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Zusammenfassung und Ausblick

Zusammenfassung und Ausblick

Fiir die vorliegende Arbeit machte man sich die hohe spektrale Spezifitit, Empfindlichkeit
und extrem hohe laterale Auflosung der Spitzen-verstirkten Raman Spektroskopie (tip-
enhanced Raman scattering - TERS) zunutze, um Biomolekiile im Nano/ Sub-

Nanometerbereich zu untersuchen.

TERS fiir die Marker-freie DNA Sequenzierung

Es wurden TERS Experimente an verschiedenen DNS/RNS Einzelstringen durchgefiihrt,
um die Eignung von TERS als Marker-freie Sequenzierungsmethode zu tberpriifen. In
ersten TERS Messungen an Uracil Homopolymerstringen konnte die Reproduzierbarkeit

dieser Methode anhand von einheitlichen Spektren deutlich herausgestellt werden.

In TERS Spektren einer Kalbsthymus DNS Probe wurden alle vier verschiedenen
Nukleobasen detektiert werden, wobei es Anzeichen einer Sequenzdnderung unter der

Spitze gab.

Die Untersuchungen wurden auf speziell fiir diese Arbeit synthetisierte DNS Proben
ausgedehnt. So konnten in den TERS Spektren von (A;¢C;s)s DNS Einzelstringen die
Nukleobasen Adenin und Cytosin mit einer lateralen Aufldsung im Subnanometerbereich

unterschieden werden.

Aus diesen Ergebnissen ldsst sich schlieBen, dass TERS das Potential zur direkten
DNS/RNS  Sequenzierung hat, wobei diese Methode fiir andere kettenformige
Biomakromolekiile (z. B. Proteine) zum Einsatz kommen konnte. In zukiinftigen Projekten
soll TERS auf synthetische DNA Strange bekannter Sequenz mit allen vier Nukleobasen
angewandt werden. Das ultimative Ziel ist die Untersuchung von Strdngen mit einer

unbekannten Abfolge der Nukleobasen.
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TERS zur direkten Detektion von 5-Methylcytosine substituierten DNS Stringen

Zum ersten Mal wurden TERS Messungen an methylierten DNS Einzelstringen des Typs
(A195meCyp)s durchgefiihrt. Anhand von Markerbanden konnten in den Spektren deutlich
verschiedene Schwingungsmoden fiir Adenin und 5-Methylcytosin zugeordnet werden.
Weiterhin war es mdglich, die Nukleobase Cytosin in der unsubstituierten DNS (AoCis)s
von 5-Methylcytosin in der methylierten DNS (A;0SmeCio)s anhand zuséitzlicher
Methylgruppenbande in den TERS Spektren zu unterscheiden. Diese Ergebnisse zeigen
deutlich, dass es moglich ist, 5-Methyl substituierte Cytosineinheiten in DNS Strangen mit
TERS mit Subnanometerauflésung zu detektieren und zu lokalisieren. Gleichzeitig kann die

Nukeobase von ihrem unsubstituierten Analogon unterschieden werden.

Weitere Untersuchungen auf diesem Gebiet werden sich auf die Identifizierung von
Stickstoff metyhlierten Basen (N-4-Methylcytosin, N-6-Methyladenin) in DNS Stréingen
konzentrieren. Das Ziel ist die direkte Lokalisierung derartig substituierter Stellen. Dies

konnte einen Schritt Richtung klinischer Diagnostik und Therapie darstellen.

AFM-TERS Untersuchungen auf Penetration von Invasomen in die Haut

Im Rahmen dieser Arbeit wurden AFM und TERS Messungen an verschiedenen (mit
Klebeband abgezogenen) unbehandelten und mit Invasomen behandelten &uBBeren
Hautschichten (Stratum Corneum, SC) durchgefiihrt. Es wurde gezeigt, dass Invasome
wahrscheinlich als Medikamenten Transportsysteme fungieren, durch die intakte Vesikel 7-
10 um tief in das SC eindringen konnen. Die Invasome wurden spektroskopisch
identifiziert und konnten somit von ihrer Umgebung (SC) unterschieden werden. Diese
ersten Ergebnisse zeigen, dass der Mechanismus der Penetration von Invasomen in die
Haut mit TERS untersucht werden kann. Fiir eine systematische Studie auf diesem Gebiet

sind allerdings weitere Messungen im Hinblick auf statistische relevante Daten notig.

Zusammenfassend kann gesagt werden, dass die Ergebnisse der hier vorliegenden Arbeit

deutlich das Potential von der Spitzen-verstirkten Raman Spektroskopie (TERS) aufzeigen:
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zum einen ist sie fiir eine Marker-freie Sequenzierung von DNS / RNS Striangen geeignet,
zum ist eine direkte Detektion von methylierten Stellen in DNS Stringen mdglich.
SchlieBlich wurde gezeigt, dass mit TERS der Mechanismus des Eindringens von

Invasomen in die Haut untersucht werden kann.

All diese Ergebnisse machen deutlich, dass die besonderen Eigenschaften von TERS
(laterale Auflésung im Nanometerbereich und darunter, hohe Empfindlichkeit und
Spezifitit) eine Vielzahl von Untersuchungen auf dem Gebiet der Biowissenschaften

ermoglichen, um bislang ungeklérte Fragen zu beantworten.






Chapter 1

Chapter 1: Introduction
With the advantage of obtaining qualitative and at least semi-quantitative information of
specimens real-time and non-invasively, vibrational spectroscopy techniques, as for
instance, infrared (IR) and Raman have become more and more important in the analysis of
biomolecular samples. Although the sensitivity and spatial resolution of these techniques
are sufficient for numerous applications, the detection and analysis of biosamples at very
low concentration (single molecule) and high spatial resolution (nanometer/sub-nanometer

scale) requires more powerful techniques.

Raman scattering (/) is an intrinsically weak inelastic scattering process with cross sections
smaller than infrared spectroscopy and fluorescence (2). To overcome these inherently low
Raman cross sections and increase the weak Raman signals, surface-enhanced Raman
scattering (SERS) (3-5) was introduced. In SERS, noble metals (eg. Au, Ag, and Cu) rough
nanoparticles are used to generate localized surface plasmons (LSP) (6) on the surface.
When the sample is located close to metal surface, the incident photons couple with the
surface plasmons, which enhances Raman scattering. SERS provides large signal
enhancement up to a factor of 10°-10'? enabling single molecule detection (7, 8). The main
obstacles associated with SERS are the inhomogeneity of the field enhancement across the
substrate and the spatial resolution. The different shapes, sizes and roughness of aggregated
nanoparticles result in strong variations of the field enhancement and consequently the
Raman signal. Therefore a quantitative analysis of samples using SERS is challenging.
Furthermore, the resolution of SERS is still limited to 200-250 nm by the Abbe diffraction
limit (9). The majority of the obtained SERS signal is an average information of the

chemical components in the irradiated region.

Tip-enhanced Raman spectroscopy (TERS) (/0-12) overcomes the mentioned obstacles of
SERS by exchanging the “mass particle substrate” through one single particle that is
attached to the apex of the scanning probe microscope (SPM) tip. TERS is the combination
of Raman spectroscopy and SPM, which is realized by scanning the noble metal coated or
metalized SPM tip across the sample surface to obtain the topography images and to record

the enhanced Raman signal simultaneously. In TERS, as only one single nanopartilce is
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used as enhancement source, the electromagnetic enhancement effect is constant.
Furthermore, in TERS, the strong electric fields confined to the vicinity of the metal tip
providing high spatial resolution as well as an enormous signal enhancement. To date, the
reported highest experimental lateral resolution is 2-3 nm (/3-15) and the detection limit is

single molecule sensitivity (/6-19).

Taking advantage of the promising features of TERS, many open questions in biological
science could be investigated. Here we put our emphasis on nanoscale samples like
ribonucleic acid (RNA), DNA, methylated DNA and flexible liposomes (invasomes)

treated skin. Consequently, this thesis is organized as follows.

In Chapter 2, the general principles of Raman scattering, the SERS enhancement
mechanism and the evolution from Raman via SERS to TERS are outlined or described in
detail. Also, the principle of TERS, the variety of TERS experimental setups employed to
date, the promising features of TERS (high spectral sensitivity and high lateral resolution)

and the special effect (spectral fluctuation) in TERS are introduced in this chapter.

Chapter 3 is the experimental part of this thesis. The TERS setups used in the present work,
the preparation of TERS tips and SERS substrates, the general methods of sample
preparation (for each sample, any special sample preparation procedure will be described in
the corresponding chapter), and the procedure of doing TERS measurements are introduced

in this chapter.

Chapter 4 is focused on TERS for label-free DNA sequencing. DNA sequencing deciphers
the role of genetic variation among individuals, which is central to modern molecular
biology. The Sanger method (20) is very robust and has been the dominant method of the
DNA sequencing for some 30 years. It is based on the polymerase chain reaction (PCR)
amplification and other modifications of the molecules, which is procedurally complex and
needs large number of reagents. Improvements in DNA sequencing are being developed
and current advances show a tendency towards a label-free and direct sequencing with

reasonable costs and expenditure of time (21). Providing the inherently distinguishable

-2-
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fingerprint information of the four DNA nucleobases, high spectral sensitivity and lateral
resolution, TERS is applied for direct DNA sequencing (/9). In this chapter, TERS
measurements on single stranded uracil homopolymer, calf thymus DNA and (A(C;s)s are
investigated and discussed. Namely, the reproducibility of TERS, the detection of all four
DNA nucleobases (adenine, cytosine, guanine, and thymine) and the distinction of different
DNA nucleobases with TERS at sub-nanometer lateral resolution were investigated. This

demonstrates the feasibility of TERS as an alternative direct DNA sequencing method.

Chapter 5 is the investigation of TERS for direct 5-methylcytosine sites detection on
methylated DNA strands. Although DNA methylation changes the chemical structure of
individual bases without changing the DNA sequence, it alters the gene expression and is
believed to result in frequently deleterious phenotypic changes, such as cancer (22).
Methylation of DNA cytosine residues at the carbon-5 position (5-methylcytosine, SmeC)
in DNA strands is the most common chemical modification in DNA methylation. Typical
biological methods for detecting DNA methylation sites include bisulphate conversion,
endonuclease digestion, and affinity enrichment (23). All these methods require multiple-
step sample preparation with chemicals that may induce additional chemical modifications
in the DNA and interfere with the detection of modified DNA. With the above mentioned
promising features, in this chapter, TERS measurements on methylated single stranded
DNA (A95meCyo)s were performed. The obtained spectra not only demonstrate the direct
detection of 5-methylcytosine sites on DNA strands using TERS, and also further confirm

the feasibility of TERS for label-free biopolymer sequencing.

In chapter 6, skin penetration of flexible liposomes (invasomes) is investigated via TERS.
Invasomes offer a promising strategy for successfully improving skin drug delivery. In
general, molecular aspects of the mechanism of invasomes penetrating through the skin are
not available. Raman and IR have been previously used in the study of interactions of
invasome vesicles with skin and provided important information at the spatial resolution of
a few hundred nanometers (24-26). However the size of the invasome vesicles is about 50
to 200nm in diameter, which is smaller than the spatial resolution Raman and IR can

achieve. This challenge can be achieved by TERS. On one hand, the topography imaging
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capability of AFM can provide the morphology of the control and invasomes treated skin

sample at nanometer spatial resolution. This can provides the physical state changes in both

the exogenous (invasomes) and endogenous (skin) components. On the other hand, the

spectroscopic capability of TERS can be used to identify those changes at a molecular level.

The obtained primary AFM, SERS and TERS results show the promising prospects but also

the challenges of the project.

Chapter 7 summarizes my PhD thesis and concludes with a future outlook.
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Chapter 2 From Raman via SERS to TERS
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Fig. 2.1: The evolution from Raman via SERS to TERS, adapted from (1, 2).

Fig. 2.1 schematically illustrates the evolution from Raman spectroscopy via SERS to
TERS. The Raman scattering effect was discovered by Indian physicist C. V. Raman in
1928 (3). It reveals molecular energy level based on the frequency shift between incident
and scattered laser light and generally is an inherent weak process. The Raman signal is
strikingly enhanced by introducing noble metals (eg. Au, Ag, and Cu) particles as
substrates, commonly known as surface-enhanced Raman scattering (SERS) first observed
by M. P. Fleischmann et al. in 1974 (4) and then explained by Van Duyne, Jeanmarie (3)
and Albrecht, Creighton (6) in 1977. But SERS suffers from inhomogeneous enhancement
of the substrates and the limit of lateral resolution to 200-250 nm (determined by the
wavelength of the light applied and the numerical aperture of the lens). By exchanging the
multiple particle substrate by one single particle attached to the apex of the scanning probe
microscope tip, the obstacles can be avoided. The related technique is known as tip-

enhanced Raman spectroscopy (TERS). The first experiment on TERS was realized by
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Deckert and co-workers (7) in 2000 and followed closely by Anderson (8) and Kawata and
co-workers (9). More details of the evolution process, the related mechanisms, and the

instrumentations are introduced in this chapter.

2.1 Raman spectroscopy

Excited
states
--------------------------- H-=-7=-=-=--  Vitual
_____ O Sy gy ey R P states
Vo Uy 3 VoL Uy UO+ Uy
Ground
) \ ]-umstates
Rayleigh Stokes Anti-Stokes
scattering \ ' J

Raman scattering

Fig. 2.2: Energy level diagram of the Rayleigh, Stokes and anti-Stokes scattering

When a sample is irradiated by an EM-wave, a part of this radiation is scattered in all
directions. The scattered light consists of two types, see fig. 2.2: one is the elastic scattering,
also known as Rayleigh scattering, which has the same frequency (vo) as the incident light;
and the other is the inelastic scattering, is very weak and has a shift in frequency (vm)
compared to the incident radiation, which was discovered by the Indian physicist C.V.
Raman in 1928 and bears his name as Raman scattering (3). Most of these scattered
photons have lower frequency (vg-vm), while the rest show higher frequency (vg+vn,) than
incident photons; the former is termed Stokes scattering, and the latter is anti-Stokes

scattering.
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Fig. 2.3: Photons with frequency (v,) interact with a molecule and induce a molecular
motion on the radiated molecule and immediately a photon with a different frequency (v, £

Vm) 1S reemitted.

Raman spectroscopy is based on the inelastic scattering of light radiation. Inelastic
scattering is characterized by a frequency shift of photons by interacting with the sample
when subsequently reemitted (scattered) (fig. 2.2). The frequency of scattered photons is
shifted to higher or lower frequencies in comparison to that of the incident radiation. The
variations in frequency observed in this phenomenon are equivalent to variations in energy.
Atoms and ions are bound to each other to form molecules and crystal systems and
constantly perform vibrational and rotational motions. These oscillations are performed at
exact frequencies as a function of the involved particle mass and the dynamic behaviors of
the existent bonds, the force constants (fig. 2.3). Each vibrational and rotational mode has a
corresponding energy level. Raman spectroscopy is specific for each chemical compound
and is widely applied to identify and analyze chemical and condensed physical materials in

research and industry currently.

A laser is commonly used as a radiation source in Raman spectroscopy. It can be

considered as a polarized electromagnetic wave traveling in z-direction. It consists of the
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electric component (E, x-direction) and magnetic component (H, y-direction), which are

perpendicular to each other, see fig. 2.4.

5

Fig. 2.4: Plane-polarized electromagnetic radiation, adapted from (/0).

Raman scattering occurs when the laser beam (electric field) interacts with the electron

cloud of the molecule. According to classical theory, Raman scattering can be explained as

follows: the electric field strength (E) of the electromagnetic wave (laser beam) fluctuates

with the time (t) as expressed by the following equation:

E=Ecos(2muot) (2-1)

Where (Ey) is the vibrational amplitude and (vy) is the frequency of the laser.

If a molecule is irradiated by this light, an electric dipole moment p is induced:

u=aE =aEycos (2mut) (2-2)

Where a is the polarizability of the molecule, which varies also with the time and is

represented by:
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0= OlgHOUmCoSs (2TLmt) (2-3)

Where a is the polarizability of the equilibrium conformation of the molecule, o, is the
polarizability change with molecular vibration, and vy, is the vibrational frequency of the

molecule.

Combining equations (2-2) and (2-3) the dipole results as:

p=[aptomcos (2momt)] - Eocos (2mugt) (2-4)

Equation (2-4) can be developed into three terms as:

u=ay - Egcos (2mugt) + 0.50m - Egcos [2m(votom)t] + 0.50um, - Eocos [27(Vg-m)t] (2-5)

These three terms refer to the fact that the oscillating dipole reemits the photons in three
characteristic frequencies as has been mentioned: the first term is Rayleigh scattering, the
second and third terms are anti-Stokes scattering and Stokes scattering. It is important to
note that if the molecular vibration does not cause changes in polarizability (a,=0) and

vibrational frequency (Ly=0), then no Raman scattering can be observed.

