 * 
C_210 Ulva sp. Puerto Montt (Chile) 1.6 1.6 * 
RFU 
200, 201 Ulva compressa Ria Formosa  (Portugal) 0 0 0 

UM_2 
(type specimen) Ulva mutabilis Ria Formosa  (Portugal) 0 0 0 

 
Biological replicates were not available in certain cases. * The release of 2,4,7-decatrienal was minor and highly variable. 
 
 
 
 
 

 

Figure 7: Plasticity of PUAs production upon wounding: the extracted molecular ion trace (m/z = 276) GC-MS chromatograms of 
several Ulva extracts are plotted. Peaks represent derivatives with PFBHA of 2,4-heptadienal, 2,4,7-decatrienal and 2,4-
decadienal. 
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3.1.3. Profiling of PUFAs and their role as precursors for PUA production 

PUA production is considered to be catalyzed by lipoxygenases. They generally use 

unsaturated fatty acids as substrates. Therefore, the total fatty acids were initially profiled to 

identify candidate precursors. The total fatty acid profile of Ulva sp. was typically rich in ω-3- 

and C18:n fatty acids and rare in C20:n fatty acids (Fig. 8). This is in agreement with recent 

studies (Pereira et al., 2012; Ivanova et al., 2013; Khotimchenko, 2002) and holds true for both 

PUA-producers (e.g., RFU_77, and U. rigida) and non-producers (e.g., UM_2, and U. mutabilis) 

with about 1-4 % in sum of arachidonic acid (ARA, C20:4 n-6) and eicosapentaenoic (EPA, 

C20:5 n-3). In particular, the C18-PUFAs linoleic acid (LA, C18:2 n-6), α-linolenic acid (αLEA, 

C18:3 n-3), stearidonic acid (SDA, C18:4 n-3) and minor amounts of γ-linolenic acid (γLEA, 

C18:3 n-6) were present in Ulva sp. (30-40 % in sum) besides the monounsaturated oleic acid 

(C18:1 n-9) and the palmitoleic acid (C16:1 n-7) (Fig. 8). At this stage, it was not clear, which 

PUFAs are utilized predominantly for the production of C10-aldehydes by the isolated algae, but 

it was obvious that e.g., ARA and EPA were completely depleted within 30 min upon wounding 

(Fig 8B). Such depletion may indicate the formation of PUAs and other oxylipins derived from 

these fatty acids. For further investigation ARA, LA or γLEA were applied to the wounded Ulva 

thalli to monitor the accelerated production of 2,4-decadienal by solid phase micro-extraction 

(SPME) (Fig. 9). We observed that the carbon chain cleavage to produce the C10-aldehydes 

requires an extra double bond in β-position to the presumed hydroperoxide intermediates as 

described by Labeque and Marnett (1988). Whereas the external application of ARA or γLEA 

facilitated 3 and 12 times higher production of 2,4-decadienal, LA (a major fatty acid in Ulva) did 

not affect the production of 2,4-decadienal in isolate H_211 (Fig. 9). A similar pattern was 

observed for the production of the minor amounts of 2,4,7-decatrienal: EPA and SDA increased 

the production of 2,4,7-decatrienal by 3 and 2 times in isolate RFU_77, but not αLEA (Fig. 10). 

In certain occasions, neither ARA nor EPA was detect in Ulva species, as also observed in 

previous studies (Khotimchenko, 2002; Pereira et al., 2012) which might explain the lack of PUA 

production. The additional application of external ARA or EPA did not initiate the PUA-

production in U. mutabilis or other “non-producers”. These results reveal that the specific 

lipoxygenase/lyase mediated pathways are either not activated/translated or even not present 
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in non-PUA producing Ulva species. The species dependent variability of PUA production 

reflects a high plasticity within this genus of Ulva (Tab. 3) and is also known in diatoms (Wichard 

et al., 2005a).  

In addition to the potential adverse effects of PUAs, PUFAs are discussed to cause detrimental 

effects on surrounding marine living organisms (Alamsjah et al., 2008). LOX pathways might 

influence these activities either by decreasing the effect through depletion of PUFAs and/or by 

catalyzing the formation of various oxylipins (e.g., HpETE, PUAs, etc.), which harbor potential 

adverse effects on different phyla in their habitat (Adolph et al., 2004; Jüttner, 2001). Owing to 

the high content of PUFAs in the phototrophic organisms, macroalgae are also currently 

evaluated whether they can be used for biomass production and sustainable sources of e.g., 

biofuel or bio-oil (Dibenedetto, 2012). However, significant amounts of fatty acids might be 

transformed into breakdown products upon cell disruption as also shown in diatoms (Wichard 

et al., 2007). A direct one-pot conversion of lipids into methylated fatty acids might be an 

interesting approach to overcome these limitations (Dibenedetto, 2012).  

 

 

Figure 8: Representative total ion current GC-MS chromatogram of the total fatty acid, as methyl ester, profile of U. rigida 
isolate RFU_77 (A) and depletion of ARA and EPA within 30 min after cell wounding (B). The insert (B) shows the ion extracted 
chromatogram m/z 79 of samples prepared for total fatty acid analysis from tissue before (black line) and after wounding (grey 
line). 
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Figure 9: Precursor analyses of the 2,4-decadienal formation that were conducted by application of equal amounts of 
arachidonic acid (ARA, long dash black line), linoleic acid (LA, short dash gray line) or γ-linolenic acid (γLEA, dotted gray line), and 
compared with the intrinsic PUA-production of Ulva sp. (H_211, solid black line). 2-decanon was used as internal standard (IS). 
Peaks are normalized by biomass and the intensity of the internal standard. 

 
Figure 10: Increased production of 2,4,7-decatrienal after application of C18:4 n-3 (SDA) or C20:5 n-3 (EPA). The minor 
production of 2,4,7-decatrienal can be enhanced by application of eicosapentaenoic acid (EPA, long dash black line) or 
stearidonic acid (SDA, dotted gray line), whereas the application of α-linolenic acid (αLEA, short dash gray line) did not 
significantly increase the amount of PUAs compared with the untreated sample (RFU_77, solid black line). 2-decanon was used 
as internal standard (IS). Peaks are normalized by biomass and the intensity of the internal standard. 

 
3.1.4. Elucidation of the eicosanoid biosynthetic pathway using stable isotope labeling and 
inhibitor experiments 
 

For elucidation of the biosynthetic pathway, the labeling patterns of metabolites were 

determined by mass spectrometry after application of stable isotope labeled PUFAs to the 

strongest PUA-producers, RFU_77 and H_211. Deuterated PUFAs, [2H8]-ARA or [2H4]-LA, were 
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incubated with a crude extract of Ulva sp. (isolate H_211) and subsequently sonicated. It turns 

out that [2H8]-ARA, but not [2H4]-LA, was highly efficiently transformed into deuterated [2H4]-

2,4-decadienal (> 50 % labeled of total amount of decadienal, Figs. 9, 11A). These results are in 

agreement with the study of Akakabe et al. (2003), who demonstrated that U. conglobata 

synthesizes regio-specific 11R-hydroperoxy-5Z,8Z,12E,14Z-eicosatetraenoic acid (11-HpETE), 

which is further transformed to 2,4-decadienal. Moreover, [2H5]-EPA (C20:5 n-3) was 

transformed in the present study efficiently into several deuterated 

hydroperoxyeicosapentaenoic acids (HpEPE) ([M-H]- = 338, [M-H2O-H]- = 320) indicated by a ∆5 

shift compared to the unlabeled hydroperoxy fatty acids ([M-H]- = 333, [M-H2O-H]- = 315) 

including the 11-hydroperoxy-5Z,8Z,12E,14Z,17Z-eicosapentaenoic acid (11-HpEPE), which was 

subsequently utilized to form an isomeric mixture of deuterated [2H5]-2,4,7-decatrienal (> 50 % 

labeled of total amount of decatrienal, Figs. 11B, 12). This is even more interesting, as EPA was 

often the more prominent C20-PUFA compared to ARA (Fig. 8). Judging from the position of 

double bonds, EPA might be also the precursor for 2,4-heptadienal as reported in diatoms 

(d'Ippolito et al., 2005). The biosynthesis of 2,4-heptadienal and its precursor in Ulva remains 

unclear, as deuterated 2,4-heptadienal derived from EPA could not be detected and application 

of SDA did not trigger the production either (data not shown).  

For further characterization of the biosynthetic PUA-pathways and identification of the second 

breakdown product (e.g., a short chain hydroxy fatty acid) of 11-HpETE and 11-HpEPE besides 

decadienal and decatrienal, the LOX-inhibitor 5,8,11,14-eicosatetraynoic acid ETYA was used in 

pilot experiments for targeting potential short chain fatty acid by UHPLC-MS analyses. Hereby, 

external ARA was added to enhance these signals due to the low amount of intrinsic C20-PUFAs 

in Ulva (Fig. 13). The inhibitor stopped the enzymatic production of the intermediate 11-HpETE 

and consequently its subsequent breakdown products in Ulva sp. (H_211). Comparison of the 

chromatographic data from these UHPLC-MS investigations of Ulva sp. (H_211) extracts treated 

with and without ETYA pointed out tentative signals of the second breakdown product (Fig. 13). 

In particular, the potential breakdown product with m/z = 183 [M-H] - at the retention time 1.65 

min was identified. It is hence tempting to assume that the hydroxylated fatty acid, 10-hydroxy-

5,8-decadienoic acid (Fig. 13), known to be produced by a LOX/hydroperoxide lyase of the 
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diatom Thalassiosira rotula, is also synthesized by Ulva. Addition of [2H8]-ARA and subsequent 

parallel analysis by UHPLC-MS and GC-MS after solid phase micro extraction revealed the 

concomitantly production of the potential [2H4]-10-hydroxy-5,8-decadienoic acid (Figs. 13 A,B) 

and the release of [2H4]-2,4-decadienal (Fig. 11A). These results were also supported by 

comparative analyses of the other PUA-producers (i.e., RFU_77, C_210) showing the same 

pattern (data not shown).  
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Figure 11: Mass spectra of 2,4-decadienal (A) and 2,4,7-decatrienal (B) and their deuterated forms after application of [2H8]-ARA 
in (A) and [2H5]-EPA in (B). 

 
Figure 12: Formation of the hydroperoxy fatty acids of C20:5 n-3 (EPA). Extracted ion trace chromatograms of UHPLC-MS 
analyses of aqueous extracts monitoring the pseudomolecular ions [M-H]-1 of the hyroperoxid fatty acids of EPA (A) and its 
deuterated form (B) after application of [2H5]-EPA (100 µg ml-1). Identification of oxygenated products of EPA, including the 11-
HpEPE (1) from a crude extract of Ulva sp. (H_211) was performed by comparison an untreated sample with a [2H5]-EPA treated 
sample. The ∆5 shift can be recognized at the same given retention time (2).  Complete regioseparation of the several HpEPEs 
was not accomplished by this approach. 
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Figure 13: Elucidation of the biosynthesis with deuterated arachidonic acid ([2H8]-ARA). Extracted ion trace chromatograms of 
UHPLC-MS analyses of aqueous extracts of Ulva monitoring the pseudomolecular ions [M-H]-1 of 10-hydroxy-5Z,8Z decadienoic 
acid derived from arachidonic acid: Wounded Ulva sp. (H_211) thalli were spiked with (A) [2H8]-ARA, with (B) unlabeled ARA or 
with (C) the LOX inhibitor ETYA and ARA. The mass spectra of the identified substances 1 and 2 are shown. 10-hydroxy-5,8-
decadienoic acid was identified by comparison with a partly purified extract from the diatom T. rotula that contains the 
hydroxy-fatty acid (Barofsky and Pohnert, 2007). 

 
3.1.5. Lipoxygenase/hydroperoxide lyase mediated pathways in Ulva 

Besides the eicosanoid fatty acids, the more prominent C18-PUFAs including γLEA can be 

efficiently used by Ulva for the production of 2,4-decadienal (Fig. 9) mediated via a 9-LOX 

transformation and 9-hydroperoxy-6,10,12-octadecatrienoic acid (9-HpOTrE), although only 

traces of γLEA were observed in Ulva species. Upon addition of external γLEA, the second 

concomitantly produced oxylipins, 6-hydroxy-7-octenoic acid (previously identified in Ulva by 

Abou-Elwafa et al., 2009) and 8-hydroxy-6Z-octenoic acid, were identified by co-injection with 

synthetic standards or by comparison of retention time and mass spectra, respectively (Figs. 14 

A, B). The same 9-LOX might be also involved in the production of the minor amounts of 2,4,7-

decatrienal and the hydroxy-fatty acids derived from SDA via the same putative octadecanoid 

pathway (Fig. 15). Indeed, Tsai and co-workers (2008) purified a lipoxygenase from Ulva fasciata 

and surveyed the hydroperoxy derivatives formed from several substrates for specificity tests. 

This algal lipoxygenase showed the highest activity towards ARA, EPA, SDA and LA (specific 
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activity: 1.71 - 3.97 µmol min-1 mg-1 protein), but a very low activity towards αLEA (specific 

activity: 0.15 µmol min-1 mg-1 protein). Even more interesting, the elution profile of the 

hydroperoxy derivatives formed from C18-PUFAs showed a major peak from the activity of a 9-

LOX and a minor peak from a 13-LOX. The higher 9-LOX specificity over 13-LOX of Ulva has been 

observed in various studies in green algae (e.g., Kuo et al., 1997; Kumari et al., 2014) For 

instance, the 9R-hydroperoxy-10E,12Z-octadecadienoic acid (9-HpODE) were formed with a 

high enantiomeric excess (> 99%) from LA in U. conglobata (Akakabe et al. 2002). However, 

when arachidonic acid was used as substrate, the major hydroperoxy derivatives was catalyzed 

from a 11-LOX (Tsai et al., 2008). Therefore, the concomitantly biosynthesis of 2E,4Z-decadienal 

and 10-hydroxy-5Z,8Z-decadienoic acid is also suggested via the intermediate 11-HpETE derived 

from ARA mediated by the 11-LOX/lyase activity (Fig. 15 A). Previous chiral LC/MS analyses of 

the LOX product have revealed that (R)-11-HpETE was in large enantiomeric excess (99 % ee) 

and thus enzymatic processes are involved. Incubation of wounded Ulva thalli with 100 µg of 

synthetic 11-HpETE proved further that the hydroperoxide is the substrate for the 2,4-

decadienal synthesis (Akakabe et al., 2003). This biosynthetic pathway is comparable with the 

11-LOX mediated transformations of PUFAs in the diatom T. rotula (Barofsky and Pohnert, 

2007), but different to the moss Physcomitrella patens, which is a model organism e.g., for the 

evolutionary consideration of aspect compared to green macroalgae to land plants. Whereas T. 

rotula releases 2E,4Z-decadienal and 10-hydroxy-5Z,8Z-decadienoic acid as well, a 

multifunctional enzyme in P. patens catalyses the oxygenation of ARA and the bond cleavage of 

12-HpETE into 1-octen-3-ol and 12-oxo-dodeca-5Z,8Z,10E-trienoic acid (Senger et al., 2005) (Fig. 

15 C).  

In summary, both the octadecanoid and the eicosanoid pathway can be used for the 

formation of oxylipins in Ulva spp. as known e.g., in P. patens or in various red macroalgae 

(Bouarab et al, 2004; Wichard et al., 2005). Further detailed studies will explore the profile of all 

oxylipins including hydroperoxy-, hydroxyl-, keto- and epoxy-fatty acids in Ulva as elaborated 

for diatoms by Cutignano et al. (2011). Overall, the lipoxygenases/lyase pathways seem to be 

very variable in marine algae. For instance, the marine diatom Stephanopyxis turris transforms 

eicosapentanoic acid via 12-hydroperoxyeicosatetraenoic acid (12-HpETE) into halogenated 
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compounds, such as 3-chloro-1,5Z-octadiene and 1-chloro-2Z,5Z-octadiene, and 12-oxododeca-

5Z,8Z,10E-trienoic acid catalyzed by a hydroperoxide-halolyase (Wichard and Pohnert, 2006).  

Up to now, few studies have investigated the activity of (partly) purified LOXs in Ulva (Tsai et 

al., 2008) and the enzymes are still poorly characterized. Therefore, the unambiguous 

identification of the second breakdown products along with further studies are needed to 

clarify the mechanism of bond cleavage in Ulva via homolytic (as found e.g., in higher plant) or 

heterolytic routes (e.g., in diatoms) (Noordermeer et al., 2001; Barofsky and Pohnert, 2007). For 

instance, 18O-labeled water can be used to explore the underlying mechanisms. Based on our 

data, U. rigida (RFU_77) is suggested to be the strong PUA-producer, which is now under 

standardized cultivation in our laboratory, for advanced analyses of the biosynthetic pathways. 

 

 

Figure 14: Extracted ion trace chromatograms of UHPLC-MS analyses of aqueous extracts of Ulva (A) monitoring the 
pseudomolecular ions m/z 157 [M-H]-1 of 6-hydroxy-7-octenoic acid (1) and 8-hydroxy-6Z-octenoic acid (2). Wounded U. rigida 
(RFU_77) thalli were spiked with γLEA. Identity of 1 was proven by co-injection of the Ulva extract with the respective synthetic 
standard (B). Mass spectra of 1 and 2 are shown. 
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Figure 15: Transformation of (A): C20-PUFAs (arachidonic and eicosapentaenoic acid) and (B): C18-PUFAs (γ-linolenic acid and 
stearidonic acid) by wounded Ulva.  Proposed LOX/lyase mediated biosynthetic pathways in Ulva sp. and Ulva rigida (H_211, 
RFU_77) compared with the elucidated pathways in the moss Physcomitrella patens (Senger et al., 2005) (C). 
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3.1.6. Conclusions  

The potential production of polyunsaturated aldehydes (PUAs) was surveyed in wounded Ulva 

species collected in the lagoon Ria Formosa (Portugal). These green marine macroalgae show a 

high plasticity in PUA production. Whereas the majority of collected species did not release any 

PUA, mainly those characterized by the sea lettuce-like morphotype released elevated amounts 

of decadienal, decatrienal and heptadienal in the range from 0.6–5.1 nmol g−1 (fresh weight). 

Interestingly, the strongest producers (Ulva rigida and Ulva ohnoi) are known for forming green 

tides. Released PUAs by Ulva might affect the population dynamics of the phytoplankton, 

grazers as well as the microbial community during e.g., green tide events. In addition, the pilot 

experiments were conducted in order to elucidate the biosynthetic pathways of 2,4-decadienal 

and 2,4,7-decatrienal. Labeling experiments have demonstrated that a 11-lipoxygenases/lyase 

mediated pathway transformed deuterated arachidonic acid and eicosapentaenoic acid into 10-

hydroxy-5Z,8Z-decadienoic and 2,4-decadienal or 2,4,7-decatrienal, respectively. Additionally, 

C18-PUFAs are transformed to the putative 6-hydroxy-7-octenoic acid and 8-hydroxy-6Z-

octenoic acid as well as the C10-aldehydes via the 9-lipoxygenase/lyase pathway. In general, as 

the lipoxygenases/lyase mediated depletion of polyunsaturated fatty acids might jeopardize the 

commercial value of the algal biomass in land based aquacultures, it is suggested to consider 

this additional criterion for selecting the appropriate Ulva species. Here, Ulva mutabilis might 

be selected as feedstock to be cultivated under controlled condition to increase the 

concentration of a given product (e.g., PUFAs) in biomass production.  
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3.2. Metabolomics requirements 
 
3. 2.1. Acquisition of biological metadata 

It is essential to collect extensively metadata such as fundamental biological parameters along 

with metabolomic analyses in order to interpret the omics-data and guarantee comparability 

between explorative studies. Data driven research such as omics benefits from high qualitative 

biological data, as a posteriori hypotheses can be also deduced from subsequent multivariant 

data analyses of the chemical data. In addition, biological data gives information on the context 

when the sample was collected. They enable the analyst to describe e.g. specific growth phases 

in experiments along with physiological cell and life status of the organisms. Therefore, 

following biological metadata were monitored: (1) the growth of U. mutabilis and its associated 

bacteria, (2) the depletion of the macronutrients (nitrate, phosphate) in growth media, (3) the 

status inducibility of algal gametogenesis, (4) the changes in algal life cycle and (5) the 

microbiome/axenicity of the cultures. All abiotic parameters (light/dark cycle, illumination, 

salinity, and temperature) were controlled and kept constant throughout the entire experiment 

(cf. chapter 4). 

  
3.2.2. Cultivation and sampling 

Sterile UCM was inoculated with axenic gametes of U. mutabilis slender (gametophyte mt [+], 

sl) (cf. chapter 4) and subsequently with the essential bacteria for algal morphogenesis. Cultures 

of Roseobacter sp. and Cytophaga sp. were rinsed three times by sterile UCM before 

inoculation in order to avoid any cross contamination through the ingredients of the bacterial 

growth medium (marine broth). This effort and precision in keeping the system sterile is in 

order to prove that the exo-metabolites will result only from the living organisms constituting 

the tripartite community. 

Two treatments were prepared:  

The tripartite community culture which is comprised of axenic U. mutabilis germlings, 

Roseobacter sp. and Cytophaga sp. Within this chemosphere, U. mutabilis develops a complete 

thallus with blade, stem and primary rhizoid cells (Fig. 16a). 
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(b) Axenic culture, which contains only axenic U. mutabilis forming a callus-like morphotype 

without any cell differentiation besides the bubble-like structures around the cell wall, which 

are most significant (Fig. 16b). 

 

 
Figure 16: Monitoring of the algal growth of U. mutabilis after two weeks in two treatments (a) upon inoculation with 
Roseobacter sp. and Cytophaga sp. forming the normal thallus morphotype in the tripartite community, and (b) under axenic 
conditions U. mutabilis formed callus-like colonies with the cell wall showing “bubble-like” structures (arrows). 
 
3.2.3. Culture settings for metabolomic profiling 

The first metabolomic profiling was conducted with small scale batch cultures (1L) for a 

preliminary survey in order to establish an analytical procedure including cultivation, sampling, 

measurements and subsequently data processing. Therefore, U. mutabilis growth was observed 

with different associated isolates (i.e., Halomonassp, Sulfitobacter sp. Dinoroseobacter sp., 

Roseobacter sp. and Cytophaga sp.) along with the combination between Roseobacter sp. and 

Cytophaga sp. to ensure that similar biological observations which were documented previously 

by Spoerner et al. (2012) for U. mutabilis (Fig. 16a) can be achieved. Indeed, previous results 

could be confirmed regarding the various algal phenotypes and growth induced by the various 

bacterial partners. As these data and the metabolic profiling of small scale cultures were very 

promising and in agreement with the result of Spoerner et al. (2012), work-intensive bioreactor 

cultures (25L) in the culture chambers in Jena (IAAC, FSU Jena) and aquacultures (200L) at the 

marine station CCMAR (Center of Marine Sciences, Ramalhete, Faro, Portugal) were performed.  

50 
 



Results and Discussion 

 

3.3. Metadata collection towards generating the a 
posteriori hypothesis for metabolomics 

 

 

  

 

 
Bioreactor cultures conducted in Jena laboratory using 25L and 10L of Ulva culture medium in 
polycarbonate bottle. 
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Based on the small-scale experiments of batch cultures, the experiment was scaled upto 25L 

bioreactors consisting of two treatments: axenic culture and the tripartite community. In order 

to describe the tripartite community in its entirety, it was undertaken: 

(1) to collect samples for metadata analyses,  

(2) to observe the changes of exo-metabolites in the UCM over time (in triplicates),  

(3) and to carry out subsequently chemometric analyses.  

In addition to many factors such nutrients, pH, and light, the healthy growth of U. mutabilis in 

the tripartite community is attributed mainly to the growth and morphological factors released 

by Cytophaga sp. and Roseobacter sp. (cf. Introduction section 1.4). Thus, the growth of both, 

alga and bacteria, had to be monitored at each sampling point.  

 
3.3.1. Monitoring of U. mutabilis growth 

In the tripartite community, U. mutabilis grew healthy, and showed a normal morphology (Figs. 

16a, 17a). Estimation of the growth by length showed that the maximum average of length that 

could be measured over 56 days was 25 cm. The first apparent growth was recorded one week 

after inoculation (i.e., from day-7 till day-14) (Fig. 18). After that, a slight increase in longitudinal 

growth was observed until the end of the sampling points i.e., day-56. In comparison, U. 

mutabilis did not grow in axenic cultures (Fig. 18), and showed the typical undifferentiated cells 

with malformed cell walls forming dark green callus-like colonies (Figs. 16b, 17b, 18).  

Based on the weight, the relative growth rate (RGR) of U. mutabilis increased with an average 

of 3% FW day-1between day-14 and day-35, and 11% FW day-1 from day-42 till day-49. 

 

𝑅𝑅𝑅𝑅𝑅𝑅 (% 𝑑𝑑𝑑𝑑𝑑𝑑−1) =
100.𝑙𝑙𝑙𝑙�𝑊𝑊2 𝑊𝑊1� �

𝑡𝑡2−𝑡𝑡1
          (1)      

 

W1, W2 = fresh weight (g) at time point 1, and 2, respectively. t1 and t2 = time in days. The relative growth rate (RGR) is 
given in % per day (Lüning, 1990; Olischlager et al., 2013). 

 

RGR of U. mutabilis between day-42 till day-49 (11% FW day-1) is relatively close to the RGR of 

U. lactuca (11.4% FW day-1), and U. clathrata (13.7% FW day-1) (Kerrison et al., 2012). 

 

52 
 



Results and Discussion 

 

 

 
Figure 17: Illustration the procedure to estimate U. mutabilis growth by measuring (a) thallus length in the tripartite 
community, and (b) the diameter of callus-like colonies (arrows) in axenic culture. 
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Figure 18: Estimation of U. mutabilis growth as a function of time in bioreactor cultures by measuring thallus length in the 
tripartite community (black dots line), and the diameter of callus-like colonies in axenic cultures (grey dots line). Note the 
different scales on the left and right sides. Mean values  ± SD (n = 3). 

 
 

a b
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The longitudinal growth rate and the biomass density of U. mutabilis increased 

simultaneously. This contradicts the relation between the growth rate and the biomass density 

of U. fasciata measured in outdoor continuous cultures (Lapointe and Tenore, 1981), in which 

the growth rate decreased with increasing the biomass density due to self-shading that reduced 

the light level and consequently photosynthesis. Nevertheless, under the conditions of the 

current study, the later phenomenon was avoided by the aeration creating homogenous 

distribution of the light throughout the entire biomass in the bioreactors. It is noteworthy, that 

the length was used as a proxy for growth instead of thallus area due to the morphology of U. 

mutabilis (sl) thallus, which is described as tubular cylindrical thallus (Fig. 17a). Indeed, Løvlie 

(1964) demonstrated that no significant change was observed in thallus area of U. mutabilis (sl) 

over time, which is, however not the case with the wild-type of U. mutabilis (Spoerner et al., 

2012) or e.g., U. lactuca (Ale et al., 2011) because of the blade-like morphotype resulting in an 

areal growth of such Ulva species. Furthermore, there might be an interesting link between 

growth rate, nutrients concentration and the status of gametogenesis inducibility in Ulva. 

Therefore, the activity of the key regulators of the gametogenesis inducibility i.e., sporulation 

and swarming inhibitors in UCM, was further investigated as shown in section (3.3.4). The 

healthy growth and normal morphological development of U. mutabilis in the tripartite 

community exhibited color changes in thalli over time. For instance, the light green thalli were 

dominant from day zero to 14. By day 14, the cultures were mixed with light green and olive-

green thalli. From day 28 and onwards, the brownish green and colorless thalli appeared and 

some light green thalli were observed again from day-49 till day-56. Thus besides the algal 

growth, the algal culture and bacterial community in the tripartite community were monitored 

as well. 

 
3.3.2. Monitoring of algal cultures and bacterial community growth 

To assess how U. mutabilis interacts with its associated bacteria over time in the tripartite 

community, the bacterial growth was monitored routinely using in situ polymerase chain 

reaction (PCR). In addition, PCR was used to confirm the axenicity in both treatments i.e., axenic 

culture and the tripartite community. The DNA was extracted from the cultural supernatant and 

subsequently quantified to estimate total bacterial growth. Even more important, a polymerase 
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chain reaction (PCR) analysis was conducted to follow the bacterial growth of Roseobacter sp. 

and Cytophaga sp. Moreover, denaturing gradient gel electrophoresis (DGGE) was performed in 

order to identify any potential bacterial contamination, if any existed, in bioreactor culture. 

 
Proof of axcenity by Nanodrop DNA Quantification 

Total DNA quantification was performed using a Nanodrop method (Fig. 19a) in order to get a 

preliminary overview of the growth medium of axenic cultures and determine if any organism 

existed in prior to downstream analyses such as qPCR and/or DGGE. Upon filtration, DNA was 

extracted from the bacteria on the filter.  

 Nanodrop quantification revealed the absence of DNA in axenic treatments (Fig. 19a). In the 

tripartite community, however, total DNA amount increased over time as a result of the growth 

of Roseobacter sp. and Cytophaga sp. in UCM. In combination with the gametogenesis 

inducibility in U. mutabilis in the tripartite community (cf. section 3.3.5), the total DNA 

concentration in the growth medium could be divided into three patterns: The first pattern 

represents the total DNA from day-zero till 14, where the typical rapid bacterial growth was 

observed one week after the inoculation approaching the highest concentration on day-14 (Fig. 

19a). Obviously, the only extractable DNA from the growth medium during this culturing time 

resulted from Roseobacter sp. and Cytophaga sp. The second pattern started after day-14, 

when the DNA decreased to reach a plateau between day-21 and 35 and increased slightly on 

day-42 (Fig. 19a). The third pattern was recorded after day-42, when DNA concentration 

dropped dramatically reaching the lowest concentration on day-49. It is noteworthy to mention 

that in the second pattern, the total DNA concentration represents in addition of bacteria, the 

new gametes released spontaneously to the UCM. Those gametes, which were still moving in 

the medium and did not settle, were collected as well and contributed to the amount of total 

DNA (cf. section 3.3.5).  

Therefore, this method only provides reliable values for early stages of the tripartite 

community, when Ulva was immature and did not yet undergo spontaneous gametogenesis. 
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Proof of axcenity throughout the experiment by in situ PCR 

To prove the axenicity of the cultures, a specific DNA fragment (520 bp) of the bacterial 16S 

rDNA was amplified by in situ PCR. For this purpose, established primers were used, which 

cover a broad range of various marine bacteria (Muyzer et al., 1995; Sneed and Pohnert, 

2011a), so that DNA of unknown bacteria (= contaminants) would be amplified as well. The 

absence of the amplicons in case of the axenic cultures proved, in fact, the axenicity throughout 

the whole cultivation period (Fig. 19b, i.e., lane 12-14). Accordingly, DNA amplification of UCM 

collected from the tripartite community showed the expected strong signals (Fig. 19b; lanes: 1-

9), and indicated that the inoculation had worked properly on day zero. In addition, PCR proved 

that the experimental control containing only the culture medium without inoculation with U. 

mutabilis nor with bacteria was completely free of contaminants until the second sampling 

point (day-14) (Fig. 19b; lanes: 11)), after that, the experimental control was not valid any more 

as proven by PCR (data are not shown). The total DNA concentration in axenic culture media 

(Fig. 19a) is fully compatible with in situ PCR results as both confirmed the axcenity of axenic 

cultures. In summary, in situ PCR proved that the sampling campaign can be considered for 

further in depth molecular, chemical and biological analysis, as the axcenity was confirmed in 

the axenic culture in addition to the sterility in the tripartite community. 

The in situ PCR has been used as a quality control of the sterility-status of the tripartite 

community, and hence it was always performed before further experiments such as metabolic 

analyses and subsequent chemometric data analyses were conducted. Nevertheless, the 

extracted DNA from the chloroplast of the gametes might function as a template for the 16S 

rDNA amplification as well, and cause false positive results (Lachnit et al., 2010). Thus, the 

stability of the bacterial community and the absence of contaminants had to be confirmed by 

denaturing gradient gel electrophoresis analyses (DGGE). 
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Figure 19:  Monitoring of the bacterial community and growth. DNA was extracted from filters (0.2 µm pores size) after filtration of the growth media. (a) Nanodrop 

quantification of DNA in axenic culture (opened circle line), and in the tripartite community (black circle line). Error bars represent mean values ± SD (n = 3). (b) In situ PCR 

amplification using 16S rDNA bacterial primers, the size of the amplicone band is about 520 bp. First lane shows the GeneRuler Express DNA ladder. The tripartite community 

cultures; on day-zero (numbered lanes: 1-3), on day-28 (lane: 4-6), and on day-49 (lanes: 7-9). PCR control: PCR mixture without bacteria (Lane: 10). Experimental control 

(culture medium without U. mutabilis nor bacteria) on day-14 (Lane: 11). Axenic cultures; on day-zero (lane: 12), on day-28 (lane: 13), and on day-49 (lane: 14). (c) DGGE analysis 

of the bacterial community on the day of inoculation ’’day-zero’’ (Lanes: 1-3), on day-28 (Lane: 7), and on day-49 (Lanes: 4-6). 