Each vibrational or rotational mode corresponds to a relative frequency shift, which is
independent of the wavelength of the laser source. The collection of the different
frequencies or Raman shifts undergone by a molecule is known as Raman spectrum and
provides an individual fingerprint (composition of Raman shifts) characteristic for each

molecule, which allows its identification and structural analysis.

2.2 Surface-enhanced Raman spectroscopy (SERS)

2.2.1 The discovery of SERS

As has been mentioned the Raman signal is generally weak, although this situation can be
improved by using high-power laser to increase the amount of incident photons and/or

increasing the accumulation time. The sensitivity is still very low and a huge number of
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molecules are needed, with the limit of detection generally higher than 10° M in solution.
An effective strategy for enhancing the Raman signal is bringing the molecules close to a
metallic surface, which enhances the Raman signal by several orders of magnitude. This
effect is referred to as surface-enhanced Raman scattering (SERS). It was first observed in
1974 by Fleischmann, Hendra and McQuillan (4). They recorded unexpected strong Raman
signals of pyridine adsorbed on a rough silver electrode. However, their interpretation was
that the higher intensity results from a bigger quantity of molecules adsorbed on a rough
surface. In 1977, Van Duyne, Jeanmarie (5) and Albrecht, Creighton (6) explained this
effect independently from each other as a real electromagnetic (EM) enhancement of the

signal by a factor of 10° which does not only result from the number of molecules probed.

2.2.2 The enhancement mechanism of SERS

The exact nature of the mechanism causing the enhancement is still unclear, but so far two
mechanisms have been widely accepted in the community, namely the electromagnetic
enhancement (//, /2) and the chemical enhancement (/3). As has been mentioned, the
Raman scattering intensity is proportional to the square of the transition dipole moment p,

which is given by:

p=oaE (2-2)

Where a is the polarizability tensor of the molecule, and E is the electromagnetic field of
the incident light. Therefore there are two possibilities to increase the signal, one is to alter
the polarizability of the molecule and second is to simply increase the electromagnetic (EM)
field strength. The first possibility relates to the chemical enhancement while the second
relates to the electromagnetic enhancement theory which treats the amplification of the EM

field.
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Fig. 2.5: Schematic diagrams illustrating localized surface plasmon (LSP) (a) and two main
enhancement mechanisms for SERS signals of molecules, (b) electromagnetic enhancement
and (c¢) chemical enhancement. Ey: incoming electric field; Epyp: dipolar field; Egc: Raman-
scattered field; Ep: Fermi level; HOMO: highest occupied molecular orbital; LUMO:

lowest unoccupied molecular orbital. Adapted from (7/2-15).

Electromagnetic enhancement

The electromagnetic enhancement theory refers to the excitation of localized surface
plasmons (LSP) (fig. 2.5 (a)), by which field enhancement occurs because of the resonance
interaction between the electric fields and the surface plasmons in the metal, which is
shown in fig. 2.5 (b). In essence, the incident light from a laser beam excites the localized
surface plasmons, which are collective oscillations of conduction electrons. These plasmons
then radiate a dipolar field (Epjp). The coherent interaction of the incoming electric field (Eo)
with the dipolar field (Epip) leads to a redistribution of the electric field intensities in areas
around the metal clusters. Molecules nearby or adsorbed on the metal then “feel” a
enhanced excitation intensity. In the same way as the incident laser field, the Raman-
scattered field (Egc) is enhanced as well. In SERS, the dominant enhancement of the
Raman signal is due to EM, which is a long range effect, with an interaction length of the
order of a few to a few tens of nanometers between the molecules and the substrates, with

an enhancement factor of typical 10° up to 10 (16).
Chemical enhancement
For the electromagnetic enhancement the molecule must be close to the metal particle, but

does not need to be adsorbed on the surface. For the chemical enhancement of the Raman

-12 -
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signal it is mandatory that the molecules are adsorbed on the surface and thus sometimes is
also called short range effect relative to the EM. In the chemical enhancement, molecules
are believed to build a charge transfer (CT) complex with the metal atoms at the surface,
thereby changing the Raman polarizability tensor. The charge transfer is possible when the
Fermi level (Er) of the surface falls in between the highest occupied molecular orbital
(HOMO) and the lowest unoccupied molecular orbital (LUMO) of the molecule, whereas
both transfers from HOMO to Er and Er to LUMO are possible (fig. 2.5 (c)) (17).
Considerable band shifts are associated with this effect and can be used to distinguish
whether the metal particle is in direct contact with the sample. The estimated typical
enhancement factor is 10%-10° (I8, 19). The EM and the chemical mechanism act in
conjunction and it is difficult or even nearly impossible to discern the different

contributions experimentally.

SERS provides wealth information on structural and dynamical of samples due to its huge
enhancement effect. Furthermore, the combination of SERS with optical microscope
enables the spectral features spatially defined. Therefore, SERS has been widely applied in
surface science, material science and biomedicine (20). The main obstacle associated with
SERS is the inhomogeneity of the field enhancement across the sample. SERS effect is
shown for different substrate types including metal roughened electrodes, colloids, metal
films, and periodic nanostructures (21). The different shapes, sizes and roughness of single
particles and clusters result in strong variations of the field enhancement and consequently
the Raman signal. Furthermore, these physical parameters also depend critically on the
substrate preparation. For periodic nanostructures, the field enhancement is more constant
but the fabrication is complex and costly. Therefore, a quantitative analysis of interfaces

using SERS is difficult.

It is well known that the large field enhancement at metal particles occurs in regions of high
curvature and maximum enhancement occurs for elongated particles with dimensions of
about 10-100 nm. While clusters are considered to yield a better overall enhancement, also

a single isolated metal nanoparticle can enhance the field considerably (22-24).
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2.3 Tip-enhanced Raman spectroscopy (TERS)

2.3.1 The theoretical proposal and experimental realization of TERS

Scanning probe microscopy (SPM) (25, 26) has enabled researchers to image surfaces at
the nanometer scale. SPM is a general term, used to describe a growing number of
techniques that mechanically move the probe in a raster scan over the specimen, line by line,
and recording the probe-surface interaction as a function of position displayed in image

form. SPM offers superb spatial resolution but lacks chemical specificity.

(b]

Fig. 2.6: Single metal nanopaticle working as optical probe particle designed by Wessel
(24).

The concept of a single-particle surface-enhanced microscope using SPM tip emerged in
1985. Wessel (24) theoretically proposed the combination of the then newly invented STM
technique with a submicrometer-sized metal particle antenna scanning over and
investigating the surface. Fig. 2.6 illustrates the idea proposed by Wessel for the
construction of a single-particle surface-enhanced microscope. Wessel’s idea for the first
time replaced the rough metal SERS substrates by a sharp metal tip that would act as an
exclusively active site with constant field enhancement, which overcame the limits of

SERS (inhomogeneity of substrates and diffraction limit).
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Fig. 2.7: TERS spectra of briliant cresyl blue (BCB) (a), and Ce (b). 1. The tip contacted
with the sample; 2. Tip retracted. From ref. (7).

The experimental realization of Wessel’s idea is known as TERS. It took 15 years to
actually prove this concept experimentally. The first such proof was done by Deckert and
co-workers (7). In their experiment they showed that the Raman spectra of briliant cresyl
blue (BCB) can be enhanced by bringing a metal coated atomic force microscope (AFM)
tip into contact with the sample (fig. 2.7 (a)). A similar phenomenon was observed with Cg
when an electrochemically etched gold tip was used (fig. 2.7 (b)). In the same year Kawata
and coworker (9) and Anderson (8) also developed a TERS setup independently.
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2.3.2 The enhancement mechanism of TERS

The large enhancement of Raman scattering from single metal probe used in TERS can be
discussed on the same basis as the SERS effect, namely the electromagnetic effect and the
chemical effect. One of the most important features of TERS is the ability to highly confine
the electromagnetic field at the apex of a sharp metal or metalized tip. This is due to an
electrostatic lightning rod effect as a result of the shape of the particle at the tip apex and
results in the high spatial resolution of the technique (27).

2.3.3 TERS instrumentation (27-30)

2.3.3.1 Different SPM feedback systems in TERS

TERS is the combination of SPM and Raman. Here the SPM can be AFM, fig. 2.8 (a)),
STM, fig. 2.8 (b)), and shear force microscope (SFM, fig. 2.8 (c)).

(a) laser (b) (©)

photodiode
A |B

C

scanner
~ AO

\\—piezodriver

tuning fork

probe
1

Fig. 2.8: Schematic illustration of three different SPM instruments: (a) Atomic force
microscopy (AFM); (b) Scanning tunneling microscope (STM); (¢) shear force microscopy

(SFM).

AFM: AFM measures the interaction force between the tip and the surface. When the tip is
mechanically brought into proximity of a sample surface, forces between the tip and the
sample lead to a deflection of the cantilever. The deflection is measured using a laser spot
reflected from the top surface of the cantilever into an array of photodiodes showing the
topography information of the measured surface (fig. 2.8 (a)). In AFM, contact mode and
tapping mode are usually used for imaging. In contact mode, as the name already suggests,
the surface is tracked by the tip in close contact. The tip can either be held at a constant

distance or at a constant force relative to the sample (fig. 2.9 (a)).The advantages of contact
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mode are: fast scanning, good for rough samples, and can be used in friction analysis; the
disadvantage is at time forces can damage/deform soft samples. In tapping mode, the
imaging is similar to contact. However, in this mode the cantilever is oscillated at its
resonant frequency. The probe lightly “taps” on the sample surface during scanning,
contacting the surface at the bottom of its swing. By maintaining a constant oscillation
amplitude, a constant tip-sample interaction is maintained and an image of the surface is
obtained (fig. 2.9 (b)). The advantages of tapping mode are: allows high resolution on
samples that are easily damaged and/or loosely held to a surface, good for biological
samples; the disadvantages are: more challenging to image in liquids, slower scan speeds
are needed. The main advantages of AFM feedback are: it has no sample requirements and
can work on virtually any surface (conductive and insulated) with a roughness of up to
several microns and a scan area up to tens square-microns, which make AFM powerful for

observing biological samples in physiological states.

(a) (b)

vV—

Fig. 2.9: Two mainly used imaging modes in AFM (a) Contact mode and (b) Tapping
mode.
STM: The fundamental principle of STM is that a conducting tip is kept in tunneling
distance (< Inm) to the conductive surface, a bias (voltage difference) applied between the
two can allow electrons to tunnel between them. The resulting tunneling current displays
the examined surface information in image form (fig. 2.8 (b)). The main advantages of
STM feedback are: the high spatial resolution and high control precision because of the
tunneling current effect. The disadvantages are the limitations to the conductive tips and

samples, the limitation to the sample height to approximately 1 nm, due to the sensitivity of

the tunnel current.

-17 -



Chapter 2

SFM: In SFM, a nanotip is stuck to a high frequency tuning fork to detect the proximity of
the surface by damping of the free oscillation (fig. 2.8 (c)), similar to tapping mode AFM.
The major difference is the oscillation direction of the tuning fork laterally to the sample
surface, which keeps the sample-tip distance more or less constant. The main advantage is:
convenient to be combined with inverted and upright microscope respectively. The

drawback is that it does not fit the standard AFM equipment.

2.3.3.2 Different illumination/collection geometries in TERS
Depending on the properties of different samples and the collection efficiency of the
Raman signal, there are three different types of illumination/collection geometries in TERS:

bottom, side and parabolic mirror, which are shown in fig. 2.10 (a), (b), and (c) respectively

Bottom illumination/ collection: in this configuration (fig. 2.10 (a)), an SPM tip is placed
on top of an inverted optical microscope and illuminated by the excitation laser from below
using an immersion objective with a high numerical aperture (NA, 1.2-1.6). The Raman
signal is collected through the same objective. This configuration ensures a high efficiency
and avoids a large contribution of unenhanced signal compared to the reflection mode. The

major shortcoming for this configuration is the restriction to transparent samples.

(a) (b) %

(%
&
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Q,

%
Q
etector -

Fig. 2.10: Different illumination geometries: (a) Backscattering illumination; (b) Side

illumination; (¢) Illumination with a parabolic mirror.
Side illumination/ collection: in this configuration (fig. 2.10 (b)), an SPM tip is
illuminated by the excitation laser from side through a long working distance objective with

lower NA (< 0.6). The Raman signal can be collected through the same objective from the
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side. The major advantage of this configuration is that the sample can be opaque. A
disadvantage is the low contrast between the near-field and far-field signals because of the

unfavorable ratio between the illuminated and enhanced areas.

Illumination/ collection based on parabolic mirror: The high NA objective used in
TERS is limited to bottom illumination/collection configuration. To overcome this problem,
the objective with high NA is replaced by a parabolic mirror allows the collection of
scattered Raman signal from all directions (fig. 2.10 (c)). The parabolic mirror based TERS
setup works in reflection mode so it is capable of detecting both transparent and opaque
samples. Very good enhancements are achieved with radially polarized light. The main

challenge is the highly sensitive alignment.

2.3.3.3 The fabrication of TERS tips

L~

Fig. 2.11: SEM images of TERS tips fabricated by different methods. (a)
Electrochemically etched Au tip (37); (b), (¢) Silver-coated AFM tip with different
amplifications, which was fabricated in IPHT, Jena and used in the present TERS

measurements.

The tip fabrication in TERS is crucial as tip works as a SPM probe and more important as
an enhancement resource as well. The material and shape of TERS tip determines field
enhancement and the lateral resolution occurring at the apex of the tips (32-34). Mainly
silver and gold tips are used because of their superior plasmon resonances in the visible
regime, which can be metal-coated standard AFM tips by evaporation or can be pure metal
tips made by electrochemical etching of metal wires. For more details on TERS tip

fabrication see ref. (27). Fig. 2.11 (a) shows a electrochemical etched Au tip (37), and (b),
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(c) show a silver-coated AFM tip with different amplifications fabricated in IPHT, Jena and

used in the present TERS measurements.

Compared to silver tips, gold tips are more frequently used because they are easy to
manufacture and are more stable. Silver tips in general have better optical properties with
respect to the surface enhancement properties than gold tips and were used here. To date,
the STM and SFM based TERS setups both use metallic Au tips, while the AFM based
TERS setups usually use silver coated tips. So far all the produced TERS tips are relatively
fragile, where the tip apex is either broadened or the coating is peeled off after several
hours of scanning. Furthermore, the silver coated tips are easily oxidized in air therefore are

stored under inert gas.

2.3.3.4 The choice for the optimal TERS configuration

The choice of the optimal TERS configuration critically depends on the specific
requirements of the samples involved. The feedback system required depends either on the
conductivity properties or the thickness of the sample. The appropriate illumination mode
configuration for a TERS experiment depends on the transparency of the sample. Finally,
the choice of the proper tip depends on the spectral absorption characteristics of the sample

and therefore which excitation wavelength is desirable.

2.3.4 The high spectral sensitivity in TERS - single molecule (SM)-TERS

First reports of SM-TERS came from the group of Raschke in 2006 (35), who used
malachite green sample adsorbed on vacuum evaporation flat Au films. The spectra from
Raschke showed great fluctuations in signal intensities and band positions, fig. 2.12. These
observations were attributed to a single molecule moving within the enhancement zone, to
electric field gradient effects, and to different Raman selection rules. Later on, Pettinger
presented fingerprint-quality TERS spectra of green isothiocyanate adsorbed on Au (111)
surface exhibiting no spectral fluctuations (36). The signals were ascribed to scattering
from < 5 dye molecules which is confirmed by STM images. No variation in band positions
or relative band intensities was observed at the single- or few-molecule detection level

when employing TERR spectroscopy was attributed to well-defined adsorption sites at
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atomically smooth Au (111) surfaces. In 2007, Zenobi & coworkers presented the evidence
for the SM-TERS of brilliant cresyl blue adsorbed on vapor coated flat Au film (37).
Spectroscopic fluctuations, including intensity fluctuations, small frequency shifts, and line
shape changes were also observed, although the fluctuations were much smaller in

magnitude than those reported by Raschke et al..
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Fig. 2.12: Time series of tip-scattered Raman spectra for a submonolayer MG surface
coverage (a) The spectral diffusion observed is characteristic for observing single MG
molecules; (b) Temporal variation of the intensities of the integrated 1480-1630 cm’
Raman band with 170230 counts mol' s' (dashed line increment). From the

corresponding histogram inset a discretization of Raman intensities can be seen (335).