 

 

 

a b c
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Survey of the bacterial community by DGGE 

In situ PCR worked as a test for axcenity of the treatments, but the work intensive DGGE was 

performed to prove that the right bacterial community was growing in the tripartite community 

free from the contaminants. Thus, the pelagic bacterial profile was monitored to check the 

presence and the absence of Cytophaga sp. and Roseobacter sp. Therefore, the PCR products of 

three representative phases of algal growth (day-zero, day-28, and day-56) were applied to 

DGGE-analysis and revealed that only Roseobacter sp. and Cytophaga sp. were identified in the 

tripartite community over sampling points (Fig. 19c, lane: 1-7). However, from the bands 

abundance of Cytophaga sp. it was shown how that the Cytophaga abundance ranged from 

high on day-zero (lanes: 1-3), and on day-28 (lane: 7), and finally become slightly lower on day-

49 (lanes: 4-6) in contrast to the constant abundance of Roseobacter sp. over sampling time 

points (Fig. 19c, lane: 1-7). 

The faint bands of the DGGE gel (lanes: 4-6) on day-49 might indicate that the population of 

Cytophaga sp. started disappearing from the culture medium of the tripartite community. This 

assumption, however, can strongly be supported based on the assumption of Fuchs et al. 

(2000), (Zubkov et al., 2001). For instance, Fuchs and his co-workers interpreted the slow 

growth of Cytophaga-Flavobacteria as a sign for k-strategy, in which the slow long-term survival 

in nutrient limited resources is the selective advantage instead of the fast growth. On the other 

words, the decrease in the relative abundance of Cytophaga sp., observed in the tripartite 

community, did not necessarily mean they stopped growing, but rather they did grow slower. 

Conversely, Zubkov et al. (2001) explained that the fast growth of α-proteobacter including 

Roseobacter sp. is a result of r-strategy, because the species are able to exploit immediately the 

extra nutrient when available. Furthermore, Zubkov et al. (2001) found out that the growth rate 

of Cytophaga-Flavobacteria (< 0.1 day-1) was the lowest among the tested isolates although it 

dominates the marine phytoplankton. Accordingly, the efficient utilization of the dissolved 

organic compounds gives α-proteobacter an advantage to compete with other 

bacterioplankton (Zubkov et al., 2001). For this reason, the slight faint bands at the end of the 

culturing time (Fig. 19c, i.e., lane: 4-6) could be considered as a result of the slow growing of 

Cytophaga sp. as its growth depends strictly on U. mutabilis growing in media as phototrophic 
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organism (i.e. without any carbon source) (Spoerner et al., 2012). It is likely that nutrients 

originally provided by Ulva might be limiting. To confirm these first evidences, quantitative PCR 

might the method of choice, by which it would be possible to target and quantify a specific part 

of 16S rDNA of the Cytophaga strain.  

Finally, monitoring of the growth of all the members in the tripartite community over 

cultivation time (49 days) revealed in different growth patterns. For example; while the growth 

of U. mutabilis increased, Roseobacter sp. seemed to be at the stationary phase and Cytophaga 

sp. at the declining phase. In further studies the monitoring of the bacterial growth should be 

proven by other quantitative techniques e.g., qPCR. Anyway, unlike e.g., Halomonas sp. it is 

known that Roseobacter sp. and Cytophaga sp. do not overgrow the algal cultures (Spoerner et 

al., 2012), indicating an algal allelopathic control on bacterial growth. Interestingly, the well-

known allelopathic compound e.g., 2,4-decadienal (Ribalet et al., 2008) was documented to be 

potentially released by certain Ulva species e.g., U. conglobata (Akakabe et al., 2003), U. rigida 

(RFU_7) and U. ohnoi (RFU_11) (cf. chapter 3.1). However, this specific allelopathic effect 

cannot account for this inhibition, as U. mutabilis was identified as a “non-PUA producer” (cf. 

chapter 3.1). 

As the nutrients limitation certainly affects the growth of the model organisms, nutrients 

analyses of the growth media were conducted to estimate its affect on the dynamic of the 

relationship between the model system organisms.   

 
3.3.3. Nutrient depletion in the growth media 

Macronutrients in general are well known to have a considerable influence on the growth as 

well as the development of Ulva spp. (Fried et al., 2003). Ulva grows and colonizes rapidly 

under eutrophic conditions and when conditions are favorable.  

The nutrients analysis shows that the initial concentration of nitrate (85 mg/ L), and phosphate 

(6.69 mg/ L) on day-zero (day of inoculation) were titrated to the recommended concentrations 

by Stratmann et al. (1996). In both cultures, the concentrations of nitrate and phosphate were 

determined before inoculating U. mutabilis germlings (Figs. 20a,b). The first limiting nutrient in 

the tripartite community cultures seems to be nitrate (Fig. 20a) as the significant decrease was 

recorded immediately one week later after inoculation (P < 0.05). Nitrate continued on to be 
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depleted dramatically after 21 days (P< 0.05). From day-28 on, nitrate was not detectable 

anymore (Fig. 20a). However, the phosphate concentration decreased gradually, but no 

complete consumption was recorded over cultivation time in the tripartite community. 

Although the concentration dropped significantly (P < 0.05) to almost half of the initial 

concentration (about 3.5 mg/ L), it remained at this level without significant change (P ˃ 0.05) 

till the end of the experiment (Fig. 20a).  

By calculating the weekly utilization rates (UR) for nutrients, the result indicates that in the 

tripartite community, nitrate was consumed earlier and faster than phosphate with 33 % UR of 

nitrate after one week, while only 5 % of phosphate was utilized by the end of the second week. 

 

𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (100%) = Ci−Ca   
Ci

x 100         (2)         

Where Ca is the concentration of the nutrient after specific week, and Ci is the initial concentration of the nutrient in the culture 

medium. The weekly utilization rate (UR) is given in % (Matsuyama et al., 2003) 

The complete depletion of nitrate was ascertained in the fourth week after inoculation (i.e. 

UR = 100 %), whereas the maximum utilization of phosphate approached 85 % on day-56. 

Nonetheless, the most significant change in phosphate consumption (UR = 45 %) was recorded 

on day-28. It is notable that no significant difference was noticed from the blank value 

regarding nitrite. Interestingly, the only significant depletion of the nutrients recorded in axenic 

cultures was for nitrate (P < 0.05) one week after inoculation when the initial concentration i.e., 

85 mg/ L decreased to 53 mg/ L (Fig. 20b) with an utilization rate of 37 %. Surprisingly, nitrate 

decreased significantly in both axenic culture, and the tripartite community with almost the 

same utilization rate of 33% and 37% respectively during the first week after inoculation. 

Despite the fact that the carbon content was not estimated in bioreactor cultures, it is well 

known that the carbon content can be estimated for a culture in equilibrium according to the 

Redfield ratio C:N:P (106:16:1) (Redfield, 1958). According to this ratio, the carbon content in 

the growth medium of the tripartite community and axenic culture could be roughly estimated 

(106 times the P concentration). For instance, it is supposed that carbon content in the 

tripartite community ranged from 708 to 116 mg/ L over 49 days. 
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 Figure 20: Weekly changes of phosphate and nitrate concentration in UCM of (a) the tripartite community, (b) axenic culture. 
Error bars are based on mean ± SD (n = 3). After the experiment has concluded; post-hoc analysis Tukey's HSD (honestly 
significant difference) test were performed (P < 0.05). Different letters above the bars indicate significant differences of the 
concentration throughout the sampling time points, capital letters for nitrate, and small letters for phosphate. 

Previous experiments of Stratmann et al. (1996) along with the result of batch cultures 

conducted in this study have demonstrated that U. mutabilis can go through a whole life cycle 

from germling to mature thallus undergoing gametogenesis without changing the medium. 

That means the essential nutrients were not limiting in order to fulfill a whole life cycle under 

the laboratory conditions. Indeed, the initial concentrations of nitrate and phosphate in all used 

UCM regardless of the treatment were 1 mM and 0.05 mM, respectively (Figs. 20a,b), which 

was considerably higher in comparison to other studies, e.g. Lebaron et al. (2001), who 

investigated the influence of inorganic nutrient on microbial community in natural seawater 

with initial concentrations of 5.1 µM nitrate, and 0.6 µM phosphate. Ahmad et al. (2011) 

started with 50 µM of nitrate, and 10 µM of phosphate to study how U. reticulate growth 

responds to inorganic nutrient. Furthermore, Park et al. (2013) demonstrated that deep 

seawater is a nutrient-rich medium to culture macroalgae e.g., U. pertusa in aquacultures and 

recorded that the natural concentrations range between 340 - 425 µg/ L for nitrate, and 79 - 90 

µg/ L for phosphate, which is still about 200 times less concentrated than in the UCM used in 

the bioreactors. The considerable difference between the initial concentration of inorganic 

dissolved nutrients in the UCM and the previous studies is due to (1) the shorter cultivation 

time compared to the tripartite community, which lasted 49 days, (2) the continuous change 

and/or supply of the growth medium throughout the culturing, which was avoided in the 
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current study in order to determine the accumulation of exo-metabolites in the UCM during 

algal growth, and (3) macroalgal cultures are usually inoculated with mature thalli, whereas the 

tripartite community was inoculated with young axenic germlings (= 7 days old) as stock seeds. 

The utilization rate for nutrient indicates that nitrate is the limiting factor for U. mutabilis 

growth in case all other growth and morphological factors, which U. mutabilis needs, are 

available. Moreover, nitrate was documented to be the limiting factor as well for U. reticulate 

(Buapet et al., 2008; Lyngby and Mortensen, 1994), U. lactuca (Lyngby and Mortensen, 1994; 

Teichberg et al., 2008), and U. intestinalis (Martínez et al., 2012). Matsuyama et al. (2003) 

measured the utilization rates for nitrate and phosphate by Ulva sp. over 10 days, and found 

out that the utilization rate of nitrate (more than 94%) was higher than that of phosphate 

(ranged between 43 and 90%). Unfortunately, Matsuyama et al. (2003) did not consider the 

other growth and morphological factors due to the usage of the deep seawater as growth 

medium. Despite the fact that the deep seawater is a nutrient-rich medium, it is however not a 

suitable habitat for floating Ulva and its symbiotic microbiome. Therefore, it is also unlikely that 

morphogenetic and the growth factors for Ulva development can be found in deep sea waters. 

According to the hypothesis proposed by Fong et al. (2004), the lack of macroalgal growth, in 

particular Enteromorpha sp. and of Ulva sp., is due to the high concentration of nutrient in 

environment. It is supposed that algae under the nutrient-enriched condition delay their 

growth to favor uptake and storage of nutrients, and therefore no energy will be left over for 

carbon fixation and growth. However, under the condition of low nutrients concentration, algae 

will take up nutrients providing enough energy for carbon fixation and growth. With regard to 

these assumptions of Fong et al. (2004), nutrient availability cannot always be a remarkable 

indicator for algal growth. Indeed, this applied to U. mutabilis growth in the tripartite 

community, in which U. mutabilis continued on to grow (Fig. 18) even after the complete 

depletion of nitrate on day-28 (Fig. 20a). Although nitrate was initially obviously available in 

excess, it turned out that algal growth was not delayed, and the continuous growth was 

observed during the entire cultivation period. The significant decrease of nitrate in both 

treatments one week after the inoculation indicates that the consumption of nitrate in both 

treatments was due to U. mutabilis independently on the microbial environment. In fact, this 
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very early stage of germlings development is dedicated to settle and to build up the tripartite 

community rather than cell division and cell differentiation (Spoerner et al., 2012). 

Moreover, the consumption of nitrate and phosphate in the tripartite community can be used 

as an indicator for changes in life cycle of Ulva. For example, nitrogen depletion in growth 

medium of U. fasciata has been correlated with enhancement of gametogenesis, whereas high 

nitrogen availability was used for vegetative growth and asexual reproduction (Mohsen et al., 

1974; Agrawal, 2012). Besides nutrients effect, changes in life cycles are strongly regulated by 

sporulation inhibitors excreted by the blade cells (Stratmann et al., 1996). Therefore, the 

gametogenesis inducibility in U. mutabilis during the time series sampling was tested by 

measuring the concentration of sporulation and swarming inhibitors (SI, SWI) in the UCM, and 

by observing the inducibility of the gametogenesis induction. 

 
3.3.4. Regulation of life cycle: regulation of gametogenesis by sporulation and swarming 
inhibitors 
 

The ability of gametophytes to induce gametogenesis was tested by measuring the biological 

activity of sporulation inhibitors (SI-1a and 1b = SIs) and swarming inhibitor (SWI) in the growth 

medium (Fig. 21) following the bioassays of Stratmann et al., (1996) and Wichard and Oertel, 

(2010). 

SIs were not detected in the growth media of any treatments i.e., axenic and the tripartite 

community. In contrast, the SWI was found in the growth medium of the tripartite community 

on day-21 with an activity of 1.7 units/ mL. Afterword, the activity increased significantly (P < 

0.05), and peaked on day-28 and 35 with 3.3 and 4 units/ mL, respectively (Fig. 21). The last two 

peak values did not differ significantly (P > 0.05). After 35 days, the activity dropped 

dramatically to 2 units/ mL (P < 0.05), and remained constant without significant change till the 

end of this experiment (P > 0.05) (Fig. 21). As expected, no SWI activity could be detected in 

axenic cultures. 
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Figure 21: Weekly changes of sporulation (SI-1) and swarming (SWI) inhibitors in UCM of the tripartite community over time. 
Error bars (if any difference existed) based on mean values ± SD (n = 3). Different letters above the bars indicate significant 
differences of SWI activity throughout the sampling time points (Tukey-posthoc test, P < 0.05). 

In the tripartite community, the SWI activity indicates that certain individuals went through 

the onset of gametogenesis spontaneously 18 days after inoculation as the SWI-activity was 

recorded on day-21 for the first time, meaning the SWI was released at the earliest three days 

before, when the gametogenesis was induced (Stratmann et al., 1996; Wichard and Oertel, 

2010). In axenic cultures, the protenoids SIs and the low molecular weight compound SWI were 

not detected overall in the medium. While the SWI can only be produced upon induction of 

gametogenesis, it is known that SIs are also produced and released to the UCM by axenic 

cultures (Stratmann et al., 1996). However, using 25L bioreactors along with the small increase 

of axenic biomass, the concentration of the SI-1 was very likely below the sensitivity of the 

biological assay and hence biologically irrelevant in the UCM. Moreover, the activity of the SI-1 

in the tripartite community was not detected either in the medium due to the potential 

digestion of SI-1 by the bacteria and its dynamical turnover (Stratmann et al., 1996; Wichard 

and Oertel, 2010). 

The algal vegetative cells can transform to gametangia directly at any time in reaction to 

environmental stimuli. This reportedly can be achieved through a number of treatments 

including changes in photoperiods, pH, salinity, nutrients, drying, fragmentation and growth 
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medium changes (Mohsen et al., 1974; Hiraoka and Enomoto, 1998; Wichard and Oertel, 2010). 

In particular, Nordby (1977) demonstrated the effect of many environmental factors which 

were thought to affect the induction of gametogenesis in U. mutabilis, i.e., light intensity, day 

length, temperature, pH, osmolarity, enrichment of the seawater with nitrate, phosphate, and 

iron-EDTA. Nonetheless, the optimal induction was accomplished within 48 hours after the 

artificial fragmentation of the three weeks old growing U. mutabilis thalli resulting in single-

layered thallus fragments (Nordby, 1977). This result was the key tool in speculating the 

existence of chemical inhibitory substances produced by U. mutabilis and some released into 

the growth medium. 

The vegetative state of U. mutabilis is maintained by the excretion of the regulatory factors, 

glycoprotein “sporulation inhibitors”, either into the cell wall or into the environment (SI-1a, SI-

1b). The production of both glycoprotein factors gradually ceases during thallus maturation 

(Stratmann et al., 1996). When the synthesis of SI-1 breaks off and the threshold concentration 

i.e., below 10-14 M, is reached, gametogenesis is induced, At the same time, a second low 

molecular weight sporulation inhibitor (SI-2), located in the inner space of the two blade cell 

layers, has to be inactivated. Damaged thalli release SI-2 and hence gametogenesis can often be 

observed in damaged algal tissues. After onset of gametogenesis, when the sporulation 

inhibitors are not present anymore, an additional factor, the “swarming inhibitor” (SWI), is 

produced. SWI synchronizes the final gamete release and increases the mating probability. 

However, this metabolite might additionally function as synchronization factor by acting as a 

cell-cycle regulator (Wichard and Oertel, 2010), and might trigger the spontaneous 

gametogenesis of Ulva specimen in the vicinity. 

The potential induction of gametogenesis by artificial removal of all SIs (SI-1 and SI-2) through 

washing and chopping the thallus was tested in order to follow the inducibility of 

gametogenesis in U. mutabilis. 

 
3.3.5. Change of life cycle of U. mutabilis: induction of gametogenesis 

The induction of gametogenesis of U. mutabilis thalli was tested only in the tripartite 

community following established protocols by (Stratmann et al., 1996; Wichard and Oertel, 

2010). Weekly and upon artificial removal of the sporulation inhibitors, the chopped and rinsed 
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thalli were cultured in fresh UCM for three days. If the specimen were mature, gametogenesis 

was induced and gametes were formed. On day-14 and day-21, the gametogenesis of certain 

gametophytes was induced artificially (Fig. 22b,c). This maturity already indicated that the algae 

can undergo gametogenesis spontaneously. The spontaneous gametogenesis was observed on 

day-28 by direct and microscopic visualization (Fig. 22d). Discharged gametes could be 

observed on day-35 (Fig. 22e,f). By day-42, about 10-15% of the whole population in each 

bioreactor underwent the spontaneous gametogenesis induction and the gametes were 

discharged from gametangia. On day-49, new small germlings resulting from the spontaneous 

gametogenesis could be observed under the microscope (Fig. 22g). Based on the 

measurements of the regulating factors along with the observations of cell differentiation three 

statuses were defined describing the gametogenesis inducibility in U. mutabilis in the tripartite 

community. 

“Non-inducible status”: Gametogenesis/sporulation is not inducible.  

“Inducible status”: Gametogenesis/sporulation can be induced. 

“Spontaneously inducible status”: Gametogenesis/sporulation starts spontaneously. 

(The bold phrase are used throughout the whole thesis) 

The change in gametogenesis inducibility can be regulated on different levels either by the 

concentration of the inhibitors or by their perception through the algae of those inhibitors. The 

activity of these inhibitors is hence at least regulated in four fashions: 

(1) Sporulation inhibitor (SI-1) might be decomposed by the action of bacteria. Stratmann et al. 

(1996) for example found certain active putative breakdown products of the SI-1 in UCM. 

Indeed, this led to the assumption that symbiotic bacteria are able to consume the glycoprotein 

inhibitors released to the medium. 

(2) Algal cells become no longer or less susceptible to SI-1 and/or SI-2 (Stratmann et al., 1996). 

(3) The chemical instability of SI-1 decreases its activity in aqueous solution (SI-1) (Nordby, 

1977).  

(4) The older the algae the less SI-1 are released into the medium (Stratmann et al. 1996). 
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Figure 22: Microscopy pictures show the transformation of gametophytes into gametangia followed by gametes release 
through the life cycle of U. mutabilis (sl) over the sampling time in the tripartite community. Cultures started with (a) 7 days old 
germlings on day-zero. Circle: an accumulation of Roseobacter sp. around the base of the thallus attached to the substratum. 
(b) Thallus fragments on day-14, when the artificial gametogenesis induction started. (c) Thallus fragments represent the 
artificial induction on day-21. (d) Thallus margin on day-28, when the spontaneous gametogenesis and gametes release started. 
(e,f) Thallus margin represents the spontaneous discharge of gametes from gametophyte (e) into the medium (f) on day-35.  (g) 
Thallus margin after discharging the gametes on day-42. (h,i) New germlings resulting from the spontaneous induction on day-
49, and day-56, respectively. 
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The early “Non-inducible status” of U. mutabilis (sl) (Fig. 22a) lasted one week after 

inoculation when none of SIs nor SWI was detected in UCM (Fig. 21). The second “Inducible 

status” started on day-14 and lasted one week further (= till day-21), when U. mutabilis (sl) 

became fertile and ready for artificial gametogenesis induction through rinsing and chopping 

(Fig. 22b,c). Subsequently, the third “Spontaneously inducible status” started one week later 

on day-28 and the gametangia formation was observed, when the color of gametophytes 

changed step-wisely from light green to olive-green and finally to brownish green due to the 

accumulation of γ-carotene (Lee, 2008). Subsequently, gametangia were gradually discharged 

and the gametes were released (Fig. 22d-i) although the SWI activity was determined 

simultaneously approaching the highest concentration on day-28 and day-35. This might be 

explained by the activity of the SI-1, which was not detected in the medium due to its potential 

digestion by the bacteria. Thus, the inhibition of gametogenesis might be just controlled by the 

SI-1 linked to the cell wall and even more important by the SI-2 located in the interior of the 

algal bilayer. In those cases, specimens were not susceptible to the interior SI-2 anymore and 

consequently the gametogenesis was not inhibited by the SIs, so that gametogenesis was 

induced spontaneously and the SWI was released subsequently. This also means that the algal 

population partly lost its synchrony, which might be due to the high biomass density in the 

bioreactor cultures. Gametangia become insensitive to the SWI six hours after sensing the SWI 

(Wichard and Oertel 2010), gametes, as a result, were observed in UCM with high 

concentrations of the SWI on day-35 (Figs. 21, 22e,f). It is important to highlight that the 

sporulation inhibitor (SI-1) was extracted from the UCM of axenic cultures as reported by 

Stratmann et al. (1996). The highest concentration was measured when thalli were at the age of 

10 days, and started to decline gradually after one week till a threshold concentration of 10-14 

M was reached (Stratmann et al 1996). Although the SI-2 has a key function in maintenance the 

vegetative state of the alga, the present study is focusing on exo-metabolites, therefore, 

neither compounds in the algal tissue, nor their potential biological activity were measured. 

Nonetheless, the concentration of SI-2 was probably constant throughout the life cycle 

according to previous studies by (Stratmann et al., 1996). Stratmann and his co-workers 
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showed that the SI-2 was already detectable in young germlings upto the age when 

gametogenesis happened spontaneously. 

Overall, the time regime of the developmental and generative cycles, which was observed in 

this study, was in agreement with previous results of several laboratories (Føyn, 1959; Løvlie 

and Braten, 1968; Fjeld, 1972; Wichard and Oertel, 2010). They have reported that 

gametophytes of U. mutabilis (sl) grow in a vegetative way for three weeks before they become 

fertile. Stratmann et al. (1996) investigated the generative cycle of U. mutabilis (sl), and 

reported that at an age between 18 and 24 days, U. mutabilis becomes fertile and after 4 weeks 

the formation of gametangia started spontaneously. Besides the short generation time, the 

simple structure consisting almost entirely of blade cells, suggest that U. mutabilis (sl) is a 

suitable candidate as model system in macroalgae (Stratmann et al., 1996; Spoerner et al., 

2012). One the other hand, the quick change in life cycle jeopardizes the maintenance of algal 

aquacultures. Therefore, the understanding of the production and release of SIs along with 

unknown factors will be essential to predict these changes in life cycle. Further unknown 

factors which can be used as biomarkers and predictors of changes in the media linked to life 

cycle were hence investigated in the subsequent sections. 

 
3.3.6. Conclusion: A comprehensive view of the biological metadata profile of the tripartite 
community  
 
The success of explorative “omics” approaches relies on the comparison with other 

laboratories for crossvalidation. As very different biological systems, culture conditions and 

even field-near setups are under investigation in chemical ecology; this study aims to provide a 

variety of biological information to ensure the reproducibility of the experiments. In order to 

improve the reliability of omics data sets, as many parameters of the biological system as 

possible were recorded. In particular, the following parameters were collected to describe the 

various stages of Ulva-cultures in bioreactors (i.e., relative growth rate, longitudinal growth, 

nutrient uptake, and the inducibility of gametogenesis in U. mutabilis as well as monitoring of 

the bacteria community) under controlled conditions. Ulva specific data and standard 

parameters of macronutrients including SWI and SI concentrations are summarized below (Tab. 

5).  
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It is notable to mention that the utilization rate (UR) and the relative growth rate (RGR) in this 

table were recalculated based on the statuses of gametogenesis inducibility.  
 

Table 5: Summary of all biological data collected over the growth phases corresponding to the gametogenesis inducibility in U. 
mutabilis in the tripartite community in bioreactors under standardized laboratory conditions. 

Status of 
gametogenesis 

inducibility2 
Growth phases Sampling 

time points* 

RGR 
(% 

FW) 
** 

UR for 
NO3- 

(%)*** 

UR for 
PO43- 

(%)*** 

Thallus  
length 
(cm) 

Bacterial 
community 

**** 

“Non-inducible“ First: lag phase  0-7 n.d. 34 0 ≈ 3 (Ro): strong 
(Cy): strong 

“Inducible” Second: early 
exponential phase 14-21 8.5 67 10 ≈ 9-12 (Ro): strong 

(Cy): strong 
“Spontaneous 
Induction” of 

gametogenesis 

Third: late 
exponential and 
stationary phases 

28-56 14.5 100 84 ≈ 16-25 (Ro): strong 
(Cy): faint 

 
*The culture was inoculated on day-zero with 7 days old germlings. **RGR: relative growth rate based on weight. n.d. not 
determined. ***(UR) Utilization rate was calculated using equation (2), where Ca represents the concentration which was 
available at the end of each time of inducibility status. ****Ro: Roseobacter sp., Cy: Cytophaga sp. 

 
To get an overall view of the metabolite profiling of U. mutabilis with its surrounding 

environment under the laboratory conditions used in the present study, all biotic and abiotic 

analyses were plotted comprehensively as a function of time (Fig. 23). Based on the results 

about the life cycle of U. mutabilis, the growth was divided into three phases. Each growth 

phase is characterized by its distinctive metadata. 

Briefly, U. mutabilis started its life cycle with unicellular gametes to become multicellular 

germlings, representing the First Growth Phase, which lasted two weeks, when neither 

spontaneous nor induced sporulation (= gametogenesis) was possible. The average of thallus 

length was recorded within this phase was about 3 cm. Germlings consumed about 33% of 

available nitrate in UCM, in contrast to phosphate, which was not utilized (Tab. 5). Cytophaga 

and Roseobacter species were present in this growth phase but did not play an essential role in 

the life cycle of U. mutabilis. Afterwards, U. mutabilis started the Second Growth Phase, when 

the RGR was about 8.5% FW and the thalli length reached 12 cm in average (Tab. 5). The 

presence and the absence of associated bacteria during this phase had significant impact on the 

2 The definition of the statuses of inducibility is found in page 66. 
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growth, development, and morphology of U. mutabilis thalli as could be observed by 

comparisons with axenic cultures. Gametogenesis could be induced through thalli-

fragmentation, washing, and transferring in fresh UCM (Fig. 23). The utilization rate (UR) for 

nitrate in this phase was quite high (67%) due to the growth and the capability of 

macronutrient-storage by Ulva. Only about 10% of phosphate was utilized during this phase. 

The first detection of SWI in the UCM was recorded at the end of this growth phase on day-21, 

assuming that the SWI was released three days before (Fig. 23). Finally, the Third Growth Phase 

of U. mutabilis started on day-28 and lasted three weeks. Here, the RGR was about 14.5% FW 

and the length ranged between 16 and 25 cm. Nitrate was depleted completely and 83% of 

phosphate was consumed (Tab. 5). The bacterial community, in particular Cytophaga sp. 

seemed to be affected by e.g., nutrient depletion or unknown effects. Thus, Cytophaga sp. 

slowed down its growth in order to adapt to such nutrient-limited environment. The rate of 

spontaneous gametogenesis increased progressively during this last phase. Furthermore, 

gametes were released into the medium on day-35, although the concentration of SWI was 

significantly higher, which indicates that some gametangia were no longer sensitive to SWI.  

Ultimately, as a result an a posteriori hypothesis was generated from these data and will be 

tested by metabolomic approach. 
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Figure 23: Diagram summarizing all biotic and abiotic analyses, which have been performed form the onset of the algal culture 
(day-zero) till the mature specimen of U. mutabilis ready for spontaneous gametogenesis and culture termination. N. G: new 
generation started spontaneously within the third growth phase 3. Mean values ± SD (n = 3). 

 

The a posteriori hypothesis 
 

‘‘The chemosphere of the tripartite community changes throughout the growth phases of the 

macroalgae and biomarker of this exometabolome can be used to predict changes in the status 

of gametogenesis inducibility during the life cycle” 

In order to investigate the dynamics of waterborne metabolites in the chemosphere of the 

tripartite community corresponding to the status of gametogenesis inducibility, non-targeted 

analyses using liquid and gas chromatography coupled with mass spectrometry were 

conducted, followed by chemometric analysis. 

 

‘‘Non-inducible

Status‘‘

‘‘Inducible
Status‘‘ ‘‘Spontaneously inducible status‘‘

Time (days)

N. G.
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3.4. Metabolite profiling in the chemosphere of the 

tripartite community in laboratory bioreactors 
 

 

 

 Generation metabolomic profiling from biological samples to chemometric analyses 
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Kim et al. (2011) pointed out an important strategy for metabolomic analysis. A true 

metabolomic analysis should systematically identify the effect of various known biological 

factors on the metabolome, and should give a platform from which it would be possible to 

study various biological questions. This serves as an observation-based systems biology 

approach in which (1) all kinds of observations are made (i.e. metadata), and (2) multivariate 

data analysis methods are used to find any correlations between these observations. This 

strategy was applied in the present study. 

The chemometric analyses play a key role to describe, and simplify the complexity of 

metabolomic profiling. Unconstrained ordination chemometric analyses (e.g., principle 

component analysis “PCA”) are extremely useful for visualizing broad patterns across the entire 

data cloud whereas constrained ordination analyses (e.g., canonical discriminant analysis of 

principal coordinates “CAP”) enable deep insight into the correlation between the variables and 

collected metadata (Seger and Sturm, 2007) and figure out the differences among the 

treatments (Anderson and Willis, 2003). Both chemometric analyses, PCA and CAP analyses, 

were used in the present study.  

 
Figure 24: Stepwise processes of biomarkers collection and analyses during the metabolomic analysis (Lisec et al. 2006; 
Gürdeniz et al. 2012). 

Metabolic profiles were explored following the stepwise processes (Fig. 24). In order to cover a 

broad range of metabolites, two mass spectrometry techniques were used:  

1. Liquid Chromatography–Mass Spectrometry analysis (LC-MS) 

2. Gas Chromatography–Mass Spectrometry analysis (GC-MS) 
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3.4.1. Experimental design of metabolomic analyses 

The experimental regime was carried out based on Vidoudez and Pohnert (2008) and Barofsky 

et al. (2009), with the following adaptations due to the specific requirements of macroalgal 

cultures:  

(1) The sampling of growth media was performed weekly instead of daily sampling in the 

present study.  

(2) A constant volume of 1000 mL from cultures medium was collected weekly. 

(3) The mass of U. mutabilis was collected under sterile condition in contrast to diatoms cells, 

which can be sampled directly during the sampling of growth media.   

(4) The metabolic experiments in the present study were carried out for seven weeks instead of 

three weeks as it was performed with diatoms due to the long lifecycle of Ulva compared to 

diatoms lifecycles.  

Three biological replicates per treatment were performed in parallel with two experimental 

controls (UCM without any inoculation), which were treated with the same protocol as the 

cultures. The eluate that resulting from solid phase extraction (SPE) using Easy® cartridge was 

analyzed with liquid chromatography (LC) directly, and with gas chromatography (GC) after 

derivatization (Fig. 24). Both chromatography techniques were coupled to mass spectrometry 

(MS). The non-targeted analysis by LC-MS will be addressed first, followed by GC-MS. 