In SERS and TERS, evidence cited to SM interpretation are: (a) low analyte concentrations
were used to ensure that there is less than one molecule on average in the scattering volume,
and (b) spectral fluctuations of the Raman signals were observed, analogous to the blinking
behavior reported in single molecule fluorescence spectroscopy. In Raschke and Zenobi’s
SM experiments, the molecules were adsorbed on vapor coated flat Au film. The non well-
defined Au film surface cannot ensure the low concentration and homogeneous distribution
of the molecules. Concerning on the fluctuation phenomenon, there can be several causes
(37-39): (a) a molecule diffusing/re-orienting under the tip, i.e., single molecule behavior;
(b) physical (e.g., morphology) and chemical (e.g., oxidation) changes of the TERS tip

during the experiment because of laser irradiation; (c) tip moving by itself due to instability
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of the SPM system or due to laser heating effects, and (d) carbon contamination diffusing in
the enhancement zone. Only (a) is a SM effect. Therefore, the evidences presented for the

SM behavior characterization are still argumentative.
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Fig. 2.13: STM images of five (a) and a single BCB molecule (d) adsorbed on Au (111),
the corresponding height cross sections (b), (e) and the UHV-RR and UHV-TERR spectra

(c), (F) (40).

In 2008, Steidtner and Pettinger solidly demonstrated the SM detection capability of TERS
(40). They imaged a BCB molecule chemisorbed on an Au (111) surface with STM and
then collected its TERS spectrum in ultra high vacuum (UHV). The performance of the
experiment in UHV maintained the stability of the analyte from photo-oxidation processes
and avoided the carbon contaminations in the air. The TERS spectra were stable over a
reasonably long period of time, and the single BCB molecule could be re-imaged after its

TERS spectrum was collected, fig. 2.13.

Also in 2008, Bailo and Deckert reported TERS spectra of single RNA strands with single-
base sensitivity (47). In their report, the signal to noise ratio (SNR) of approximately 200
was obtained from 30-60 nucleobases underneath the TERS tip. Assuming a homogeneous
signal enhancement, every single nucleobase then contributed with a SNR of 3—7 to the

spectrum, which meant that single-base sensitivity had been achieved.
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2.3.5 The high lateral resolution in TERS

The basic explanation of the high-resolution capabilities of TERS is based on the highly
confined evanescent field at the apex of a tip (28). The resolution of TERS is mainly
determined by the radius of the tip (fig 2.14 (b)) and also directly affected by the substrate
material and the tip-substrate distance separation. In general, increasing the radius of the tip,
increasing the tip-substrate distance, or changing the metallic substrate into a dielectric
substrate will lower the spatial resolution (2). According to the reported theoretical and
experimental results (2, 40, 42), normally with a tip radius of ~20 nm, tip-substrate distance
of 1 nm, metallic or dielectric substrate, the spatial resolution of about 8§ nm is acceptable.
However, Kawata’s group reported a lateral resolution of 3-4 nm (43, 44), which is realized
by selectively applying an external pressure on a nanometric volume of the sample through
the apex of a sharp nanotip, see fig. 2.14 (c). By applying the pressure, the tip contacted or
even compressed the sample, therefore, the short-rang chemical and mechanical
interactions between the tip and sample became significant and resulted in super high
lateral resolution (3-4 nm). They even predicted a molecular resolution by this technique
(43) (45). Deckert and coworkers also reported a super high lateral resolution of < 2 nm,
which is explained by a very small effective tip size, or an additional field confinement due
to gap mode, or a direct interaction between tip and sample, or even a combination of all

these effects (46).
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Fig. 2.14: Extremely high spatial resolution in optical microscopy is achieved by sensing
the localized pressure applied by a nanosized tip. (a) Image resolution in optical
microscopy is determined by the diffraction-limited focal spot, which is approximately a
half of the probing wavelength; (b) Spatial resolution in normal TERS is determined by the
localized light field, comparable to the diameter f of the tip apex; (¢) When a sample is

pressurized by the tip apex only a few sample molecules are mechanically deformed. By
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sensing the optical response of these molecules, a spatial resolution up to the molecular

level can be achieved, adapted from (43).

2.3.6 The spectral fluctuation in TERS

The basic explanation of the fact that the SERS spectra often show shifts in band position,
band intensities and sometimes even new bands compared to the normal Raman spectra of
the same molecule is based on so called surface selection rules and chemical enhancement
(12, 13). In TERS, the spectral fluctuation (band position and band intensity) is more
significant compared to SERS and has been observed by many TERS groups (Kawata (47-
49), Deckert (41), Raschke (35), and Zenobi (37)). Due to the high resolution of TERS,
only a few or even sometimes a single molecule contributes to the TERS signal, therefore,
the spectral fluctuation is attributed to not only the surface selection rule and chemical
enhancement, but also to the “nano-scale effect” (47), the changes of molecular orientation
under the tip and even the different atoms sites in molecule interacting with the different
metal atoms on the tip (47-49). A good example is a serial of TERS measurements
performed on nanocrystal adenine. The obtained near-field spectra showed fluctuations of
spectral shapes, including fluctuations of peak frequencies and peak intensities and
extraordinary enhancements of several peaks, which is different from the normal Raman
and conventional SERS spectra. However, these bands can be identified to the normal
modes of adenine using density-functional theory (DFT) vibrational calculations of adenine
complexes involving a silver atom. In adenine there are four nitrogen atoms, N1, N3, N7,
and N10 which can bind to the silver nanoparticles forming four Ag-N isomers. Depending
on which isomers were formed, specific vibrational modes and spectral shifts were
observed experimentally. This phenomenon was attributed to the changes of molecular
orientation under the silver-coated tip as well. The obtained results showed a potential to
achieve atomic site-selective detection sensitivity of TERS and demonstrated the
importance of sample-tip interaction at molecular level in the interpretation of TERS

spectra (47-49).
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Chapter 3 Experimental part

3.1 TERS setup in the present work

Two TERS setups, setup 1 and setup 2 were used in the present work. All the

measurements on RNA, DNA and methylated DNA were performed on setup 2 and the

measurements on invasomes and skin were performed on setupl.

E Photodiode AFM Laser

CCD mjﬁroscope

Xy sample stage

Photodiode

Spectrometer]

Microscope

Fig. 3.1: Schematic illustration of the TERS setup 2. M: mirror; ND: neutral density filter;

DM: dichroic mirror; BS: beam splitter; NF: notch filter; EF: edge filter.
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TERS setup 2 is schematically shown in fig. 3.1. The monochromatic laser beam (532 nm)
is guided by an adjustable mirror (M1) to a neutral density filter (ND) to attenuate the
intensity. After passing a dichroic mirror (DM) and two adjustable beam splitters (BS1, 2),
the laser beam is focused through an oil immersion objective (60-fold Olympus PlanApo
NA 1.45, or 40-fold Olympus UApo N340 NA1.35) onto the sample and the TERS tip. The
backscattered light is collected trough the same objective and guided by a mirror (M2) via a
notch/edge filter (NF/EF) to the Raman spectrometer (Acton Advanced SP2750A,
Princeton Instruments, Trenton, NJ, USA). The notch filter eliminates the Rayleigh
scattering part of the beam. The edge filter could be longpass and shortpass. The longpass
edge filters block off all wavelengths below a given wavelength and therefore it is only
employed to measure Stokes-Raman scattering. Shortpass edge filters block off all
wavelengths above a given wavelength and are suitable for Anti-Stokes Raman scattering
studies. Images of the light microscope are obtained by placing BS1 into the optical path.
The AFM head (xyz scanner, NanoWizard II, JPK Instrument AG, Germany) is mounted
on a Xy microscope stage on top of an inverted microscope (Olympus IX71). The sample is
mounted on a xy-piezo sample stage (JPK Instrument AG, Germany) mounted above of the

microscope stage.

The configuration of TERS setup 1 is very similar to setup 2. The differences are: the
monochromatic laser beam (530.8 nm) first passes an interference filter (IF) to cut the
sidebands of the laser beam; the AFM is NanoWizard I from JPK Instrument AG, Germany;
and the Raman spectrometer is a LabRam Hr from HORIBA Jobin-Yvon, Edison, NJ, USA.

3.2 The preparation of TERS tips and SERS substrates

TERS tips were obtained from the IPHT. The tips were stored under argon atmosphere and
were used within three days after the preparation. The average diameter of the apex of the
coated tips is estimated to be approximately 20 nm (fig. 3.2 (a)) but becomes blunt (fig. 3.2
(b)) after measurements. Silver island film evaporated on glass cover slide surface was used
as substrate in the present work for SERS measurements. They were obtained from the
IPHT too. Prior to evaporation, the glass cover slips were cleaned in a digestion mixture of

concentrated HNO;: 30% H»O; (3:1) for 2 hours, subsequently rinsing with bidistilled
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water 3 times and dried under vacuum. The silver island film was then evaporated on the

glass cover slide surface and annealed under an argon gas stream (1). The substrates were

stored under argon atmosphere and were used within three days after the preparation.

Fig. 3.2: SEM images of (a) a freshly coated TERS tip and (b) a used TERS tip.

3.3 Sample preparation

As has been mentioned, all the present TERS measurements were performed with a bottom
illumination / collection mode using an oil immersion objective. To avoid losses of the
excitation laser power and the Raman signal, the sample and the sample substrates should
be transparent. The oil immersion objective has a low working distance (0.17 mm), for that
reason the thickness of the sample substrate is limited. For all the measurements, mica
substrates (<0.1 mm thickness, Bal-Tec GmbH, Liechtenstein), clean thin glass cover slides
(0.15 mm thickness, Marienfeld GmbH, Germany), or gold nanoplates (spreaded on the
surface of glass cover slides) were used as substrates. The mica substrates were freshly
cleaved prior to use, by making a small cut between two layers with a razor blade and
taking both apart; the glass cover slides were cleaned as mentioned; the gold nanoplates
synthesis is described in detail in ref.(2). For each sample, any special sample preparation

procedure will be described in the corresponding chapter.

3.4 How to do a TERS measurement
TERS measurements were performed in tapping mode, shown in fig. 3.3. Before every
TERS measurement the TERS tip was set within the laser focus. In the coarse alignment the

camera image was used to centre the TERS tip above the laser focus spot. Then BS1 was
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replaced by BS2 to guide the reflected laser beam to the photodiode. Thereafter a large
region (~25x25 um) was scanned in tip-scanner mode and the reflection and Raman signal
of the tip were recorded parallel, the deflection of the tip was located and successively
smaller regions around the spot were recorded (~3x3 pum). In sample-scanner mode the tip
was set on the spot with the highest reflection and within an accuracy of ~200x200 nm. The
sample was scanned in xy-direction by a piezo stage and in z-direction by the tip. Then the
mode was changed to force spectroscopy and a grid was defined on the topographic image.
Finally, TERS spectra at each point in the grid were measured. The laser power and

exposure time were adapted individually for each sample.

The tip 1s set in

_ the laser spot
<,>I ip scanner to findgypsegmes Sample scanner tQ~= ¢ —
the laser spot - find site of interest
— —_—

Setting a grid on
TERS spectra _ the interested site

TERS spectra are recorded

Fig. 3.3: A schematic representation of the TERS measurement procedure.
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Chapter 4: TERS for label-free DNA sequencing
4.1 The aim of this chapter
The aim of work in this chapter is to evaluate and demonstrate the feasibility of TERS as a

label-free DNA sequencing method theoretically and experimentally.

4.2 Introduction

The term “DNA sequencing” refers to the determination of the order of the nucleotide bases
adenine (A), cytosine (C), guanine (G), and thymine (T) in DNA strands. It is central to
modern molecular biology and molecular diagnostics, because the identification of specific
diseases is based on nucleic acid sequence identification. The Sanger method (/) has been
the dominant method of the DNA sequencing industry for some 30 years. It is very robust
and was employed successfully in the Human Genome Project (2). However the Sanger
method is based on the polymerase chain reaction (PCR) amplification and other
modifications of the molecules, which is procedurally complex and needs large number of
reagents. Furthermore, the Sanger method is still too costly for reading personal genetic
codes. Hence numerous improvements are being developed, optimizing various aspects of
the sequencing process and current advances show a tendency towards a label-free and
direct sequencing with reasonable costs and expenditure of time. Recent approaches in this
direction include: electrically read out the base sequence of a single strand when it is
translocating through a nanopore (3-5); attempts were also made to directly partially
sequence DNA using STM (6, 7); with the feature of providing the inherently
distinguishable fingerprint information of different molecules without labeling, SERS and

TERS are also used to study the DNA molecules (8-72).

In this chapter the structure of DNA and RNA will be introduced. Followed by the
introduction of the different methods for DNA sequencing and detection, I will focus on the
basic principles and challenges of these methods and compare them to TERS as a label-free
direct DNA sequencing method. Last but not least, TERS measurements on uracil polymer,
calf thymus DNA, and (A;oC;s)s DNA single strands will be shown to demonstrate the
feasibility of TERS as a direct DNA or other polymeric bio-macromolecules sequencing

method.
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4.2.1 Structure of DNA and RNA

A ) Adenine Guanine
()

3 end

3 end 5 end

Fig. 4.1: (a) Molecular structure of the DNA and RNA nucleobases. The structure of DNA
helix (b) and RNA single strand (c). A: adenine; C: cytosine; G: guanine; T: thymine; U:

uracil.
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DNA and RNA are the two different nucleic acids found in the cells of living

organisms. Both play significant roles in cell biology and are composed of three groups:

phosphates, sugars and nucleobases. The backbone is built of phosphates and sugars, which

in the case of DNA are deoxyriboses and in the case of RNA, riboses. Four nucleobases are

found in DNA: adenine (A), guanine (G), cytosine (C), and thymine (T); in RNA, uracil (U)
replaces thymine. These five bases can be classified into purine bases (adenine and guanine)
and pyrimidine bases (cytosine, thymine and uracil), see fig. 4.1 (a). DNA naturally is a

double helix strand with complementary chains: each adenine of one strand is paired with a

thymine of the other strand (via two hydrogen bonds) and each guanine is paired with a

cytosine (via three hydrogen bonds, fig. 4.1 (c)). In contract to DNA, most RNA molecules

are single-stranded, fig. 4.1 (b). The height, width, and base-to-base distance of DNA single

and double strands are shown in table 4.1 (7, 13-15)

Table 4.1 The height, width (AFM measured) and base-to-base distance of DNA single
and double strands (7, 13-15)

DNA single strand DNA double strands
Height 0.2-0.8 nm 0.6-1.2 nm
Width 10-15 nm 10-20 nm
Base-to-base distance 0.5-0.7 nm 0.34 nm

4.2.2 DNA sequencing and detection methods

Rising interest in genomic research and whole-genome sequencing with reasonable costs
and expenditure of time resulted in recent developments of novel sequencing technologies.
Those sequencing systems include a number of non-Sanger ultra-high-throughput methods,
which have been reviewed for instance in ref. (/6, /7). Here we put our emphasis on the
direct and electronic sequencing by using nanopore and STM. They in principle do not
require any amplification of DNA template, which is in contrast to the Sanger method.
SERS and TERS as another two label-free spectroscopic methods for DNA study are

introduced here as well.
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4.2.2.1 Nanopore method

Unlike the Sanger method, the ideal nanopore sequencing approach would not require
fluorescent labels or element labels and would use unamplified genomic DNA, thus
eliminating enzymes, cloning, and amplification steps and has therefore attracted a lot of
interest. Fig. 4.2 schematically illustrates the principle of a nanopore sequencing system. A
nanopore separates two compartments filled with salt buffer, both are connected to
electrodes. A constant voltage bias is applied between the two electrodes inducing a steady-
state ionic current through the pore, which is measured by the amplifier. Adding a single
stranded DNA (ssDNA) to the negatively biased compartment leads to transient reductions
of the ionic current. This reduced conductance is associated with the translocation of DNA
through the pore, which partially blocks the ionic current. Theoretically, each nucleobase
induces a specific change in the ionic current flow as a result the sequence can be deduced
by measuring the ionic current during the translocation. Nanopore research uses either
biological pores like protein a-hemolysine or solid-state nanopores, like silicon nitride.
Biological pores exhibit a lower noise level than solid-state phases, whereas solid-state
nanopores show superior chemical, thermal, and mechanical stability over the biological

counterpart, and have the potential of integration into devices (16, 18-20).