 
3.4.2. Metabolite profiling in the chemosphere of the tripartite community using LC-MS 

analysis 

LC-MS analysis produces large amounts of data with complex chemical information. The SPE 

samples were directly injected in the UPLC-MS using positive ion mode. The important task was 

to arrange data, so that relevant information can be extracted. The complexity of LC-MS raw 

data brings out the concept of data handling (Fig. 24), which can be roughly summarized up in 

three basic steps: (1) data preprocessing, (2) pretreatment, and (3) data analysis. Data 

preprocessing covers the methods to go from complex raw data to clean data. Raw data is 

comprised of mass to charge ratio and retention time (m/z, RT pair) of thousands of chemical 

compounds. Two software tools (commercial or freely available) were used for preprocessing of 

LC-MS data in this study: MarkerLynx™, and Progenesis CoMet. 
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3.4.3. Determination of the range in chromatograms for metabolites collection  

Progenesis CoMet resulted in ion intensity maps, which are comparable to 2D-gel maps (Fig. 

25), by which issues in sample batches were detected 

(http://blog.nonlinear.com/2011/02/14/ion-intensity-maps/). For example, by examining the 

pattern of ion intensities in the ion map, it was possible to identify issues in the 

chromatography that can adversely affect the analysis, e.g., the instability in the ion spray can 

be seen in the ion maps, which is represented as gaps in the retention time axis of individual 

ions signals. Moreover, ion map provides a considerable visualization in order to collect the 

data from the darker areas representing a high abundance of ions in the MS signal. Based on 

the criteria of ion map, metabolites were collected by MarkerLynx™ in the range m/z 100 - 800 

amu and distributed between 0.5 – 7.0 min. 2276 metabolites resulting from the process (Fig. 

25) were considered in further chemometric analyses. 

 

 

Figure 25: Ion gel-like map provided by Progenesis CoMet of the tripartite community on day-21. Determination of the 
retention time and the m/z values for metabolites collection. The bolder the area, the higher the abundance of the MS signals. 
Red dots area is the selected area, black dots area is the rejected area. 
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3.4.4. Effect of unconstrained analysis on biomarkers obtained by LC-MS analysis 

Data pretreatment methods play a role in correcting aspects that hinder the biological 

interpretation of metabolomics datasets by emphasizing the biological information in the 

dataset and thus improving their biological interpretability (van den Berg et al., 2006). Many 

steps are included under the said pretreatment and vary as well regarding the chemometric 

analyses. Pretreatment (i.e., centering, autoscaling, pareto scaling, range scaling, vast scaling, 

log transformation, and power transformation) depends on the data analysis method chosen 

since different data analysis methods focus on different aspects of the data. For instance, the 

unconstrained ordination analyses, including PCA, are methods of data reduction to explain as 

much variation as possible with as few components as possible. The constrained ordination 

analyses e.g., CAP finds the (dis)similarities between the samples in order to discriminate 

between the groups, or to determine the relation between sample and the environmental data. 

In this study, PCA was conducted involving specific pretreatment after collecting 2276 

metabolites (pairs of m/z and retention time) by MarkerLynx™ (Fig. 26). 

The PCA scores plot (Fig. 26) indicates that 45% of the variability could be explained by the 

first two dimensions: component 1 accounted for 24% of the variance, while component 2 

explained 21% of the variation. The scores plot resulting from the LC-MS data depicted two 

distinct clusters without any overlap between groups. Group 1: represents growth medium of 

control (on day-zero, and day-7), axenic and the tripartite community before inoculation and 

Group 2: represents axenic and the tripartite community from day-7 till the end (Fig. 26). The 

two groups were separated via component 1, and the cluster appeared to be tighter in the 

group 1 as compared to the group 2. In addition, the PCA analysis indicates also that no 

compounds were released on day-0 due to the different handling and inoculation. However, 

slight differences between the data within group 2 can be noticed via component 2. Thus, the 

differences among the data in group 2 might be covered by the unconstrained analysis. 
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Figure 26: PCA scores plot of samples based on metabolites (n = 2276) obtained by LC-MS analysis (positive mode) and 
detected in growth media of experimental control (○), axenic culture (□), and the chemosphere of the tripartite community (∆) 
throughout the sampling time points on day: -zero (black), -7 (dark green), -14 (light blue), -21 (red), -28 (dark blue), -35 
(magenta), -42 (light green), and -49 (maroon) under specific pretreatment (Pareto scale, intensities are expressed as height, 
and normalized to the sum of the peak intensities (TIC) in each chromatogram). Ellipses are added graphically for illustration of 
the two groups G1 and G2. 

 
Clarke and Ainsworth (1993) pronounced the data analysis philosophy “let’s the data speak 

for themselves’’ through PCA clusters and encourage an exploratory attitude toward data. 

These quick data analyses sorted out that group 1 contains only the ingredients of medium and 

was not affected by the inoculation which has happened just before the sample collection. 

Indeed, although Roseobacter sp. and Cytophaga sp. were present since day-zero in the 

tripartite community which had been proven by in situ PCR (Fig. 19b) and DGGE (Fig. 19c), the 

PCA plot shows that these organisms did not excrete significant or detectable metabolites till 

Component 1 (24.01%)

-0.06 -0.02 0 0.02 0.06 0.10 0.14 0.18 0.22

Component  2 (21.29%)

-0.14

-0.10

-0.06

-0.02

0

0.02

0.06

0.10

G1

G2

78 
 



Results and Discussion 

this time of sampling point or that the concentration of the released compounds was below the 

limit of detection (LOD) (Fig. 26). However, it is well known that morphogenetic compounds are 

already released during the first week upon inoculation. Those molecules, however, are highly 

biological active (Matsuo et al., 2005; Spoerner et al., 2012) and might be below the LOD. 

With PCA, no correlation could be predicted between the samples because the Euclidean 

distance is the only ecological distance which can be investigated, which, in turn, depends 

greatly on the abundances (concentrations) of the metabolites regardless of the biomarkers 

that are shared. Thus, Euclidean distance is not a suitable ecological measure if it is used on raw 

datasets (Legendre and Legendre, 1998).  

Therefore, to uncover these differences in group 2 as formed by the PCA (Fig. 26), a 

constrained analysis (CAP) was performed in addition. Here, besides the time factor, the 

influence of experimental treatments (i.e., axenic and the tripartite community) could be clearly 

observed by applying the suitable Bray-Curtis distance measurement as it was highly 

recommended by Anderson and Willis (2003) for discovering the differences between the 

groups even in large ecological datasets.  

Owing to (1) the PCR results which proved that control samples were free of contaminants on 

day-zero and day-7 (Fig. 19b) and (2) the analysis of the PCA plot (Fig. 26), all biomarkers 

derived from the growth media of the experimental control (on day-zero, and day-7) along with 

the axenic culture and the tripartite community (on day-zero) were used as blank values and 

subtracted from all other datasets. This data preprocessing ensures that the resulted 

metabolites represent only the waterborne metabolites, which were excreted (and 

subsequently) metabolized by only the model organisms used in the present study (including U. 

mutabilis, Roseobacter sp., and Cytophaga sp.). 

 
3.4.5. Effect of constrained analysis on metabolites obtained by LC-MS analysis 

The constrained ordination techniques usually explain differences in species composition 

(biomarkers) between sites (groups) by differences in environmental variables e.g. time, 

treatments. Canonical analysis of principle coordinates (CAP) was applied with Bray-Curtis 

distance after standardization and transformation to overcome the calculation strategy used in 
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Bray-Curtis distance, where the final distance will be influenced more by metabolites of the 

largest differences in abundance (Legendre and Legendre, 1998).  

Owing the metadata outcome (cf. section 3.3.6), the a priori groups were defined based on 

the time spent in each status of gametogenesis inducibility in U. mutabilis3. In addition, axenic 

culture over entire experimental time (= 49 days) was combined with early growth phase when 

the gametogenesis was not inducible (i.e. day-7) of the tripartite community. Thus, a priori 

groups were as follows:  

Group 1: The tripartite community (day-7) combined with all sampling events of axenic cultures 

(day-7 till day-49). 

Group 2: The tripartite community (sampling events from day-14 till day-21). 

Group 3: The tripartite community (sampling events from day-28 till the day-49). 

After preprocessing the data, which was collected by Markerlynx™ (= 2276 metabolites), only 

1409 (62% of the total metabolites) metabolites were applied to CAP analysis, and 197 

metabolites (9 %) were chosen as biomarkers based on their significant contribution to CAP 

axes (Fig. 27b). 

CAP plot (Fig. 27) resulted in low misclassification error of 5%, with squared canonical 

correlations of 𝛿𝛿 2
1
 = 0.91 and 𝛿𝛿 2

2
  = 0.50 (P < 0.001, with 999 permutations) (Tab. 6). Thus, the 

classification was significant and the patterns would not mislead further interpretations. The 

score plot displays three groups (Fig. 27a), which were separated along both axes. The vector 

plot indicates the biomarkers, which contributed to this separation (Fig. 27b). CAP plot reveals 

that group 1 was separated from group 2 via axis 2 and from group 3 via axis 1 (Fig. 27a). Group 

2 and group 3 were separated on both axes. Each group was characterized by particular 

biomarkers, which were represented by the vectors that contributed to CAP axes significantly 

(Fig. 27b). Certain biomarkers contributed equally in characterizing different groups. For 

example biomarkers #454, and #937 characterized group 2 and 3, and #766 characterized group 

1 and 3 (Figs. 27, 28). It is notable that the characteristic biomarkers are more numerous than 

the common (shared) biomarkers (Fig. 27). A subset of selected biomarkers (52 biomarkers out 

of 197) was plotted in heatmap (Fig. 28) in order to visualize the abundance of these 

3 The definition of the statuses of  inducibility is found in page 66. 
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biomarkers in the growth present medium throughout the sampling time points. The selection 

of these 52 biomarkers was performed based on their significant contribution in characterizing 

the groups. The longer the vectors, the more efficient the biomarkers in characterizing the 

groups, e.g., biomarkers #504, #590 and #658  for group 1, biomarkers #675 and #1118 for 

group 2, and biomarkers #89, #249, #418 and #484 for group 3 (Figs. 27, 28).  

It is important to highlight that the mechanisms of characterizing the a priori groups that was 

used in this classification were:  

(1) The existence and the absence of a biomarker among the a priori groups. For example 

biomarker #165 characterizes group 1 the best, and it disappeared in group 2 and group 3. 

(2) The abundance of a certain biomarker varies significantly throughout the groups e.g., 

biomarker #618, which is characteristically found in high abundance in group 2, compared to its 

low abundance in groups 1 and 2 (Figs. 27, 28).  

The combination of the CAP analysis and heatmap visualization resulted in an interesting 

explanation of the dynamic of the biomarkers obtained by LC-MS analysis among the a priori 

groups and throughout time as well. In the first place, it became obvious which biomarkers 

contributed significantly to the CAP axes (Pearson correlation coefficient |𝑟𝑟| ≥ 0.3) (Fig. 27b), 

secondly in which treatment these biomarkers were detected (Fig. 28), and finally which a priori 

group was characterized by these biomarkers (Fig. 27a). Taking all this information into 

account, one can categorize the “ups and downs” of biomarkers for a better understanding of 

the dynamics within the chemosphere (categories 1-11: Tab. 7). These eleven categories were 

produced based on: (1) the treatment where the biomarker was detected (i.e., axenic culture 

and the tripartite community), and (2) the trend of the abundance of the biomarker in the 

growth media (i.e., increasing, decreasing, or constant over time). These two criteria facilitated 

the prediction of the producer being either U. mutabilis or the associated bacteria and 

consequently the processes that might take place in the growth media and how it could affect 

the trends of biomarkers (Tab. 7). Interestingly, these eleven categories can be generalized and 

applied to all characteristic as well as common biomarkers. Some of these biomarkers are 

displayed in (Tab. 7) as an example. 
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Figure 27: Groups correspond to the three key gametogenesis-states in Ulva during its growth. Separation was achieved by metabolites (n = 1409, 62% of the total metabolites) 
obtained by LC-MS analysis (positive mode) and found in growth media of axenic culture and the chemosphere of the tripartite community using Bray-Curtis dissimilarity 
distance. (a) CAP separation of the samples with the growth corresponding to the statuses of gametogenesis inducibility as groups. (b) Correlations of 197 biomarkers (9 %) with 
the two CAP axes, with absolute Pearson coefficient correlation |𝑟𝑟| ≥  0.3. 

Table 6: Eigenvalues, canonical square correlation, and diagnostics statistics of the CAP analysis of the metabolites obtained by LC-MS and found in growth media of axenic 
culture and the chemosphere of the tripartite community throughout sampling time points. 

Constrained canonical axes Statistics 
1st axis 2nd axis Crossvalidation Permutatest 

Eigenvalue (𝛿𝛿 2) Correlation Eigenvalue (𝛿𝛿 2) Correlation Misclassification error Trace stat. 1st (𝛿𝛿 2) 
0.96 0.91 0.71 0.50 5% p = 0.001 p = 0.001 

a b

Group 2: Tripartite community (day-14 till day-21)
Group 1: Axenic (day-7 till day-49) + Tripartite community (day-7)

Group 3: Tripartite community (day-28 till day-49)
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Figure 28: The heatmap represents the abundance of the biological mean of selected biomarkers (n = 52) resulting from CAP over 49 days in axenic culture (Ax) and the 
chemosphere of the tripartite community (TC). The abundance of biomarkers is expressed by size and brightness of color. d: day, bio: biomarker. Red, light green and magenta 
arrows: characteristic biomarkers for a priori group 1, 2 and 3, respectively. Black arrows: common (shared) biomarker. Blue arrows: biomarkers representative for the 
mechanisms used to characterize the groups, e.g., bio #165 for presence/absence mechanism, and bio #618 for the abundance variation throughout groups mechanism.
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Table 7: The eleven categories of some selected biomarkers obtained by LC-MS analysis (positive mode) contributing significantly to CAP axes in figure 27. All biomarkers were 
displayed in the heat map. 52 biomarkers are shown below. 
 
 

Detected 

in:* 

Trend of the 

abundance over  

time** 

#Biomarker (m/z, RT)/that characterizes the a priori group*** Produced by: 

Predicted processes that 

might happen in the growth 

media 

Category 1 Ax (↑) or (→) 

#18 (130.17, 0.59)/ 1, #19 (127.06, 0.63)/ 1, #125 (186.12, 0.60)/ 1, #165 

(195.14, 5.97)/ 1, #326 (230.26, 2.92)/ 1, #386 (247.14, 0.63)/ 1, #658 

(305.19, 0.61)/ 1, #1125 (447.35, 6.89)/ 1, #1141 (452.38, 6.87)/ 1, #1294 

(535.41, 6.87)/ 1, #1313 (545.42, 6.67)/ 1. 

U. mutabilis (1) Inhibited by bacteria.  

(2) Degraded biotically.  

(3) Utilized by either 

organism in the tripartite 

community. 

Category 2 Ax (↓) #287 (217.14, 2.79)/ 1, #391 (249.14, 0.61)/ 1. 

U. mutabilis (1) Inhibited by bacteria.  

(2) Degraded (a)biotically.  

(3) Utilized by either 

organism in the tripartite 

community. 

Category 3 TC (↑) 

#89 (181.12, 3.37)/ 3, #249 (209.19, 2.60)/ 3, #379 (245.20, 3.23)/ 3, #420 

(257.18, 2.05)/ 3, #508 (287.27, 3.09)/ 3, #950 (382.96, 6.11)/ 3, #962 

(386.95, 6.11)/ 3. 

U. mutabilis 

or bacteria 

Activated by either organism 

in the tripartite community. 

Category 4 TC (↓) 
#484 (271.19, 4.33)/ 3, #500 (273.25, 3.70)/ 3, #711 (317.24, 2.41)/ 3, #766 

(332.24, 5.11)/ 3, #937 (378.1, 3.38)/ (2,3). 

U. mutabilis  

or bacteria 

(1) Inhibited by either 

organism in the tripartite 

community. 

(2) Degraded biotically. 

(3) Utilized by either 

organism in the tripartite 

community. 

Category 5 TC (→) #180 (197.16, 2.08)/ 3, #418 (257.12, 2.52)/ 3, #425 (258.12, 2.44)/ 3. 
U. mutabilis 

or bacteria 

Catabolic product. 

Category 6 Ax +  TC Ax: (↑) #452 (265.11, 0.62)/ 3, #454 (265.16, 0.80)/ (2,3). U. mutabilis After 35 days the biomarkers 
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TC: (↑), then (↓) 

after specific days 

is either: 

(1) Degraded biotically. 

(2) Utilized by bacteria. 

Category 7 Ax + TC (→) #1118 (443.38, 4.43) 2, #1036 (413.27, 4.35)/ 3. U. mutabilis Unknown 

Category 8 Ax + TC (↓) 
#182 (198.17, 1.63)/ 3, #310 (226.21, 2.98)/ 1, #377 (244.30, 3.02)/ (1,2), 

#416 (256.29, 6.32)/ 1. 

U. mutabilis (1) Degraded (a) biotically. 

(2) Utilized by either 

organism in the tripartite 

community. 

Category 9 Ax + TC 
Ax: (↓) 

TC: (↑) or (→) 

#70 (173.15, 5.78) 1, #446 (262.29, 2.24)/ 2, #621 (297.25, 3.92)/ 3, #750 

(327.29, 4.43)/ 3. 

U. mutabilis Catabolic product. 

Category 

10 
Ax + TC 

(1) Ax: (→) 

TC: (↓) 

(2) Ax+ TC: (→) but 

in general the 

abundance was  less 

in TC 

#293 (218.24, 1.88)/ 1, #350 (239.17, 6.05)/ 1, #371 (243.12, 2.14)/ 2, #485 

(271.22, 3.39)/ 2, #504 (274.30, 2.92)/ 1, #653 (303.26, 6.36)/ 1. 

U. mutabilis (1) Inhibited by bacteria.  

(2) Degraded biotically. 

(3) Utilized by either 

organism in the tripartite 

community. 

Category 

11 
Ax +   TC  

TC: (↓) 

Ax: (↑) or (→) 

#383 (246.25, 2.45)/ 1, #539 (281.14, 0.60)/ 1, #590 (290.29, 2.97)/ 1, #618 

(297.11, 0.62)/ 2, #675 (308.14, 0.61)/ 2, #944 (380.40, 5.99)/ 1.  

U. mutabilis (1) Inhibited by bacteria 

(2) Degraded biotically. 

(3) Utilized by either 

organism in the tripartite 

community.  

 
*Ax: Axenic culture, TC: The tripartite community. ** (↓): decreased, (↑): increased, (→): remained constant. *** Underlined numbers between parentheses indicate 
appurtenance to the same biomarker characterized two a priori groups.  

85 
 



Result and Discussion 

From table 7, some clear trends of characteristic biomarkers can be observed. For 

instance, most of the biomarkers, which characterize a priori group 1 (Fig. 27) were listed in 

categories 1, and 2 and some were distributed between categories 6, 8, 10 and 11. Only one 

biomarker was listed in category 9. Based on these categories, the common feature 

between all these biomarkers was the assumption that U. mutabilis is the producer and 

more likely the role of the production and excretion of these biomarkers was e.g., to attract 

the associated bacteria in the tripartite community (Tab. 7). The biomarkers characterizing a 

priori group 2 were distributed between categories 9-11 (Tab. 7). In contrast to the 

biomarkers of groups 1 and 3, no category was specified for the biomarkers of group 2 (Tab. 

7). On the other hand, the characteristic biomarkers of a priori group 3 were listed in 

categories 3-7, and some in categories 8 and 9. With regard to categories 3, 4, and 5, 

associated bacteria i.e. Roseobacter sp. and Cytophaga sp. were also predicted as producers 

in addition to U. mutabilis. Based on these categories, the two mechanisms of characterizing 

the a priori groups mentioned above could be clearly noticed. 

Axenic cultures over eight weeks and the tripartite community at first week of growth 

were not distinguishable based on LC-MS data, suggesting that the released biomarkers by 

U. mutabilis on the first week of the growth were accumulated in axenic cultures due to the 

absence of the consumers such as bacteria. Most of these biomarkers belong mainly to 

categories 1 and 2, and seemed to be hydrophobic except some biomarkers (i.e., #165, 

#1125, #1141, #1294, and #1313). The biomarkers of categories 1 and 2 were detected only 

in axenic cultures, and therefore, it is supposed that these metabolites were released by U. 

mutabilis and utilized by the associated bacteria or decomposed enzymatically. Thus, these 

metabolites were not detected in the tripartite community. Two weeks after inoculation, 

lipophilicity increased slightly, when biomarkers were detected in the chemosphere of the 

tripartite community, suggesting different classes of metabolites released into the 

chemosphere either by bacteria i.e., categories 3-4 or by U. mutabilis i.e., categories 5-11. 

In addition, the discriminant analysis (Fig. 27) has been proven the a posteriori hypothesis 

generated from metadata (cf. section 3.3.6): 

‘‘Waterborne metabolites obtained by UHPLC-MS can be classified based on the growth 

phases corresponding to the statuses of gametogenesis inducibility of U. mutabilis in the 

tripartite community’’ 
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Therefore, specific biomarkers obtained by LC-MS analysis might be utilized to predict the 

growth changes of U. mutabilis based on the chemosphere structure, providing a possibility 

to use the same biomarkers to predict the inducibility status as well.  

 
3.4.6. Determination of the correlation between the biomarkers obtained by LC-MS 
analysis 
 

CAP plots opened the possibility to predict: (1) the relation between the biomarkers and 

the a priori groups as discussed above (cf. section 3.4.4) with regard to the positive or 

negative correlation to CAP axes (Fig. 27), and (2) between the biomarkers themselves (Fig. 

29). Consequently, the cosine value of canonical right angle (𝜃𝜃) between arrows (= vectors) 

of each biomarkers pair (Fig. 29) provides an approximation of their pairwise correlation, 

e.g., arrows that point to the same direction indicate to positive correlated biomarkers, 

perpendicular arrows indicate to the lack of correlation, and arrows pointing to the opposite 

direction indicate to the negative correlated species. Those pairs might be valuable for a 

better understanding of the chemistry of the chemosphere. 

𝑟𝑟 =  cos 𝜃𝜃                    (3) 

The biplot shows some representative biomarkers (24 out of 197) characterizing the a 

priori groups in order to clarify the canonical angle correlation between some biomarker 

pairs. These angles are used for specific dependencies of both variables (Figs. 27b, 29). 

Biomarker pairs which have a canonical angle of 180○ were particularly investigated, 

because they indicate a reverse pairwise relationship between biomarkers. The more 

pronounced group of biomarkers with canonical angle less than 90○ was not listed in (Tab. 8) 

although vast majority of biomarkers possess such correlation (Fig. 29). Notably, the 

canonical angel less than 90° would not give robust or extra information in large dataset 

because the trend of biomarkers pair will be in the same direction so that their abundance 

will increase or decrease at same time. In addition, the biomarker pairs of 90○ canonical 

angle were not listed either (Tab. 8), since no correlation exists between them (Fig. 29). 
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Figure 29: CAP-ordination diagram in covariance biplot scaling of figure 27 with selected biomarkers (n = 24) 
represented by vectors. The scale of axes 1 and 2 applies to groups; the scale of correlation with those axes applies 
to biomarkers. 
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Table 8: The canonical angle relationship between selected biomarkers obtained by LC-MC analysis (positive mode). All biomarkers below were represented in figure 29. 
Essential biological metadata are given. 
 

Canonical 

angel (𝜽𝜽) 

between the 

vectors 

 

Biomarker 

pairs 

 

m/z 

 

cos (𝜽𝜽) = r 

 

Correlation 

between 

biomarkers 

pair 

U. mutabilis 
 

Utilization 

rate of NO3
- 

(%) 

 

Utilization 

rate of 

PO4
3- (%) 

 

Bacteria 

profile**** 

Status of 

gametogenesis 

inducibility* 

Growth 

phases** 

180 ○ 

(658, 454) (305.19,  265.16) 

cos (180°) = -1 
Negative 

correlation 

(non, induc.) (1st, 2nd/ 3rd) (34, 67-100) (0, 10/84) 
Ro (S, S) 

Cy (S, S/F) 

(675, 766) (308.14, 332.24)  (non, induc.) (1st, 3rd) (34, 100) (0, 84) 
Ro (S, S) 

Cy (S, F) 

(377, 249) (244.30, 209.19)  (non, induc.) (1st, 3rd) (34,100) (0, 84) 
Ro (S, S) 

Cy (S, F) 

(504, 452) (274.30, 265.11)  (non, induc.) (1st, 3rd) (34,100) (0, 84) 
Ro (S, S) 

Cy (S, F) 

(464, 937) (267.16, 378.12) (non, induc.) (1st, 2nd/ 3rd) (34, 67-100) (0, 10/84) 
Ro (S, S/S) 

Cy (S, S/F) 

(658, 454) (305.19, 265.16)  (non, induc.) (1s,t 2nd/ 3rd) (34, 67-100) (0, 10/84) 
Ro (S, S/S) 

Cy (S, S/F) 

(416, 722) (256.29, 319.23) (non, induc.) (1st, 3rd) (34, 100) (0, 84) 
Ro (S, S) 

Cy (S, F) 

 
*Non: non inducible, induc: inducible gametogenesis status. **Numbers separated by (/) indicate that a biomarker was found in both growth phases. *** Ro: Roseobacter sp., 
Cy: Cytophaga sp., S: strong, F: faint. 
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Many ecological studies have discussed the pairwise correlation between the vectors using 

canonical angle in biplot (Campbell and Mahon, 1974; Watson, 1981; Terbraak, 1986; Terbraak, 

1990). Despite some exceptions, it is clear that all groups, which are located in the opposite 

direction relative to the origin, i.e., group 1 and group 3, have biomarkers with obtuse canonical 

angle (θ) equals or is close to 180○, e.g., biomarker pairs (#452, #504), (#249, #377), (#675, 

#766), (#454, #658). These biomarker pairs are negatively correlated, meaning:  

(1) The increase of either biomarker reflected the decrease of the other biomarker in the same 

a priori group. 

(2) The increase of one biomarker abundance in one group reflects the increase of the second 

biomarker abundance but in the counter group.  

Considering that group 1 and 3 also represent the time taken for the ’’non-inducible status’’4 

and ’’spontaneously inducible status’’ (Tab. 8), it is supposed that the biomarkers which were 

released during the non-inducible status are negatively correlated with their derivatives that 

were detected during the ’’spontaneously inducible status’’. These negatively correlated 

biomarkers might result from many processes which took place in the growth media such as: 

(1) metabolism by either organism in the tripartite community, (2) biotic degradation, e.g., 

enzyme mediated degradation, (3) abiotic degradation, e.g., photolysis, hydrolysis, (4) 

enzymatic autoxidation. Moreover, the (m/z, retention time) pairs reduced the options of the 

prediction. Using 180° pairwise correlation, particular metabolites could be released by U. 

mutabilis during the time taken for ’’non-inducible status’’, e.g., polysaccharides, 

monosaccharides and amino acids, and hence their catabolic products could be predicted 

during the ’’spontaneously inducible status’’. However, given the method used in the current 

study, such primary metabolites were not covered by the UPLC-MS analysis, thus such 

molecules will not be considered. 

The potential information which could be abstracted from table 8, regarding the m/z of the 

biomarkers pair and the reproductive/growth statuses, is an estimate of the dynamic of the 

processes which might happen in the chemosphere. For instance, (#464, #937), and (#416, 

#722) are biomarker pairs, in which the first coordinate was always detected during the ’’non-

4 The definition of the inducibility statuses is found in page 66. 
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inducible status’’ with m/z that was lower than the second coordinate which was detected 

during the time of ’’spontaneously inducible status’’, suggesting that the second coordinate 

might be a catalyzed or decomposed product released at the beginning of growth. For details, 

the m/z of the above mentioned biomarker pairs are respectively (267.16, 378.12), and (256.29, 

319.23). By calculating the difference between the m/z of each previous pair, the estimation 

was six oxygen atoms with methyl group between (267.16, 378.12), and three oxygen with 

methyl group between (256.29, 319.23). Thus, the relevant signals can be extracted and used 

for further structure elucidation. 

To complete the metabolic profiling of the chemosphere in the tripartite community, GC-MS 

analysis was conducted and discussed in the subsequent sections. 

 
3.4.7. Metabolite profiling in the chemosphere of the tripartite community using GC-MS 
analysis 
 

Compounds screened by GC-MS represent a large proportion of the primary metabolism, and 

facilitate therefore comparative studies between model organisms in different systems (Fiehn, 

2008). GC-MS analysis covers a wide range of compound classes, e.g., organic and amino acids, 

sugars, sugar alcohols, and lipophilic compounds upon derivatization. As it is shown in figure 24, 

the solid phase extractions of the growth media of the tripartite community and of axenic 

cultures were analyzed by GC-MS after derivatization. 

Data processing was performed based on the methodology of Hiller et al. (2009) and Vidoudez 

(2010), following a four step standardized procedure: (1) correction of background noise, (2) 

conversion of the chromatograms to netCDF, (3) extraction of spectra by the Automated Mass 

spectral Deconvolution and Identification System (AMDIS) mainly for deconvolution and 

identification of chemical compounds, generating an input list of ion model/retention time 

pairs to be applied to (4) METabolomics-Ion-based Data Extraction Algorithm (MET-IDEA), 

which is a powerful software for extraction of individual single ion chromatographic peak areas 

and the subsequent determination of relative metabolite abundances. However, peaks 

corresponding to the retention index standards, internal standard (ribitol), UCM ingredients 

and any compound with m/z less than 100 amu were removed from the data set. Afterwards, 

the means of the biomarkers resulting from experimental control in day-zero and day-7 along 
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with axenic and the tripartite community cultures in day-zero were utilized as blank values and 

subtracted from all the remaining data sets. This yielded 399 biomarkers. 76 out of 399 

metabolites (19% of the total metabolites) were identified by AMDIS. Based on the MET-IDEA 

outcome, the waterborne metabolites were displayed in a heatmap (Tab. 9) in order to have an 

insight into the conservation of identified metabolites identified by GC-MS across the species 

forming the model organisms; i.e., U. mutabilis, Roseobacter sp. and Cytophaga sp. The 

heatmap (Tab. 9) was divided into two parts for comparison based on the two main treatments: 

axenic and the tripartite community; and then each treatment was subdivided based on the 

sampling time. Due to the results of biological data and the detection of the time it takes in 

each status of gametogenesis inducibility (cf. section 3.3.6), metabolites could be now directly 

allocated to specific time of each status of gametogenesis inducibility in U. mutabilis. 
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Table 9: The heatmap displays the abundance of identified metabolites (n = 76, 19% of the total metabolites) over 49 days in growth medium of axenic culture (no growth) and 
the chemosphere of the tripartite community (three statuses of gametogenesis inducibility). Metabolites are sorted according to the main substance classes. 
 

ID Waterborne metabolites 

Classes 

Ax* TC* 

d-7 d-14 d-21 d-28 d-35 d-42 d-49 d-7 d-14 d-21 d-28 d-35 d-42 d-49 

No growth/no reproduction Non
** Inducible** Spontaneously induc.** 

23 Unidentified PUFA C18 ?? 

Fatty Acids (24%
 of the total identified m

etabolites) 

                            

46 9-Hexadecenoic acid                  
      

    
  

47 Hexadecanoic acid                 
      

    
  

48 Unidentified SFA C17:0 ??                 
      

    
  

50 Heptadecanoic acid                 
      

    
  

69 Unidentified MUFA C16:1 ??                 
      

    
  

72 Unidentified SFA C17 ?                 
      

    
  

257 Decanoic acid                 
      

    
  

298 Unidentified SFA C22:0 ??                 
      

    
  

314 Unidentified PUFA C18:2 ??                 
      

    
  

318 Unidentified SFA C19:0 ?                 
      

    
  

326 Tetracosanoic acid                             
331 Unidentified SFA C14:0 ??                 

      

    
  

343 Unidentified SFA C19:0 ??                 
      

    
  

351 Unidentified MUFA C16:1 ?                 
      

    
  

368 Unidentified MUFA ???                 
      

    
  

384 Unidentified SFA C24:0 ?                 
      

    
  

397 Triacontanoic acid ??                 
      

    
  

42 Methyl-cysteine ?? 
Am

ino acids (24%
) 

                
      

    
  

43 Proline                 
      

    
  

68 Tryptophan                  
      

    
  

93 4-Hydroxyproline                 
      

    
  

114 Unidentified amino acid ??                 
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121 Unidentified amino acid ?                 

      

    
  

123 Unidentified amino acid ??                 
      

    
  

124 Ornithine                 
      

    
  

135 Serine                 
      

    
  

182 Pyroglutamic acid                 
      

    
  

184 Unidentified amino acid ??                 
      

    
  

190 Unidentified amino acid ?                 
      

    
  

205 Unidentified amino acid ??                 
      

    
  

206 Tyrosine                 
      

    
  

208 Unidentified amino acid ?                 
      

    
  

225 Acetyl-serine ?                             
282 Glutamine ? 

                            

290 Glutamic acid ??                 
      

    
  

65 Unidentified Sugar ? 

Sugars (8%
) 

                            
66 Erythritol ?                             
67 Unidentified Sugar ??                             
78 Fucose                             
81 Unidentified Sugar ?                             
130 Glycerol                  

      

    
  

202 1-Heptanol Alcohols (5%
) 

                
      

    
  

236 Unidentified alcohol ??                 
      

    
  

296 Unidentified alcohol?                 
      

    
  

358 1-Octadecanol ??                 
      

    
  

59 Unidentified organic acid ?? O
. m

. Ω (39%
) 

                
      

    
  

61 4-Hydroxybutanoic acid                 
      

    
  

82 Unidentified hydroxy acid C:4 ?                 
      

    
  

83 Hydroxycarbolxylic acid ??                             
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85 3-Hydroxybutanoic acid or 4-Hydroxybutanoic acid                             
107 Succinic acid                 

      

    
  

108 Maleic acid                 
      

    
  

138 Mevalonic acid-1,5-lactone ??                 
      

    
  

142 Hydroxycarboxylic acid ??                             
149 2-Methyl-propanoic acid                             
173 Prephenic acid ?                 

      

    
  

178 Unidentified dicarboxylic acid (C4) ??                 
      

    
  

183 Unidentified dicarboxylic acid (C5) ??                 
      

    
  

185 Organic acid (C5) ??                 
      

    
  

240 Unidentified dicarboxylic acid                  
      

    
  

246 Glutaric acid                  
      

    
  

256 Calystegine B2 ?                 
      

    
  

271 Unidentified arommatic compound ??                 
      

    
  

275 Unidentified arommatic compound ??                 
      

    
  

278 Unidentified arommatic compound ??                 
      

    
  

289 Fumaric acid                 
      

    
  

291 Unidentified dicarboxylic acid ?                 
      

    
  

303 Unidentified dicarboxylic acid ??                 
      

    
  

310 Unidentified arommatic compound ??                 
      

    
  

311 Anthranilic acid ??                 
      

    
  

313 3-Hydroxybenzoic acid or 4-Hydroxybenzoic acid ?                 
      

    
  

344 Unidentified sterol ??                 
      

    
  

360 Galactono-1,4-lactone ??                 
      

    
  

377 2,4,6-Tribromophenol                 
      

    
  

388 Monomethylphosphate ??                             
Color shades are representative of the metabolite abundance throughout the treatments and sampling time points (row). The darker, the higher the abundance of the 
metabolite. *Ax: axenic, TC: Tripartite community, d (day), statuses of gametogenesis inducibility: ** ’’non-inducible’’ (non), ’’inducible ’’, and ’’spontaneously inducible’’ 
gametogenesis. If the reverse match score of the library identification (i.e., NIST, MP, Golm and Metabo) was lower than 800 and no standard was available, the metabolite 
identification is tagged with a “?”, and “??” if the score was lower than 700. 
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In general, the identified waterborne metabolites (n = 76) could be classified into five classes: 

Fatty acids (24% of total identified waterborne metabolites), amino acids (24%), sugars (8%), 

alcohols (5%), and other metabolites (39%). In general, waterborne metabolites caused 

different patterns in the growth media of axenic cultures and of the tripartite community, and 

changed over time as follows: 

 
Fatty acids  

 

 
Metabolite (#47): Hexadecanoic acid (1TMS); model ion5 =117, RT = 14.7 min. 

 

Some biomarkers e.g., biomarkers (#23, #47, #69, #257, #343,and #368) represent the fatty 

acids that were excreted into the medium of the axenic culture at the beginning of the sampling 

time until day-28, and disappeared or decreased afterward under axenic conditions. However, 

the same fatty acids were found in low abundance in the chemosphere of the tripartite 

community. A small portion of released fatty acids e.g., biomarkers #294, #314, and #318 

exhibited a different pattern as they accumulated in the growth medium of the tripartite 

community during the time of spontaneously gametogenesis in U. mutabilis (Tab. 9).  

 

5 Definition of the term model ion: The model ion, the ion signal showing the most rapid rise and fall, is always shown; it is 
assumed to be the most characteristic ion signal for a particular component. 

 

O

O

Si

96 
 

                                                             



Results and Discussion 

Amino acids 

 
Metabolite (#290): Glutamic acid (3TMS); model ion =246, RT = 20.26 min. 

 
 

The first pattern of amino acids in the chemosphere is represented by biomarkers i.e., #43, 

#68, #121, #124, #135, #182, #184, #190 that were detected in the medium after day-14 in 

axenic culture with the highest abundance then decreased gradually. The same amino acids 

however were detected in the chemosphere of the tripartite community during the time of 

‘’inducible gametogenesis’’ of U. mutabilis. Their abundance then either remained constant i.e., 

biomarkers #43, #68, #121, and #184 or decreased i.e., biomarkers #124, #135, #182, and #190. 

The second pattern is shown by i.e., biomarkers #42, #205, #208, and #282, which were 

released into axenic culture on day-7 and depleted after that. None of these amino acids were 

detected in the chemosphere of the tripartite community except biomarkers (#205) (Tab. 9). On 

the other hand, amino acid; putatively O-acetyl-L-serine (#225) was not found in axenic culture, 

and tyrosine (#206) was detected in low abundance only in the last two sampling points, i.e., 

day-42 and day-49. 
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Sugars  

  
Metabolite (#66): Erythritol (4TMS); model ion =117, RT = 12.85 min. 

 

Sugars accumulated in general at the end of the spontaneous gametogenesis status of U. 

mutabilis with high abundance. Erythritol (#66) was the only exception, as it was not detected 

in the tripartite community (Tab. 9).  

 
Alcohols 

 
Metabolite (#202): 1-heptanol (1 TMS); model ion =173, RT = 9.12 min 

O

O

O

O Si

Si

Si

Si
In

te
ns

ity
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In general, alcohols exhibited an accumulation in the chemosphere by the end of the 

“spontaneous status” of the gametogenesis induction of the tripartite community. Alcohols 

such as biomarkers #236, #296, and #358 were released into axenic culture as well as the 

chemosphere of the tripartite community and depleted immediately in both cultures. 1-

heptanol (#202) was detected only in the chemosphere of the tripartite community on day-21 

and increased afterward over time (Tab. 9). 

 
Other metabolites  

The waterborne metabolites might be released into the chemosphere as signals to aid the 

communication between the model organisms in the symbiotic tripartite community, as it was 

reported with many other macroalgae and their surrounding organisms (Kittredge et al., 1974; 

Fink, 2007; Hay, 2009; Goecke et al., 2010). Moreover, it is well documented that the goal of 

the relationship between our model system organisms is somehow to promote the growth, and 

the morphological completion of each other (Stratmann et al., 1996; Wichard and Oertel, 2010; 

Spoerner et al., 2012). Many symbiotic interactions can be assumed within the tripartite 

community. 

Firstly from the associated bacterial side; promoting the growth and the morphology of U. 

mutabilis, i.e., the development of the regular U. mutabilis thallus, requires the presence of 

bacteria in their environment or substances provided by bacteria or other accompanying 

organisms (Stratmann et al., 1996; Spoerner et al., 2012). For instance, thallusin is a regulation 

factor which was isolated and identified by (Matsuo et al., 2005). In fact, the detection of this 

metabolite (C25H31NO7) by GC-MS is not possible due to the high molecular weight of 457 amu 

(Fig. 3), and consequently the non volatility.  Based on the working model suggested by 

Spoerner et al. (2012), it is predicted that associated bacteria release metabolites to 

communicate with each other, Roseobacter could be essential to the survival of Cytophaga. 

Secondly from U. mutabilis side; U. mutabilis seems to release attracting metabolites into its 

chemosphere during the’’ non-inducible’’ and ’’inducible gametogenesis’’ status (Tab. 9) in 

order to attract its associated bacteria so as to meet its physical and physiological needs. On 

the other hand, in the late exponential phase and stationary, when gametogenesis can be induced 

spontaneously and the algal tissue will be disrupted. 
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Fatty acids 

Fatty acids were detected both in medium of axenic culture and the chemosphere of the 

tripartite community, suggesting the production was assumed by U. mutabilis. The excreted 

fatty acids, in particular unsaturated fatty acids, were reported to serve as defense molecules 

(Alamsjah et al., 2009; Jüttner, 2001). Conversely, under sterile condition within the symbiotic 

tripartite community or axenic cultures, the defense mechanism was not in need. Moreover, 

the majority of released fatty acids were saturated (67% of total detected fatty acids in the 

growth medium) (Tab. 9). Thus, excreting fatty acids into the chemosphere might have another 

biological function. 

 
Amino acids and sugars 

The small molecular weight primary products i.e., sugars and amino acids are assumed to be 

provided by U. mutabilis as it was the only autotrophic macroalga in the tripartite community. 

Most primary metabolites such as carbohydrates, amino acids, peptides, and proteins are 

inducers of microbial colonization (Steinberg and de Nys, 2002). Hence, the surface of 

macroalgae provides a niche appropriate for colonization and reproduction of microorganisms 

(Mahmud et al., 2007; Englebert et al., 2008). Sugars and amino acids act as attracting 

substances in the chemosphere of the tripartite community for associated bacteria. This 

interaction was well documented between many macroalgae and surrounding bacteria (Wilson 

et al., 1990; Bulleri et al., 2002). The low percentage of detected sugars (8%) in the growth 

medium compared to fatty acids (24%) (Tab. 9) might be a result of the rapid utilization by 

bacteria, preventing these metabolites (sugars) from accumulating (Wiebe and Smith, 1977; 

Bell and Sakshaug 1980; Coveney 1982). This applies to amino acids as well, but the high 

percentage of amino acids (24%) could be due to the accumulation of some amino acids 

resulting from the decomposition and disruption of tissues. 
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Alcohols 

As U. mutabilis is neither an aldehyde nor an alcohol producer (cf. chapter 3.1), alcohols 

detected in the medium are supposed to be bacterial metabolites or a result of abiotic 

degradation and decomposition of some metabolites taking place in the chemosphere. 

 
Other metabolites 

Many paramount biological functions can be predicted from the metabolites included under 

this group. Dicarboxylic acids i.e., biomarkers (#107, #108, #178, #240, #246, #289, #291, #303) 

were metabolites pronouncedly accumulated and detected during the time of spontaneous 

gametogenesis. In fact, it was reported that dicarboxylic acids with small molecular weight have 

a potential affect on nitrate uptake, plant growth hormone-like activity (Šmídová, 1960; Piccolo 

et al., 1992; Piccolo et al., 2003), as well as on reproduction and respiration of the costal 

dianoflagellate Prorocentrum minimum (Heil, 2005). Interestingly, calystegine B2 (#256) is an 

alkaloid detected in both axenic and the tripartite community. Calystegine B2 was 

administrated to influence rhizosphere ecology as nutritional sources for soil microorganisms 

and as glycosidase inhibitors in plants (Goldmann et al., 1996). Thus, calystegine B2 might have 

an influence on the chemosphere of the tripartite community.  

The remaining ca. 300 waterborne metabolites are still unknown and represented 81% of the 

total metabolites, showing significant contribution of these unknown in the chemosphere of 

the tripartite community. The discriminant analysis hence is the way to investigate the 

efficiency of these pronounced unknowns in mediating the interaction between the model 

organisms. 

 
3.4.8. Determined biomarkers in the chemosphere of the tripartite community: the known 
unknowns 
 

The metabolites found in the chemosphere of the tripartite community along with the 

medium of axenic culture (n = 399) were analyzed by CAP based on Bray-Curtis distance after 

standardization and transformation (Fig. 30). Similarly to the CAP analysis of the biomarkers 

obtained by LC-MS analysis (cf. section 3.4.5), the a priori groups in CAP analysis were 

generated accordingly to the time taken for each status of the gametogenesis inducibility in U. 
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mutabilis in the tripartite community. Since no growth was observed in axenic cultures over 

whole sampling time points, biomarkers of axenic culture were combined with the young 

culture in the tripartite community when the gametogenesis was ’’not inducible’’. The a priori 

groups were therefore:  

Group 1: The tripartite community (day-7) combined with all sampling events of axenic cultures 

(day-7 till day-49). 

Group 2: The tripartite community (sampling events from day-14 till day-21). 

Group 3: The tripartite community (sampling events from day-28 till the day-49). 

Out of ca. 400 biomarkers, 141 biomarkers contributed significantly to the CAP axes (Fig. 30b). 

The CAP plot (Fig. 30a) resulted in a significant separation with a misclassification error of 2%; 

the two axes were very efficient in separating the groups (high eigenvlues), and these axes 

were highly related to the differences between the groups (high squared canonical correlations: 

𝛿𝛿1
2= 0.98 and  𝛿𝛿2

2  = 0.85) (Tab. 10). Furthermore, the permutation test confirmed that the 

groups had significant different location in the multivariate space (P = 0.001, with 999 

permutations). Finally, the correlation coefficient of the first CAP axis was significant; meaning 

the difference explained by this axis was statistically significant (Tab. 10).  

The three groups in the CAP plot were very distinct. Group 1 was separated from group 2 on 

both axes, and from group 3 on axis 1. In contrast, group 2 and 3 were separated on axis 2. The 

separation was mediated mainly by the differences in sampling time points rather than the 

difference between the treatments (i.e., axenic and the tripartite community). The reason 

behind this could be explained in twofold. Firstly, axenic culture did not exhibit any 

distinguishable biomarkers based on the sampling time series, that is, axenic cultures over 

entire sampling points (49 days) represented only one group in combination with the tripartite 

community in day-7. Secondly, in contrast to axenic culture, the separation of the three groups 

was fully dependant on the sampling time of the tripartite community. In order to decipher 

which metabolites were important for the separation, the absolute correlation of each 

metabolite with the first two canonical axes was considered, and if significant, a vector was 

displayed, representing the contribution of this particular metabolite to the ordination. This 
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graphical representation allows the determination of the metabolites important for the 

separation of each group formed by the CAP analysis.  

Clearly, it could be observed that the biomarkers characterizing group 1 were fewer compared 

to the ones characterizing groups 2 and 3. Moreover, the common (shared) biomarkers were 

found in group 2 and 3, e.g., biomarker #262, #377, and #384. Each a priori group was depicted 

by specific biomarkers.  

The same strategies that were previously adopted in characterizing the groups in CAP by the 

biomarkers resulting from LC-MS (cf. section 3.4.5) were used in CAP analysis of the biomarkers 

generated by GC-MS. These strategies are (1) presence/absence of the biomarker among the a 

priori groups, and/or (2) significant differences in the abundance of a biomarker between the a 

priori groups. In order to display these strategies, a representative biomarker in each status of 

gametogenesis inducibility was selected and its abundance was recorded over growth phases 

and gametogenesis inducibility statuses6, respectively (Fig. 31). Biomarker #246 represents 

glutaric acid with a (m/z = 221, RT = 9.26) pair. Glutaric acid characterized the young culture 

when gametogenesis was not inducible in tripartite community in addition to axenic culture 

(Fig. 30), and exhibited a variation in abundance throughout the growth corresponding to the 

three status of gametogenesis inducibility of U. mutabilis. It was recorded at high abundance in 

the young culture, and then its abundance decreased dramatically during growth, and it was 

not found in aging culture when spontaneous gametogenesis was feasible (Fig. 31a). Thus, both 

strategies (presence/absence and concentration differences between groups) are applied on 

biomarker #246. 

6 The definition of the inducibility statuses is found in page 66. 
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Figure 30: Groups correspond to the three key gametogenesis-inducibility-states in Ulva during its growth. Separation was achieved by the metabolites (ca. 400) obtained by GC-
MS analysis and found in growth media of axenic culture and the chemosphere of the tripartite community using Bray-Curtis dissimilarity distance. (a) CAP separation of the 
samples with the growth corresponding to the gametogenesis statuses as groups. (b) Correlations of 141 biomarkers (35% of the total biomarkers) with the two CAP axes, with 
absolute Pearson coefficient correlation |𝑟𝑟| ≥  0.3. 

Table 10: Eigenvalues, squared canonical correlation, and diagnostics statistics of the CAP analysis of the biomarkers (n = 141) resulting from GC-MS and found in growth media 
of axenic culture and the chemosphere of the tripartite community throughout sampling time points. 
 

Constrained canonical axes Statistics 
1st axis 2nd axis Crossvalidation Permutatest 

Eigenvalue (𝜹𝜹 2) Correlation Eigenvalue (𝜹𝜹2) Correlation Misclassification error Trace stat. 1st (𝜹𝜹 2) 
0.99 0.98 0.92 0.85 2% p = 0.001 p = 0.001 

Group 2: Tripartite community (day-14 till day-21)
Group 1: Axenic (day-7 till day-49) + Tripartite community (day-7)

Group 3: Tripartite community (day-28 till day-49)

ba
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Biomarker #83 characterized the growth time when gametogenesis was inducible (Fig. 30), 

and was identified as hydroxyl carboxylic acid (m/z = 117, RT = 7.66). Moreover, it was a 

representative of the presence/absence mechanism as it was present only in the growth time 

when gametogenesis was inducible and absent in the young and aging culture (Fig. 31b). During 

the growth when the gametogenesis spontaneously was induced, biomarker #313, identified as 

4-hydroxybenzoic acid and/or 3-hydroxybenzoic acid (m/z = 276, RT = 12.77), was detected in 

high abundance (Fig. 31c), while its abundance was low during the growth before reaching 

spontaneous induction (Fig. 31c), meaning that biomarker #313 represents both strategies in 

characterizing the growth phase of spontaneous gametogenesis.  
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Figure 31: GC-MS chromatograms of three selected and identified representative biomarkers characterizing the a priori groups shown in figure 30. (a) Glutaric acid 
characterizing the axenic cultures as well as the growth phase when gametogenesis was not inducible. (b) Hydroxy carboxylic acid-C4 characterizing the growth phase when 
gametogenesis was inducible. (c) 4-Hydroxybenzoic acid characterizing the phase when the spontaneous gametogenesis started. 

Glutaric acid (#246): , m/z = 221 amu at RT = 9.26 min Hydroxy carboxylic acid-C4 (#83): m/z = 117 amu at RT = 7.66 min 4-Hydroxybenzoic acid (#313): m/z = 267 amu at RT = 12.77 min

ba c
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The longer the vector, more efficient the biomarker in characterizing the group. Some of these 

characteristic biomarkers are listed in table 11 to display their model ion7 and retention time as 

well. The selection of the listed biomarkers was performed based on the significant 

contribution for characterizing each group separately. 
 

Table 11: Model ion and retention time of biomarkers found in axenic culture medium and the chemosphere of the 
tripartite community over 49 days. Shown here are some selected biomarkers (n = 85) which contributed significantly to 
the CAP axes (|𝑟𝑟| ≥ 0.3). 

 

A priori 
groups 

gametogenesis 
inducibility of  
U. mutabilis 

ID Biomarkers Model 
ion 

RT 
(min) 

A priori ggroup 1 (n = 18) 

’’N
on-inducible status’’ of gam

etogenesis 

42 Methyl-cysteine ?? 116.1 15.17 
64 Unknown 117.1 11.28 
72 Unidentified saturated fatty acid C17 ? 117.1 15.20 
89 Unknown 121 11.16 
131 Unknown 143.1 15.51 

186 Unknown 159 10.64 
208 Unidentified amino acid ? 179.1 8.36 
212 Unknown 181.1 8.92 
218 Unknown 187.2 9.93 
223 Unknown 194.1 8.30 

246 Glutaric acid 221.1 9.26 
257 Decanoic acid 229.2 10.48 
282 Glutamine 243.2 11.39 
299 Unknown 255.1 10.58 
316 Unknown 268.2 16.75 

319 Unknown 271.2 12.90 
321 Unknown 275.1 11.84 
331 Unidentified saturated fatty acid C14:0 ?? 385.2 13.58 

A priori group 2 (n = 19) 

’’Inducible status of 
gam

etogenesis’’ 

10 Unknown 103.1 13.15 
83 Hydroxycarboxylic acid (C4) ?? 117.1 7.66 
85 3-Hydroxybutanoic acid, or 4-Hxdroxybutanoic acid 233 8.42 
92 Unknown 122.1 12.13 
94 Unknown 123.1 12.55 

145 Unknown 145.1 18.53 
149 2-Methyl-propanoic acid 145.1 12.22 
158 Unknown 149 18.28 
204 Unknown 177.1 6.80 
251 Unknown 223.1 11.65 

7 Model ion: The model ion, the ion signal showing the most rapid rise and fall, is always shown; it is assumed to be the most 
characteristic ion signal for a particular component. 
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263 Unknown 237.1 12.09 
292 Unknown 250.1 13.03 
326 Tetracosanoic acid 117.1 19.20 
330 Unknown 283.3 17.90 

358 1-Octadecanol ?? 327.3 15.49 
369 Unknown 364.9 13.30 
373 Unknown 380.9 13.92 
388 Monomethylphosphate ?? 146.1 16.45 

396 Unknown 484.9 15.01 

A priori group 3 (n = 48) 

’’Spontaneously status’’ of gam
etogenesis 

2 Unknown 101 11.59 
7 Unknown 101 7.57 
9 Unknown 103.1 12.97 

13 Unknown 103.1 15.63 
24 Unknown 109.1 17.33 
27 Unknown 110.1 7.27 
28 Unknown 205.1 8.73 
60 Unknown 117.1 7.21 

97 Dodecanoic acid 126 7.78 
100 Unknown 127.1 9.23 
107 Succinic acid 129.1 7.87 
108 Maleic acid 130.1 6.59 
114 Unidentified amino acid ?? 136.9 7.20 
117 Unknown 139.1 11.07 
118 Unknown 139.1 11.08 

120 Unknown 140 11.06 
123 Unidentified amino acid ?? 142.1 7.34 
136 Unknown 205.1 9.10 
142 Hydroxycarboxylic acid (C4) ?? 144.1 6.85 
143 Unknown 145 11.72 

146 Unknown 177 7.51 
178 Unknown 151 7.97 
179 Unknown 152.1 7.53 
180 Unknown 155.1 8.80 
181 Unknown 156.1 10.61 

185 Organic acid (C5) ?? 158.1 7.91 
189 Unknown 161.1 6.76 
202 1-Heptanol 173.1 9.12 
225 Acetyl-serine ? 174 9.33 
226 Unknown 197.1 14.46 

237 Unknown 210.1 7.99 
242 Unknown 218.1 10.24 
243 Unknown 221.1 7.80 
244 Unknown 221.1 7.96 
245 Unknown 221.1 8.25 

262 Unknown 236.2 17.16 
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288 Unknown 244 7.02 
311 Anthranilic acid ?? 266.1 11.76 
313 3-Hydroxybenzoic acid or 4-Hydroxybenzoic acid? 267 12.77 
323 Unknown 277.1 13.07 

332 Unknown 117.1 11.86 
350 Unknown 310.2 19.33 
360 Galactono-1,4-lactone ?? 334.2 11.43 
362 Unknown 342.8 12.40 

377 2,4,6-Tribromophenol 388.8 13.17 
384 Unidentified saturated fatty acid C24:0 ? 424.9 15.23 
393 Unknown 459.3 17.29 
397 Triacontanoic acid ?? 509.3 18.44 

 
If the reverse match score of the library identification (i.e., NIST, MPI, Golm, or Metabo databases) was lower than 800 and 

no standard was available, the metabolite identification is tagged with a “?”, and “??” if the score was lower than 700 

 
Based on table 11, the vectors (characteristic biomarkers) were classified into four chemical 

classes over all a priori groups in descending order, i.e., other metabolites (15%), fatty acids 

(8%), amino acids (7%), and alcohols (3%). 67% of the characteristic biomarkers remained 

unknown and contributed significantly in the characterization of the growth phases 

corresponding to the status of gametogenesis inducibility. However, the time taken for each 

inducibility status was characterized by specific chemical classes making the chemosphere in 

each status chemically distinguishable (Fig. 32).  

For instance, fatty acids, notably saturated fatty acids (Tab. 11) and amino acids were the 

remarkable biomarkers during the growth phase when the gametogenesis was not inducible 

(Fig. 32), whereas other metabolites could be found (25%) during the ’’inducible status’’ in the 

second growth phase (Fig. 32). It is notable, that the only growth phase that was characterized 

by substances of all chemical classes i.e., fatty acids, amino acids, alcohols and other 

metabolites the most abundant class was the phase when gametogenesis spontaneously 

induced (Fig. 32).  

In addition, the CAP plots (Fig. 30) reveals no negative correlation between the characteristic 

biomarkers, and consequently no groups were located in the counter direction of each other 

(Fig. 30a) in contrast to what was observed with characteristic biomarkers resulting from LC-MS 

analysis (Fig. 27a, 29).  
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Figure 32: Pie charts display the abundance (%) of the various substance classes of identified biomarkers characterizing the chemosphere of the tripartite community over the 
time taken for the statuses of gametogenesis inducibility in U. mutabilis. 

 

 

 

’’ Non-inducible status’’ (n = 18 biomarkers) ’’ Inducible status’’ (n = 19 biomarkers) ’’ Spontaneously inducible status’’ (n = 48 biomarkers)

Unknown        Fatty acids       Amino acids        Alcohols        Other metabolites
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It can be argued that the absence of the 180° pairwise correlations between the characteristic 

biomarkers might be attributed: 

(1) to the nature of the metabolites analyzed by GC-MS as they are mainly primary metabolites 

(Fiehn, 2008). Consequently, the demand and the utilization rate of these metabolites by the 

organisms involved in the tripartite community were high. 

(2) to the strategy of subtraction blank values required eliminating unspecific peaks, thus a part 

of the extracellular compounds was not represented in the data analysis. 

(3) to the effect of the cartridges capacity to retain only specific waterborne metabolites. 

However, based on the comprehensive comparison between solid phase extractions (SPE) 

cartridges performed by (Masque et al., 1998), the PS-DVB Easy® cartridge used in the current 

study for extraction is the recommended cartridge to recover most polar compounds from the 

water body because of the hydrophilic surface containing relatively high aromatic sites which 

allow 𝜋𝜋 −  𝜋𝜋 interaction with unsaturated analytes. 

Fiehn (2008) addressed two major challenges remaining in GC-MS-based metabolomics: (1) 

rapid annotation of unknown peaks; and (2) integration of biological background knowledge 

aiding data interpretation. The first challenge still remains in the present study, as 67% of the 

characteristic biomarkers are still unknown. However, the second challenge was managed in 

the present study by gathering the metadata and generating the a posteriori hypothesis (cf. 

section 3.3.6), which facilitated the multivariate analyses by generating the a priori groups 

based on the growth corresponding to the status of gametogenesis inducibility of U. mutabilis. 

During the time of ’’non-inducible status’’ of the alga, all the detected substances are likely 

produced by the alga as the chemometric data analyses reveals that axenic cultures and the 

young tripartite community grouped together based on metabolic profiling. Interestingly, some 

studies attempted to measure the bacterial uptake of dissolved organic carbon (DOC) produced 

and released by algae in particular phytoplankton. These metabolites seemed to be turned over 

rapidly by bacteria (Wright and Shah, 1975; Wiebe and Smith, 1977). Kinetic analysis indicated 

that the rate of DCO production by algae is equal to the rate of the uptake by microbes. Based 

on these analyses, it was supposed that the concentration of DCO in axenic algal cultures 

increases over time or remains constant (Nalewajko et al., 1976) in contrast to non-axenic 
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cultures, where bacterial uptake can keep pace with the rate of release (Chrost and Faust, 

1983). This might explain why axenic culture of U. mutabilis over entire experimental time (49 

days) grouped to the young tripartite community (on day-7) (Fig. 30).  

Those algal substances, released into the chemosphere during the time of ’’non-inducible 

status’’, belong mainly to the amino acids, saturated fatty acids, and other metabolites (Tab. 11, 

Fig. 32). Amino acids are known for their attracting power, making the releasing alga a 

favorable source of primary metabolites for associated bacteria. For instance, Kirchman (2002) 

found out that bacteria belonging to the Cytophaga-Flavobacteria cluster are capable of 

utilizing proteins and chitin. In addition, the results of Schweitzer et al. (2001) predicted that 

Cytophaga-Flavobacteria are capable of using amino acids. Miller et al. (2004) demonstrated 

that α-proteobacteria phylogenetically related to the Roseobacter clade are strongly attracted 

to amino acids and DMSP metabolites, while being only mildly responsive to sugars and the 

tricarboxylic acid cycle intermediates. Interestingly, a study by Cottrell and Kirchman (2000) 

tested the ability of both bacteria clusters α-proteobacteria and Cytophaga-Flavobacter to 

utilize amino acids. Cytophaga-Flavobacter was found to consume chitin, N-acetylglucosamine, 

and proteins but was generally underrepresented in consuming amino acids. The amino acid-

consuming assemblage was usually dominated by the α-proteobacteria.   

During the time spent in the ’’inducible gametogenesis status’’, another substance class, 

carboxylic acids came into the fore. Those molecules are most likely produced by the bacteria, 

because these pathways are well known investigated in α-proteobacteria, e.g., glucose 

catabolism (Furch et al., 2009). These bacterial compounds might be taken up by macroalga and 

contribute hence to the chemically mediated interaction of algae and bacteria. As a 

consequence, the spontaneous gametogenesis induction starts. Evidently, it was demonstrated 

also in diatoms that many stimuli secreted by associated bacteria such as vitamin 12 increased 

algal growth (Haines and Guillard, 1974; Cole, 1982; Croft et al., 2005). 

When gametogenesis was spontaneously induced within the late exponential and stationary 

growth phase, there were a lot of similar patterns in terms of substance classes and the 

dynamics observed as found in diatom cultures (Paul et al., 2013; Vidoudez and Pohnert, 2012). 

These algal and bacterial substances are classified mainly into amino acids, dicarboxylic acids, 
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saturated fatty acids, and aromatic compounds. Thus, these metabolites might be detected in 

the chemosphere in this specific time due to the catabolism and the decomposition of tissues. 

Interestingly, U. mutabilis released 3-(or 4)-hydroxybenzoic acid (#313), a potential biomarker 

was found in the third growth phase during the ’’spontaneously inducible status’’ (Fig. 30b), 

when U. mutabilis grew healthy and reproduced spontaneously (Fig. 23). The same 

phenomenon was observed by Vidoudez (2010), who detected 3(or 4)-hydroxybenzoic acid in 

the culture medium, where Skeletonem marinoi was actively growing. Accordingly, Vidoudez 

hypothesized that 3(or 4)-hydroxybenzoic acid might be released to gather iron (Vidoudez, 

2010). Thus, biomarker #313 might play the same function in the chemosphere of the tripartite 

community. In addition, Roseobacter lineage is one of the few dominant marine clades that 

exhibit a unique opportunity to use aromatic compounds including phenolics such as 4-

hxdroxybenzoate as primary growth substrates, and consequently catabolize such phenolic 

products via β-ketoadipate pathway (Buchan et al., 2000; Buchan et al., 2004). More 

interesting, it was suggested that 4-hydroxybenzoic (#313) is a likely precursor of 2,4,6-

tribromophenol (#377) in U. lactuca (Flodin and Whitfield, 1999). Even more interesting yet, the 

precursor and the product were detected as characteristic biomarkers during the same 

inducibility status (Tab. 11). The decrease over time of 4-hydroxybenzoic acid was associated 

with the increase of 2,4,6-tribromophenol.  
 

3.4.9. The relationship between the waterborne metabolites: Tyrosine, 4-hydroxy-benzoic 
acid, and 2,4,6-tribromphenol 
 

Based on the biosynthesis suggested by Flodin and Whitfield (1999), 2,4,6-tribromophenol 

(biomarker #377) is supposed to be synthesized from tyrosine (metabolite #206) via 4-

hydroxybenzoic acid (biomarker #313) (Fig. 33). Thus, the abundance of these metabolites in 

the chemosphere of the tripartite community and axenic culture medium at each sampling time 

point were compared and shown in the heatmap (Tab. 12). From this heatmap, it can be clearly 

observed the following:  

• The high and constant abundance of tyrosine over sampling time points in axenic culture 

was associated by the absence of 2,4,6-tribromophenol in general, and by low abundance in 
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particular sampling points, i.e., on day-35 and day-42. This pattern continued as well in the 

young tripartite community till day-14 (Tab. 12). 

• In contrast, the depletion of tyrosine in the tripartite community after day-14 resulted in an 

increase of 2,4,6-tribromophenol abundance (Tab. 12).  