Nanopore method =g,

[ 200mV

90 20 30
time (msec)

|
| 20; SR Ao S

Fig. 4.2: Experimental setup for measuring characteristic ionic currents of a nanopore that

conducts a DNA strand, (a) Solid-state pore; (b) Protein pores, adapted from (20, 21).
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For several reasons it is not so easy to realize the nanopore method in practice. Firstly, the
bases have similar chemical structures resulting in only small differences of the electric
signal. To detect small signals, approaches are needed to reduce interference from the
measurement environment, and/or to amplify the signals by modifying nucleotides or
employing an optical, electric, or magnetic stimulus. Secondly, noise in the ionic blockade,
due to both intrinsically ionic fluctuations and structural fluctuations of the nucleotides, is
likely to be too large to successfully distinguish the bases. Last but not least, a finite
thickness or electric ‘‘read’’ region (~3 nm) of the channel of a nanopore might place a
fundamental restriction on the single-base resolution because at least 4-6 nucleotides of
ssDNA extend through a channel and thus all these nucleotides together contribute to the
ionic current blockage. To detect the effect of individual nucleotides on the ionic
conductance, a nanopore with channel length comparable to that of a single nucleotide
(~0.5-0.7 nm) is required. Monolayer graphene sandwiched between two insulating layers

may meet this requirement (16, 18, 19, 21).

If these challenges could be overcome, nanopore sequencing has the great potential for
ultra-rapid sequencing DNA with drastically lower cost per genome, allowing for an

extensive application in medical diagnostics (16, 19, 21).

4.2.2.2 STM method
STM method

(@) ) -

Tip

di/dVv(au.)

— Ve (V)
Fig. 4.3: Schematic images of STM-based DNA sequencing. (a) An ssDNA molecule with

bases regularly aligned is prepared on an ultrathin insulating layer that is deposited on a
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conductive substrate. (b) Each base has distinct electronic state showing different electronic

signal in the I-V curve, which used to sequence DNA strands, adapted from (/6).

The principle of STM for DNA sequencing is that STM images represent images of the
local density of states at the Fermi level projected to the tip apex above the sample surface.
Thus, although STM lacks chemical sensitivity, it can, in principle, be used to detect DNA
sequences if there is a difference in electronic characteristics among the four bases. The

schematic images of STM-based DNA sequencing are shown in fig. 4.3 (/6).

In 2009, Tanaka and Kawai reported partial sequencing of a DNA single strand with a STM
by using an oblique pulse-injection method to deposit the molecules onto a copper surface.
First, they show that some bases appear brighter in the conductance image (the derivative
of the current—voltage (I-V)) curve obtained at a chosen bias voltage than the other
nucleobases of the stretched single-stranded DNA (22) by using low-temperature ultra-high
vacuum (UHV) STM. By comparing to the known sequence of the DNA strand, the
brighter bases were identified as the guanine, which have a distinct electronic state that
allows them to be distinguished from the other nucleobases. These results show that it is
possible to sequence individual guanine bases in real long-chain DNA strands with high-

resolution STM imaging and spectroscopy (7).

When DNA bases interacted with a single-walled carbon nanotube (SWCNT), Kaxiras et al
(23) found theoretically 100% nucleobase identification based on the electronic
characteristics among the four DNA bases. These reports indicate the possibility of
sequencing DNA using the STM technique. However, the different electronic properties of
carbon nanotubes (CNTs) depend on their chirality and diameter, and DNA wrapping
around CNTs (orientation issue) makes it experimentally difficult to access individual bases
along the DNA molecule. Thus it still has to be proved if the identification of all four bases
is possible by STM. Furthermore, the success of single-molecule sequencing using STM
relies heavily not only on the detection techniques but also on the preparation of DNA
samples. How to prepare a linear ssDNA with base resolution sample on a solid-state

surface is a great challenge STM-based sequencing has to face. The STM-based method
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does not require imaging of the internal atomic structure of bases, but it requires single-

base resolution, so that the STM tip can be located on top of each base individually.

Similar to the sample preparation for nanopore sequencing, the genomic DNA needs only
to be isolated and separated into ssDNA, and modifications such as cloning of DNA
fragments with subsequent amplification and fluorescent labeling are not required in STM
sequencing. An STM-based approach may support ultrafast sequencing, considering its fast

scan speed. (16).

4.2.2.3 SERS method

The Raman spectra of the four bases present in DNA are different. Especially the ring
breathing modes of the bases show characteristic and well distinguishable bands in the
region from 600 to 810 cm™. Combining the distinction in Raman spectra of the four DNA
bases with the huge enhancement effect of the rough metal substrates, SERS is used for
DNA studies. The vast majority of current DNA detection using SERS involves the use of
dyes labeling as part of the signal transduction for stronger and more distinguishable
Raman signal, requiring costly chemicals and complex chemistry (24, 25), which are not

going to be discussed here. We only introduce SERS for label-free direct DNA detection.

Although numerous SERS studies of DNA have been performed to date, sensitive and
reliable acquisition of SERS spectra from DNA samples remains a significant challenge.
For example, in one study, it was reported that the quality of the SERS spectrum of single-
stranded calf thymus DNA was much better than that of the double-stranded DNA (dsDNA)
(26). Another study reported that although all dsSDNA samples yielded SERS spectra with
good signal-to-noise ratios (SNR), none of the ssDNA oligomers studied yielded detectable
SERS signals (27). More recently, SERS detection of both single- and double-stranded
DNA was reported, where the observed SERS features appeared to be sequence- and/or

composition-dependent (28).

Differences in these reports may be attributed to the different structures of the SERS

substrates leading to large variations in molecular conformation and/or packing density of

- 38 -



Chapter 4

the DNA adsorbate molecules on the substrates. For early DNA studies, Au or Ag
aggregated colloids are the most commonly used SERS substrates, which are negatively
charged, on the other hand, DNA strands are negatively charged too because of the
phosphate backbone, which resulted in the random and unstable absorption of the strands to

the substrate surface.

To improve the reproducibility of SERS measurements and the SNR of the DNA spectra,
the Halas group used Au nanoshells as highly reproducible SERS substrates for direct
thiolated ssDNA and dsDNA detection (/7). Their results show that a gentle thermal
cycling pretreatment of the ssDNA and dsDNA prior to adsorption onto the nanoshell
substrate results in extended DNA chains with a significantly greater uniformity of
molecular conformation than that of untreated, randomly coiled DNA chains. Adsorption of
the thermally pretreated, relaxed DNA strands onto the nanoshell substrate surface is quite
likely to also result in a more ordered and densely packed monolayer on the nanoparticle
surfaces relative to DNA strands adsorbed in randomly coiled conformations. This protocol
results in a dramatic increase in reproducibility of the SERS spectra with good SNR
because thiolated ssDNA and dsDNA oligomers specifically and strongly bind to Au
nanoshell-based novel SERS substrates. However, it is also found that spectra obtained
using this preparation method show an overwhelming dominance of adenine vibration
modes in the SERS spectra. The features from guanine (G), cytosine (C), and thymine (T)
are not detectable, regardless of the position or percentage of adenine in the sequence. The
dominance of adenine is attributed to its higher SERS cross section than other three DNA

bases, which is in the order of A >C »G >T (/1).

In contrast to Halas’s results, Papadopoulou and Bell show in their report that it is possible
to obtain distinctive SERS spectra of unthiolated DNA sequences, which can be used to
detect a single-nucleotide mismatch (/2). They use aggregated Ag colloids as SERS
substrates and instead of the commonly used NaCl, MgSO, is used as electrolyte for
aggregation, which does not bind as strongly to the silver surface and therefore allows the
DNA sequence to nonspecificly bind with its bases. It is reported that even without thiol

group for binding and thermal treatment for strand extension, the spectra of DNA strands
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are not dominated by the adenine modes, but show bands from all bases with high
reproducibility and good SNR. This approach can be used to detect a single-nucleotide
mismatch by digitally subtract SERS spectrum of two DNA single strands with only one
base in sequence differences (/2). Furthermore, the results of Halas and Bell et al point out

the importance of colloids treatment for SERS experiment in general.

4.2.2.4 TERS method
TERS investigation on DNA was firstly performed on single nanocrystal of adenine (29-

31), which has been introduced in chapter 2, section 2.3.5.

Further TERS experiments on DNA bases were thymine and cytosine (32). TERS spectra
of nanometre-sized crystals of the DNA pyrimidine bases cytosine and thymine were
collected and compared to SERS and Raman spectra, which clearly demonstrated the
feasibility of TERS for DNA sample detection. In further experiments TERS spectra were
recorded on (sub) monolayers of all four DNA bases, adenine, cytosine guanine and
thymine adsorbed on Au (111) single crystal surface (33). The results show the
extraordinary spectral sensitivity or even single molecule detection feasibility of the gap-
mode TERS and the distinction of all four DNA bases. Gap-mode TERS was also used to
study the hydrogen bonds formed between complementary DNA bases in DNA double
helix, demonstrating the feasibility of TERS in estimating the interaction geometry of the
molecules with respect to the metal surface as well as the respective strength of the bonds

(34).

TERS experiments were carried out on single-stranded RNA after the analysis of the
isolated DNA bases (35). TERS spectra were collected on seven adjacent positions along a
strand. Spectra obtained at different positions were highly similarity, which demonstrated
the stability of the setup and the reproducibility of TERS spectra. Slight fluctuations of
peak frequency and peak intensity can be observed by a closer look at the spectra, which
were found in the previously mentioned TERS spectra of adenine crystals as well and can
be attributed to the specific interactions of the molecule with the silver coated tip surface

and probe positioning variations (29-37). Furthermore, considering the SNR and the
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illuminated area in the TERS spectra, single-base sensitivity was achieved hence label-free

DNA sequencing using TERS was proposed (335).

4.3 Materials and methods

4.3.1 Materials

The single-stranded uracil homopolymer and calf thymus DNA were purchased at Sigma-
Aldrich; the single-stranded (A;oCs)s were purchased at Integrated DNA technologies; all
other chemicals used for buffer solutions and gold nanoplates syntheses were purchased

either at Sigma-Aldrich or VWR international.

4.3.2 Sample preparation

The uracil homopolymer was dissolved in water and immobilized on gold nanoplates
surface (36, 37). The gold nanoparticle synthesis is described in detail in ref. (38). Prior to
the immobilization, the uracil homopolymer solution was heated to 90 °C for 10 min,
followed by rapid cooling in an ice bath for 10 min to stretch the RNA single strands
(thermal pretreatment (/7)). 10 pL 10 ng/uL of the pretreated polyuracil solution was
dropped on the gold substrate and incubated under an argon atmosphere for 2 hours. Excess
RNA strands were removed by rinsing with bidistilled water and subsequent drying under

argon.

Calf thymus DNA was dissolved in 10 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic
acid (HEPES) to maintain a physiological pH value. 10 mM magnesium chloride (MgCl,)
was used to fix the strands through the negatively charged phosphate backbone by means of
divalent cations (Mg”") on negatively charged mica. The concentration of calf thymus DNA
was 10 ng/uL. The above mentioned thermal pretreatment is used for the strands
immobilization as well. 1-2 pL of the calf thymus DNA solution was dropped on a freshly
cleaved mica sheet and incubated under an argon atmosphere until dry. Residues from the
buffer were removed prior to the TERS measurements by rinsing with bidistilled water and

subsequent drying under argon (35, 39).
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The immobilization of (A;9C;s)s DNA single strands on mica surface was analogous to the

calf thymus DNA.

4.3.3 TERS measurements

TERS measurements on all the RNA/DNA samples were performed on setup 2, which has
been introduced in the experimental chapter. For TERS measurements on uracil polymer,
calf thymus DNA, and (A0C;s)s, the laser intensity at the sample were set to 860 uW, 700

uW and 750 uW respectively with an acquisition time of 5s for all measurements.

4.4 Results and discussion

4.4.1 Proposal of DNA sequencing using TERS (35)

The proposal of DNA sequencing using TERS is based on the distinctive features of the

TERS technique:

(1) The Raman signal of each nucleobase is unique and distinguishable with respect to the
ring breathing modes. As the molecular structures of the four DNA nucleobases are
similar, their spectra show similarity except for the ring breathing mode positions in the
region from 600 to 810 cm™ (10).

(2) The high spectral sensitivity (single molecule) (35, 40-42) and high lateral resolution of
TERS (2-3 nm) (43-45).

Therefore, in the proposed method, theoretically, due to the high spectral sensitivity and

high lateral resolution of TERS, ~ 5 nucleobases can be detected in each spectrum, thus the

sequence information of a DNA single strand can be reconstructed by laterally shifting the

tip in intervals of one base-to-base distance (fig. 4.4) and then deduce the spectra (fig. 4.5,

table 4.2).

To manually deduce and reconstruct the sequence of a DNA single strand in principle, a

simplified model is established:
1. The lateral resolution of the enhanced electromagnetic field is only ~2.0 nm (5

nucleobases), assuming a base-to-base distance within a DNA single strand of

approximately 0.5 nm, fig. 4.4 (a), (b))
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2. The Raman enhancement curve of the electromagnetic field produced by exciting the

plasmons of the TERS tip is assigned to show a triangular distribution (fig. 4.4 (b)).

3. Only the ring breathing mode of the nucleobases is used (fig. 4.5, adenine: 742 cm™;
cytosine: 790 cm™; guanine: 674 cm’'; thymine: 809 cm™) to represent the TERS

spectra.

(b)

>

[E—
-

Position 1 Position 2

Position 1

S
p—

Position 2
Normalized Raman intensity
=
D

DNAsequence 2 9?2 2 92 92 9...

Sites 1 2 3 4 5

Fig. 4.4 Schematic diagram of a direct DNA sequencing procedure using TERS, (a) TERS
tip is laterally shifted in intervals of one base-to-base distance from position 1 (green) to
position 2 (light blue). The colored sites underneath the tip refer to the enhanced regions. (b)
The corresponding normalized Raman enhancement is in a triangular distribution curve. To
simplify the sequence deduction procedure, it is assumed that the lateral resolution of the
tip is only ~ 2.0 nm, which means 5 nucleobases are located in the enhanced region (a) and

5 sites (one site located in one nucleobase) in the curve (b).

In fig. 4.4 (a) the TERS tip is laterally shifted along a DNA single strand from position 1
(green) to position 2 (light blue) in one nucleobase interval. The colored sites underneath
the tip refer to enhanced regions, which are assumed to be only ~2.0 nm (5 nucleobases) to
simplify the DNA sequence deduction and reconstruction procedure. In fig. 4.4 (b) their

corresponding normalized Raman enhancement curves are in a triangular distribution, in
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each of which there are five sites. Every site is located with a nucleobase and their
corresponding normalized Raman enhancement factors are 0.1, 0.5, 1.0, 0.5 and 0.1,
respectively (from left to right). In the curve of position 1 every nucleobase exhibits a
specific Raman signal intensity in the spectrum (fig. 4.5, position 1), while in the curve of
position 2 every nucleobase exhibits a different Raman signal intensity (fig. 4.5, position 2).
Regarding adenine for instance, the measured normalized Raman intensity in position 1 and
2 are 1.1 and 0.5 respectively. The normalized 1.1 Raman intensity corresponds to four
kinds possible positioning. When the TERS tip is laterally moved to the left for one-base
distance, only one of the four possible positionings fits the 0.5 normalized Raman intensity
in position 2. Therefore it can be deduced that site 1 and site 3 are located with adenine. By
this method the nucleobases located in the left sites underneath the tip can be all deduced
and the sequence information of a small segment (in the enhanced region of the TERS tip)
in the DNA single strand is finally reconstructed, which is ATAGC as shown in table 4.2.
By continuously shifting the TERS tip along a DNA single strand in a base-to-base interval
and deducing the spectra in the described method, the sequence of the whole DNA single

strand can be reconstructed.

Position 1 Position 2

A

’ A A G
B TERS tip 2
g moves g
gl T G C A
=] [=]
: :
& & } \

809 790 742 674 ~ 809 790 742 674 -
Wavenumber/cm -! Wavenumber/cm™

Fig. 4.5 Simulated TERS spectra obtained in position 1 and position 2. The spectra show
the Raman signal intensities of every nucleobase adenine (A, orange, 742 cm™), cytosine (C,
purple, 790 cm™), guanine (G, green, 674 cm™), thymine (T, light blue, 809 cm™)) and their

changes when the tip moves.
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Table 4.2 The positioning of every nucleobase in the triangular distribution curve and the
sequence reconstruction of a small segment (in the enhanced region of the TERS tip) in the
DNA single strand. A=Adenine, C=Cytosine, G=Guanine, T=Thymine. The subscripts “1”

and “2” represent position 1 and 2 respectively.