• No specific pattern of 4-hydroxybenzoic acid could be generalized (Tab. 12). However, it was 

found in low, high abundance, or was depleted completely in the growth medium. For 

instance, (1) 4-hydroxybenzoic acid was detected in low abundance, either when the 

abundance of tyrosine was high and 2,4,6-tribromophenol was not detected i.e., in axenic 

culture on days 7, 14, 28, and 49 and in the tripartite community on day-7, or when tyrosine 

was depleted and 2,4,6-tribromophenol increased, i.e., in the tripartite community on days 28 

and 35 (Tab. 12). (2) 4-hydroxybenzoic acid was completely depleted when the abundance of 

tyrosine was high, and that 2,4,6-tribromophenol was low i.e., axenic culture on days 35 and 

42, and the tripartite community on day-14 (Tab. 12). (3) 4-hydroxybenzoic acid was detected 

at a high abundance both when tyrosine depleted completely and the abundance of 2,4,6-

tribromophenol was low i.e., in the tripartite community on days 21, 42, and 49, or when 

2,4,6-tribromophenol was not detected and the abundance of tyrosine was low i.e., axenic 

culture on day-7 (Tab. 12). 

This fluctuation of 4-hydroxybenzoic acid abundance in growth media might be a result of its 

multifunctionality in the chemosphere of the tripartite community as it was addressed 

previously (cf. section 3.4.8).  

The inverse relationship between the abundance of tyrosine and 2,4,6-tribromophenol in the 

growth media suggests that U. mutabilis might synthesize 2,4,6-tribromophenol using tyrosine 

via 4-hydroxybenzoic acid. Moreover, this biosynthesis is mediated by bromoperoxidase (BrPO) 

(Hewson and Hager, 1980), which was found in green algae e.g., Ulvella lenza (Ohshiro et al., 

1999). Based on Flodin and Whitfield (1999) study, the biosynthesis of 2,4,6-tribromophenol is 

facilitated by the alga. At the same time, Li et al. (2009) showed that 2,4,6-tribromophenol is 

released by the brown algae Eisenia bicyclis and Ecklonia kurome and subsequently inhibits the 

settlement and survival of the Japanese abalone Haliotis discus hannai. For these reasons, 

2,4,6-tribromophenol might be synthesized in vivo by U. mutabilis from tyrosine via 4-
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hydroxybenzoic acid in the presence of BrPO and released into the growth medium. 

Bromophenols are common volatile compounds among red (Etahiri et al., 2007; Xu et al., 2009) 

and brown (Chung et al., 2003; Shibata et al., 2014) algae. Flodin and his co-workers have 

addressed the existence of tribromophenol in green alga U. lactuca (Flodin et al., 1999; Flodin 

and Whitfield, 1999). This extracellular compound was reported as antibacterial (Flodin and 

Whitfield, 1999; Etahiri et al., 2007; Xu et al., 2003; Liu et al., 2011) and as a deterrent 

substance against marine herbivores (Liu, 2011; Shibata et al., 2014). These allelopahtic affect 

however cannot be predicted within the symbiotic relationship of the tripartite community 

under sterile condition, assuming another biological activity of 2,4,6-tribromophenol. Further 

studies are needed to investigate the biosynthesis of 2,4,6-tribromobenzoic acid in U. mutabilis. 

 
Table 12: The heatmap shows the changes in the abundance of tyrosine, 4-hydroxybenzoic acid, and 2,4,6-tribromophenol in 
the growth medium of axenic and the tripartite community in each sampling time over 49 days. 
 

ID Exo-
metabolites 

Axenic culture on: Chemosphere of the tripartite community on: 

d-7* d-14 d-21 d-28 d-35 d-42 d-49 d-7 d-14 d-21 d-28 d-35 d-42 d-49 

#206 Tyrosine               

#313 4-Hydroxy-
benzoic acid               

#377 
2,4,6-

Tribromo-
phenol               

 
Color shades are representative of the abundance at each time sampling throughout the biomarkers (column). The darker the 
color, the more pronounced the substance. *d: day. Data was standardized by sum-standardization to all areas of peaks. 
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Figure 33: Proposed biosynthesis pathway for the formation of 2,4,6-tribromophenol in U. lactuca. The pathway from tyrosine to 4-hydroxybenzoic acid is based on the study by 
Landymore et al. (1978), and from 4-hydroxybenzoic acid to 2,4,6-tribromophenol is based on the study by Flodin and Whit (1999). (1): Tyrosine. (2): 4-Hydroxyphenylpyruvic 
acid. (3): 4-Hydroxyphenyllactic acid. (4): 4-Hydroxyphenylacetic acid. (5): 4-hxdroxymandelic acid. (6): 4-Hydroxybenzaldehyde. (7): 4-Hydroxybenzoic acid. (8): 3,5-Dibromo-4-
hydroxybenzoic acid. (9): 2,4,6-Tribromobenzoic acid. The compound marked with (*) were detected in axenic growth media and the chemosphere of the tripartite community 
and the inserts (a,b, and c) show the mass spectra of TMS-derivatives of these compounds, respectively. 
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3.4.10. Conclusion 

Ultimately, metabolomic analysis using two different analytical platforms proves the clarity of 

the hypothesis generated from the metadata, in which the time taken for each gametogenesis 

inducibility status8 in U. mutabilis influenced the chemosphere of the tripartite community. For 

this reason, waterborne metabolites were divided in response to the statuses of gametogenesis 

inducibility in U. mutabilis (Figs. 27, 30). Despite the fact that the chemical properties of the 

metabolites obtained by GC-MS and LC-MS analyses were different, both LC- and GC-based 

metabolomics can be used to monitor the growth and which also allows conclusion about the 

status of the gametogenesis inducibility in U. mutabilis under the condition used in bioreactors 

cultures.  

In general, U. mutabilis tends to release the potential biomarkers by the end of the ’’inducible 

status’’ time till the mid of the time spent in ’’spontaneously inducible status’’ during the 

second and third growth phases. The high percentage of unknown biomarkers were shown to 

contribute significantly in characterizing the a priori groups, opening the doors for further 

analytical work in order to investigate the chemical structures of these pronounced compounds 

and their functions in structuring the chemosphere of U. mutabilis and its associated bacteria. 

Based on the promising outcome of metabolomic profiling using bioreactor cultures, I aimed 

in the future studies:   

(1) to apply the same model system used in laboratory (the tripartite community) in land based 

aquaculture to possibly collect elevated amounts of identified biomarkers for structure 

elucidation. 

(2) to predict the changes of gametogenesis inducibility in aquaculture in order to maintain 

subsequently the tripartite community in its vegetative state. 

(3) to compare the waterborne metabolites collected under controlled conditions and in 

aquaculture.   

 

 
 
 

8 The definition of the inducibility statuses is found in page 66. 

117 
 

                                                             



Results and Discussion 

 
 
 

 

3.5. Exo-Metabolomics of algal Aquacultures 
 

 

 
Aquacultures at the Ramalhete Marine Station of the Algarve Marine Sciences Centre (CCMAR) in Faro, Portugal, conducted in 
2011 from the 10th March to the 5th May. 
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In general, the global challenge in performing seaweed aquaculture is the sustainability of 

seaweed farming for long term. Many applications can be considered with seaweed. Recently, 

production of alternative fuels from non-starch biomass has also attracted the attention 

towards utilization of marine algae, including seaweed, as sources of fuels production (Varela et 

al., 2006). Seaweed has also been proposed as a mass source for production of functional food 

ingredients, pharmaceuticals, and cosmetics (Bixler 1996; Bobin-Dubigeon et al. 1997; Cumashi 

et al. 2007). Ulva species are particularly rich in rare cell-wall polysaccharides (Ulvan) in 

addition of e.g., ionic polysaccharides containing sulphate groups, uronic acids, and essentially 

rhamnose and xylose, or xylose, galactose and arabinose, and have been proposed as being an 

important source of dietary fibers, especially soluble fibers (Lahaye 1991; Lahaye and Axelos 

1993). In addition, Pereira et al. (2012) concluded that macroalgae can be considered as a 

potential source for large-scale production of essential PUFAs with wide applications in the 

pharmacological industry. Ulva spp. were documented to possess high amounts of C18 fatty 

acids, in particular αALA (Pereira, 2012). Ulva has simple growing requirements and can 

produce lipids and proteins in large amounts over short periods of time in simple land based 

aquacultures. However, wound activated transformation of lipids into oxylipins could also result 

in a depletion of valuable unsaturated fatty acids and might hence jeopardize the value of Ulva 

as a resource for e.g., PUFAs in aquacultures (Wichard et al., 2007). In this context, the 

chemotaxonomic significance of PUAs was proven by comparison with the morphogenetic and 

phylogenetic properties of about 100 collected Ulva isolates (cf. chapter 3.1). The tube-like 

morphotype did not produce any C10-PUAs, while the sea lettuce-like morphotype produced 

these compounds. For instance, U. lactuca is characterized by its sheet-like structures that are 

two cells thick and classified in the category of sea-lettuce Ulva species that produces PUAs (cf. 

chapter 3.1). With regard to FAs depletion due to PUAs and oxylipins production, this finding 

might be conflicted with the studies of Magnusson et al. (1996); SandJensen (1988); and Naldi 

and Viaroli (2002), who reported that U. lactuca and U. rigida respectively have a considerable 

importance in marine ecology due to the high photosynthetic rates and high C- and N- nutrient 

uptake capacity, which resulted in rapid growth, making it a suitable species for aquaculture. 

On the other hand, based on the present results, U. mutabilis does not produce PUAS and it can 
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be thus taken into account as a resource for e.g., PUFAs in aquacultures (cf. chapter 3.1). 

However, further investigations are needed to confirm that oxylipins production rather than 

PUAs has no effect on PUFAs depletion. 

Martinez-Porchas and Martinez-Cordova (2012) provided a comprehensive review on algal 

aquaculture. They suggested many strategies in order to advance in the sustainability of 

aquaculture from two aspects: site selection, and species selection. Regarding these 

suggestions, (1) U. mutabilis aquaculture in the present study was performed at the Ramalhete 

Marine Station in Faro, Portugal, which is a native habitat of U. mutabilis (Føyn, 1958) to avoid 

introducing of exotic species causing many and diverse environmental problems, and to also 

avoid environmental effects as much as possible (e.g., temperature, light/dark cycle). (2) From 

the species selection point of view, the bioreactors results helped to gather the as much 

knowledge as possible about the biology and ecology of the model organisms (e.g., life cycle, 

nutritional requirements, gametogenesis inducibility status, and some relative ecological 

information). In the present study, many abiotic parameters in aquacultures were monitored 

prior to metabolomic analysis and metadata collection, offering more controlled material to 

assess treatment effects conclusively, and helping eliminate other potentially negatively 

interfering environmental factors. 

 
3.5.1. Experimental design 

The big challenge in transferring the approach used in batch or bioreactor cultures in the 

laboratory into land based aquaculture was to start the aquacultures in volume of 200L of 

Instant Ocean/ tank with purified axenic germlings aged 7 day. In this way, the metabolomic 

analysis in aquaculture will be comparable with bioreactor cultures.  

Two treatments were conducted in parallel: The defined bacterial community, where axenic 

U. mutabilis germlings were inoculated with Roseobacter and Cytophaga species and the so 

called ’’inappropriate community’’, which was inoculated only with axenic U. mutabilis 

germlings. 
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3.5.2. Monitoring of environmental (abiotic) parameters 

Temperature 

 Since temperature plays an important role in U. mutabilis growth (Nordby, 1977), it was 

essential to record the temperature hourly inside each tank over experimental time (Fig. 34a). 

Over the cultivation time (= 49 days), the temperature ranged from 13 to 27 °C during the day, 

and from 13 to 24 °C at night. The night temperature was lower than the day temperature 

during the first 35 days. After that, both night and day temperatures were almost equal and 

ranged from 18 to 25 °C (Fig. 34a). 

According to U. mutabilis literature, the recommended temperature is 21-22 °C (Nordby, 

1977). Taylor et al. (2001) found the optimal temperature prompting the growth of U. curvata, 

U. rigida, U. compressa, and U. linzaare 20, 15, 10 and 15 °C, respectively. In light of these data, 

no extreme change in temperature was recorded during the entire experimental time of 

aquaculture. Thus, the influence of temperatures was minimal. 

Although an attempt was made to minimize the influence of evaporation by covering the 

tanks, temperature surely had an effect on the evaporation and subsequently on salinity. 
 

Salinity 

Salinity was recorded weekly along with the sampling of the culture media for chemical 

analyses. During the long-term experiment, salinity fluctuation was not important, and limited 

between 27.3 and 28.8 psu (Fig. 34b). This is due to the aquaculture experimental design and its 

application (Fig. 24). To reduce the evaporation, the tanks were covered with a tygon film. 

Salinity increased slightly anyway. Regarding the high salt tolerance of Ulva, the increase is only 

minor and did not affect its overall growth. 

‘‘Green tide’’ algae are generally reported to have tolerance for broad ranges of salinity 

(Taylor et al., 2001). Choi et al., (2010) observed that the maximum and the minimum growth 

rate of U. pertusa were recorded at 20 and 40 psu under salinity regimes from 5 to 40 psu, 

respectively. Similarly, the highest growth rates recorded for U. rigida and U. linza were 

obtained at 23.8 psu, and for U. curvata at 27.2 psu (Taylor et al., 2001). Accordingly, the range 

of salinity in U. mutabilis aquacultures was within the recorded range for optimal growth rate 
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of other Ulva species. In addition to salinity, Ulva also is well known for its tolerance to a variety 

of pH values up to 10. 
 

pH 

The effect of pH on the growth and on reproduction of macroalgae is well known (Middelboe 

and Hansen, 2007a, Middelboe and Hansen, 2007b). Whereas Ulva does not grow below pH 6.5 

(Menéndez et al., 2001), it is highly adapted to alkali environments and grows even at pH 10 

(Maberly, 1990). 

In aquacultures, there was no significant change recorded in pH values during the six weeks 

after inoculation (P > 0.05) although pH value increased slightly within the range of 8.3 – 9.2 

from day-7 to day-28 (Fig. 27). However, pH value dropped gradually after 28 days (P > 0.05), 

and significantly (P < 0.05) at the end of the culturing time (day-49) (Fig. 27).  

The slight increase in pH value (alkalinity) over cultivation time might be attributed to the 

decrease of CO2 (aqueous) due to the photosynthetic uptake related to the increase in biomass 

and growth of algae (Goldman, 1973). This suggests the necessity of the measurement of CO2 

to correlate its pattern with the biomass and pH in order to meet the need of industrial 

applications. The pH value of the suspension medium has also been shown to affect the 

sporulation processes in two Ulva species. For instance, the optimum pH for inducing 

sporulation in U. mutabilis is assumed to be 8.0 - 8.5 (Nordby, 1977), and the optimum pH for 

spore release in U. pertusa was reported to be between 7 and 9 (Han et al. 2008). 
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Figure 34: Weekly changes in environmental factors of U. mutabilis aquacultures maintained in Instant Ocean. Values are expressed as mean ± SD, n = 3. Different letters 
indicate significant difference in the measurements over time (Tukey-posthoc test; P < 0.05). (a) Temperature of the day and night in aquaculture. (b) Salinity. (c) pH values. 
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3.5.3. Change of U. mutabilis life cycle in well-defined bacterial community and 
’’inappropriate community’’ 

As a feedstock of well-defined germlings inoculated with the two bacterial strains 

(Roseobacter and Cytophaga species) was used (Fig. 35a), reproducible conditions in 

aquacultures were achieved for the first time, comparable to freshly collected Ulva species 

from the coast. One week after inoculation, small alga with a pronounced well shaped thallus 

could be observed in the defined bacterial community  (Fig. 35b), in contrast to the 

’’inappropriate community’’, where the competitive microorganisms started growing rapidly 

due to the lack of the right microbiome along with the lack of the bacterial morphogenetic 

compounds. Thus, even dead thalli and germlings were observed (Fig. 35e). On day-14 and 28, 

the thalli in the defined bacterial community continued to grow normally (Figs. 35c, d), and in 

the ’’inappropriate community’’, malformed cell walls and contaminants overlying the thalli 

could be observed (Figs. 35g,h). On day-42, thalli were torn into two parts in the defined 

bacterial community, whereas in ’’inappropriate community’’ alga was coated intensively by 

diatoms and other microorganisms (data not shown). 

The results of control tanks (= no inoculation at all) along with the “inappropriate community” 

tanks were discarded due to the high contamination level observed in those tanks. Thus, within 

the scope of this project, only the results of the defined bacterial community (U. mutabilis + 

Roseobacter sp. and Cytophaga sp.) was addressed. 

Under the microscope (Fig. 35), the influence of the tripartite community can be clearly seen 

in aquacultures (the defined bacterial community ), which resulted in the development of 

normal U. mutabilis slender like thalli with its typical morphology (Figs. 35a-d) as it was 

observed in the tripartite community cultured in bioreactors (Figs. 1a, 2a). Although 

contaminants can be observed in the tripartite community, the young feedstock can overcome 

these adverse negative effects as it benefits from the mutualistic interactions with the 

symbiotic bacteria (Spoerner et al., 2012). Regarding the suggestion of (Martinez-Porchas and 

Martinez-Cordova, 2012), algae selection is one of the main reasons behind the sustainability of 

aquacultures. Evidently, the present observation supported this suggestion and added in 

addition the selection of appropriate microbiome as a considerable reason of aquaculture 

sustainability.  
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Figure 35: Microscopy pictures show changes in phenotype of U. mutabilis during the life cycle in well-defined bacterial community 9 inoculated with U. mutabilis, Roseobacter 
sp. and Cytophaga sp. (a - d) and in ’’inappropriate community’’ inoculating only with U. mutabilis (e - h). (a) Germling with rhizoid surrounded by Roseobacter sp. (black arrow) 
on day-zero (onset of the aquacultures). (b) Longitudinal growth of U. mutabilis thallus on day-7. (c) Thallus representing the rapid growth on day-14. (d) Thallus with unknown 
aggravation (black arrows) on day-28. (e) Malformed cell wall with bubble like structures (red arrows) on day-zero in ’’inappropriate community’’. (f) Dead germling (yellow 
circle) on day-7. (g) Thallus with cell wall covered with bubble like structure (yellow circles) surrounded by contaminants (red arrows) on day-14. (h) Thallus overlying with 
contaminants (yellow arrows) on day-28. 

9 The definition of the communities is found in page 120. 
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3.5.4. Monitoring of the growth of U. mutabilis in the defined bacterial community 

U. mutabilis met all the biotic and abiotic factors that promoted its growth and development. 

The growth hence was estimated by measuring the length of the thalli (Fig. 36a). Accordingly, 

remarkable longitudinal growth patterns were observed during the life cycle of U. mutabilis. 

From day-zero till day-7, the growth was relatively slow approaching an average of thallus 

length 2.6 cm ± 1 (SD), and then the growth increased rapidly with an average of thallus length 

9.8 cm ± 0.6 (SD) on day-14. From day-14, the thalli length increased gradually reaching the 

maximum length over experimental time on day-35 (15.6 cm ± 0.8). After that, the longitudinal 

growth drooped to 10 cm ± 1.2 on day-42. By the same token, the growth continued till day-49.  

The mass obtained by the end of aquacultures ranged between 600 to 700 g fresh weight in 

200L after removal of the water. 

It is important to note that the decrease of the longitudinal growth which was recorded in the 

defined bacterial community from day-35 to day-42, was not observed in the tripartite 

community in the bioreactor. In aquacultures,  the thalli were torn into two parts during this 

particular time which was not the case in the tripartite community of the bioreactor where 

thalli grew continuously approaching an average of length 25 cm ± 1.2 (SD) (Fig. 18). 

 
3.5.5. Estimation of bacteria growth by qPCR 

qPCR was used to quantify DNA concentration of Roseobacter clade in aquaculture (Fig. 36b), 

reflecting its abundance in the defined bacterial community over time. In the final analysis, 

there was a general trend of increasing Roseobacter clade abundance over experimental time 

(49 days). The increase in DNA followed the pattern of bacterial growth. After the lag phase 

lasting for two weeks, the growth started exponentially (Fig. 36b), indicating that Ulva provides 

enough carbon sources for bacterial growth. Moreover, the typical rapid increase of bacterial 

growth was controlled by Ulva since no significant increase was recorded after 21 days (P < 

0.05). Rosoebacter clade specific primers of the 16S DNA gene were used for estimation of the 

growth of Roseobacter species. The qPCR data was in agreement with the result of DGGE 

analysis of Roseobacter pattern in the tripartite community (Fig. 19). Herewith, one could 

somehow predict that Cytophaga sp. followed the same growth pattern as was seen in DGGE of 
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bioreactor culture (Fig. 19). Certainly, Cytophaga sp. provided the morphogenetic compounds 

in aquacultures as normal Ulva thallus development and cell wall formation could be observed. 

The prospective unknown factor released by Cytophaga sp. was quantified in the growth media 

of the aquacultures through an accompanying study (Grüneberg and Wichard, unpublished 

results). Indeed, the morphogenetic factor accumulated in the medium. As this factor has not 

been found so far in any other marine bacteria strains (Spoerner et al., 2012), this chemical 

analysis was a good proxy for the presence of Cytophaga throughout the whole cultivation. It is 

notable that bacterial and algal culture achieved a stationary phase. 

 
 
Figure 36: Estimation of culture growth in the defined bacterial community. (a) U. mutabilis growth as a function of time in 
aquacultures by measuring length of thallus. Values are expressed as mean ± SD, n = 3. (b) Roseobacter clade including 
Roseobacter sp. by qPCR. DNA was extracted from filters (0.2 µm pores size) upon filtration of Instant Ocean. Products of 365 
bp length were quantified. Data on day-28 is not available. Values are expressed as mean ± SD, n = 3. Different letters indicate 
significant difference between concentrations over time (Tukey-posthoc test; P < 0.05). 

 
3.5.6. Nutrients depletion and excretion in growth media of the defined bacterial community  

Nitrate, nitrite, and phosphate were measured weekly over time course of the experiment in 

the growth media of the defined bacterial community. The concentration on day-zero 

represents the concentration of the growth medium before inoculation of bacteria was 

performed (Fig. 37).  
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Nitrate 

Nitrate concentration remained constant during a week after the inoculation, i.e. on day-7 

(Fig. 37a). Indeed, Ulva did not grow much either during this lag phase. Then, on day-14, nitrate 

was depleted significantly (P < 0.05) (utilization rate of 56.6%). A week later, nitrate decreased 

slightly until day-28 (P > 0.05). At this point, 95 % of the total initial amount of nitrate was 

already depleted; however Ulva continued growing till day-35, when nitrate was not detectable 

overall in the growth medium (Fig. 37a). In comparison, nitrate was depleted completely after 

28 days in bioreactor cultures (Fig. 20a). According  to the recommended value (85 mg /L) by 

Stratmann et al. (1996), the initial concentration of nitrate in both bioreactors and 

aquacultures, was respectively at the same value (85 mg/ L) (Fig. 20), or at the optimum value 

(100 mg /L) (Fig. 37a). Surprisingly, no extreme difference was observed between nitrate 

depletion in aquacultures and bioreactors (cf. section 3.3.3) although in aquacultures other 

microorganisms in addition of the model organisms might utilize nitrate. This finding reflects 

the strength of the model system in controlling the community and the competition with other 

organisms. As nitrate uptake would result in nitrite release, external nitrite was measured. 

 
Nitrite 

Nitrite was released by U. mutabilis during the first weeks of culture reaching a significantly 

higher concentration in the medium on day-14 (P < 0.05) (Fig. 37b), before being taken up again 

on day-21. It was depleted completely by day-28. The increase of external nitrite concentration 

was associated to the decrease of nitrate concentration (Fig. 37a). Regarding the result of Bona 

(2006) in U. rigida, the reduction of NO3
- to NO2

- mediated by nitrate reductase is dependent 

mainly on photosynthetic activity. A high net photosynthesis rate increases intracellular levels 

of NADH, which is the physiological electron donor for NO3
- reduction in green algae (Azuara 

and Aparicio, 1985; Bona, 2006). For this reason, it is supposed that the high concentration of 

nitrite on day-14 and day-21 was due to the high activity of photosynthesis. 
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Phosphate 

With similar initial concentration as added into UCM in bioreactors (6.69 mg/ L) (Fig. 20), the 

initial concentration of phosphate in aquaculture was (7.00 mg/ L) (Fig. 37c). Phosphate 

concentration decreased gradually over time. The significant decrease was remarked on day-14 

(P < 0.05) by an utilization rate of 49.5 % compared to 45 % in bioreactors on day-28 (Fig. 20a). 

After that, fluctuation in concentration was observed but still globally decreasing reaching the 

utilization rate of 87% by the end on day-49 (Fig. 37c). The early consumption of phosphate in 

aquacultures might be due to the coexisting of other organisms in addition to the inoculated 

organisms in aquacultures that certainly shared the phosphate consumption (e.g., diatoms). 

The differences in the utilization rates (UR) of phosphate and nitrate confirmed that nitrate 

was still the limiting growth factor as it was proven for the bioreactor colures (cf. section 3.3.3). 

It can be seen from the above analysis, that nitrate approached an utilization rate of 56% on 

day-14 and it was completely consumed after day-28. Conversely, only 50% of phosphate was 

utilized on day-14 and no complete depletion of phosphate was recorded over time. 

 
3.5.7. Regulation of life cycle: regulation of gametogenesis by sporulation and swarming 
inhibitors 
 

The vegetative state (from day-14 to day-35) of U. mutabilis lasted three weeks in the defined 

bacterial community, hence the activity of sporulation (SI-1a and 1b), and swarming (SWI) 

inhibitors were measured in the growth media (Fig. 38). The activity of SIs was not detected 

overall in the growth media, whereas SWI activity was detected on day-21 (1.8 unit/ mL) and 

remained constant (P > 0.05) during the next two weeks (1.9 and 2.0 units/ mL, respectively). 

After 35 days, no activity of SWI was detected in the growth media (Fig. 38). 

As SWI-activity was recorded on day-21 for the first time, it indicates that the SWI was 

released at the earliest three days before when certain individuals went through the onset of 

gametogenesis spontaneously after 18 days (Wichard and Oertel, 2010). Similarly, the activity 

of SIs was detected in bioreactors neither in axenic nor in tripartite communities (Fig. 21). 

Nevertheless, the activity of SWI was detected on day-21 as in the defined bacterial 

community.

129 
 



Results and Discussion 

 

 

Figure 37: Weekly changes in nutrient concentration in aquaculture of U. mutabilis maintained in Instant Ocean. (a) Nitrate. (b) Nitrite (c). Phosphate. Values are expressed as 
mean ± SD, n = 3. Different letters indicate significant differences between concentrations over time (Tukey-posthoc test, P < 0.05). 
 

  

Figure 38: Weekly changes in sporulation (sum SI-1a+1b) and swarming (SWI) inhibitors in growth media of the defined bacterial community. Error bars based on mean values ± 
SD (n = 3). Different letters above the bars indicate significant differences of SWI activity throughout cultivation (Tukey-posthoc test, P < 0.05).  

ca b
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The clear differences between SWI in bioreactors and aquacultures were as follows; (1) The 

highest activity of SWI in aquacultures growth media (2 units/ mL) was 2 times lower than the 

highest activity in bioreactors (approaching 4 units/ mL). (2) After 35 days, the activity of SWI 

was not detected anymore in growth media of aquaculture and decreased to 50% in 

bioreactors and continued at the same rhythm till the end. It is suggested thus that SI-1 was not 

detectable in the defined bacterial community  due to the same reason which was addressed 

with the tripartite community (cf. sections 3.3.4), which was in general attributed to the 

bacterial utilization and the rapid turnover of SI-1 (Wichard and Oertel, 2010). Together with 

gametogenesis induction assay, the status of gametogenesis inducibility of U. mutabilis in the 

defined bacterial community could be described as follows: The ’’Non-inducible status’’ lasted 

one week after inoculation (= day-7). The ’’inducible status’’ started from day-14 till day-21. 

Afterword, the ’’spontaneously inducible status’’ was observed on day-28 till the end.  

In comparison with the gametogenesis status of U. mutabilis in the tripartite community, it 

can be clearly noticed that the statuses of gametogenesis inducibility in the tripartite 

community (cf. sections 3.3.5 and 3.3.6) was successfully achieved in the defined bacterial 

community.  

3.5.8. A comprehensive view of the biological metadata profile of the defined bacterial 
community in aquaculture and of the tripartite community in bioreactors 

The comparison of the metadata of the defined (aquacultures) and tripartite (bioreactors) 

communities was an approach demonstrating that the scaling-up resulted in predictable and 

comparable data using a defined feedstock for inoculation (Tab.13).  

Growth phases: In short, the longitudinal growth in the tripartite community was increasing 

over time, whereas in the defined bacterial community the growth decreased significantly after 

35 days because the thalli were torn to two parts. For the reason, the declining phase was 

observed in the defined bacterial community after day-35 in contrast to the tripartite 

community, where the growth did not approach this phase within the experimental time.  

Gametogenesis inducibility status: importantly, no difference was noticed in time spent for 

each status of gametogenesis inducibility in U. mutabilis in the defined bacterial and the 

tripartite communities. Each status of gametogenesis inducibility started at the same time in 

both communities.  
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Nutrients depletion: consumption in general was higher in the defined bacterial community 

than in the tripartite community due to the presence of others organisms in aquacultures (i.e., 

the defined bacterial community). Nitrate was evidently the limiting growth factor in both 

communities.  

Bacterial community: the growth trend of Roseobacter sp. in both defined and the tripartite 

community seemed to be similar and toward an increase. Thus, the growth trend of Cytophaga 

in the defined bacterial community might be somehow as same as in the tripartite community, 

assuming that Cytophaga sp. tended to grow slowly by day-42 as it was observed in the 

tripartite community (cf. section 3.3.2, DGGE). In summary, the metadata of the defined 

bacterial community had a very good reproducibility, robustness, and recovery when compared 

with metadata of the tripartite community. 

Table 13: Comparison between the metadata collected during the metabolomic analysis of the defined bacterial community in 
aquacultures and of the tripartite community in bioreactors. 
 Time spent in each status of gametogenesis Inducibility (days) 

‘‘Non-

inducible‘‘ 

gametogenesis 

‘‘Inducible gametogenesis‘‘ 

‘‘ Spontaneously 

inducible 

gametogenesis‘‘ 

Aquacultures 0-7 14-21 28-49 

Bioreactors 0-7 14-21 28-49 

 Thallus length (cm)/ Inducibility status 

Aquacultures 2.5 10-15 10-7 

Bioreactors 3 9-12 16-25 

 Nutrient utilization rate (%)/ Inducibility status* 

Aquacultures 
NO3

- 0 100 100 

PO4
-2 0 67 87.7 

Bioreactors 
NO3

- 34 67 100 

PO4
-2 0 10 84 

 Bacterial community/ Inducibility status** 

Aquacultures 
Ro faint strong strong 

Cy nt n.d. n.d. 

Bioreactors 
Ro strong strong strong 

Cy strong strong Faint 

* Utilization rate was calculated using equation (2). ** Ro: Roseobacter sp., Cy: Cytophaga sp. n.d.: not determined. 
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3.6. The chemosphere of the defined bacterial 
community 

 
3.6.1. Metabolite profiling in the chemosphere of the defined bacterial community using LC-
MS analysis 
 

As same as the downstream process shown in figure 24, the waterborne metabolites were 

collected by MarkerLynx™ software tool with the same parameters used for collecting the 

metabolites from the LC-MS chromatograms (positive ion mode) of the growth media in 

tripartite community (cf. sections 3.4.2 and 3.4.3). In addition, samples that were collected 

from tide-pool dominated by Ulva and tide pool not dominated by different macroalgae. Both 

tide pools were located in the Ria Formosa nearby the marine station Ramalhete (cf. section 

5.2.3) and sample were used in order to compare the waterborne metabolites found in natural 

sources (tide pools) with those determined in aquacultures consisting of Instant Ocean 

inoculated with the model organisms. This resulted in 1429 metabolites, which were analyzed 

directly by unconstrained chemometric (i.e., PCA) and by constrained chemometric (i.e., CAP 

analysis) after preprocessing the dataset. 

 
3.6.2. Effect of unconstrained analysis on metabolites obtained by LC-MS analysis 
 

The PCA scores plot shown in figure 39 shows the samples collected from the defined 

bacterial community in aquacultures over experimental time (49 days) and the samples 

collected from the tide pools. Moreover, PCA scores plot shows that 37% of the variability could 

be explained by component 1, compared to 22% of the variability represented by component 2. 

The separation can be observed mainly via component 1 between the defined bacterial 

community on day-zero and the other sampling time points. Similarly, the defined bacterial 

community on day-7 was separated via component 1 from the other sampling time points. Via 

component 2, only the defined bacterial community on day-14 and day-21 were separated from 

the other sampling points. An accumulation between the rest of sampling points (i.e., from day-

35 till day-49) along with pools samples can be clearly noticed. 

 

133 
 



Results and Discussion 

 
Figure 39: PCA scores plot of samples based on metabolites obtained by LC-MS analysis (positive mode) (n = 1429) and detected in the chemosphere of the defined bacterial 

community in day-zero (○) (before inoculation), day-7 (○), day-14 (○),  day-21 (○), day-35 (○), day-42 (○), and day-49 (○), in addition to the samples of tide pools () under 
specific pretreatment (Pareto scale, intensities are expressed as height, and normalized to the sum of the peak intensities (TIC) in each chromatogram). 
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In total, there were four clear groups distributed via component 1 and 2 (Fig. 39).  

Group 1: the defined bacterial community on day-zero (before inoculation),  

Group 2: the defined bacterial community on day-7,  

Group 3: the defined bacterial community on day-14 and day-21,  

Group 4: the defined bacterial community on day-35 till day-49 in addition to the samples 

collected from the tide pools. From this separation, three considerable notes can be concluded:  

(1) Growth medium on day-zero can be considered as a blank sample and can be hence 

subtracted from all measured chromatograms in order to eliminate any signals due to 

impurities in aquaculture tanks, medium and due to the added vitamins.  

(2) The preliminary groups separation resulting from PCA matches the inducibility status10 of 

the gametogenesis i.e., ’’non-inducible status’’, ’’inducible ‘‘and ‘‘spontaneously inducible’’ 

gametogenesis (Tab. 13). 

(3) Regarding the fundamental idea of unconstrained analysis (PCA), the differences between 

groups can be masked (Anderson and Wills, 2003). Thus, discriminant analyses (e.g., CAP) was 

needed to uncover such masked differences. 

 
3.6.3. Effect of constrained analysis on metabolites obtained by LC-MS analysis 

After preprocessing the dataset, 330 metabolites (23% of the total metabolites = 1429) were 

analyzed by the CAP. The a priori groups were generated based on (1) the statuses of 

gametogenesis inducibility of U. mutabilis in the defined bacterial community and (2) the result 

of PCA plot score (Fig. 39). As a consequence, the a priori groups were:  

Group 1: the defined bacterial community on day-7,  

Group 2: the defined bacterial community (sampling events from day-14 till day-21), 

Group 3: the defined bacterial community (sampling events from day-28 till day-49) with tidal 

pools samples. 

The CAP analysis was run based on the Bray-Curtis distance after transformation and 

standardization (Fig. 40). The significant contribution to the CAP axes shows that 110 

biomarkers out of 330 metabolites (i.e., 8% of the total metabolites) were found to be of high 

10 The definition of the inducibility statuses is found  in page 66. 
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relevance for separation the a priori groups (= misclassification error of 6%). The two axes are 

very efficient in separating the groups (high eigenvalues) and these axes are highly related to 

differences between the groups (high correlation 𝛿𝛿1
2= 0.99 and  𝛿𝛿2

2  = 0.98) (Tab. 14).  

From the CAP plots (Fig. 40) and the heatmap (Tab. 15), the distribution of some common 

biomarkers can be clearly observed between the first and second a priori groups e.g., 

biomarkers #21, #315, and #319, meaning these biomarkers characterized these two groups 

equally. Furthermore, few biomarkers were found to characterize both a priori groups 2 and 3 

e.g., biomarkers #241, #263, and #316. At the same time, a unique aggregation can be noticed 

for the biomarkers characterizing a priori group 3 and natural pools (Fig. 40b). As the a priori 

groups also represented the statuses of gametogenesis inducibility, the inducibility statuses 

were hence used in the subsequent description and discussion instead of a priori groups. 

Interestingly, none of the biomarkers found during either ’’non-inducible’’ or ’’inducible status’’ 

were detected in pools samples (Tab. 15). However, the mechanism of presence/absence used 

in characterizing the groups can be clearly noticed during the growth when the ’’inducible 

gametogenesis status’’ began e.g., biomarkers (#147, #167, #171) and when the 

’’spontaneously inducible status’’ was feasible e.g., biomarkers (#47, #106, #130, and #137). 

Nevertheless, the significant changes mechanism of the biomarker abundance throughout the 

samples can be represented by some biomarkers found during the last inducibility status e.g., 

#104, and #305. The special aggregation of biomarkers which was observed when the 

gametogenesis was induced spontaneously along with tidal pools samples, suggesting that 

some metabolites which released during this particular inducibility status (e.g., biomarkers: 

#224, #248, and #250) were not specifically related to the status of “spontaneously inducible 

status” and might be a result of decomposition the tissues.  
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Figure 40: Groups correspond to the three key gametogenesis-states11 in U. mutabilis during its growth. Separation was based on the metabolites (n = 330, 23% of the total 
metabolites) obtained by LC-MS analysis (positive mode) and found in the chemosphere of the defined bacterial community and of the samples of tide pools using Bray-Curtis 
dissimilarity distance. (a) CAP separation of the samples with growth corresponding to gametogenesis statuses as groups. (b) Correlations of the 110 (8%) biomarkers with the 
two CAP axes, with absolute Pearson coefficient correlation |𝒓𝒓| ≥  0.5. 

 
Table 24: Eigenvalues, canonical square correlation, and diagnostics statistics of the CAP analysis of the biomarkers obtained by LC-MS analysis (positive mode) and found in the 
chemosphere of the defined bacterial community  throughout sampling time points and of the samples of tide pools. 
  
 Constrained canonical axes Statistics 

1st axis 2nd axis Crossvalidation Permutatest 
Eigenvalue (𝜹𝜹 2) Correlation Eigenvalue (𝜹𝜹2) Correlation Misclassification error Trace stat. 1st (𝜹𝜹 2) 

0.99 0.99 0.98 0.97 6% p = 0.001 p = 0.001 

11 The definition of the inducibility statuses is found in page 66. 

Group 2 = defined community on day-14 and day-21.
Group 1 = defined community on day-7.

Group 3 = defined community on day-35 till day-49, in addition to the sample of tide pools.

a b
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Table 15: The heatmap represents the abundance of the biological mean of biomarkers shown to be of high relevance by CAP 
analysis (n = 110) over 49 days in the chemosphere of the defined bacterial community in aquaculture, in addition to the 
samples of tide pools. 
 

 
ID RT m/z 

The defined bacterial community in aquaculture on day: Samples of tide 
pools 

 

7 14 21 35 42 49 

Pool (2) Pool (5) ‘‘ Non-
inducible‘‘   

status12 

‘‘ Inducible 
status‘‘ 

‘‘ Spontaneously inducible‘‘ 
status 

a priori group 1 
 (n = 4) 

5 0.91 634.46                 
254 5.59 254.30                 
255 5.60 295.31                 
276 6.34 282.33                 

Com
m

on biom
arkers  in both a priori groups  1 and 2  (n = 32) 

16 1.99 148.13                 
17 2.00 163.16                 
18 2.00 204.20                 
20 2.02 715.48                 
21 2.02 226.19                 
23 2.04 710.52                 
24 2.08 759.51                 
25 2.09 754.56                 
28 2.12 454.8                 
58 2.54 367.30                 
65 2.65 315.24                 
77 2.85 442.40                 
81 2.85 447.34                 
108 3.18 483.18                 
109 3.18 571.23                 
110 3.18 500.43 

        111 3.18 505.38                 
112 3.18 288.34                 
113 3.19 244.31                 
114 3.19 491.26                 
139 3.48 563.43                 
176 4.11 679.52                 
196 4.28 224.17                 
198 4.29 183.14                 
307 6.66 291.26                 
309 6.69 208.21                 
312 6.69 250.23                 
313 6.71 226.23                 

12 The definition of the inducibility statuses is found in page 66. 
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314 6.73 277.16                 
315 6.74 307.27                 
319 6.77 244.24                 
320 6.77 228.25                 

a priori group 2 (n = 21) 

8 1.02 113.35                 
12 1.144 265.16                 
30 2.17 240.17                 
31 2.17 177.14                 
37 2.26 199.14                 
142 3.59 349.24                 
145 3.69 329.27                 
147 3.72 303.24                 
158 3.79 285.21                 
167 3.96 233.24                 
170 3.98 325.30                 
171 3.98 509.32                 
177 4.11 542.37                 
178 4.11 564.35                 
179 4.11 518.37                 
237 4.85 651.42                 
266 5.99 303.29                 
269 6.00 237.26                 
286 6.50 681.47                 
287 6.50 581.45                 
308 6.66 633.42                 

G
.* 2 and 3  

(n= 3) 

241 4.97 237.21                 
263 5.84 280.33                 
316 6.75 703.55                 

a priori group 3 (n = 50)  
2 0.74 255.10                 
6 0.94 130.54                 
9 1.03 114.10                 
13 1.29 151.07                 
41 2.27 207.17                 
46 2.34 347.24                 
47 2.36 263.17                 
50 2.38 241.19                 
53 2.40 261.15                 
63 2.60 209.19                 
64 2.62 289.22                 
66 2.66 329.23                 
68 2.71 242.21                 
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71 2.77 249.19                 
85 2.86 250.16                 
88 2.89 291.24                 
99 2.95 349.25                 
101 2.95 307.24                 
104 3.06 305.22                 
106 3.13 333.25                 
107 3.15 275.23                 
115 3.19 293.25                 
130 3.41 455.35 

        137 3.46 423.34                 
143 3.60 471.34                 
162 3.84 419.31                 
166 3.94 421.35                 
172 4.05 439.36                 
182 4.12 457.36                 
183 4.14 441.36                 
204 4.41 423.36                 
219 4.58 113.40                 
220 4.59 407.36                 
221 4.59 455.36                 
223 4.62 425.37                 
224 4.66 255.16                 
248 5.36 342.22                 
250 5.36 279.21                 
260 5.80 385.35                 
288 6.50 589.49                 
291 6.53 479.45                 
293 6.53 501.44                 
294 6.54 435.42                 
296 6.56 457.40                 
298 6.58 413.37                 
302 6.62 551.19                 
303 6.62 452.44                 
305 6.64 369.35                 
306 6.65 141.12                 
311 6.69 347.37                 

 
Color shades are representative of the biomarker abundance throughout the sampling time (row). * G: group. The 
darker the color, higher the abundance. The shaded area in yellow represents the common biomarkers found in two 
a priori groups. 
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Unlike the tripartite community in bioreactor cultures, both constrained (PCA) and 

unconstrained (CAP) ordination chemometric analyses revealed the same separation, which can 

be correlated to the inducibility status. Thus, a biomarker obtained by LC-MS analysis could be a 

considerable indicator to predict the time of the various statuses of gametogenesis inducibility 

of U. mutabilis in aquacultures. In addition, these excreted biomarkers might indicate (1) the 

defense and competition mechanisms against other organisms including diatoms and protists, 

which were common contaminants in non-sterile aquacultures (Figs. 35a-d), or (2) the 

symbiotic interaction between U. mutabilis and its associated bacteria. Therefore, the 

waterborne metabolites found in the chemosphere of both the defined and tripartite 

communities can be used as sensitive and valuable proxies to determine the status of the 

culture including the inducibility status of gametogenesis in U. mutabilis.  
 

3.6.4. Comparison between biomarkers obtained by LC-MS analysis in the chemosphere of the 
defined bacterial community in aquacultures and of the tripartite community in laboratory 
bioreactors 
 

A search for the common biomarkers released into the chemosphere of (1) the tripartite 

community in bioreactors, and (2) the defined bacterial community in aquacultures was 

performed. Changes in the inducibility statuses of gametogenesis in U. mutabilis, during its 

growth, were very similar in both communities. Thus, the comparison was being based on the 

common biomarkers that were excreted into the chemosphere during the growth of U. 

mutabilis corresponding to the statuses of gametogenesis inducibility (Tab. 16). 
 

Table 16: Common biomarkers obtained by LC-MS analysis (positive mode) and found in the chemosphere of defined and 
tripartite communities in aquaculture and bioreactor, respectively. Here are shown only the biomarkers which contributed 
significantly to the CAP axes (Pearson correlation coefficient |𝒓𝒓| ≥ 0.3). 
 

Common biomarkers Status of gametogenesis inducibility of 
 U. mutabilis in 

m/z RT ID in the defined 
bacterial community  

ID in the tripartite 
community 

The defined bacterial 
community  

(aquaculture) 

The tripartite 
community 
(laboratory 
bioreactors) 

208.21 6.69 309 245 non. induc. non. 

209.19 2.60 63 249 spont. spont. 

244.24 6.77 319 376 non. induc. induc. 
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244.31 3.19 113 377 non. induc. non, induc. 

285.21 3.79 158 559 induc. non. induc. 

291.24 2.89 88 595 spont. spont. 

303.29 5.99 266 653 induc. non. induc. 

307.24 2.95 101 668 spont. spont. 

329.27 3.69 145 754 induc. non. 

367.30 2.54 58 895 non. induc. spont. 

441.36 4.14 183 1107 spont. spont. 

452.44 6.62 303 1141 spont. non. 

455.36 4.59 221 1151 spont. spont. 

457.40 6.56 296 1156 spont. induc. 

479.45 6.53 291 1193 spont. induc. 

589.49 6.50 288 1390 spont. induc. 

non: ‘‘non-inducible‘‘, induc: ‘‘inducible‘‘, spont: ‘‘spontaneously inducible‘‘ status. 

 

Interestingly, the common biomarkers between the two communities were detected in the 

chemosphere at the same gametogenesis inducibility status of U. mutabilis, suggesting these 

biomarkers could be used as a sensitive proxy to predict the respective growth phase in the 

presence of its associated bacteria despite of variations in culture condition (i.e., sterile and 

non-sterile conditions). These pronounced biomarkers that were found in the chemosphere of 

both communities indicate that Ulva has really conditioned its chemosphere much more than 

other microorganisms in the defined bacterial community. Further investigation is needed to 

elucidate the structures of these biomarkers. The additional biomarkers that were found in the 

chemosphere of the defined bacterial community  but not in the tripartite community might be 

a result of the non-sterile condition in aquacultures, where U. mutabilis needs to compete with 

other microorganisms for e.g., nutrition and to prevent biofouling on algal surface (Figs. 35a-d). 

Conversely, the biomarkers which were only detected in the chemosphere of the tripartite 

community might be utilized or decomposed by the other organisms found in the non-sterile 

defined bacterial community e.g., diatoms, and protists.  
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3.6.5. Metabolite profiling in the chemosphere of the defined bacterial community using GC-
MS analysis 
 

349 waterborne metabolites were obtained by GC-MS analysis and quantified by Met-IDEA. 98 

metabolites out of 349 (28%) were identified by AMDIS, and the remaining 251 (72%) 

metabolites are still unknown. The identified metabolites are listed in table 17 to show their 

conservation over sampling points and in the natural pools as well. Mainly, the dominant Ulva-

pools were pools (1) and (2). However, pools (3) and (5) were included to see the difference, if 

any existed, between the dominant and non dominant Ulva-pools. More details about the 

environmental factors, i.e., temperature, pH, salinity, size and depth of these pools are 

mentioned in material and method. The heatmap (Tab. 17) was divided based on the sampling 

time points and subdivided further based on the status of gametogenesis inducibility of U. 

mutabilis in the defined bacterial community (Tab. 13). The inducibility statuses were used in 

order to facilitate the comparison purpose between the chemosphere of the defined bacterial 

community and tripartite community as the gametogenesis inducibility of U. mutabilis in both 

communities were very similar.  
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Table 17: The heatmap represents the abundance of identified metabolites (n = 98, 28% of the total metabolites) over 49 days in the chemosphere of the defined bacterial 
community (three statuses of gametogenesis inducibility) and in natural samples (four pools). Metabolites are grouped according to the main substance classes. 
 

ID Waterborne metabolites 

classes 

Samples of the defined bacterial community  collected on day- Natural samples collected from 

7 14 21 28 35 42 49 
Pool (1) Pool (2) Pool (3) Pool (5) 

Non* ‘‘Inducible status‘‘ ‘‘Spontaneously inducible status‘‘  
24 Unidentified MUFA ?? 

Fatty acids (40%
) 

                      

47 Unidentified PUFA ??                   

183 Unidentified PUFA ??                   

190 Tetradecanoic acid ?                   

192 Unidentified SFA  ??                   

200 Unidentified SFA ??                   

211 Pentadecanoic acid ?                   

223 Unidentified PUFA ??                   

224 Hexadecatrienoic acid  ?                   

226 9-Hexadecenoic acid ?                   

228 Unidentified MUFA ??                   

230 Hexadecanoic acid ?                   

233 Unidentified PUFA ??                   

234 Unidentified PUFA ??                   

237 Unidentified PUFA ??                   

238 Unidentified PUF ??                   

239 Unidentified PUFA ??                   

245 Unidentified MUFA ?                   

246 Unidentified MUFA ?                   

249 Heptadecanoic acid ?                   

253 Unidentified SFA ??                   

258 9,12,15-Octadecatrienoic acid                     

260 9,12-Octadecadienoic acid                    

262 9-Octadecenoic acid                    
265 Octadecanoic acid                    
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268 Unidentified PUFA ??                   

269 Unidentified PUFA ??                   

270 Unidentified PUFA ??                   

292 Unidentified PUFA ??                   

293 Unidentified PUFA ??                   

302 Unidentified PUFA ??                   

303 Unidentified SFA ??                   
307 Unidentified PUFA ??            
310 Unidentified SFA ??                   

311 Unidentified PUFA ??                   

322 Unidentified MUFA ??                   

326 Tetracosanoic acid ?                   

329 Unidentified PUFA ??                   

335 Unidentified PUFA ??                   
38 Proline 

Am
ino acids (8%

) 

                      
55 N-Acetyl-L-serine ?                   
58 Glycine                   

117 Pyroglutamic acid                   
136 Glutamic acid                    
140 Anthranilic acid  ?                   

191 Unidentified AA ??                   
229 Tyrosine                        

7 Unidentified sugar (C4) ?? 

Sugars (13%
) 

                      
48 Glycerol                    
64 Glyceric acid ??                   
96 Threose ?            

119 Threonic acid                     
123 Unidentified sugar (C4 ) ??                   
148 Glucose                   
150 Xylose                   
153 Ribose                    
197 Idose ?                   
254 Mannitol                    

145 
 



Results and Discussion 

308 Melezitose ?                   
317 Pentitol                        

330 Unidentified sterol ?? 

Sterols (5%
) 

                  

331 Cholesterol                    

334 Unidentified sterol ??                   
341 β-Sitosterol              
346 Campesterol ?                       

6 2-Methyl-2-butenedioic acid ? 

O
thers (34%

) 

                  

28 Monomethylphosphate ?                   

36 Nonanoic acid ?                   

41 4-Hydroxybutanoic acid                    

52 Suberic acid                   
56 Threonic acid-1,4-lactone ?            
60 Succinic acid                   

67 Picolinic acid ?                   

70 Maleic acid                    
73 Nonanoic acid ?                   
84 1,3-Bisethynylbenzene ??                   
85 Glutaric acid                    
88 2,4-Bishydroxybutanoic acid ??                   
91 Malic acid                    

113 Coumaric acid ??                   
122 3,5-Di-tert.-butyl-4-hydroxybenzoic acid ethyl ester ??                   
127 2-Methyl-2-butenedioic acid                    
131 Triethanolamine ??                    
146 Hydroxybenzoic acid                   
159 Pentonic acid ?                   
169 Glycerol-3-phosphate ??                   
171 Galactono-1,4-lactone?                   

176 Phosphine, methyl-(2,4,6-triisopropylphenyl) ??                   
186 Coumaric acid ?                   
187 n-Nonadecanoic acid methyl ester ??                   
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202 Squalene                   
212 Phosphoric acid ?                   
217 Galactonic acid ??                   
251 1-Octadecanol                    
263 Dehydroascorbic acid dimer; L(+)-Ascorbic acid {BP} ??                   
272 Galactosylglycerol ?                    
305 1-Monohexadecanoylglycerol ?                   
309 Adenosine                        
 
Color shades are representative of the abundance of each metabolite throughout the samples and sampling time points (row). The darker the higher the abundance of the 
metabolite. * ’’non inducible status’’ (non induc.). If the reverse match score of the library identification (i.e., NIST, Golm, MPI, and Metabo) was lower than 800 and no standard 
was available, the metabolite identification is tagged with a “?”, and “??” if the score was lower than 700. 
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Throughout the 98 identified exo-metabolites, five classes can be seen in the heatmap 

(Tab. 17), Fatty acids (40% of the total identified metabolites), amino acids (8%), sugars 

(13%), sterols (5%) and all other metabolites (34%) were combined together. In general, the 

main difference between the chemosphere of the defined bacterial community and the 

natural samples is the abundance of the metabolites, which was higher in the defined 

bacterial community than in natural pools. For the scope of this chapter, a comparison 

between the chemosphere of the defined and tripartite communities in aquaculture and 

bioreactor, respectively, was addressed in subsequent sections. 
 

Fatty acids (FAs) 

(1) 40% of the total identified waterborne metabolites were FAs in the chemosphere of the 

defined bacterial community (Tab. 17) whereas only 19% FAs were detected in the 

chemosphere of the tripartite community (Tab. 9). 

(2) Excreted FAs varied between saturated (#190, #230, and #265), monounsaturated (#24, 

and #226), and polyunsaturated (#224, and #260) fatty acids in the chemosphere of the 

defined bacterial community (Tab. 17) as well as in the tripartite community (Tab. 9). 

(3) PUFAs were more pronounced in the chemosphere of the defined bacterial community 

(54% of the total detected FAs), whereas in the chemosphere of the tripartite community 

PUFAs represent only 16% of the total detected FAs and the dominant FAs were the SFAs 

approaching 69%. 

(4) FAs (#258, #260, #262, and #268) were detected in the chemosphere of the defined 

bacterial community (Fig. 41) and represent an interesting pattern of C18 FAs (18:3 n-3, 18:2 

n-6, 18:1, 18:0, respectively). Such pattern was not detected in the tripartite community. 

(4) Interestingly, no complete depletion of FAs could be noticed in the chemosphere of both 

communities over 49 days. 
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Figure 41: TIC-Chromatogram of GC-MS analysis, containing TMS-derivatives of C18 fatty acids found in the chemosphere of the defined bacterial community on day-21. 
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Amino acids (AAs) 

A significant difference was noticed between the total detected AAs in the chemosphere of 

the tripartite community (22%) (Tab. 9) and in the defined bacterial community (8%). 

 
Sugars 

(1) 13% of the total identified metabolites were detected as sugars in the chemosphere of the 

defined bacterial community while only 8% were found in the tripartite community.  

(2) An accumulation of sugars was observed in the chemosphere of both communities during 

the time of spontaneous gametogenesis. 

 
Sterols  

Only one sterol whose structure is unknown was detected in the chemosphere of the 

tripartite community. However, 5% of the total identified metabolites in the chemosphere of 

the defined bacterial community were identified as sterols. 

 
Other metabolites 

Many different classes were combined in this group (i.e., organic acids and their derivatives, 

fatty acids methyl ester, organophosphorus compounds, etc.). 

(1) Dicarboxylic acids were pronounced metabolites within this substances class and 

represented 21% in the chemosphere of the defined bacterial community, while 30% 

dicarboxylic acids were found in the chemosphere of the tripartite community.  

(2) 2,4,6-Tribromophenol was detected in the chemosphere of the tripartite community, but 

not in the defined bacterial community . 

  
Unknown metabolites 

Besides the 98 identified metabolites, 251 (72%) of pronounced unknown metabolites were 

found in the chemosphere of the defined bacterial community compared to 323 unknown 

metabolites in the chemosphere of the tripartite community.  
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The high percentage of free fatty acids in the chemosphere of the defined bacterial 

community compared to that of the tripartite community in bioreactors might reflect the 

defense mechanism of such molecules taking place within the defined bacterial community as 

reported for diatom biofilm by Jüttner (2001). DellaGreca et al. (2010) reported that the 

freshwater unicellular green alga Chlorella vulgaris releases fatty acid into the culture medium. 

This result is in consistent with the result of the present study (Fig. 41) due to the fatty acids 

released by C. vulgaris so-called chlorellin are mixture of C18 fatty acids: stearic, oleic, linoleic, 

and linolenic acids (DellaGreca et al. 2010). Chlorellin at low concentration stimulated the 

growth of both algae: C. vulgaris and Pseudokirchneriella subcapitata (green microalga). But 

when the concentration was higher than 6.5 mg.L-1, chlorellin produced inhibitory effects on 

both species as a result of autoxic action (DellaGreca et al. 2010). Moreover, Desbois and Smith 

(2010) addressed a comprehensive overview of the antimicrobial potency and anti-

inflammatory properties of various saturated and unsaturated free fatty acids including C18 

fatty acids. They were shown to have broad spectrum of bioactivities such as antimicrobial 

activity (Benkendorff et al., 2005; Galbraith and Miller, 1973), anti-algal activity (Kakisawa et al., 

1988; Alamsjah et al., 2009). In addition, Liaw et al. (2004) investigated the infochemical activity 

of fatty acids to regulate the bacterial swarming of Proteus mirabilis. Similar effects might 

hence happen to the motile marine bacteria in the defined bacterial community in addition of 

the potential defense mechanism.  

However, due to the fact that these C18 fatty acids were not detected in the tripartite 

community (laboratory bioreactors), furthermore the defined bacterial community in 

aquaculture was not under sterile condition. One can argue that polyunsaturated fatty acids, 

notably C18 FAs, might be released by other organisms as well.  

A further explanation is that (1) U. mutabilis does not need to release defense molecules 

under sterile condition i.e., bioreactor cultures in contrast to non-sterile condition like 

aquacultures, where Ulva requires to activate a defense mechanism to compete with and 

defend against other organisms. (2) The exo-metabolites reflect sometime the biosynthesis of 

such molecules in the organism, thus the C18 FAs which were found in the chemosphere of the 

defined bacterial community , reflect on the other hand the ability of U. mutabilis to produce 
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these fatty acids in vivo. This finding was proven earlier (cf. chapter 3.1) in addition it is 

consistent with the result found by Pereira et al. (2012), who concluded that linoleic acid (LA; 

C18:2 n-6) was the main PUFA among most chlorophytes, and Ulva sp. was the only exception, 

in which higher percentages of ALA (16%) was detected (Pereira et al., 2012). Moreover, ALA 

(18:3, n-3) was considered as a characteristic PUFA of the Ulvales (Khotimchenko et al., 2002; 

Kumari et al., 2010). (3) even more interesting, the results of DellaGreca et al. (2010); and 

Fergola et al. (2007) demonstrated that the concentration of charollin (a mixture of C18 fatty 

acids) is much higher (1.90 mg.L−1) in the mixed culture (i.e., C. vulgaris and P. subcapitata) than 

in the single species culture of C. vulgaris (0.4 to 0.85 mg.L−1). This result supported the idea 

that C18 fatty acids were not detected in the sterile tripartite community due to LOD. Further 

studies are needed to investigate the ability of U. mutabilis to release these C18 fatty acids e.g., 

upon stress. 

In addition, the chemosphere of the defined bacterial community was distinct from the 

chemosphere of the tripartite community by the sterolic substances. However, sterols were 

found in low abundance (only 5%) in the chemosphere of the defined bacterial community 

compared to other chemical classes. Guschina and Harwood, (2006) reported that sterols 

usually undergo an intensive abiotic degradation; this might explain their low abundance in the 

chemosphere of defined bacterial community (aquacultures) and their absence in the 

chemosphere of the tripartite community (bioreactors). Ultimately, the comparison between 

the waterborne metabolites of the defined bacterial community in aquaculture and of the 

tripartite community in bioreactor revealed that:  

(1) New class and compounds detected in the chemosphere of the defined bacterial community 

such as sterols and C18 fatty acids were not found in the tripartite community. On the other 

hand, some metabolites were pronounced only in the chemosphere of the tripartite community 

i.e., alcohols and  2,4,6-tribromophenol. 

(2) The common classes, found in the chemosphere of both communities, were detected in 

higher abundance in the defined bacterial community than in the tripartite community e.g., FAs 

(40% in the defined bacterial community vs. 21% in the tripartite community) and sugars (13% 
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in the defined bacterial community vs. 8% in the tripartite community). Therefore, scaling up 

the cultures is recommended in order to obtain elevated amount of the exo-metabolites.  

The large numbers of unknown metabolites (251, 72% of the total metabolites) released into 

chemosphere of the defined bacterial community is supposed to play a crucial role in the 

relationship between the model system organisms and their environment. Therefore, a 

discriminant analysis was needed in order to emphasize the potential contribution of such 

unknown as well as the known metabolites in chemosphere of U. mutabilis and its associated 

bacteria under unsterile condition. 

 
3.6.6. Determined biomarkers in the chemosphere of the defined bacterial community: the 
known unknowns 
 

The CAP analysis was applied on 349 waterborne metabolites. The a priori groups were 

generated based on the time spent in each status of gametogenesis inducibility of U. mutabilis 

in the defined bacterial community (Tab. 13). Thus, the a priori groups were:  

Group 1: the defined bacterial community on day-7, 

Group 2: the defined bacterial community between day-14 till day-21, 

Group 3: the defined bacterial community between day-35 till day-49, 

Group 4: All tidal pools samples (i.e., 1, 2, 3, and 5). 

These groups were separated as shown in figure 42a with misclassification of 2% (Tab. 18), 

meaning that the groups were extremely distinct in the multivariate space (Fig. 42). The two 

axes were very efficient in separating the groups (high eigenvalues) and these axes were highly 

related to the differences between the groups (high square correlation 𝛿𝛿1
2= 0.94 and  𝛿𝛿2

2  = 0.82) 

(Tab. 18). Furthermore, the permutation test confirmed that the groups had significant 

different locations in the multivariate space (P = 0.001, with 999 permutations). All biomarkers 

with Pearson correlation coefficient of |𝑟𝑟|  ≥  0.5 (n = 100, 29% of the total  metabolites) were 

plotted in figure 42b to investigate their contribution to separates the a priori groups based on 

the statuses of gametogenesis inducibility in U. mutabilis in the defined bacterial community.  
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Figure 42: Groups correspond to the gametogenesis-state in Ulva during its growth and to tidal pools samples. Separation was based on the metabolites (n = 349), obtained by 
GC-MS analysis and found in the chemosphere of the defined bacterial community and tidal pools samples using Bray-Curtis dissimilarity. (a) CAP separation of the samples with 
statuses of gametogenesis inducibility and the samples of tide pools as groups. (b) Correlations of the 100 biomarkers (29% of the total metabolites) with the two CAP axes, with 
absolute Pearson coefficient correlation |𝒓𝒓| ≥  0.5. 
 
Table 18: Eigenvalues, canonical square correlation, and diagnostics statistics of the CAP analysis of the biomarkers obtained by GC-MS analysis and found in the chemosphere of 
the defined bacterial community and the samples of tide pools throughout sampling time points and tidal pools.  
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1st axis 2nd axis Crossvalidation Permutatest 
Eigenvalue (𝜹𝜹 2) Correlation Eigenvalue (𝜹𝜹2) Correlation Misclassification error Trace stat. 1st (𝜹𝜹 2) 

0. 97 0. 94 0. 91 0. 82 2% p = 0.001 p = 0.001 
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It can be clearly seen that the 100 biomarkers were characterizing the a priori groups the 

best, resulting in two types of biomarkers: characteristic and common biomarkers.  
 

Table 19: Model ion and retention time of biomarkers found in the chemosphere of the defined bacterial 
community over 49 days. Shown here all biomarkers (n = 100) which contributed significantly to the CAP axes  (|𝒓𝒓| ≥
𝟎𝟎.𝟓𝟓). 