Normalized The possible positioning Normalized Raman intensity
Raman Site S' . ‘ Site when the tip is laterally moved
intensity 1 ite 2 Site 3 | Site 4 5 to the left for one-base distance
A A A,’=0.5, fits A,=0.5
A=11 A A A,’=1.0, does not fit A,=0.5
Ay,=0.5 A A A A,’=1.1, does not fit A,=0.5
A A A A,’=1.6, does not fit A,=0.5
C=0.1 C C,’=0, does not fit C,=0.5
Cy=0.5 C Cy’=0.5, fits C,=0.5
G;=0.5 G G,’=0.1, does not fit G,=1.0
G=1.0 G Gy’=1.0, fits G,=1.0
T1=0.5 T T,’=0.1, fits T,=0.2 if site 6 1s T
T,=0.2 T T,’=1.0, does not fit T,=0.2

4.4.2 Important experimental prerequisites required for the realization of DNA
sequencing using TERS

Now the procedure of DNA sequencing using TERS has been discussed theoretically.
However, to experimentally realize it, several prerequisites should be considered, as for
instance the reproducibility of TERS spectra, detection and distinction of all the four

nucleobases in DNA single strands, SNR of the TERS spectra and the resolution of the tip.
The reproducibility of TERS spectra is essential for the DNA sequence deduction and

reconstruction. Here the “reproducibility” means the main features of a component as for

instance cytosine homopolymer are show in its spectra, although the spectra are obtained on
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the different positions along the single strand. The TERS spectra of cytosine and adenine
homopolymer immobilized on a mica surface from different positions are similar and slight
changes in band intensy and position can be attributed to the “nano-scale effect” of TERS
(35, 46). TERS spectra measured on a uracil homopolymer strand immobilized on an

atomic-flat gold nanoplate surface will further confirm the reproducibility.

Although the molecular structures of the four DNA nucleobases are similar and their
Raman (and TERS) spectra are distinguishable (70, 32, 33), it was found that SERS spectra
of DNA strands are overwhelmingly dominated by the SERS features of their adenine
constituents, which prevents the detection of the features from other nucleobases. This was
explained with the much higher Raman scattering cross section of adenine compared to the
other nucleobases (/7). A detailed discussion of this phenomenon is given in the previous
section. However, for DNA sequence, all the four nucleobases must be detectable and

distinguishable, which is a challenge TERS must overcome.

To sequence a DNA single strand, a high SNR reaching single-base sensitivity is necessary,

which already been achieved in several TERS measurements (35, 40-42).

Consequently, the sequencing is experimentally possible if the above mentioned
prerequisites are met. However, when it comes to spectra deduction for reconstructing the
DNA sequence as mentioned in section 4.4.1, obviously the higher the lateral resolution is,
the easier the procedure will be. If the resolution is as high as a single base (0.5 -0.7 nm)
then the construction procedure is even not necessary. It is difficult to accomplish the
deduction and reconstruction manually when the number of nucleobases exceeds 9. In that

case, a computational method should be considered.

4.4.3 TERS spectra of uracil homopolymer — reproducibility of TERS spectra

The dependency of the electromagnetic field enhancement of TERS on the metallic and
dielectric substrates was shown in three-dimensional finite-difference time domain (3D-
FDTD) simulations (47). A metal substrate (e.g. gold), where the molecules of interest are

adsorbed, provides an additional field enhancement as it produces a large electromagnetic
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(EM) coupling with the tip, which is called “gap mode”. In contrast, dielectric materials can
not couple, hence, in this case the effect relies on the isolated tip, resulting in a smaller
enhancement (47, 48). Here, TERS measurement was performed on uracil homopolymer on

gap-mode with the purpose of getting the theoretically predicted strong Raman signal.

Prerequisites for a metal substrate suitable for TERS experiments on single stranded DNA
or RNA are: 1) an almost atomic flatness of the surface to avoid the SERS effect resulting
from the substrate itself. 2) As the used TERS setup is operated in back-reflection mode
(i.e., through the substrate and back), transparency, i.e., the substrate has to be sufficiently
thin. A suitable approach is the usage of triangular and hexagonal flat and transparent gold
(38) or silver (49) nanoparticles that are large enough to be easily localized with an optical

microscope and to avoid localized enhancement regions .
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O /T’ N 6}
0\/ Ribose
o~ R~ R o
p/ p/ p/ Phosphate
7\ 7\ 7\
o O~ o 0~ o O~

Fig. 4.6: Chemical structure of the uracil homopolymer single strand and the numbering of

the purine ring used for expressing the normal modes of vibrations.

In the experiment described here, TERS spectra were collected on a single strand uracil
homopolymer (chemical structure is shown in fig. 4.6) immobilized on a gold nanoplate.
Fig. 4.7 shows the AFM topography of the uracil strand immobilized on a typical gold
nanoplate substrate. TERS spectra were obtained at five different positions on the strand
and shown in fig. 4.8. In addition a reference spectrum was recorded on pure gold to

exclude signals due to tip contamination (position 0).
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4.8 nm

Fig. 4.7: (a) AFM topography image of a gold nanoplate with immobilized uracil
homopolymer strands, (b) single strand of uracil homopolymer in the magnified area
indicated in (a). Inset in (b) is the topographic cross section corresponding to the line

indicated in (b), adapt from (46).

The uracil homopolymer spectra look remarkably uniform and all main spectral features of
the base can be assigned, see table 4.3. Minor variations in band intensity ratioes and
positions can be easily attributed to the previously discussed effects related to the high
lateral resolution (50). Surprisingly, the usually intense ring breathing mode of uracil at 800
cm ' is not visible in the spectra. As those vibrations that involve polarizability changes
parallel to the TERS tip main (z-) axis are expected to be more enhanced than
perpendicular vibrations, the lack of the ring breathing mode may be due to a flat
orientation of the ring on the gold surface, which is corresponds to the literatures that the
pyrimidine ring nonspecific adsorbs on the gold nanoplate surface (36, 37). Similar effects
were found to influence the ring breathing mode of aromatic amino acids (5/). Apart from
this difference the spectral features can be attributed solely to uracil and no signals of the
sugar and phosphate backbone were found. This suggests a strong immobilization of the
homopolymer on the gold surface through the phosphate backbone. This finding, however,
somewhat contradicts the idea of a flat orientation of the ring with respect to the gold

substrate, and no explanation can be given at the moment.
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Tip
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Fig. 4.8: TERS spectra of the uracil homopolymer, measured at the positions indicated in

fig. 4.7 (b). An assignment of the signal is provided in table 4.3.

As has been mentioned before, the band positions of the ring breathing modes of four DNA
bases are different and are the most prominent bands used to distinguish between them. But
when gold nanoplates were used as substrate, it is quite often that the bases flatly adsorbed
on the surface resulting in the non-detectable of the ring breathing modes (like uracil
homopolymer). Therefore, for the rest TERS measurements on DNA strands we preferred

mica but not gold nanoplates as a substrate.
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Table 4.3: Band assignment of the TERS spectra of the uracil homopolymer (cm ')

1 2 3 4 5 Tentative assignment

521 | 521 | 521 | 521 | 521 | Silicon-AFM tip
1254 | 1252 | 1257 | 1257 | 1259 | str N3C4, bend N;H, CsH, C¢H (52)
1283 | 1292 | 1292 | 1292 | 1292 | str N3C4 (-C4Cs-CgNy), bend N H, CsH, C¢H (53)
1341 | 1341 | 1343 | 1343 | 1343 | bend N3H, CsH, C¢H, str C;N3 (53, 54)
1367 | 1365 | 1363 | 1367 | 1363 | str N;C,-CoN3+C4Cs (-C,07), bend CsH (52)

1398 | 1396 | 1398 | 1398 | bend N;H, CsH, (52)/str NC-CN+CC-CN (595)
1418 | 1411 | 1413 | 1413 | 1413 | bend N3H, NiH, str N;C,, N3Cy4 (54)

1463 bend CsH, N1H, N>H, CsH, str C4Cs (54)

1479 | 1483 | 1483 | 1485 | 1487 | str C¢N;-C4Cs-Cy07, bend N H, CsH, C¢H (52)
1509 | 1513 | 1513 | 1513 | 1511 | bend NiH, str C¢N; (54)/ in-plane ring str (55)
1552 | 1552 | 1552 | 1552 | 1554 | str C403-CsCq-C,07, bend N H, C¢H, (53)
1599 | 1597 | 1595 | 1597 | 1597 | str C4Og, bend N H, CcH (52)

1623 | 1621 | 1623 | 1621 | str C,07+CsCs, bend N H, (52)

Abbreviations: str: stretching; bend: bending; def: deformation.
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4.4.4 TERS spectra of calf thymus DNA — detection of all four DNA nucleobases and
observation of a sequence change

To detect all four DNA nucleobases in an isolated strand, a single-stranded calf thymus
DNA with all the four DNA nucleobases randomly distributed is used as sample for TERS
measurement. Fig. 4.9 schematic shows the schematic chemical structure of a calf thymus
DNA single strand and its immobilization on atomicly flat mica surface. The mica surface
is naturally negatively charged, the strands are also negatively charged because of the
phosphate groups. Hence, multivalent cations (Mg”", Zn*") are used to change the mica
charge and to fix the strands on the surface by electrostatic adsorption.

Adenine o. Guanine Cytosine Thymine Adenine

Bases

§ Deoxyribose

P Phosphate

s\ P

o O~
+

\

= = — Mica-substrate — - -

Fig. 4.9: Schematic chemical structure of the calf thymus DNA single strand and its
immobilization on mica substrate. The numbering of the purine and pyrimidine rings is

used for expressing the normal modes of vibrations.

TERS experiment is shown in fig. 4.10 and fig. 4.11. The AFM topography image shows a
calf thymus DNA strand and the cross section in the inset indicates a height of
approximately 1 nm. TERS spectra have been measured at 9 positions and an additional
one for reference to exclude tip contamination. The TERS spectra were collected in three
columns of three spectra each, while the distance in the strand extension direction between
those in one column (1, 2, 3; 4, 5, 6; 7, 8, 9) is 0.3 nm. The distance between adjacent

measurement positions in the respective columns (3, 6,9; 2, 5, 8; 1,4, 7) is 5.5 nm.
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3.8 nm

Fig. 4.10: AFM topography image of a calf thymus DNA single strand with a schematic
depiction of the positions on which TERS spectra were collected, including one point next

to the strand for reference. Inset shows a cross section over the strand.
Fig. 4.11 shows nine TERS spectra collected on the DNA single strand. A tentative

assignment for most of the vibrational bands is given in table 4.4. While the spectra of the

respective columns are similar, only one of each was selected for the respective band
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assignment. In the spectra the bands originating from the ring breathing modes of the
different nucleobases are marked with different colors (adenine: 742 cm™, yellow; cytosine:
790 cm™, pink; guanine: 674 cm™, green; thymine: 809 cm™, purple). The characteristic
vibrational bands from all four nucleobases can be identified in the single TERS spectra
and no nucleobase prevails, which is different from the SERS results and predictions (/7,
56) (see discussion in section 4.1.2.3). These results demonstrate again the possibility to

detect all nucleobases in TERS spectra.
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Fig. 4.11: TERS spectra. The spectra were measured on the 9 positions on a calf thymus
DNA single strand indicated in fig. 4.10 and an additional position for reference (0). Bands
marked with different colors represent the ring breathing modes from the different

nucleobases.
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Comparing the spectra from different columns it is noticeable that they are strikingly
different. This is not surprising, as the sequence of nucleobases underneath the TERS tip
can be assumed to be different. With regard to a possible sequencing the spectra of the
respective columns with a distance of 0.3 nm are of particular interest, because they were
measured with even less than one base-to-base distance. As expected, within one column
the changes between the spectra are small, because the content of nucleobases under the
TERS tip almost remains alike. In the first column (spectra 1, 2, 3) the ring breathing mode
of guanine is decreasing from position 1 to position 3, indicating guanine moving out of the
enhancing region underneath the tip. In the second column (spectra 4, 5, 6) the ring
breathing mode of thymine is decreasing from position 4 to position 6 while the ring
breathing mode of cytosine is increasing from position 4 to position 6, which indicates the
thymine moving out of the enhancing region underneath the tip while the cytosine move in.
In the third column (7, 8, 9) the ring breathing mode of adenine increases when moving
from position 7 to position 9, indicating a higher adenine content underneath the TERS tip.
These spectra demonstrate the visibility of the sequence change in the TERS spectra when
tip moved along the DNA stand, which can be attributed to the high lateral resolution of the
TERS technique. This demonstrates one important prerequisite for the sequencing.
However, the proposed reconstruction method in section 4.4.1 cannot be applied to deduce
the partial sequence of the calf thymus DNA strand, because the number of acquired
spectra was too small. Furthermore, the sequence of the used calf thymus DNA is random
and unknown, hence it is impossible to compare the extracted sequence with the existed
sequence even if the sequence could be deduced and reconstructed. As has been mentioned,
the purpose of the measurement on calf thymus DNA is to demonstrate the feasibility of
TERS on detection of all four DNA nucleobases in a strand and we have achieved it. In
section 4.4.5, a single stranded DNA with known sequence will be used for further

measurements.
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Table 4.4 Band assignment of the TERS spectra of a calf thymus DNA strand (cm™).

0 2 5 8 Tentative assignment
521 521 521 521 silicon (AFM tip)
582 C (in-plane ring def) (55)
618 618 618 618 mica-substrate
674 G (ring breathing (Im)) (8)
705 705 705 705 mica-substrate
742 742 A (ring breathing (Py)) (8, 55)
777 790 C (ring breathing (Py)) (8, 55)
809 T (ring breathing (Py)) (8, 55)
846 851 C, G (N-C-N str) (8)
1061 A, N-sugar str (8, 46)
1109 PO, sym str (58) (46)
1140 1145 A (Cg-Ng str, No-H, Cs-H def) (46, 55)
1167 1156 A,G (Cs-Cg str) (8, 46)
1215 1224 C, T (In-plane ring-CHj str) (8, 46, 57)
1262 A, C, G (Cg-Ngy str) T (ring str) (8, 46, 55, 58)
1279 C(C-NHj; str + ring str) (47, 55, 59)
1291 C (Cy-Nsstr) (8, 28, 46)
1303 A, G (C-Nstr (Im)) (8, 46)
1325 A, G (ring mode) (60) (46)
1360 1359 1363 A, C, G, T (C-N str (Py)) (8, 46)
1396 1393 T (N-H def/CH; def) (8, 46, 55)
1419 1426 C (C4-Cs str)/A/T (8, 46, 55)
1477 A (C=N str (Py)) (8, 46)
1500 1489 1493 C, G (C=N str (Im)) (8, 46)
1543 1540 A, T (in-plane ring str) (8, 46)
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1564 1571 | A, C, G, T (Ring str (Py)) (8, 46)
1610 1610 | A, C, G (NH, def) (8, 46, 58)
1621 1631 C, G, T (C=O str, C=C str) (8, 46, 61)

Abbreviations: Py: pyrimidine; Im: imidazole; str: stretching; def: deformation

4.4.5. TERS spectra of a (A19Cis)s DNA single strand — distinction of adenine and
cytosine nucleobases at sub-nanometer resolution and sequence reading information
in the TERS spectra

To demonstrate the feasibility of TERS to distinguish different DNA nucleobases and to
direct sequence DNA strands, a synthetic single-stranded DNA with a known repeating
sequence unit of A;oCjs, that is (A;oCis)s, was used. The schematic chemical structure is
shown in fig. 4.12. As has been mentioned in section 4.4.2, a homogeneous orientation of
the strand on the substrate surface is crucial for successful TERS experiments. Firstly, the
DNA strands must be single-stranded and fully stretched, which is a major challenge
because single-stranded DNA preferably entangle or build secondary structures (62, 63). In
the chosen compound this could be circumvented by the combination of adenine and
cytosine, where no hydrogen bonds between complementary nucleobases can be formed.
Secondly, a gentle thermal pretreatment of the strands (//) prior to their adsorption onto the
surface was applied, yielding nearly completely stretched (A;9Cis)s single strands as shown
in the AFM topography image in fig. 4.13 (a).
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Fig. 4.12: Schematic chemical structure of the (A;oCis)s DNA single strand and the

numbering of the purine and pyrimidine rings.
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The topography of the DNA strand is shown with a height of about 0.45 nm in the profile
image in fig. 4.13 (b) corresponds well with the known diameter of DNA single strands
(13). In the present experiment the effective area probed by the TERS tip is a convolution
of tip and sample features. Hence, the measured strand width of approximately 10 nm is
due to the broadness of the silver-coated AFM tip and corresponds well with the tip
diameter of <20 nm determined by SEM (see chapter 3 fig. 3.2 (a)). The length of the DNA
chain is longer than expected and some small knot-like features in the strand indicate the
joining of strands. However, these features had no impact on our further experiments as the
actual experiments were limited to a short section (<10 nm, fig. 4.13 (a) and (c)) far away

from these knots.
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Fig. 4.13: TERS experiment on a (A;oCs)s DNA single strand. (a) AFM topography image
of the investigated DNA single strand immobilized on atomic flat mica surface. (b) Height
profile of the strand along the line indicated in (a). (¢) Zoom in the region indicated in (a)
where TERS spectra were measured along the DNA single strand trace and retrace (25
points separated by 0.3 nm on each of the two parallel lines, with a line-to-line distance of

1.0 nm).
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The actual TERS spectra were recorded on two parallel lines (trace and retrace were spaced
by 1 nm) along the (A0Cis)s DNA single strand. Fig. 4.14 (a) shows 25 TERS spectra
obtained along the trace on positions separated by 0.3 nm. At first glance the spectra show
two types of significantly different spectral patterns with respect to the experimental
position. Spectra at positions 1, 17-25 correspond to one pattern while spectra at positions
2-16 correspond to a second pattern. Spectra at positions 9-12 show no features, which is
probably due to lost AFM feedback. This result already indicates by a mere pattern
comparison and the a priori knowledge of the base spacing of 0.5-0.7 nm (7, 13), that
spectra 2 — 16 correspond very likely to adenine. Strikingly the same grouping of patterns
was found in the retrace spectra and even the onset of spectral changes coincides with the
ones in the trace, hence, confirming the previous result and also indicating that no photo
induced changes took place. The latter is a major concern due to the high field enhancement

at the tip.