 
A priori 
groups 

Status of gametogenesis 
inducibility13 in U. mutabilis ID Biomarkers* Model 

Ion 
RT 

(min) 

A priori 
group 1  
(n =4) 

‘‘Non-inducible gametogenesis 
status‘‘ 

116 Unknown 205.2 10.99 

159 Pentonic acid ? 277.2 12.41 

300 Unknown 149 17.68 

311 Unidentified PUFA ?? 105.1 18.24 

Common biomarkers found in a priori groups 1 
and 2 
(n =4) 

276 Unknown 353.3 16.53 

280 Unknown 128.1 16.72 

281 Unknown 128.1 16.74 

282 Unknown 111 16.76 

A priori group 2 (n = 24) 

‘‘Inducible gam
etogenesis status‘‘ 

68 Unknown 184 9.38 

92 Unknown 179.1 10.19 

95 Unknown 103.1 10.30 

120 Unknown 199.1 11.14 

132 Unknown 280.2 11.96 

133 Unknown 217.1 11.50 

135 Unknown 109.1 13.46 

139 Unknown 123.1 13.77 

148 Glucose 280.2 11.96 

189 Unknown 109.1 13.46 

198 Unknown 108.1 14.95 

227 Unknown 309.2 14.72 

228 Unidentified MUFA ?? 311.2 14.75 

234 Unidentified PUFA ?? 108.1 14.95 

253 Unidentified SFA ?? 143.1 15.59 

254 Mannitol  319.2 15.60 

271 Unknown 109 16.27 

272 Galactosylglycerol ?  204 16.29 

277 Unknown 194.1 16.55 

289 Unknown 194.1 17.04 

309 Adenosine  236.1 18.10 

313 Unknown 204.1 18.49 

337 Unknown  204.1 21.06 

345 Unknown 129.1 22.77 

Common biomarkers found in a priori groups 2 61 Unknown 198.1 9.17 

13  The definition of the inducibility statuses is found in page 66. 
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and 3 
(n = 2) 137 Unknown 235.1 11.65 

A priori group 3 (n = 37) 

‘‘Spontaneously gam
etogenesis status ‘‘ 

2 Unknown 115.1 6.59 

30 Unknown 142.1 7.92 

31 Unknown 166.1 7.99 

36 Nonanoic acid ? 117 8.25 

38 Proline 186.1 8.32 

39 Unknown 217.1 8.34 

54 Unknown 138.1 8.95 

59 Unknown 187.2 9.14 

64 Glyceric acid ?? 189.1 9.26 

67 Picolinic acid ? 196.1 9.33 

90 Unknown 213 10.14 

98 Unknown 211.1 10.41 

106 Unknown 199.1 10.77 

108 Unknown 225.1 10.80 

118 Unknown 184.1 11.04 

128 Unknown 283.2 11.35 

129 Unknown 111 11.38 

143 Unknown 142.1 11.83 

145 Unknown 137.1 11.88 

147 Unknown 103.1 11.93 

155 Unknown 198.1 12.20 

167 Unknown 117.1 12.71 

177 Unknown 117.1 12.96 

181 Unknown 247.1 13.16 

182 Unknown 253.1 13.21 

185 Unknown 294.2 13.28 

186  Coumaric acid ? 308.2 13.33 

192 Unidentified SFA ?? 103.1 13.55 

210 Unknown 179.1 14.13 

214 Unknown 179.1 14.33 

220 Unknown 284.1 14.46 

222 Unknown 321.2 14.54 

229 Tyrosine 179.1 14.77 

231 Unknown 179.1 14.84 

275 Unknown 204.1 16.47 

294 Unknown 317.2 17.30 

342 Cholesterol 129.1 21.78 

Common biomarkers found in a priori groups 3 
and 4 

(n = 25) 

12 Unknown 142.1 7.09 

14 Unknown 142.1 7.14 

27 Unknown 187.1 7.78 
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29 Unknown 189.1 7.87 

46 Unknown  179.1 8.63 

73 Nonanoic acid ? 117 9.62 

76 Unknown 151.1 9.70 

78 Unknown 149.1 9.73 

105 Unknown 103.1 10.76 

113 Coumaric acid ?? 293.2 10.90 

130 Unknown 243.2 11.40 

146 Hydroxybenzoic acid 223.1 11.89 

152 Unknown 237.1 12.09 

153 Ribose 103.1 12.13 

178 Unknow 235.2 12.99 

191 Unidentified AA ?? 179.1 13.53 

212 Phosphoric acid ? 299.3 14.25 

215 Unknown 149 14.33 

218 Unknown 117.1 14.44 

244 Unknown 112.1 15.24 

265 Octadecanoic acid 117 16.01 

266 Unknown 199.1 16.04 

287 Unknown 239.2 16.99 

315 Unknown 129.1 18.66 

328 Unknown 103.1 19.37 

A priori group 4 (= samples of tide pools: (1), 
(2), (3), and (4)) 

(n =3) 

100 Unknown 327 10.49 

122 3,5-Di-tert.-butyl-4-hydroxybenzoic acid 
ethyl ester ?? 263.2 11.20 

245 Unidentified MUFA ? 149 15.26 
Common biomarkers found in a priori groups 1 

and 4 
(n = 1) 

307 Unidentified PUFA ?? 105.1 17.97 

 
* SFA: saturated, MUFA: monounsaturated, PUFA: polyunsaturated fatty acid, AA: amino acid. If the reverse match 
score of the library identification (i.e., NIST, Golm, MPI, and Metabo) was lower than 800 and no standard was 
available, the metabolite identification is tagged with a “?”, and “??” if the score was lower than 700. 

 
The visualization of the characteristic and common biomarkers among a prior groups 

resulting from the CAP analysis (Fig. 42) revealed that the biomarkers, which characterized 

the inducible reproductive state (4 biomarkers) were much fewer than those characterizing 

the growth phases when the statuses of ’’inducible gametogenesis’’ and ’’spontaneously 

inducible gametogenesis’’ were observed. Most biomarkers (approximately 92 out of 100) 

were found to characterize the growth phase when gametogenesis was ’’inducible’’ and 

’’spontaneously inducible’’, either as characteristic or as common biomarkers found during 

both inducibility statuses. Only three biomarkers characterized the tidal pools samples. 
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Surprisingly, sugars and amino acids did not contribute to the characterization of the early 

growth phase when gametogenesis was ’’non-inducible’’. Unsaturated fatty acids were 

remarkable biomarkers during the time of ’’inducible status’’ compared to growth phases 

before and after the ’’inducibility status’’ (Tab. 19). However, the low molecular weight 

carboxylic acids were pronounced biomarkers during the growth when the spontaneously 

inducible status’’ (Tab. 19). The contribution of the 100 biomarkers to the characterization of 

the growth phases corresponding to the gametogenesis inducibility statuses depended 

either on the mechanism of (1) presence/absence or (2) the significant changes of the 

abundance over groups. For instance, biomarkers #116, and #234 were only detected 

respectively during the time of the ’’non-inducible’’ and ’’inducible’’ statuses (Figs. 43a,c), 

while biomarkers #228, #36, #186, and #229 exhibited significant changes in their 

abundance over time (Figs. 42b,d-f).  

Interestingly, the unknown biomarkers provided an important contribution in 

characterizing the growth phases based on gametogenesis inducibility statuses as ca. 70 out 

of 100 biomarkers resulting from the CAP analysis are still unknown. Even more interesting, 

only the unknown biomarkers were found in the chemosphere of both defined bacterial and 

the tripartite communities (Tab. 20), providing the probability to use these common 

unknown biomarkers to indicate the growth phases of U. mutabilis and subsequently the 

status of gametogenesis inducibility under any condition (i.e., sterile or non-sterile 

condition).  
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Figure 43: The abundance trend of selected biomarkers as a function of time corresponding to the statuses of gametogenesis inducibility 14 in U. mutabilis in the defined bacterial community. (a) 
#116: unknown biomarker characterizing the time taken for ’’non-inducible status’’. (b,C) #228: unidentified MUFA, and #234: unidentified PUFA characterizing the time taken for ’’inducible 
status’’. (d-f) #36: nonanoic acid, #186: trans-p-coumaric acid, and #229: tyrosine characterizing the time spent in ’’spontaneously inducible status’’. Star indicates the status of gametogenesis 
inducibility characterized by the biomarker. 

14 Definition of the inducibility statuses is found in page 66.  

a b c

d e f
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Table 20: Unknown biomarkers obtained by GC-MS analysis and found in the chemosphere of both defined bacterial and 
tripartite communities in bioreactor and aquaculture. Here shown only the biomarkers shown to be of high relevance by CAP 
analysis. 
 

Common biomarkers Status of gametogenesis inducibility in U. mutabilis 

RT 
ID in the defined 

bacterial community  

ID in the tripartite 

community 
The defined bacterial community  

The tripartite 

community 

11.65 137 251 ‘‘Inducible‘‘/ ‘‘spontaneously 
inducible‘‘ ‘‘Inducible‘‘ 

12.09 152 263 ‘‘Spontaneously inducible‘‘ ‘‘Inducible‘‘ 

14.46 220 226 ‘‘Spontaneously inducible‘‘ ‘‘Spontaneously 
inducible‘‘ 

7.99 31 237 ‘‘Spontaneously inducible‘‘ ‘‘Spontaneously 
inducible‘‘ 

 

Among the a priori groups shown in figure 42, the biomarkers distribution reflected the 

duration of each inducibility status of gametogenesis in U. mutabilis. Within the scope of this 

chapter, the comparison between metabolic profiling in the tripartite community and the 

defined bacterial community using GC-MS analysis revealed that the growth corresponding to 

the status of gametogenesis inducibility in U. mutabilis had and influence on the chemosphere 

structure of both communities. Nevertheless, GC-MS is limited to volatile, thermally stable, and 

energetically stable compounds (Lei et al., 2011). It is less adjustable to large, highly polar 

metabolites due to their poor volatility. Some metabolites meet GC-MS requirement either by 

their native state e.g., short-chain alcohols, acid, esters and other metabolites or after 

derivatization e.g., primary metabolites, sterols and fatty acids. Due to the rapid turnover of 

primary metabolites, sugars were not shown to contribute in characterization of the growth 

when gametogenesis was not inducible in both communities (i.e., tripartite community and the 

defined bacterial community) although they play an important role in the community as carbon 

sources have to be provided by the macroalgae for feeding the heterotrophic bacteria. Fatty 

acids, notably MUFAs and PUFAs were remarkable biomarkers that discriminated between the 

growth phases corresponding to the inducibility statuses of gametogenesis in U. mutabilis 

under non-sterile conditions (i.e., the defined bacterial community) as they characterized 

significantly the phases when gametogenesis was either ’’non-inducible’’ or ‘’inducible’’. In 

contrast, MUFAs and PUFAs did not contribute to separate the growth phases in tripartite 

community. This finding might suggest the function of unsaturated fatty acids as molecular 

defense. 2,4,6-tribromophenol characterized the time when the spontaneous gametogenesis 
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was feasible in tripartite community, but it was not detected overall in the chemosphere of the 

defined bacterial community. As the defined bacterial community was non-sterile, it is 

suggested that tribromophenol underwent biodegradation process, which is in agreement with 

Aguayo et al. (2009), who reported the ability of bacterial communities in a lake to degrade 

tribromophenol. 

In summary, metabolite profiling provided a preliminary understanding of the chemosphere 

structure during the changes of the growth and life cycle of U. mutabilis when grown with its 

associated bacteria Roseobacter sp. and Cytophaga sp. 
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Conclusion 

The purpose of my PhD project was to investigate the chemosphere of the tripartite 

community consisting of Ulva mutabilis and its associated bacteria: Roseobacter sp. and 

Cytophaga sp. Therefore, I conducted the non-targeted metabolomic analysis to understand the 

structure of the chemosphere during the life cycle of U. mutabilis when grown with its 

associated bacteria. As polyunsaturated aldehydes (PUAs) play a crucial role in extracellular 

signalling between organisms and in chemical defense mechanism, I specifically performed the 

targeted metabolomic analysis to survey PUAs potential production in Ulva spp. collected at 

various sampling sites in the lagoon of the Riau Formosa (Portugal).  

The survey of PUAs allowed me along with morphogenetic and phylogenetic analyses to 

reveal its chemotaxonomic significance. Only sea lettuce-like algae produced elevated amounts 

of PUA, whereas tube-like species did not release these compounds upon cell damage. 

Although PUAs were not determined in the growth medium in this study, they might affect the 

population dynamics of the phytoplankton, grazers as well as the microbial community during 

e.g., bloom events upon release by Ulva. Because of the general importance of PUAs in 

chemical ecology, the biosynthetic pathway was investigated in detail. Interestingly, Ulva can 

produce 2,4-decadianal via the octadecanoid and eicosapentaenoic pathway catalyzed via a 9-

lipoxgenase/hydroperoxide-lyase and 11-lipoxgenase/hydroperoxide-lyase, respectively. Ulva 

uses hence the whole set of polyunsaturated fatty acids upon cell damage. The 

lipoxygenases/lyase mediated depletion of polyunsaturated fatty acids might jeopardize the 

commercial value of the algal biomass in land based aquacultures. Thus, it is suggested to 

consider this additional criterion for selecting the appropriate Ulva species. Here, U. mutabilis 

might be selected as feedstock to be cultivated under controlled condition to increase the 

concentration of a given product (e.g., PUFAs) in biomass production.  

My results confirmed that U. mutabilis, only when grown with its associated bacteria, passes 

through three stages of life cycle. These stages are defined based on the inducibility status of 

gametogenesis: ’’non-inducible status’’: young germling, ’’inducible status’’: when 

gametogenesis is inducible in thalli upon removal the sporulation inhibitors and ’’spontaneously 

inducible status’’: mature thalli. Thus, I hypothesize that: 
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‘‘The chemosphere of the tripartite community changes throughout the growth phases of the 

macroalgae and biomarker of this exometabolome can be used to predict changes in the status 

of gametogenesis inducibility during the life cycle” 
 

Over the growth phases, diverse metabolites and substance classes were released into the 

chemosphere including fatty acids, sugars, amino acids, and many other primary metabolites, in 

addition to the secondary metabolites. Although the axenic unialga U. mutabilis excreted 

metabolites into the growth media during the lag growth phase, but these metabolites did not 

undergo marked metabolic turnover and accumulated as a result over time. These results 

indicate that the associated bacteria influenced the excretion of algal metabolites and might 

reflect in turn the chemically mediated interaction between U. mutabilis and its symbiotic 

bacteria. 

My research provides novel information about the chemosphere and its dynamics. The life 

cycle of U. mutabilis, defined by the inducibility status of the gametogenesis, is one of the 

essential factors influence the dynamics of the metabolites excretion into the chemosphere. 

Most of the metabolites were shown to be secreted into the chemosphere one week before the 

onset of spontaneous gametogenesis onwards. Whether these metabolites have an ecological 

relevance is not yet clear, further investigations with fractionation extracts might uncover their 

possible ecological role.  

Scaling up the cultures in near-field experiment enabled me to detect some metabolites in the 

chemosphere of tripartite community such as C18:n fatty acids, which were not detected under 

the laboratory condition. However, conducting the metabolic survey under controlled 

laboratory conditions helped to conserve some metabolites, for instance 2,4,6-tribromphenol, 

from the decomposition via abiotic and biotic factors which were highly variable in field-near 

experiment. These identified biomarkers might play a crucial role in chemical-mediated 

processes within the chemosphere.  I, therefore, recommend conducting algal metabolic survey 

under controlled laboratory conditions in addition to the field-near conditions in order to assess 

the metabolite profiling in a broad sense. 

The combination between different instrumental analyses along with the chemometric data 

analysis shed light on potential biomarkers can be utilized in the future studied to predict the 
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life cycle of U. mutabilis under any cultivation condition, when all the morphogenetic and 

growth factors are available. This will help to maintain U. mutabilis in the vegetative stage as 

long as possible, particularly, in land based aquaculture. Thus, I propose that these biomarkers 

can be used to determine the time when the sporulation inhibitors should be added into the 

growth medium of the tripartite community and so the spontaneous gametogenesis in Ulva will 

be arrested. 

Taking all this together, future research will be needed for 

- Determination PUAs in the medium and testing their ecological relevance in structuring 

the microbiome. 

- Structure elucidation of biomarkers, which were detected in the tripartite community 

under all the cultivation conditions conducted in this study, and testing them in bioassay 

to prove that these biomarkers can be used as a sensitive proxy to determine the 

change of the community, and/or the algal life cycle. 
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5.1. Chemicals and consumables 
5.1.1. Analyses of Polyunsaturated aldehydes (PUAs) and polyunsaturated fatty acids (PUFAs) 

All chemicals were purchased from Sigma-Aldrich (Taufkirchen, Germany) and VWR 

(Darmstadt, Germany). UHPLC-grade methanol, acetonitrile, water, and formic acid were 

obtained from Biosolve (Valkenswaard, Netherlands). Deuterium labeled fatty acids, 

5Z,8Z,11Z,14Z-eicosatetraenoic-5,6,8,9,11,12,14,15-d8 acid ([2H8]-ARA), 5Z,8Z,11Z,14Z,17Z-

eicosapentaenoic-19,19,20,20,20-d5 acid ([2H5]-EPA), 9Z,12Z-octadecadienoic-9,10,12,13-d4 acid 

([2H4]-LA), 5,8,11,14-eicosatetraynoic acid (ETYA) as well as the stearidonic acid (SDA, C18:4 n-3) 

were purchased from Cayman Chemical Company (Michigan, USA). Linolenic acid (LA, C18:2 n-

3), α--linolenic acid (α-LEA, C18:3 n-3), and γ-linolenic (γLEA, C18:3 n-6) were purchased from 

Sigma-Aldrich. Ultra pure water (0.055 µS) obtained by a MicroPure water purification system 

(Thermo Scientific, Germany) was used for the preparation of aqueous solutions. 

 
5.1.2. Nutrient analyses 

Unless otherwise mentioned, all chemicals were obtained from Roth (Karlsruhe, Germany), 

Sigma-Aldrich (Munich, Germany) or VWR (Dresden, Germany). 

 
5.1.3. DNA extraction and downstream analyses 

DNA extraction: QIAamp DNA Mini Kit (QIAGEN). EtOH(abs), VWR (Dresden, Germany). 

Polycarbonate filter (Millipore ISOPORE (TM), 0.2 µm GTTP 25 mm, Sigma Aldrich) in a 

polysulfone filter holder for syringes Polymerase chain reaction (PCR): ChromoSolv® water 

(filter‐sterilized), Sigma Aldrich, 1.5 µl Bovine serum albumin (BSA) A7030, Sigma Aldrich. 

Forward primer (357fGC) Reverse (Biomers.net, Germany), Reverse primer (907rM), 

(Biomers.net, Germany). All other reagents were obtained from Fermentas. Quantitative real-

time Polymerase chain reaction (qPCR): Sybr® Green (Invitrogen™, Carlsbad, CA, USA). 

Denaturing gradient gel electrophoresis (DGGE): Sybr® Gold (Invitrogen™, Carlsbad, CA, USA). 
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5.1.4. Metabolomics 

The grade of the solvent used in all metabolomic analysis was: methanol (Chromasolv Plus 

>99.9%, Sigma-Aldrich). Acetone (HiPerSolv, VWR). Chloroform (HiPerSolv, VWR). 

Tetrahydrofuran (THF, HiPerSolv, VWR). Water (Chromasolv® Plus, Sigma-Aldrich). Pyridine 

(Chromasolv® Plus, Sigma-Aldrich). Ethanol (LiChrosolv®, Merck). Acetonitrile (ULC/MS, 

Biosolve, Valkenswaard, the Netherlands). 
 

5.2. Strains 
5.2.1. Ulva species collected for polyunsaturated aldehydes (PUAs) and polyunsaturated fatty 
acids (PUFAs) analyses  

A total of 100 Ulva isolates were collected in the lagoon Ria Formosa (Portugal) in May 2010. 

Fully grown thalli (ca. 4 - 5 weeks old thalli) were carefully washed with filtered seawater, 

subsequently transferred to Ulva culture media (UCM) and cultured under standardized 

conditions without silicate in standing flasks (V = 200 mL) (Stratmann et al., 1996; Wichard and 

Oertel, 2010). The morphotype of the collected algae was determined according to taxonomic 

key (Brodie et al., 2007). 
 

5.2.2. Ulva mutabilis and bacterial strains used in bioreactors and aquaculture 

The laboratory strain of U. mutabilis mutant (slender-G[mt+]) is a direct descendant of the 

original isolates collected by B. Føyn (Føyn 1958). This strain was originally maintained in the 

presence of their natural microbial flora by A. Løvlie (University of Oslo). These two bacterial 

symbionts of U. mutabilis, Roseobacter and Cytophaga species were isolated and characterized 

as described in Spoerner et al. (2012). 
 

5.2.3. Tide pools samples 

Samples were collected from the beach at Ramalhete station and described in an early stage of 

this project by Dr. Thomas Wichard (Friedrich Schiller University of Jena). 

Pool 1: T = 21°C, pH 8.0, salinity 39, floating Ulva sp., size: 2.5 m x 3.8 m, depth 9 cm 
Pool 2: T = 19°C, pH 8.0, salinity 39, Ulva sp., Fucus sp., size 2.2 m x 2,7 m, depth 10 cm. 
Pool 3: T = 22°C, pH 8.0, salinity 39, Blindigia sp., size 3.6 m x 2.9 m, Depth 14 cm 
Pool 5: T = 21°C, pH 8.0, salinity 40, sea grass (certainly no Ulva in pool 5), size 10 m x 4.0 m, 
depth 8 cm. 
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5.3. Culturing 
5.3.1 Culture Media 

All lab experiments were conducted on Ulva culture medium (UCM), prepared as described in 

Stratmann et al. (1996). This medium is free from silicate with pH 8.2 prior autoclaving (121°C, 

30 min, in Nalgene Polypropylene (PP) 1 L bottle).  

Table 21: Ingredients of Ulva culture media (UCM). 
 

Solution I 
19.14 g.L-1 NaCI; 7.28 g.L-1 Na2SO4. 10 H2O, 8.68 g.L-1 MgCl2. 6 H2O, 1.24 g.L-1 CaCl2.6 H2O, 85 mg.L-1 

NaNO3, 6.6 mg.L-1 (NH4)2SO4. 

Solution II 0.7 g.L-1 NaH2PO4. H2O, 8.8 g.L-1 NaHCO3, 10.0 g.L-1 Tris-OH.  

Solution III 7.84 g.L-1 KBr, 54.2 g.L-1 KCl, 1.95 g.L-1 SrCl2. 6 H2O 

Solution IV 

668.4 mg.L-1 EDTA, 1140 mg.L-1 H3BO3, 199 mg.L-1 FeSO4. 7H2O, 3.9 mg.L-1 

CuSO4. 5H2O, 12.6 mg.L-1 Na2MoO4. 2H2O, 36 mg.L-1 MnCl2. 4H2O, 44 mg.L-1 ZnSO4. 7H2O, 3.3 mg.L-1 

Co(NO3)2. 6H2O, 2.3 mg.L-1 NH4VO3, 3.9 mg.L-1 KJ, 263 µg.L-1 Na2SeO3. 5H2O, 9.3 µg.L-1 As2O3, 6.6 µg.L-1 

Na2WO4. 2H2O, 3.4 µg.L-1 

TeO2, pH adjusted to 8.0 with NaOH.  

Solution V 

0.05 mg.L-1 B12, 0.2 g.L-1 thiamine.HCl, 0.1 g.L-1 niacin, 0.1 g.L-1 Ca-panthothenate, 0.04 g.L-1 

pyridoxine.HCl, 0.01 g.L-1 p-aminobenzoic acid, 5 mg.L-1 biotin, 0.8 g.L-1 thymine, 1.0 g.L-1 inositol, 0.26 

g.L-1 orotic acid, 0.2 mg.L-1 folinic acid (citrovorum), 2.5 mg.L-1 folic acid, 0.04 g.L-1 putrescine. 2HC1, 5 

mg.L-1 riboflavin, 0.02 g.L-1 pyridoxamine. 2HCl, 0.36 g.L-1 choline.CI. 

 
 For preparation UCM, 1L of solution I was supplemented with 10 mL of solutions II-IV and 2 

mL of solution V. The pH was adjusted to 8.1 with HCl. Solution I was autoclaved; Solutions II-V 

were filter-sterilized. Ultra pure water (0.055 µS) obtained by a MicroPure water purification 

system (Thermo Scientific, Germany) was used for the preparation of culture media. 
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5.3.2. Culture conditions of U. mutabilis 

The standard culture conditions for U. mutabilis were 20° C (measured in the culture dish), 

illumination 17 h from 04:00 to 21:00 h [middle European standard (summer time) (‘‘long 

day’’)]. The light was provided by fluorescent tubes (Osram T8 36W 840). 
 

5.3.3. Culture conditions of bacteria 

Roseobacter and Cytophaga species were cultivated in full medium broth (Roth) at 21 °C until 

usage.  
 

5.3.4. Preparation of axenic U. mutabilis gametes 

The gametogenesis induction and gametes purification were performed as described in the 

study of Wichard and Oertel, (2010);  and Spoerner et al., (2012).  

Briefly, the intact mature gametophytes of U. mutabilis mutant ‘‘slender’’ (3-4 weeks old) 

were induced for gametogenesis by mincing the thalli manually into 1–3 mm fragments using a 

herb chopper prior to washing in fine sieve with distilled water three times to remove the 

sporulation inhibitors (SI-1 and SI-2), the fragments were suspended in UCM growth medium in 

standard Petri dishes (40 mL) and exposed to standard growth conditions. In the morning of the 

third day after induction, the gametes were released by removal of the swarming inhibitor 

(SWI) by changing the medium and application of light.  

For gametes purification, gametes were separated from accompanying bacteria by making use 

of their phototactic behavior. The gametes assembling at the brightest spot of the Petri dish 

were aspirated with a pipette in 2 mL Eppendorf tube. Afterward, the gametes were applied to 

the wide end of a 25-cm-long sterile Pasteur pipette containing sterile UCM. After about 20-30 

min, the gametes assembled in the tip of pipette were collected. After repeating this procedure 

twice, the gametes were diluted till reaching the faint green color and used for inoculation of a 

sterile culture. Sterility was tested by plating gamete samples on agar plate (marine broth + 2% 

agar, Roth) and PCR reactions of 16S DNA. Axenic gametes (~ 6 x 103 gametes) were incubated 

overnight in 250 mL sterile UCM in polycarbonate tissue culture flasks (BD Falcon, Franklin Lake, 

USA) in the dark, allowing settlement of the germ cells. Furthermore, incubation was conducted 

under standard conditions. The axenic germlings were used for further inoculations. Some 
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culture flasks were supplemented with the symbiotic bacteria for one week. Then, the axenic 

germlings were used for further inoculations in bioreactors and aquacultures. Before 

inoculation, bacterial cultures were centrifuged (1 min, 5,000g) and bacterial pellets were 

washed three times by resuspension with sterile UCM. The Optical density (OD620 nm) of 0.0001 

was used for inoculation. 
 

5.4. Fatty acids (FAs) analyses and determination of 
polyunsaturated aldehydes (PUAs) 

5.4.1. Direct measurement of PUAs with solid phase micro extraction (HS-SPME) 

200 mg of the frozen Ulva sample, upon wounding by grinding under liquid nitrogen, was 

added to 250 µl Ulva culture medium (UCM) in 4 mL glass vial, spiked with 2 µl of 2-decanon (1 

mmol.L-1 in methanol) and directly a divinylbenzene/carboxen/polydimethylsiloxane-coated 

(50 µm) SPME fiber (Supelco, Taufkirchen, Germany) was introduced in the headspace. 

Extraction was performed for 15 min at room temperature at the physiological pH 8.2. 

Evaporation of the volatiles from the fiber was directly performed within the injection port (250 

°C) of a ISQ GC-EI-MS (Single Quadrupole GC-MS Systems, Thermo Scientific, Bremen, Germany) 

equipped with a DB5 capillary column (30 m × 0.25 mm internal diameter, 0.25 μm film 

thickness, Agilent, Germany). The temperature program was 40 °C [3 min, splitless] ramped 

with 15 °C min−1 to 300 °C. Unsaturated aldehydes were identified by comparison with 

reference standards (Pohnert, 2000). 
 

5.4.2. In situ determination and quantification of polyunsaturated aldehydes 

PUA quantification was performed as described previously (Wichard et al., 2005b). O-

(2,3,4,5,6-pentafluorbenzyl) hyodroxylamine hydrochlorine (25 mmol.L-1, PFBHA⋅HCl) was added 

before thawing of the 100 – 200 mg (fresh weight) damaged Ulva thalli in few µl UCM. O-

pentafluorbenzyl-oxime derivates were identified and quantified using a GC-EI-ToF (Time of 

Flight) Mass Spectrometer (GCT, Waters, Micromass, Manchester, UK) equipped with a DB5 

capillary column (40 m × 0.25 mm internal diameter, 0.25 μm film thickness, Agilent) (Wichard 

et al., 2005b). 
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5.4.3. Direct measurement of oxylipins with UHPLC-ESI-Tof-MS 

Under liquid nitrogen 100 - 200 mg of Ulva was ground and subsequently incubated in 500 µl 

UCM. After incubation for 15 min at room temperature, 500 µl of methanol were added to stop 

any further enzymatic reaction and the sample was centrifuged (14,000 rpm, 15 min). The 

supernatant was centrifuged again in order to remove left over cell debris and concentrated 

under nitrogen stream. 10 µl of the sample were immediately measured by UHPLC-ESI-ToF-MS 

(AcquityTM ultra performance liquid chromatography (Waters, Milford, MA, USA) coupled to a 

Q-ToF Micro mass spectrometer (Waters, Micromass, Manchester, UK). For determination of 

the 10-hydroxy-5,8-decadienoic acid on a 50 mm Acquity UPLC BEH C18 column (2.1 mm, 1.7 

µm), a solvent system of 0.1 % acetic acid in (mobile phase A) water and acetonitrile (mobile 

phase B) was used: 0-0.2 min: 0 % B, 4.2 min 100 % B, 5 min 0 % B with a flow rate of 0.6 mL 

min-1. For improved separation of 6-hydroxy-7-octenoic acid and 8-hydroxy-6Z-octenoic acid, 

the same solvent system was used but the gradient was adjusted on a 50 mm Phenomenex C18 

column (2.1 mm, 1.7 µm) to:  4 min 0-20 % B, 5 min 25 % B, 6 min 100 % B, 6.5 min 0% B with a 

flow rate of 0.45 mL min-1. For identification, the analytes were compared with synthetic 

standards (Barofsky and Pohnert, 2007). 

  
5.4.4. Fatty acid analysis 

100 – 200 mg (fresh weight) of algal samples were ground under liquid nitrogen and analyzed 

according to (Wichard et al., 2007; Pohnert et al., 2004): [2H27]-myristic acid was added as an 

internal standard (2 μL of a 10 mg mL−1 solution in methanol) and the sample was treated with 

the methylation mixture (0.5 mL methanol/acetyl chloride, freshly prepared 20:1, v/v) and 

hexane (0.6 mL) in 1.5 mL glass vial. The mixture was heated for 10 min at 100 °C in pressure-

resistant glass vials. After cooling in an ice bath, distilled water (0.5 mL) was added and the 

sample was vortexed for 1 min. For fast phase separation, the sample was centrifuged. The 

removed hexane layer was dried over sodium sulfate and directly analyzed on the ISQ GC-EI-MS 

system equipped with a DB5 capillary column (30 m × 0.25 mm internal diameter, 0.25 μm film 

thickness, Waldbronn, Germany). The temperature program was 60°C (1 min), 30 °C min−1 to 

120 °C, 5 °C min−1 to 250 °C and 20 °C min−1 to 300 °C (2 min). The fatty acid methyl esters were 
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identified by comparison with commercially available standards (Sigma-Aldrich, Taufkirchen, 

Germany) and by evaluation of their mass spectra. 
 

5.4.5. Elucidation of the biosynthetic pathway of PUAs in Ulva with isotope labeled 

Precursors 100 µg of commercial available deuterium-labeled polyunsaturated fatty acids (1 

mg mL-1 in ethanol) were added into a 1.5 mL glass vial. The solvent was evaporated under a 

nitrogen stream, before 10-100 mg frozen fragments of Ulva were added and thawed in the 

presence of 200 µl UCM. Samples were worked up as described above and analyzed by GC-EI-

MS and/or by UHPLC-ESI-ToF-MS. For inhibition of potential lipoxygenases, Ulva fragments 

were pre-incubated with 100 µmol.L-1 ETYA at room temperature for 15 min before applying 

additional labeled PUFAs. 
 

5.5. Experimental set ups of bioreactors and quacultures 
Metabolomic analysis was conducted by the model system organisms Ulva mutabilis (slender-

G[mt+]) and its associated bacteria Roseobacter sp. and Cytophaga sp. 
 

5.5.1. Bioreactor cultures (10 L and 25 L)  

Unless otherwise stated, all supplies were purchased from Roth (Karlsruhe, Germany). 
 