A detailed analysis of the spectra enabled the assignment of cytosine (red, with marker
bands C1-C4) and adenine (orange, with marker bands A1-A4). For marker bands, it should
be emphasized here that due to structural similarities of adenine and cytosine many bands
can be detected in the same spectral area, but those bands were taken as marker bands,
which were present exclusively in cytosine or adenine spectra. The molecular structure of
adenine and cytosine are shown in fig. 4.12 and the complete spectral assignment is

provided in table 4.5.

Regarding fig. 4.14 (a) it is surprising that no smooth transitions (spectra containing both
adenine and cytosine modes to a similar extend) are detected while stepping from the
adenine to the cytosine section but rather direct changes. This clearly demonstrates the
capability of TERS to distinguish adenine and cytosine in the primary structure of a single

molecule with sub-nanometre spatial resolution.

The estimation of the spatial resolution results was accomplished as follows. From fig. 4.14

(a) it is obvious that one cytosine spectrum (position 1) is followed by 15 subsequent
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adenine spectra (position 2 to 16), followed once more by eight cytosine spectra (position
17 to 25). It is exactly the sharp transition from cytosine to adenine and again to cytosine

(C» A—-» C) underneath the TERS tip that leads to the estimation of the extremely high
lateral resolution. Even if the second transition between position 16 %17 is considered
where one weak residual peak of cytosine or adenine, respectively, persist for two further
positions (A2 is shown in cytosine spectra at position 17 and 18 while C4 is shown in
adenine spectra at position 16 and 15) this relates to a change in definetly less than one
nanometer. From the present experiment we estimated the resolution to be between 0.6 —
0.9 nm, which fits well with the recently reported atomic-scale confinement of resonant
optical fields (atomic resolution) produced by two sub-nanometer neighbouring
nanopartilcles (64, 65), but is more noteworthy than most theoretical models of the field
enhancement indicating a lateral resolution of 3-10 nm (47, 66) and even exceeding the
recently reported experimental value of 2-3 nm (43-45). This result strongly indicates that
additional enhancement effects based on interactions between tip and sample must be

considered.

The 15 subsequent adenine spectra (position 2 to 16 in fig. 4.14 (a)) correspond to a length
of about 4.5 nm on the strand. Assuming a base-to-base distance of between 0.5 nm to 0.7
nm (7, 13), 4.5 nm matches well the sequence of the investigated strand that contains 10
adenine nucleobases in a row. In case of cytosine only 10 spectra have been observed

because the grid covered only a part (~ 6 bases) of the 15 cytosine bases.

The 25 spectra measured on the 1 nm separated parallel retrace (fig. 4.14 (b), position 26 to
50) show the same pattern as the trace spectra. Spectra at position 26-34, 50 in the retrace
experiment show the same vibration modes as spectra at position 25-17, 1 and were
assigned to cytosine while spectra at position 35-49 correspond to the spectra at position
16-2 and were assigned to adenine. Comparing the cytosine spectra of trace and retrace
slight differences, mainly variations in the intensity ratios, were evident. These variations
are related to the high lateral resolution of TERS and did not affect the data evaluation (29-
31, 35). The most important issue was the fact that all four marker bands shown in the trace

spectra of cytosine also appeared in the retrace spectra confirming the assignment. The
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same observation was made for adenine and demonstrated the reproducibility of the
experiment. Moreover, the retrace measurement proved the stability of the instrument (no

drift of the strand).
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Fig. 4.14: TERS spectra measured at 50 positions along the (A;oC;s)s DNA single strand
trace and retrace as indicated in fig. 4.13 (c¢) and on an additional spot for reference

(position 0 indicated in fig. 4.13 (a)).

To visualize the spectral changes in fig. 4.14 more clearly a different data presentation is
provided in fig. 4.15. Here the marker bands of adenine (orange) and cytosine (red) versus
the tip positions are shown as circles. The center of the circle corresponds to the spectral
position and the size to the relative intensity. Both parameters were obtained by nonlinear
curve fitting of the original spectra. This plot of the marker bands of adenine and cytosine

vs. the tip positions illustrates again the sequence changing tendency of

-60 -



Chapter 4

(C»A>C).
Tip
Adenine ® Cytosine positions
125) |26
2o PO

115

,,,,,,, B—
o < .
L o 15 o e
: L .l. VVVVVVV | L l 1 50: VVVVVVVVV L L | L l
1400 1200 1000 800 600 1400 1200 1000 800 600
Wavenumber / cm-! Wavenumber / cm !

FigFig. 4.15: TERS signal intensity tracking of adenine and cytosine signals from the DNA
single strand shown in fig. 4.14, orange (adenine), red (cytosine). The spot size is

proportional to the signal intensity and normalized to each specific band.

Although the differences between adenine and cytosine in the spectra are striking, the
spectra assigned to adenine or cytosine possesses similarities. Minor variations in band
intensity ratios and positions could be found by careful observation, which were attributed
to changes of the molecular orientation under the metal-coated tip or atomic site-selective
interaction between the TERS tip and the DNA molecules and have been discussed in the
literatures (29-31, 35). In adenine, for instance, any of the four nitrogen atoms: N1, N3, N7
and N10 could interact with the silver tip. On the other hand, N9 is the binding site to
ribose and therefore cannot bind to the metal nanoparticle. Density functional theory (DFT)
calculations show changes in Raman band intensities and positions for the four respective
complexes of adenine and a silver atom. These variations were attributed to a deformation
of the adenine molecules to an energetically optimized conformation. For the TERS
experiments, although the backbone of the DNA single strand was immobilized and could
not move freely, the molecules in the strand are not rigid. Furthermore, the molecules can

interact with different metallic atoms located in the apex of the TERS tip, resulting in the
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electronic structural change of the molecules, which affects the internal vibrational modes
of the molecules, especially if chemical interactions between the tip and the TERS probe

take place.

From the presented results it could be concluded that the measurements on the trace and the
parallel retrace along a DNA strand provided reproducibly sub-nanometer distinction of the
two bases and furthermore sequence the DNA single strand, which opens the door of TERS

for sequencing chain-like bio-macromolecules.

Table 4.5: Assignment of TERS spectra on a the (A;9C;s)s DNA single strand

Tip Tip Tip Tip Tentative assignment
position position position position
2-16 35-49 1, 17-25 | 26-34, 50
Adenine Adenine | Cytosine | Cytosine
520 520 520 520 Si-tip
572 wag (C-H, N-H)(55)
569 569 def C=0(67)
591 587 587 Ring def(68, 69)
635 635 wag (N-H)(68)
650 650 650 650 Mica
680 Ring def(46, 70)
703 703 703 703 Mica
712 ring breath whole molecule
(distorted)(69)
720 ?(32,71)
737 Ring breathing(8, 55)
760 760 760 760 Mica
806 806 Ring breathing (Py)(35, §)
945 (NH; + C-H + ring) def(55)
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980 980 970 970 Deoxyribose(58)
1012 Ring str + C-H def(55)
1051 N-sugar str(8) + sugar (CO str)(70)
1082 1082 1072 N-sugar str(8), bk (PO, str)(70)
1110 1110 1110 Deoxyribose(57)
1152 1152 1152 1152 Background
1172 1172 1172 1172 Background
1196 1196 C-Nstr(67, 68)
1210 (C-N) str, (C-H, N-H) def(69)
1231 1231 (C-N) str(67), all H def(66)
1244 (C-N) str, (N-H, C-H) def(55)
1258 In-plane ring str,(C-H) def(55)
1282 1272, Ring(46, 70)
1292
1302 Ring(70)
1312 1312 (C-N, C=N) str(67)
1330 1330 (C-N) str(8)
1346 1346 N7Cs + CgN7(72)
1370, 1383 (C=N) str (Py)(8)
1383
1407 1407 (C-N) str, C-H def(69)
1427 1427 (C-H, N-H) def + (C-N) str(55)
1450 1450 C,H-N;C,+N3Cx(72)
C=N str(46) (8)
1480 1480 1487 1487 Deoxyribose, Bk(58)
1507 (NH,) def(8)
1527 1527 Ring str(71)
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1540 1559 | Ring str (Py)(8, 46)
1596 1596 1596 1596 | Ring str(70), NH, def(8, 70)
1628 1628 NH, sci(8, 46)

1632 1632 | (C=0) str(73)

Abbreviations: Py: pyrimidine; Im: imidazole; str: stretching; def: deformation; Wag:

wagging

4.5 Conclusion and outlook

We have theoretically proposed label-free DNA sequencing using TERS and the necessary

prerequisites. Furthermore, experimentally demonstrated the realization of these

prerequisites therefore shows the potential of TERS for label-free DNA and other chain-

like bio-macromolecules sequencing. Using this proof of concept procedure, further

measurements will be performed on DNA strands containing all four nucleobases. The

ultimate goal is the examination of strands with an unknown nucleobase order.
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Chapter 5: TERS for the direct detection of S-methylcytosine sites on
DNA strands

5.1 The aim of this chapter

DNA methylation is known to alter gene expression and is believed to result in deleterious
phenotypic changes, such as cancer. The detection of DNA methylation sites on DNA
strands is therefore important for clinical diagnostics and therapy. Typical biological
methods for DNA methylation detection require pre-treatment or conversion of the sample
with chemical which may induce additional chemical modifications in the DNA. For SERS,
a special pre-treatment and conversion of the sample is not required, but because of the
limited spatial resolution, the obtained spectra only show an average methylation level
across many DNA molecules on the strands. Therefore, it is impossible to detect the
specific methylation sites on the DNA strands. Taking advantage of the high spatial
resolution, high spectral specifity and sensitivity of TERS, the aim of work in this chapter
is to direct detect the 5-methylcytosine sites on DNA single strands.

5.2 Introduction: epigenetics and DNA methylation

5-methylcytosine N4-methylcytosine N6-methyladenine

Fig. 5.1: Methylation of DNA cytosine and adenine residues.

The phenotype of a cell is determined by its inherited genotype, transmitted epigenetic
factors, and non-hereditary environmental variation. Epigenetics is the study of changes in
gene activity that do not involve alterations to the genetic code but still get passed down to
at least one successive generation. Epigenetics provides stability and diversity to the
cellular phenotype through chromatin marks that affect local transcriptional potential and

that are preserved or regenerated during cell division (/). One example of epigenetics is
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DNA methylation, which involves the addition of a methyl group to the adenine or cytosine
nucleobases, as shown in fig. 5.1. In mammals and plants, the methyl group is only added
to the 5™ position of the cytosine (5-methylcytosine, SmeC). Bacteria and archaea also have

5SmeC, along with N-4-methylcytosine and N-6-methyladenine (7).

5-methylcytosine in cytosine—phosphate—guanosine dinucleotides (CpGs) (fig. 5.2) is the
most abundant and most intensively studied epigenetic marker in many eukaryotes. CpGs
are also called CpG islands, which are short sections including 200 to 500 base-pairs of
DNA with a higher frequency of CpG dinucleotides relative to the bulk genome. CpG
islands are typically found in or near promoter regions of genes, where transcription is
initiated. Cytosine in CpG islands are generally unmethylated in promoter regions to
express the gene (fig. 5.2 (a)), in contrast, the gene expression is inhibited if the cytosine in
CpGs are methylated. DNA methylation has been shown to correlate strongly with cancer
in humans. In cancer cells, hypermethylation (fig. 5.2 (b)) within promoters serves to turn

off critical tumor-suppress genes, results in their expression silence (2, 3).

NH,

(a)
CGCGCGACGTCGCGCGA 5

CpG island
, In normal cell

GCGCGCTGCAGCGCGCT

(b)
CH, ?Hg ?H3 ?H3 CH, CH,

I
CGCGCGACGTCGCGCGA

3’ Hypermethylation
CpG island
5> In tumor cell

) GCcCGeGCGCTGCAGCGCGCT
5-methylcytosine | | | |

I
CH, CH, CH, CH, CH, CH,
Fig. 5.2: CpG islands in or near promoter regions of genes (a) in a normal cell; (b) in a

tumor cell, where the cytosine nucleobases are hypermethylated.
Typical biological methods for detecting DNA methylation sites include bisulphate

conversion, endonuclease digestion, and affinity enrichment. Their principles and

challenges are thoroughly discussed in the reference (4). All these methods require
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multiple-step sample preparation with chemicals that may induce additional chemical

modifications in the DNA or interfere with the detection of modified DNA.

SERS has been used for methylated DNA studies as well because no chemical treatments of
samples are needed, which eliminates the interaction of DNA with other chemicals,
minimizing unwanted chemical modification due to sample preparation. Sanchez-Cortes and
Garcia-Ramos (3, 6) reported the SERS study of cytosine and its methylated derivatives on
metal colloids. SERS spectra of cytosine, 1-methylcytosine, 5-methylcytosine and 1, 5-
dimethylcytosine on gold, silver and copper colloids were reported. They observed that the
methyl groups induced some changes in the z=electron system of the pyrimidine ring that
affected the orientation and the adsorbate-metal interaction. These interactions also
depended on the metal and on the pH of the solution and resulted in the differences of

spectra of cytosine vs its methylated derivatives.

Barhoumi et al. (7) also reported the detection of methylated DNA bases using SERS. In
their results, depending on the sample was normal DNA, cytosine methylated (5SmeC) DNA,
or the mixture of normal and cytosine methylated DNA, the intensity of band at 786 cm’'
(cytosine ring breathing mode) slightly changed and were detectable. This was considered
to be a marker for cytosine methylation. However, the slight intensity change of the ring
breathing mode of cytosine could also be caused by the inhomogeneous enhancement of the
substrate or different adsorption orientation of the DNA to the substrate. The results and
explanation would be more convincing if some bands directly related to the CH; group

could be detected in the SERS spectra.

Hobro, A. J., et al. also used SERS to study normal and methylated ribonucleosides. But

their experiments concentrated more on the effect of different aggregating agents (8).
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5.3 Materials and method

5.3.1 Materials

Single-stranded methylated DNA (A05SmeCio)s was purchased at Eurogentec Deutschland
GmbH. All the other chemicals used for buffer solutions and DNA immobilization on mica

were purchased either at Sigma-Aldrich or VWR international.

5.3.2 Sample preparation and TERS measurements

The immobilization procedure of (A;o5SmeCjp)s methylated DNA single strands on mica
surface followed the procedure of (A;¢oCis)s as described in chapter 4. The TERS
measurements on methylated DNA sample were performed on setup 2, using 320 uW laser

power on the sample and an acquisition time of 2s.

5.4 Results and discussion

Fig. 5.3 schematically shows the chemical structure of the (A;o5SmeCjj)s methylated DNA
single strand. Similar to TERS measurements on normal DNA strands, TERS
measurements on the methylated sample were performed by immobilizing the (A;0SMCjp)4
DNA single strands on a mica surface and then positioning an Ag-coated tip along the
strand to detect the S-methylcytosine sites and investigate the sequence information.

Adenine Cytosine
NH,

6 1
5 A
7 4 3 5 3
] Bases
6 2
8 9 1
N

e l Y e l l
Ry /O\>— /"\> /°\>— /0\> Y’ \>

P P P P P P Phosphate
7\ 7\ 4 7\ 7\ // \
o O~ o O~ o) o O~ O 0~

+ + + + + .0 °4°

- - - - - Mica-substrate -
Fig. 5.3: Chemical structure of the (A;05meC,o)s methylated DNA single strand and the
numbering of the purine and pyrimidine rings used for expressing the normal modes of

vibrations.
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Fig. 5.4: TERS experiment on a (A;o0SmeC,9)s DNA single strand. (a) AFM topography
image of the investigated methylated DNA strand immobilized on a mica surface. (b)
Height profile of the strand along the line indicated in (a). (¢) The zoom in region indicated
in (a) (green line in the green circle) where TERS spectra were measured along the DNA

single strand on 20 positions with a step-size of 0.6 nm

Fig. 5.4 (a) shows the AFM topography of the measured DNA strand with the length of
~500 nm, again is longer than expected (80 bases, 0.5-0.7 nm of base-to-base distance,
means ~40 nm — 56 nm in length) and some small knot-like features in the strand indicate
the joining of strands. However, the TERS spectra were recorded on a short section (~ 12
nm) on the strand, which are not affected by those features. The height profile (fig. 5.4 (b))
through the strand along the line indicated in (a) supports the identification of a single

strand. By comparing the morphology of normal DNA (chapter 4) and methylated DNA
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(this chapter) strands, no differences could be observed. Therefore, it is impossible to

distinct them by morphology.

Tip
position

1360,5(CHs)

bl

ittt

4,1390,52s(CH3)

C3
C1,668

20

C5,1450,6(CHs)

19

18

17

16

15

14

13

1605
A5
1450
Ad
1380
A3
1295
A2
1054

12

11

10

Raman intensity / arb. unit

| | | | | |
1600 1400 1200 1000 800 600
Wavenumber / cm -!

Fig. 5.5: TERS spectra recorded along a (ApSmeC;)s methylated DNA single strand with

a step-size of 0.6 nm (position 1 to 20 indicated in fig. 5.4 (c)), and a reference
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measurement (position 0 indicated in fig. 5.4 (a)). Orange: adenine, red: 5-methylcytosine,

the bands marked with blue color related to the methylation.

TERS spectra were recorded along the single strand on 20 positions with a distance of 0.6
nm (close to the base-to-base distance, fig. 5.4 (c)) and one additional spot away from the
strand for the reference measurement (position 0) indicated in fig. 5.4(a), which are shown
in fig. 5.5. From the 20 raw spectra, important information can be extracted: 1). Similar to
TERS spectra of (A9Cis)s, the TERS spectra of (A;o5SmeCio)s show two strikingly different
types of vibrational modes. These patterns can be assigned to adenine (orange, position 4-
12) with distinct marker bands of A1-A5 (Al: 1054 cm™, N-sugar str+sugar (CO str); A2:
1295 cm™, ring; A3: 1380 cm™, C=N str; A4: 1450 cm™, C,H-N;C,+N3Cy; A5: 1605 cm™,
Ring str, NH; def) (6, 9-16) and 5-methylcytosine (red, position 1-3, 13-20) with distinct
marker bands of C1-C5 (C1: 668 cm’™, wag N-H; C2: 1019 cm™, Ring str+C-H def; C3:
1360 cm'l, CHs, def, symmetric; C4: 1390 cm'l, CH3, def, asymmetric; C5: 1450 cm’, CH;
def) (6, 9-16). The 20 spectra show the sequence changing tendency of:

(5meC > A 5meC). The sharp transition between the two different vibrational modes
leads to the estimation of the lateral resolution again of less than one nanometer. 2). The
base-to-base distance extracted from the adenine spectra is 0.54 nm, which is close to the
distance extracted from the (A;0Cis)s TERS spectra (~ 0.50 nm) and still in the range of
reported DNA base-to-base distance (17-19). 3). The spectra show a specific methylation
signal namely the CH3 symmetric deformation band at 1360, asymmetric deformation band
at 1390 cm'l, and CH; deformation band at 1450 cm™ (C3-C5, marked with blue color on

the spectra).

Table 5.1 shows the assignment of the (A;95SmeC;¢)s TERS spectra and the comparison to
the previously measured (AoCjs)s. It can be easily seen from the assignment table that the
TERS spectra of adenine are similar. All the bands found in the methylated strand can be
also found in the normal strand. However, TERS spectra of cytosine and 5-methylcytosine
are different because of the methylation at the 5™ position, especially for the bands resulting
from the CHj group. Fig.5.6 is the comparison of averaged TERS spectra between cytosine

(20 spectra, from (AoCis)s strand) and 5-metnylcytosine (11 spectra, from (A1oSmeCig)4
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strand ), which clearly shows the distinct bands at 1360 cm™, 1390 cm™ and 1450 cm™
resulting from the methylation and indicate the direct detection a of 5-methylcytosine sites

on DNA strands by TERS.

Similar to the TERS spectra of normal DNA strands, spectral fluctuations are observed in
the spectra, which are inherent with this technology because of its extreme sensitivity and
the subtle molecular changes that occur at nanometer resolution (20, 2/) and have been

discussed in chapter 4.

Table 5.1: Assignment of TERS spectra on the (A;o5meCo)s methylated DNA single
strand and the comparison of TERS spectra of normal DNA stand and methylated DNA

strand.
A1Cis | ApdmeCyo | A1oCis | ApdmeCyy | Tentative assignment
adenine adenine | cytosine | Sme-cytosine
520 520 520 520 Si-tip
572 wag (C-H, N-H) (9)
569 def C=0 (6)
591 587 598 Ring def (10) (11)
635 668 wag (N-H) (6, 8, 10)
683 690 Ring def (12) (13)
712 ring breath whole molecule (distorted) (/1)
720 720 ?(14, 15)
737 Ring breathing (12) (13) (16)
806 Ring breathing (Py) (10)
838 NH;, rocking (6)
980 970 938 Deoxyribose (22)
1012 1019 Ring str + C-H def (9)
1051 1054 N-sugar str (/6) + sugar (CO str) (12, 13)
1082 1072 1093 N-sugar str (16), bk (PO str) (12) (13) (22)
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1110 1110 Deoxyribose (23)
1165 Deoxyribose-phosphate (22)
1196 C-Nstr (6, 10)
1210 1213 (C-N) str (6), (C-H, N-H) def (/1)
1231 (C-N) st (6), all H def (10)
1244 (C-N) str, (C-H, N-H) def (9)
1258 1255 in-plane ring str, (C-H) def (9)
1282 | 12751295 ring (12, 13)
1302 ring (13)
1312 1319 (C-N, C=N) str (6)
1330 1320 (C-N) str (16)
1346 N7Cs + CsN7 (24)
1360 CHs, def, symmetric (6)
1390 CH3, def, asymmetric (6)
1370 1380 (C=N) str (Py) (16)
1383
1407 (C-N) str, C-H def (/1)
1427 (C-H, N-H) def + (C-N) str (9)
1450 1450 Co,H-N|CtN3C; (24)
1450 CHj; def (6)
1480 1490 1487 1487 Deoxyribose, bk (22)
1507 1517 (NH,) def (16)
1527 Ring str (/4)
1559 1579 Ring str (Py) (16, 12)
1596 1605 1596 Ring str(/3), NH, def (13, 16)
1628 NH; sci (12) (16)
1632 (C=0) str (25)
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Abbreviations: Py: pyrimidine; Im: imidazole; str: stretching; def: deformation; Wag:

wagging

o
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Fig. 5.6: The comparison of averaged TERS spectra between cytosine (20 spectra, from
(A10Ci5)s strand) and 5-metnylcytosine (11 spectra, from (Ajo5SmeCig)4 strand). The bands
at 1360 cm™' (CH; symmetric deformation), 1390 cm™ (CH;3 asymmetric deformation) and
1450 cm™ (CH; deformation) resulting from the methylation demonstrate the direct

detection of methylation sites on DNA stands.

5.5 Conclusion and outlook
In conclusion, the measured TERS spectra from (A;p5meCjg)s on one hand demonstrates
the direct detection of 5-metnylcytosine sites on methylated DNA single strands; on the

other hand, further demonstrates that TERS can be used for biopolymer direct sequencing
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at sub-nanometer resolution. Using this proof of concept procedure, more measurements

will be performed to identify other types of methylation (N-4-methylcytosine and N-6-

methyladenine) and to localize their specific positions on the strands, providing a possible

step forward to clinical diagnostic and therapy.
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Chapter 6: AFM-TERS investigations on skin penetration of invasomes

6.1 The aim of this chapter

Raman and IR have been used in the study of interactions of liposome vesicles with skin
and have provided important information at the spatial resolution of a few hundred
nanometers (/-3). However the size of the liposome vesicles is usually about 50 to 200 nm
in diameter, which is smaller than the spatial resolution Raman and IR can achieve. This
disadvantage can be overcome by TERS. The topography imaging capability of AFM
provides the morphology of control and liposomes treated skin sample with nanometer
spatial resolution, which shows the physical state changes in both the exogenous
(liposomes) and endogenous (stratum corneum, SC) components. The spectroscopic
capability of TERS can be used to identify the changes at molecular level. Furthermore,
combining TERS with the “tape-stripping” skin sample preparation method (technique
which removes sequential layers of SC), the depth and maybe kinetics of liposomal
penetration through the SC could be monitored. Therefore, the aim of this study is to
investigate and visualize the interaction between flexible liposomal systems (invasomes)
and human skin (main SC) by AFM and TERS. Outcome of this study could help to

understand the underlying mechanism of skin penetration of invasomes systems.

6.2 Introduction

6.2.1 Skin barrier and penetration pathway

Skin is the largest organ of the human body, which forms a barrier between the body and
environment and has a surface area between 1.5 and 2.0 m”. Skin is anatomically divided
into three principal and distinct layers, stratum corneum (SC), viable epidermis, and dermis

respectively, see fig. 6.1. A fatty subcutaneous layer resides beneath the dermis.

The stratum corneum is the top layer of the skin and varies in thickness from approximately
ten to several hundred micrometres, depending on the region of the body (4). The most
simplistic organizational model of SC is the classic “brick-and-mortar” assembly (5). This
structure is analogous to a wall where corneocytes (brick, because of the cornified envelope
around each corneocyte) are embedded in a complex lamellar lipid domain or matrix

(mortar) formed of complex mixtures of cholesterol, free fatty acids, and ceramides
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(fig.6.2). Corneocytes are typically 200-300 nm thick, 30-50 um in diameter and polygonal
in shape. The barrier nature of the SC is governed by its constituents: 75%-80% are

proteins, 5%-15% lipids, and so far 5%-10% unidentified components. (6).

Stratum corneum

Epidemis

Demis

Subcutis

Fig. 6.1: Schematic image of skin structure with different layers: stratum corneum (SC),

epidermis, and dermis. The subcutis layer is beneath the skin, adapted from (7).

The stratum corneum provides the most significant barrier to diffusion. In fact, the stratum
corneum is the barrier to approximately 90% of transdermal drug applications. However,
nearly all molecules penetrate it to some minimal degree (8). Below the stratum corneum
lies the viable epidermis. This layer is about ten times as thick as the stratum corneum;
however, diffusion is much faster here due to the greater degree of hydration in the living
cells of the viable epidermis. Below the epidermis lies the dermis, which is approximately

one millimeter thick, 100 times the thickness of the stratum corneum. The dermis contains
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small vessels that distribute drugs into the systemic circulation and to regulate temperature,

a system known as the skin's microcirculation (8, 9).

Transcellular route Intercellular route

Plasma
membrane

Aqueous

Cell cytoplasm

== R

Intercellular

Keratin space Lipid Aqueous Fatty acid Cholesterol

Fig. 6.2: “Brick-and-Mortar”” model of stratum corneum (SC) and two main penetration
pathways (transcellular route and intercellular route) for drugs crossing the skin and reach

the systemic circulation, adapted from (/0).

There are two main pathways by which drugs can cross the skin and reach the systemic
circulation, see fig. 6.2. The more direct route is known as the transcellular pathway. By
this route, drugs cross the skin by directly passing through both the phospholipids
membranes and the cytoplasm of the dead keratinocytes that constitute the stratum corneum.
Although this is the path of shortest distance, the drugs encounter significant resistance to

permeation. This is because the drugs must cross the lipophilic membrane of each cell, then
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the hydrophilic cellular contents containing keratin, and then the phospholipid bilayer of
the cell one more time. This series of steps is repeated numerous times to traverse the full

thickness of the stratum corneum (4, 8).

The other pathway through the skin is via the intercellular route. Drugs crossing the skin by
this route must pass through the small spaces between the cells of the skin, making the
route more tortuous. Although the thickness of the stratum corneum is only about 20 um,
the actual diffusional path of most molecules crossing the skin is on the order of 400 pm
(11) . The 20-fold increase in the actual path of permeating molecules greatly reduces the

rate of drug penetration (9) .

6.2.2 Liposomes as tools for the skin drug delivery

Choline CH,-CH,-N-CH;
O CH,4

Glycerol CH 3—CH—ICH
IO O\
Fatty acids C=0 C=0

Phosphate O= 1?' O Hydrophilic
(@) )
Interficial y + water

cooaco

Phospholipid
: Lipophilic bilayer
Hydrophilic Hydrophilic heads
compartment
Aqueous
solution
Lipophilic
compartment

Lipophilic tails

Fig. 6.3: Top left structural formula of the phosphatidylcholine molecule. In the presence of

water phospholipid bilayers are formed, which create vesicles, enclosing an aqueous core.
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Lipid soluble substances can be stored in the outer lipid phase (red ring) and water soluble

substances in the inner aqueous phase (blue centre) adapted from(/2).

From a pharmaceutical point of view, skin offers a promising route for delivering drugs
because skin drug delivery brings forth many attractive advantages over other routes of
administration: avoidance of first-pass metabolism, lower fluctuations in plasma drug levels,
good patient compliance and so on (/3). On the other hand, the skin is also a tough barrier
for delivering drugs, which is 10210 times less permeable than a blood capillary wall (/4)

and imposes physicochemical limitations to the type of permeants which can traverse it.

Over the past decades, numerous studies have been performed to overcome the problems
associated with skin delivery and also a number of novel skin delivery systems and
approaches have been developed, including the use of chemical penetration enhancers (735,
16), optimization of physic-chemical properties of the drug (/7), the application of
liposomes and other colloidal drug carrier systems, and others (18). Among these novel
techniques, lipid vesicular systems such as liposomes, offer a promising strategy for

successfully improving skin drug delivery.

Liposomal vesicles are colloidal vesicles in which one or more lipid bilayers entrap an
aqueous volume. Their major components are usually phospholipids, with or without some
additives. There are a wide variety of lipids and additives that can be used to prepare these
vesicles. Phospholipids have the ability to spontaneously rearrange and form bilayer sheets
after addition of water. These bilayer sheets then further aggregate into vesicular structure,
which results from their amphipathic character due to the presence of a polar or hydrophilic
(water-attracting) head-group region and a non-polar, lipophilic (water-repellent) tail. The
hydrophilic head groups orientate toward the aqueous phase and the lipophilic tails
orientate to each other in the presence of water (fig. 6.3) (/8, 19). Therefore, liposomes
contain a lipophilic environment within the bi-layer membranes and hydrophilic
environment between the membranes. Correspondingly, lipophilic drugs could be

incorporated into the bilayers; while the hydrophilic one could be loaded within the water
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phase inside the vesicles and could be also found outside the liposomes in high amounts

(20).

Liposomes can be classified according to their particle size. Small unilamellar vesicles
(SUV) have dimensions of 20 up to about 50 nm. Large unilamellar vesicles (LUV) are
between 50 and 500 nm, and multilamellar vesicles (MLV) have dimensions exceeding 500
nm but below 10,000 nm in diameter. SUVs are less suitable for drug delivery because they
lack stability and their volume is too small for entrapping drugs. And generally, the
penetration of liposomes through the stratum corneum decreases with increasing diameters.
Therefore, the preferred structures for drug delivery are liposomes that are 50-500 nm in

diameter (/2).

Liposomes also can be classified according to their components, which could be
conventional liposomes and flexible liposomes. Conventional liposomes are mostly
composed of phospholipids, with or without cholesterol. Flexible liposomal systems
include invasomes, ethosomes, transferosomes etc. Invasomes are composed of
phosphatidylcholine, ethanol, a mixture of terpenes as penetration enhancers, and additional
edge activators such as surfactants and lysophosphatidylcholine (LPC) to modify the

bilayer elasticity and to increase deformability (217).