Bioreactor design 

Large volume cultures were grown in 25 L polycarbonate (PC) bottles (Nalgene, VWR, Dresden, 

Germany). The culturing vessel is shown in (Fig. 44). The bottles had one inlet (blue arrow), and 

two outlets (green and magenta arrows). The air inlet was connected inside the bottle to a glass 

tube with the exit at ~ 1 cm from the bottom of the bottle (Fig. 44a). Air was pumped by an 

aquarium air pump through a glass wool pre-filter and a sterile HEPA-Vent (Ø 50 mm, 

Whatman) filter for sterilization ((Fig. 44b-c). The outlet of the filter was connected to the inlet 

of the bottle, allowing bubbling of the cultures via the glass tube. For sampling, one end of a 

Teflon tube (inner Ø: 1 mm) was fitted through the outlet (1) of the bottle and the other end 

was lying the bottom of the bottle (Fig. 44d). Outlet (1) was connected via silicon tubing to a 

dripping chamber (Fig. 44e). This chamber, built by inserting a 1 mL PC syringe into a 2.5 mL PC 

syringe, preventing contact between the sterile liquid of the bottle and the liquid at the 
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sampling outlet, then the chamber was connected to sterile polypropylene (PP) Luer tubing 

connecter (C65.1, female, Roth) via silicon tubing (Fig. 44f). This Luer tubing connecter was 

replaced after each sampling by a new sterile one. The outlet (2) of the bottle served as an air 

outlet and was connected to silicon tubing. This tubing was fitted to sterile HEPA-Vent (Ø 50 

mm, Whatman) filter (Fig. 44g) and connected to opened stopcock Luer Lock (A) (S7396, Sigma 

Aldrich) (Fig. 44h) via silicon tube. A hose clamp was attached to the connecting tube (Fig. 44i) 

in order to control and create pressure to ease the sampling flow without using the stopcock. 

Illumination was provided by a rack of 2 fluorescent tubes placed above the bottle with light 

period [04:00-21:00h]; 7-h and dark period [21:00-04:00h]. The distance between the bottle 

and the light rack was adjusted to have a PAR of 60-120 µmol photons m-2 s-1 at the middle of 

the bottle. 
 

Culture media preparation for bioreactors 

Before conducting the experiment, the bottles were bleached by liquid detergent overnight 

and acid washed (10% HCl) several hours. The bottles were then thoroughly rinsed with 

deionized water and left overnight filled with deionized water. The next day, the bottles were 

again rinsed with deionized water before attaching the transfer cap and tubing. The bottles 

were filled with Ulva culture medium (UCM) and autoclaved (121°C, 30 min). The bottles were 

first secured tightly with lids without holes. After all tubing, air filters, and other stuff were 

autoclaved (Fig. 44), they were connected to new lids with one inlet and two outlets and 

autoclaved (121°C, 20 min). Under sterile condition, the inoculation in sterile tissue culture 

flasks 250 mL were added by opening the lids and the bottles were immediately secured tightly 

by new sterile lids connected with all tubing, air filter and other stuff. The airflows were 

adjusted to ensure similar bubbling in all bottles (visual estimation). The inoculation cultures 

were then pumped by creating a slight vacuum in the large bottle. All bioreactors cultures were 

transferred to the algal chamber and incubated under standard conditions at 20 °C. 
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Figure 44: Design of 25 L bioreactor culture in polycarbonate bottle. (a) Bubbling tube (Duran glass, Ø 4 mm). (b) Glass wool pre-
filter. (c) Sterile HEPA-Vent (Ø 50 mm, Whatman) filter. (d) Sampling tube (Teflon, Ø 1 mm). (e) Dripping chamber, made of a 1 
mL syringe inserted into a 2.5 mL syringe (PC). (f) Luer tubing connecter (PP) (C65.1, female, Roth). (g) Sterile HEPA-Vent (Ø 50 
mm, Whatman) filter. (h) Stopcock Luer Lock (A) (S7396-10EA, Sigma Aldrich). (i) Hose clamp to control the sampling flow. Inlet: 
air inlet. Outlet (1): sampling outlet. Outlet (2): air outlet. 
 

Algal and bacterial culture preparation 

Two treatments were studied: cultures of axenic algae and of the tripartite community. Both 

treatments were inoculated under sterile condition with axenic germlings prepared one week 

earlier in tissue culture flasks 250 mL as described in section (5.3.4) to reach the density of (ca. 

5 x 105 germlings/ 25 L). In case of the tripartite community cultures, the bottles were 

inoculated first with associated bacteria (OD620 nm = 0.0001, reached after diluting the original 

measured OD620 nm), and then with axenic germlings. Three replicates of each axenic (3 × 25 L) 
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and the tripartite community (3 × 25 L) were conducted. In parallel, two replicates of control (2 

× 10 L) containing only UCM were performed. 

Sampling processing  

Sampling of the cultures was achieved as follows: the bottle was shaken gently by hands to 

ensure a homogenous culture. The air outlet was closed using hose clamp (Fig. 44i), resulting in 

the building of slight overpressure in the bottle. The sampling outlet (2) was then opened using 

Luer tubing connecter (Fig. 44f) and the culture was pushed out by the overpressure. The first 

20 mL were discarded and then the culture was collected in 1 L glass bottles. The sampling 

outlet was finally closed by a new sterile Luer tubing connecter before re-opening the air outlet.  

 
5.5.2. Aquacultures (200 L) 

Aquacultures were conducted at Ramalhete Station, Faro, Portugal, in 2010 from 10th March 

until 5th May. 

 
Aquacultures set-up 

Nine of 200 L cylindrical and conical tanks, made of polyester resin reinforced with fiberglass 

(Fig. 45a) were used. The tanks before being used were washed with 10% HCl, fresh water, and 

then bleached with commercially available bleach liquid. The bleach liquid was removed; and 

fresh water was added and neutralized with an excess of sodium hyposulfate (Na2S2O3) to 

prevent the presence of residual bleach, and washed with fresh water. After that, the tanks 

were filled with 10 µm filtered artificial seawater (33.2 g L-1 of Instant Ocean, Aquarium 

Systems, Sarrebough, France) in the rate of 1.7 L h-1. The tanks were continuously aerated to 

avoid alga accumulation at the bottom which would affect significantly algal growth. The air line 

was filtered from moisture and bacteria through HEPA-Vent (Ø 50 mm, Whatman) filters (Fig. 

45e), and injected to the tanks from the bottom via 6 mm diameter polyethylene hose ended in 

a glass Pasteur pipette (Fig. 45f). The tanks were covered with a Tygon film (Fig. 45b). 
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Figure 45: Aquaculture set-up of 200 L in (a) cylindrical and conical tanks. (b) Tygon film. (c) Pump. (d) Silicon tubing (Ø int. 2mm 
× Ø ext. 4mm 228-0703 VWR). (e) HEPA-Vent (Ø 50 mm, Whatman) filters. (f) Inlet of air and outlet of samples. (g) The right 
direction where the disconnection should be made to get the samples. 

 

Algal and bacterial culture preparation 

Two different cultures were performed in aquacultures. ’’Inappropriate community cultures’’ 

(3 × tanks, cf. section 5.5.2) inoculated only with axenic germlings, defined bacterial community  

cultures (3 × tanks) inoculated with axenic germlings in addition to Roseobacter and Cytophaga 

species with same optical cell densities (final OD620 nm = 0.0001) used in bioreactors. In parallel, 

three tanks were treated with only Instant Ocean as control. Axenic germlings were prepared in 

the laboratory at Jena University and transferred to Ramalhete Station. It is noteworthy, that 

the first sampling process (blank sample) took place before the inoculation. 
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5.6. Collection of metadata for metabolomic analysis 
5.6.1. Sampling of growth media  

Bioreactors cultures 

Based on sampling process described in (4.3.3), one liter from each culture in addition of 

control was collected in 1L sterile Erlenmeyer flask. This process was repeated weekly on day 

(zero, 7, 14, 21, 28, 35, 42, and 49), and the extraction performed immediately to avoid any 

metabolomic alteration as possible. It’s worth mentioning that the first 1L on day-zero was 

collected from the tripartite community after the bacterial inoculation and before U. mutabilis 

inoculation in both axenic and the tripartite community. 
 

Aquacultures 

Three liters from each tank were collected weekly in foldable water carrier 5L (Fig. 45). 

Additional 200 mL was collected weekly for further analyses such as nutrient analyses, DNA 

extraction and swarming and sporulation inhibitors bioassay as described in sections (5.6.2, 

5.6.3, and 5.6.5, respectively). Samples were filtered under sterile condition and kept at -80 °C 

until the end of the experiment. Once all samples were collected, they were extracted and 

analyzed. 
 

5.6.2. Nutrient analyses 

Phosphate and nitrate concentrations were determined in the growth media by photo 

spectroscopy according to (Parsons et al., 1984; Zhang and Fischer, 2006). The volume was 

adapted for measuring in 1 cm half micro cuvettes (Roth). Each sample was measured three 

times on a Specord M82 photo spectrometer (Carl-Zeiss, Jena, Germany). Nitrite was 

determined in addition in growth media of aquaculture.  

Utilization rate was calculated according to (Miyamura, 2010): 

𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 (100%) =
Ci − Ca  

Ci
x 100 

Where Ca is the concentration of the nutrient after specific week, and Ci is the initial 

concentration of the nutrient in the culture medium. 
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5.6.3. DNA extraction and downstream analyses 
DNA extraction, sequencing and phylogenetic analysis 

Total DNA was extracted from 20 mg of cultured algal material using a modified Cetyl 

trimethylammonium bromide (CTAB) based method for sequencing of the chloroplast located 

RuBisCo gen (rbcL). All rbcL sequences of all collected samples were obtained from genomic 

DNA using the following primer pairs: rbcL START - atg gct cca aaa act gaa ac (Shimada et al., 

2003) and 1385r - aat tca aat tta att tct ttc c (Calie and Manhart, 1994). Sequences were blasted 

at GenBankTM for homologies and are available at NCBI (National Center for Biotechnology 

Information) with the accession no. from KJ417440 to KJ417458. Sequences were aligned with 

reference sequences obtained from GenBankTM (see Tab. 3 for GenBankTM accession numbers 

of reference sequences) using Geneious software (Version 4.8.2). The resulting data set consists 

of 29 taxa (including ten reference taxa) with 1299 sites of the rbcL gene sequence. The 

alignment was analyzed using  Maximum Likelihood by the software PhyML implemented in 

Geneious software using default settings. Bootstrap analysis was performed in PhyML with 

1000 replicates. 
 

DNA extraction from the growth medium  

Weekly and immediately after sampling under sterile condition, 10 mL of culture medium was 

filtered using a polycarbonate filter (Millipore ISOPORE (TM), 0.2 µm GTTP 25 mm, Sigma 

Aldrich) in a polysulfone filter holder for syringes, and stored in -80 °C till extraction using 

QIAamp DNA Mini Kit (QIAGEN). Based on the protocol of QIAmp DNA Mini and Blood Mini 

Handbook (2nd Edition, Nov 2007) with some modification, DNA was extracted from PC filter. 

Briefly, 600 µL Lysis Buffer (prepared by: 20 mg mL-1 Lyzozyme dissolved in TETeX (20 mmol.L-1  

Tris-HCl (pH 8.0) + 2 mmol.L-1  EDTA + 1.2% Triton)) was added to the PC filter, and incubated at 

37°C for at least 30 min. Then, 600 µL of Buffer AL, and 20 µL of Proteinase K were added 

respectively, and vortexed immediately and thoroughly for 15 sec. The samples were incubated 

at 56 °C for at least 30 min, followed by incubation at 95 °C for not longer than 15 min. 600 µL 

EtOH(abs) was added to the samples, and they were vortexed and centrifuged (1 min to remove 

drops), preparing solution (1). 700 µL of solution (1) was applied to QIAmp Mini spin columns 

without wetting the rim connected with collection columns, centrifuged at 8000 rpm for 1min, 
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and the filtrate was discarded. Then, the spin columns were placed in new collection columns. 

Further 700 µL of solution (1) was applied to QIAmp Mini spin columns, centrifuged at 8000 rpm 

for 1min, and discarded the filtrate. After that, 500 µL of Buffer AW1 (guadinine hydrochloride) 

was added to the spin column, centrifuged at 8000 rpm for 1min, and the filtrate was discarded. 

500 µL of Buffer AW2 (70% EtOH) was added to the spin columns, centrifuged at 14.000 rpm for 

3 min, placed in new collection columns, and discarded the filtrate. Again, spin columns were 

centrifuged at 14.000 rpm for 1 min. Spin columns were placed in clean 1.5 mL micro-centrifuge 

tubes, 50 µL of Buffer AE was added, incubated at RT for 1 min, and centrifuged at 8.000 rpm 

for 1min. The filtrate was applied to the columns again, incubated at RT for 1min, and 

centrifuged at 8.000 rpm for 1min. DNA extract was frozen at -80 °C for Nanodrop, PCR and 

DGGE analyses. 
 

A quantification via Nanodrop technology 

For estimation the total DNA in growth medium of the tripartite community and axenic 

cultures, 1 µL of DNA extract was applied in pedestal of Thermo Scientific Nanodrop 2000 

spectrophotometer. DNA was measured at the wavelength of 260 nm. The 260/280 nm ratio 

was calculated for each sample to assess sample purity. Once the ratio was 1.8, this indicated 

the purity of DNA extract. After each measurement the pedestal was cleaned by wipe. Waster 

was applied as a blank measurement. 
 

Polymerase chain reaction (PCR) 

PCR amplification was performed using 16S rDNA bacterial primers 357fGC (CGC CCG CCG CGC 

GCG GCG GGC GGG GCG GGG GCA CGG GGG GCC TAC GGG AGG CAG CAG) and 907rM (CCG 

TCA ATT CMT TTG AGT TT) (Muyzer et al., 1995). Primers were obtained from (Biomers.net). 

Amplification method of DNA extract was applied according to (Sneed and Pohnert, 2011b). 

Briefly, each 50 µL PCR reaction contained in addition to 1 µL of DNA extract (was added at the 

end after all reagents, primers, and buffers), 1.5 µL bovine serum albumin (BSA) (20 mg mL-1) 

(Sigma Aldrich), 1 µL dNTP mix (10 mmol L-1), 5 µL DreamTaqTM Buffer (10×), 2 µL of each primer 

(10 µmol L-1), and 0.5 µL DreamTaqTM DNA Polymerase, and 37 µL  of MicroPure water from 
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purification system (Thermo Scientific, Germany) (water was autoclaved and additionally 

filter‐sterilized). 

Amplification was performed using a TGradient Thermocycler (Biometra, Germany) beginning 

with an initial denaturation step (5 min at 95 °C), followed by 10 touch-down cycles, lowering 

the annealing temperature by 1 °C each cycle beginning at 65 °C (1 min at 95 °C, 1 min at 65 °C, 

2.5 min at 72 °C) and then 25 cycles with an annealing temperature of 55 °C (1 min at 95 °C, 1 

min at 55 °C, 2.5 min at 72 °C). A final extension step at 72 °C for 3 min completed the 

amplification. PCR products were quantified by comparison with the GeneRulerTM Express DNA 

Ladder run on a 1% agarose gel (Sigma Aldrich, Germany) (Sneed and Pohnert, 2011b). 
 

Quantitative real-time Polymerase chain reaction (qPCR) 

DNA extracts, based on extraction method described in DNA extraction from the growth 

medium, were applied to qPCR analysis (with minimum concentration of total DNA 10 ng µL-1) 

to quantify Roseobacter species in the defined bacterial community. In addition a pure DNA 

extract from Roseobacter species was provided as a positive control of serial dilution as follows: 

1 ng, 100 pg, 10 pg, and 1 pg. 

qPCR reagent Sybr® Gold (Invitrogen™, Carlsbad, CA, USA) was used according to the 

manufacturer’s instructions and 8 pmol per reaction of the following primers were added: 

Forward primer (ROSfw), 5’–GATTTGCATTCAGGAGGTCA–3’; and reverse primer (ROSrev), 5’–

GTTAGTGTACTTGACTTGGAC–3’ (both were obtained from Biomers.net), and used to quantify 

Roseobacter clade (Soller et al., 2000) in the samples. The PCR amplification (5 min at 95 °C, and 

then 40 cycles of two steps consisting of  15 min at 95 °C, 58 min at 60 °C) was performed with 

StepOne Real-time PCR System (Applied Biosystem, USA). All samples were processed for 

melting curve analysis.  

For calibration curve, cycle threshold (CT) values were plotted vs. log concentrations of the 

positive control. Afterward, the exact abundance of Roseobacter clade was quantified using the 

calibration curve.  
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Denaturing gradient gel electrophoresis (DGGE) 

Denaturing gradient gel electrophoresis (DGGE) was conducted based on (Sneed and Pohnert, 

2011b) using a DCode™ Universal Mutation Detection System (Bio-Rad). Standards were 

prepared by combining the PCR products of the direct amplification of six known bacterial 

strains (Cytophaga sp., Roseobacter sp., and Halomonas sp., Sulfitobacter sp.,  Dinoroseobacter 

shibea, and Celluphaga sp.) so that each standard lane contained 200 ng of DNA from each 

bacterial strain. These standards were loaded at the sides and the center of the gels to monitor 

“band smiling” and for comparison between the samples and the standards across gels. 

Samples and standards were loaded onto an 8 % acrylamide gel (acrylamide:bis-acrylamide 

ratio 37.5:1, v:v) with a denaturant gradient from 20 – 70 % denaturant (100% denaturant 

contained 7 M urea and 40% formamide). Electrophoresis was run for 12 hours at 100 V and 60 

°C. Gels were stained with Sybr® Gold (Invitrogen™, Carlsbad, CA, USA). Imaging was performed 

using the BioDocAnalyze (BDA) digital system (Biometra, Germany). 
 

5.6.4. Growth rate 

In tripartite and defined communities, the length of U. mutabilis was measured by ruler one 

week post inoculation (day-7). The length average of three thalli from each population was 

calculated and plotted as function of time. Fresh weight of thalli after removal water was 

measured on the scale from day-14. The relative growth rate (RGR) was calculated according to 

(Lüning, 1990; Olischlager et al., 2013): 

𝑅𝑅𝑅𝑅𝑅𝑅 (% 𝑑𝑑𝑑𝑑𝑑𝑑−1) = (100. 𝑙𝑙𝑙𝑙(𝑊𝑊2 ⁄ 𝑊𝑊1))/(𝑡𝑡2 − 𝑡𝑡1) 

Where W1 = fresh weight (g) at time point 1, W2 = fresh weight (g) at time point 2, t1 and t2 = time in days. 

 RGR is given in % per day. In axenic cultures, the growth was estimated by measuring the 

diameter of the callus-like colonies. 
 

5.6.5 Bioassays to investigate the gametogenesis inducibility in U. mutabilis 

The gametogenesis inducibility was investigated by following bioassays: 
 

Induction of gametogenesis in thalli 

On day-7 upon inoculation, the gametogenesis induction was tested artificially based on the 

procedure mentioned in section (5.6.5, Induction of gametogenesis in thalli). Up to five thalli 
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were picked up from each population over the sampling time points, chopped by forceps, rinsed 

three times with UCM, resuspended in new UCM in three Petri dishes (Ø = 10 mm), and 

incubated three days under standard growth condition. In the morning of the third day, UCM 

was changed and subsequently the swarming inhibitor (SWI) was removed. After exposing to 

the light, the process of discharging gametes from the gametangia was tested.  
 

Sporulation and swarming inhibitors assay 

The activity of SI-1 (sum of SI-1 and its active breakdown products) and swarming inhibitor 

was tested in the growth medium (n = 3) weekly according to the protocols (Stratmann et al., 

1996; Wichard and Oertel, 2010).  
 

5.6.6. Environmental Variables 

Temperature, Salinity and pH value were measured only in aquacultures as they were 

maintained constant in bioreactors. 

Temperature, and Salinity were measured with YSI 85 Oxygen Conductometer Salinity and 

Temperature (YSI, Ohio, and USA), whereas pH value was measured with Oxyguard pH 4/10 

(WMT, USA). 
 

5.6.7. Statistical analysis 

For all metadata post-hoc comparisons were performed using Tukey’s HSD (honestly 

significant difference) test on the probability level of α = 0.05 to determine pairwise differences 

between treatments (Minitab 16.2.4, USA). 
 

5.6.8. Microscopy 

Chosen and representative gametophytes of each population over the sampling time points 

were observed weekly with an inverted microscope (Leica DM IL LED, Germany). Pictures were 

taken with a digital firewire colour camera (DFC280, Leica, Heerbrugg, Switzerland). 

5.6.9. Filtration  

One liter collected from each bioreactor culture was filtered through a GF/C filter (glass 

microfiber, pores ~1.2 µm, Whatmann, VWR), by filtration under moderate vacuum (~500 

mBar). 
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5.6.10. Solid phase extraction (SPE) 

After filtration, 1 L filtrate was extracted using EASY® cartridges (Chromabond 3 mL, polar 

modified polystyrene-divinylbenzene copolymer, 200 mg, Macherey-Nagel, Düren, Germany). 

Cartridge was first conditioned with 5 mL methanol and 5 mL water. The filtrate in Erlenmeyer 

flask was passed through the EASY® cartridges, via Teflon tubing, at 1 L hour-1. After washing 

with 5 mL deionizer water, the EASY® cartridges were air-dried, and eluted by gravity with 4 mL 

of methanol:THF (1:1) in 4 mL glass vial. Vials were closed with caps fitted with PTFE-butyl-PTFE 

septa (VWR). 1 mL was dedicated to UPLC/ESI-MS analysis (5.7.1), and 3 mL was dedicated to 

GC-MS analysis (5.7.2).  
 

5.7. Instrumentation and chromatographic conditions 
5.7.1. UPLC/ESI-MS analysis 

A Waters Acquity Ultra Performance LC equipped with 30-mm Fortis UPLC C18 column (2.1 

mm, 1.7 µm) at a column temperature of 21°C was used for separation. The injection volume 

was 10 µL, and each sample was injected three times. The mobile phases were A = 0.1% formic 

acid and 2% acetonitrile in water and B = 0.1% formic acid in acetonitrile. The linear LC gradient 

with a flow rate of 0.6 mL min–1 was ramped within 7 min from 0 to 100% B, and then held till 

for 2 min at 100% B, then 9.5 min at 0% B, and 10 min at 0% B. The outlet of the diode array 

detector was coupled to a Q-TOF micro–mass spectrometer (Waters) operated with an ESI 

source in positive TIC mode with a scan rate of 1 scan s–1, an interscan delay of 0.1 s, and a scan 

range from 100 to 1000 m/z (Barofsky et al., 2010). 
 

5.7.2. GC/ES-TOF-MS analysis 

Metabolomic analysis by Gas Chromatography coupled with mass spectrometry was adapted 

from the protocol of Hiller et al. (2009), Vidoudez and Pohnert (2012).  

Derivatization 

Five µL of internal standard (ribitol, >99%, Sigma-Aldrich, 4 mmol.L-1 in water) was added to a 

volume of 1.5 mL of each sample. After vortexing for 5 min, the samples were sonicated for 10 

min in an ultrasound bath. For each batch (20 samples), 20 µg of methoxyamine hydrochloride 

(Sigma-Aldrich) was dissolved in 1 mL of pyridine by sonication for 5 min in an ultrasound bath. 
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Fifty microliters of this solution was added to each sample of a batch and the vials were closed 

with caps fitted with PTFE-butyl-PTFE septa (VWR, Germany). After vortexing for 1 min, the 

samples were incubated at 60°C for one hour followed by 9 hours at room temperature. 

Sylilation reagent was prepared by adding 40 µL of retention Index (RI) mix (decane, 

pentadecane, nonadecane, octacosane, dotriacontane, all at 1 µmol.L-1 and hexatriacontane at 

0.5 µmol.L-1 in hexane, all >99%, Sigma-Aldrich) with a glass syringe into 1 mL of N-methyl-N- 

trifluoroacetamide (MSTFA, in 1 mL vials, Macherey-Nagel, Düren, German). An n-alkane (RI) 

mix was analyzed to allow reproducibility of the measurements. Fifty microlitres of this 

sylilation reagent was added with a glass syringe into the samples before incubating them for 

one hour at 40°C. The samples were then transferred into glass inserts of 1.5 mL vial and were 

immediately analyzed by GC-MS. 
 

GC-MS parameters 

A Waters GCT premier (Waters, Manchester, UK) orthogonal reflectron time-of-flight (TOF) 

mass spectrometer (MS) coupled to an Agilent 6890N gas chromatograph (GC) equipped with a 

DB-5ms 38 m column (0.25 mm internal diameter, 0.25 µm film thickness, with 10 m Duraguard 

pre-column, Agilent, Waldbronn, Germany) was used for GC-EI-MS measurements. The 

split/splitless injector was fitted with a gold plated inlet seal with dual Vespel rings (Restek, Bad 

Homburg, Germany). The samples were injected with a 7683B autosampler (Agilent, 

Waldbronn, Germany) equipped with a 10 µL tapered, fixed needle, PTFE-tipped plunger 

syringe (23-26s/42, Agilent, Waldbronn, Germany). Samples were run in random order. A new 

deactivated glass liner (4 × 6.3 × 78.5 mm inner Ø × outer Ø × length, Agilent, Waldbronn, 

Germany) was used for every batch of 20 samples. The used liners were shipped to be cleaned 

and deactivated by CS Chromatography service (Bremen, Germany). The GC parameters for the 

analysis were as follows. Carrier gas: Helium 5.0. Carrier gas flow: Constant flow at 1 mL min-1. 

Injection pre dwell time: 0.1 min (hot needle injection). Oven starting temp. 60°C for 1 min. 

Oven ramp to 310 °C at 15 °C min-1. Oven final temp. 310 °C for 9.3 min. Injector temp. 300 °C. 

Injection volume: 1 µL. Injector mode: Split 5. Measurements were performed over 30 min. 

Parameters of EI source: Electron energy: 70 eV. Trap current: 200 µA 4.3. Calibration of the MS 

parameters (beam steering, focusing lenses, dynamic range extension (DRE)) was performed 
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before the analysis of the samples from every experiment. The MS parameters, Source temp. 

300 °C. Transfer line temp. 280 °C. Scan rate: 5 scans s-1. m/z: 50-800. DRE: activated. 
 

5.8. Data collection and preprocessing 
5.8.1. Data collection from the LC-MS chromatograms 

Biomarkers were collected from UPLC-MS raw data by using two software tools:  

(1) Progenesis CoMet (http://www.nonlinear.com/progenesis/qi/, version 2.0) to determine the 

range of intensities and of retention time for biomarkers collection using an ion intensity map, a 

2D gel-like representation of the ions in an LC/MS runs. It is a map of ions in the run, with the 

darker areas showing the higher intensities in the MS signal. Retention time increases from top 

to bottom, while the mass/charge ratio increases from left to right. By examining the pattern of 

ion intensities on these maps, it is sometimes easy to identify issues in the chromatography that 

can adversely affect the analysis. Thus, (1) the instability in the ion spray, (2) a completely 

blocked ion spray, (3) contaminants and column leaching, and (4) electronic noise in the MS 

signal, helped to avoid time consuming downstream analyses, trying to analyze data that should 

be rejected due to impurities. Using these criteria, Best range of intensities and retention time 

to collect the biomarkers were from m/z: 100-800 and retention time from 0.5 till 7.0 min; see 

figure 25. 

(2) MarkerLynxTM (Waters, Version 4.1) was used, and the parameters were as shown in table 
22. 
 
Table 22: MarkerLynxTM parameters used for biomarkers collection. 

 

Peak Detection 

ApexPeakTrack 

Peak width at 5% 

Peak width at 5% height (seconds)= default (15) 

Peak-to-peak baseline ratio = default (0) 

Noise elimination = default (0.10)  

Intensity threshold = 10 

Deisotoping Performed 

Alignment 
m/z window = 0.05 amu 

Retention time window = 1 min 
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5.8.2. Data collection from the GC-MS chromatograms 

Data processing and smoothing 

All chromatograms were background-noise corrected with the Component Detection 

Algorithm (CODA) implemented in MasslynxTM (version 4.1, Waters, UK). The MCQ index used 

was 0.8 and the smoothing window was 3 points. The chromatograms were then converted to 

netCDF files using the MasslynxTM DataBridge (Micromass, V4.1). 
 

Extraction of spectra 

Converted spectra were treated in batch jobs in the Automated Mass spectral Deconvolution 

and Identification System (AMDIS) (version 2.65, NIST, http://www.nist.gov/, 2006). The 

following parameters in table 23 were used:  

 
Table 23: AMDIS parameters used for identification and deconvolution mass spectra.  

 

Identification 
Minimum match factor: 30 

Type of analysis: Simple 

Deconvolution 

Component width: 32 

Omitted m/z: 147, 176, 193, 207, 219. 

Adjacent peak subtraction: 2 

Resolution: Low 

Sensitivity: Medium 

Shape requirement: Low 

Library  Target Compounds Library: Golm 

 
The CDFs files and the corresponding AMDIS files were fed into METabolomics-Ion-based Data 

Extraction Algorithm (MET-EDEA) (version 2.03, http://bioinfo.noble.org/download/, 2006) with 

the following parameters (Tab. 24). 

The resulting data sets of peak areas were imported into Excel (Office 2007, Microsoft, 

Redmont, USA). The peaks corresponding to the retention index standards, ribitol. 
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Table 24: MET-IDEA parameters used for identification and deconvolution mass spectra. 

 

Chromatography 

Type: GC 

Average peak width: 0.08 

AMDIS transfer: 0.5 

Maximum peak width: 2 

Peak start/stop slope: 1.5 

Adjusted retention time accuracy 0.25, peak overload factor: 0.9 

MS 

Type: TOF 

Mass accuracy: 0.1 

Mass range: 0.3 

General Type 

Exclude ion: 73, 147, 193, 281, 341, 415 

Lower mass limit: 100 

Ions per component: 1 

 
Identification of metabolites generated by GC-MS 

The spectrum of each peak retained for the analysis was manually examined and identification 

was attempted using the software MS search (version 2.0 d, NIST, http://www.nist.gov/, 2005). 

The following libraries were used: NIST, Golm Metabolome Database (Version: 

121_VAR5_ALK_MSP, http://gmd.mpimp-golm.mpg.de/) and MPI of Molecular Plant Physiology 

(Version: Q_MSRI_ID2004-03-01) A structure was accepted if the reverse match was higher 

than 800 and if the retention index was close to the index provided in the libraries. The 

structure was accepted with a tag in cases where the reverse match was higher than 800, but 

that the retention index and visual inspection of the spectra corresponded to a structure. 

Important nomenclature:  

“?” if the reverse match is between 700 and 800. 

“??” if the reverse match is between 500 and 700. 
 

5.9. Chemometric analyses 

5.9.1. Unconstrained ordination analysis 

Principle component analysis PCA 

For each measurement, the resulting two-dimensional data (component 1 vs. component 2) 

were Pareto-scaled. The intensities were measured as a height; and mean centered. The 
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identified m/z signals were then normalized to the sum of the peak intensities (TIC) in each 

chromatogram and analyzed using the PCA software implemented in the MarkerLynxTM 

software package (Version 4.1). 
 

5.9.2. Constrained ordination analysis 

Data preprocessing 

(1) The mean of (the data derived from control (only UCM, in case of bioreactors) along with the 

data generated from day-zero of all treatments underwent PCA analysis) was calculated. 

(2) The median of the data at each sampling time point (from day-7 till day-49) was calculated. 

(3) The mean of the data generated from Step 1 was subtracted from the median of the data 

resulting from Step 2 (Step 2 – step 1 = clean data). 

(4) All negative values were converted to zero. 

(5) If the sum of each biomarker throughout the samples resulted in zero, the biomarker was 

discarded.   
 

Canonical analysis of principle coordinates (CAP) 

(1) Normalization was performed by (a) transformation of the data to square root, and then (b) 

standardization of the transformed data by dividing each peak area by the sum of all peak areas 

within one sample.  

(2) The data sets were then exported as txt files for discriminant analysis mode (CAP). 

(3) CAP analysis was performed with the software CAP12 

(http://www.stat.auckland.ac.nz/~mja/) (Anderson and Willis, 2003) using the following 

parameters: Bray-Curtis dissimilarity for the distance measure and discriminant analysis. The 

number of principal coordinates axes were chosen by the program. For validation of the 

classification 999 random permutations tests were automatically performed. 

The resulting first two canonical axes and sample coordinates were then imported into 

SigmaPlot (version 11.0, Systat Software, USA) for graphical illustration. The biomarkers were 

screened for significant Pearson correlation coefficients with the CAP axes. Compounds having 

such a correlation coefficient with one of the CAP axes were retained as significantly 

characteristic compounds. The correlation coefficients were scaled to the CAP range of the 
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coordinates (usually between 0.3 - 0.5) to generate the vectors corresponding to each 

significant compound. 
 

5.10. Heatmap  

The heatmap was performed with the biological mean of the biomarkers or metabolites, 

meaning that the average of the biological replicates (n = 3) was used to perform the heatmap).  

Two software tools were used to implement heatmap: Tableau (version 8.1, USA), and Excel 

(Office 2007, Microsoft, Redmont, USA). 
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