Because of their elasticity and deformability, invasomes show better penetration
capabilities compared with conventional liposomal systems. There are two possible
mechanisms responsible for its enhanced skin drug delivery. First, invasomes may act as
drug carrier systems by which intact vesicles can enter the SC carrying vesicle-bound drug
into or across the skin. Second, invasomes may act as penetration enhancers, whereby the
vesicle lipid bilayers interact with the SC and subsequently modify the intercellular lipid
lamellae and finally adsorb to and/or fuse with the SC. It may also be possible that one of
the two mechanisms might predominate according to the physicochemical properties of the

drug considered (22).
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6.3 Materials and methods

6.3.1 Materials:

1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC, 16:0-18:1 PC)
o]

Fig. 6.4: Structure of POPC

1-oleoyl-2-hydroxy-sn-glycero-3-phosphocholine (LPC, 18:1 Lyso-PC)
Q 0
1l
\N\Aﬂ/\/\/\)ko/\(\ofpmo "\./\ -~
5 / N
HO H o |
Fig. 6.5: Structure of 18:1 Lyso-PC

6.3.2 Preparation of invasomes

POPC-invasomes (composition as table 6.1) were prepared by the conventional mechanical

dispersion method. Briefly, lipids were dissolved in a chloroform and methanol (2:1)

mixture. Organic solvent was then removed by rotary evaporation (Rotavapor R - 114,

BUCHI) above the lipid transition temperature (-2°C). The deposited lipid film was

hydrated with buffer at the room temperature. Resulting vesicles were allowed to swell for

half an hour at room temperature. Then the suspensions was sonicated for 5 min and

extruded through a 100 nm membrane (21 times) at room temperature.
Table 6.1: The composition of POPC-Invasomes
Component POPC LPC Buffer pH
(mg/ml) (mg/ml) 7.4
Invasomes 100 7 Upto lgm

Terpene mixture - 1% (terpene mix contains citral:cineole:d-limonene in the ratio 45:45:10)

Ethanol — 10%
Invasomes used for SERS measurements replaced POPC with POPC-d31.
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6.3.3 Skin preparation

Female human abdominal skin obtained from plastic surgery was used. After the plastic
surgery the subcutaneous fatty tissue was removed from the skin by using a scalpel and
surgical scissors and then frozen at -20 °C with aluminum foil packed for later use. Skin
from only one patient will be used for all the experiment to avoid variability. Before the
skin experiment the skin disks of 36 mm were punched out, cleaned with PBS (pH 7.4, 50
mM) and allowed to thaw with the SC side up open to the atmosphere and the dermal side
bathed with receptor medium overnight at 4°C. After that the integrity of skin disks was
checked with transepidermal water loss (TEWL) measurement (VapoMeter, Delfin
Technology Ltd., Kuopio, Finland) to ensure that samples were free from any surface

irregularities such as tiny holes or crevices.

6.3.4 Franz diffusion cell preparation
Skin

Donor Samphng

/

Water jacket

ports  — Receptor

—

/
> |/

Fig. 6.6: Schematic representation of a Franz diffusion cell

In vitro skin penetration study was done using Franz diffusion cells (fig 6.6). For the skin
experiments the formulation was applied non-occlusively and the cell was maintained at
37+1°C throughout experiments by circulating warm water through the jacket of the Franz
cell, in order to maintain the skin surface at 32°C. The effective penetration area and
receptor cell volume were 3.14 cm” and 15.0 ml, respectively. The acceptor compartment
will be filled with PBS buffer (pH 7.4) as the receptor medium. Skin is mounted, with the

SC side up and the donor compartment left dry and open to atmosphere for half an hour
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before application of test formulation. Caution is taken to remove all air bubbles between
the underside of the skin (dermis) and the acceptor solution. Also the skin will be stretched
in all directions to avoid the presence of furrows. In the case of finite dosage application, 10
uL/cm® of the test formulation were applied to the skin surface by a pipette and
homogenously distributed by an inoculating loop (1 pL, VWR ® International, GmbH.
Darmstadt, Germany). The incubation time of the skin with different test formulations will
be 12 h. Then the formulations will be removed from the skin by washing five times with
warm (45°C) receptor medium. After cleaning, the skin will be transferred for tape-

stripping the SC.

6.3.5 Tape Stripping of the SC
The SC was removed by tape striping, fig. 6.7. Tape stripping is a technique which can be
used to progressively remove layers of stratum corneum which are then used for monitoring

the penetration of the formulation within the SC.

(a) |— Donor _‘ (b)

Strtum
corneum

Tape

Epidermis Epidermis

Fig. 6.7: Schematic representation of the method of tape stripping. After application of
formulation at the donor site (a) and removal of the formulation, the SC is progressively

removed by tape stripping (b).

6.3.6 AFM, SERS and TERS measurements

All the AFM, SERS and TERS measurements were performed in setup 1. The setup has
introduced in chapter 3. The wavelength of the laser used in this setup is 530.8 nm. Control
SC were removed from the surface of skin layer by layer by double side sticky tape (tape
stripping) and then pasted to the cover slide surface (see fig. 6.8) for AFM and TERS
measurements. Invasomes treated sample was prepared firstly by franz diffusion cell for the

penetration of the invasomes into the SC and then by tape stripping for AFM and TERS
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measurements. For TERS measurement on control SC, the power of the laser was 900 uW,
and the acquisition time was 10 s, while for TERS measurement on invasomes treated SC,

the power was 1100 uW, and the acquisition time was 3 s.

Cover slide
Double sides

sticky tape slide

Stratum corneum

Fig. 6.8: The preparation of SC for AFM and TERS measurement.

For SERS measurements on invaosomes, a silver island film evaporated on glass cover
slide surface was used as substrate (the substrates preparation method has been mentioned
in chapter 3). 40 uL of 10 pg/uL invasomes aqueous dispersion was dropped on the
substrate surface, incubated for 30 min and then washed using bidistilled water three times
and dried in argon. The laser power for the SERS measurement was 300 pW and the

acquisition time 5s.

6.4 Results and discussion

6.4.1 AFM measurements on control and invasomes treated SC
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Control SC Invasome treated SC

489.4 nm

Bl 267.4 nm - 161.9 nm

Fig. 6.9.1: AFM topography images of the control (left column, A, B) and invasomes
treated (right column, C, D) stratum corneum (SC) from 1% strip layer. The figures on

bottom (B, D) are the zoom-in regions in their corresponding on top figures (A, C).
Control SC Invasome treated SC

651 nm

341.9 nm

Fig. 6.9.2: AFM topography images of the control (left column, A, B) and invasomes
treated (right column, C, D) SC from ond strip layer.
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Invasome treated SC

Control SC

1.714 pm

284.6 nm

Fig. 6.9.3: AFM topography images of the control (left column, A, B) and invasomes

treated (right column, C, D) SC from 3" strip layer.
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Fig. 6.9.4: AFM topography images of the control (left column, A, B) and invasomes

Invasome treated SC

treated (right column, C, D) SC from 4" strip layer.
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Control SC Invasome treated SC

2,481 pm 872.7 nm

754.9 nm 320.2 nmr

2 5 B

0 nm

Fig. 6.9.5: AFM topography images of the control (left column, A, B) and invasomes

treated (right column, C, D) SC from 5t strip layer.

Control SC Invasome treated SC

3.203 pum 716 nm

6™ layer

575.2 nm

Fig. 6.9.6: AFM topography images of the control (left column, A, B) and invasomes

treated (right column, C, D) SC from 6" strip layer.
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Control SC Invasome treated SC

3,585 um 810.6 nm

7™ layer

612.2 nm

N, BN 0nm

0 nm

Fig. 6.9.7: AFM topography images of the control (left column, A, B) and invasomes

treated (right column, C, D) SC from 7t strip layer.

Control SC Invasome treated SC

4,808 pum

370.6 nm

Fig. 6.9.8: AFM topography images of the control (left column, A, B) and invasomes

treated (right column, C, D) SC from gt strip layer.
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Fig. 6.9 shows the AFM topography images of control and invasomes treated skin samples
from the skin surface to the 8" strip layer. The SC was removed by tape stripping with a
thickness of 1.0 - 1.5 um for each layer. There are subtle differences in the topography of
the corneocytes by comparing the control and the invasomes treated SC. The AFM images
of the invasomes treated 4™ strip layer SC for example, shows some naoparticles and
cavities on the surface, which are especially clear on the enlarged image on the bottom. The
nanoparticles are about 100-200 nm in lateral and 100-150 nm in vertical, which
corresponds well with the size of the invasomes and could be assigned to invasome vesicles
by topography. However, the component of the nanoparticles is not clear so far and needs
to be further identified by TERS. The size of the cavities is a bit larger than that of the
nanoprarticles, which could be attributed to the traces left by invasomes when they
penetrated into the SC. Concerning on the penetration depth, the invasome-like
nanoparticles can be found from the first to the 7" strip layer but vanished on the 8" strip
layer. From all these morphology changes, it is probable that invasomes act as drug carrier
systems by which intact vesicles can enter the SC about 7.0 — 10.0 um underneath the

surface.

6.4.2 Spectra measurements

To confirm if the vesicle like structures in the topography images are really invasomes,
SERS measurements were performed on invasomes, and TERS measurements were
performed on the second layer of the control and invasomes treated SC respectively. If the
bands from invasomes could also be detected on invasomes treated SC, then we can come

to the conclusion that the vesicles-like nanoparticles are invasomes.

Fig. 6.10 shows SERS spectra of the invasomes adsorbed on silver islands substrate surface.
Spectral features at 966 cm'l, 1130 cm'l, 1152 cm™, and 1507 cm™ are used as marker

bands to trace the invasomes.
Fig. 6.11 shows the TERS measurement on the P strip layer of the control SC. (A) is the

topography image and (B) is the spectra measured on the positions indicated in (A) with a

step-size of 10 nm. Corneocytes show homogeneous topography while no topographic
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signatures of invasomes can be found in the AFM image. The TERS spectra can be
assigned to either lipid or proteins while no spectral signatures of the four marker bands

from the invasomes can be found.

Fig. 6.12 shows the TERS measurement on the ond strip layer of the invasomes treated SC.
(A) is the topography image, (B) is the height profile through the nanoparticle along the
line indicated in (A), and (C) is the spectra measured on the positions indicated in (A) with
a step-size of 10 nm. In the AFM image, the nanoparticle shows a size of about 200 nm in
lateral and 100 nm in vertical dimension, which indicates a distinct vesicular structure of
invasomes. Furthermore, the four marker bands from invasomes are found in the TERS

spectra which suggests the present of invasomes in the treated stratum corneum

The assignment of all the spectra is in table 6.2 (23-295).

Raman intensity / arb. unit

| | L | L
2000 1800 1600 1400 1200 1000 800
Wavenumber /cm-1

Fig. 6.10: SERS spectra of invasomes on different positions on the silver island substrate

surface.
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Fig. 6.11: TERS measurement on the control SC (2°® layer). (A) AFM topography images
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and (B) five TERS spectra obtained on the positions indicated in (A) with a step-size of 10

nm.
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Fig. 6.12: TERS measurement on the invasomes treated SC (2™ layer). (A) AFM
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topography images, (B) the height profile through the nanoparticle along the line indicated

in (A), and (C) three TERS spectra obtained on the positions indicated in (A) with a step-

size of 10 nm.
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Table 6.2: Tentative assignment of the SERS spectra from invasomes, TERS spectra from

control and invasomes treated SC (23-25).

SC Invasome 1 2 3 Tentative assignment
(TERS) | (SERS) | (TERS) | (TERS) | (TERS)
671 Cholesterol
966 973 970 970 3(=CH) (I)
992 992 Phe (P)
1040 v(C-0O-P) (L)
1073 1078 vs(POy), vs(CO-C-0) (L)
1109 v(C-C) (L), v(C-N) (P)
1130 1135 v (C-C) (D)
1152 1153 v (CO-0-C) (I)
1195 1210 1210 1210 Vas(CO-C-0) (L), Phe, Tyr, Val (P)
1240 1253 1254 Amide III(P)
1265 1272 Amide [II(P), 8;,(=CH) (L)
1298 1292 1297 dwist(CHo) (L, P)
1320 1335 1325 1335 O(CH) Ser (P)
1349 S(CH), 8(OH) (I)
1371 1369 p(CH), (CH,) wag (L, P)
1397 1387 (CH,) wag, p(CH3) (L, P)
1430 0(CHy), o(CH3) (I)
1441 1448 1440 0(CH,), 6(CH3) (L, P)
1454 1460 0(CH,), o(CH3) (L,P)
1505 1507 1507 1507 O(NH,) (I)
1530 Amide II (P)
1560 1566 1566 1566 Sd(NH) (L), Amide II (P)
1588 1586 1601 v(C=C) (L), Phe, Trp, Tyr (P)
1620 S(NH3") (I)
1678 1670 1670 1670 v(C=C) (L), Amide I (P)
1745 v(C=0) (L)

Abbreviations: L: lipid; P: protein; v: stretching; o: deformation; s: symmetric; as:

asymmetric.

6.5 Conclusion and outlook

In this chapter, by analyzing AFM topography images of control and invasomes treated SC
from the top surface to the 8" strip layer, SERS spectra of invasomes and AFM topography
in combination with TERS spectra on the second strip layer of control and invasomes

treated SC, it was found that invasomes probably act as drug carrier systems penetratig 7-
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10 um into the SC. These results are primary. For fully and systematically understand the

penetration mechanism of invasomes, more measurements with respect to statistic relevant

data are necessary.
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Chapter 7 Summary and Outlook
In the present thesis the advantages of high spectral specificity, sensitivity and super high
lateral resolution tip-enhanced Raman spectroscopy (TERS) has been applied for the

investigation of biomolecules at the nanometer/sub-nanometer scale.

TERS for label-free DNA sequencing

TERS measurements on different RNA/DNA single strands have been performed to
investigate the feasibility of TERS as a label-free DNA sequencing method. First TERS
experiments on uracil homopolymer strands clearly demonstrated the reproducibility of this
technique in terms of consistent spectra.

In TERS spectra from calf thymus DNA all four DNA nucleobases were assigned and a
sequence change underneath the tip could be assumed.

The investigations were extended to specifically for this work synthesized DNA samples.
In the obtained TERS spectra from (A;oCis)s DNA strands the distinction of adenine and
cytosine nucleobases was possible with a sub-nanometer spatial resolution.

From these results it could be concluded that TERS has the potential to directly sequence
DNA / RNA strands, which could also be utilized for other chainlike bio-macromolecules
(e.g. proteins). In future projects TERS will be applied to synthetic DNA strands with a
known sequence containing all four nucleobases. The ultimate goal is the examination of

strands with an unknown nucleobase order.

TERS for the direct detection of 5-methylcytosine sites on DNA strands

TERS measurements on methylated DNA single strands (A;95SmeCj¢)s have been performed
for the first time. The obtained spectra show strikingly different vibrational modes for
adenine and 5-methylcytosine, determined by distinct marker bands. Moreover, TERS
spectra of cytosine in the unsubstituted DNA (A¢Cis)s can be easily distinguished from 5-
methylcytosine in the methylated DNA (A;¢5meCjg)s by bands arising from the methyl
group. These results clearly demonstrate the direct detection and localization of 5-
methylcytosine sites in DNA strands with TERS at sub-nanometer resolution.
Simultaneously, the nucleobase can be distinguished from its non-substituted analogue.

Further examinations in this research area will concentrate on the identification of nitrogen-
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methylated bases (N-4-methylcytosine, N-6-methyladenine). The aim will be the
localization of such substituted sites in the strand, a possible step forward to clinical

diagnostic and therapy.

AFM-TERS investigations on skin penetration of invasomes

AFM and TERS measurements have been performed on different layers (by tape stripping)
of untreated and invasomes treated outermost skin layers (stratum corneum, SC). It was
shown that invasomes likely act as drug carrier systems by which intact vesicles can
penetrate 7-10 um into the SC. The invasomes were identified spectroscopically and thus
could be discriminated from their environment (SC). The obtained primary results show the
potential of TERS to studying the mechanism of skin penetration of invasomes. For a
systematic study in this area more measurements with respect to statistic relevant data are

necessary.

In conclusion, the results presented in this thesis demonstrate the potential of tip-enhanced
Raman spectroscopy (TERS): on the one hand it is suitable for a label-free sequencing of
DNA/RNA strands. On the other hand the direct detection of methylation sites on DNA
strands is feasible. Last but not least it was shown that with TERS the mechanism of skin
penetration of invasomes can be studied. All these results demonstrate that the special
attributes of TERS (nanometer/sub-nanometer lateral resolution, high sensitivity and

specificity) enable numerous investigations in biosciences to answer raised questions.
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