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Chapter I: Introduction 
___________________________________________________________________________________________________________________________________________________________________________________________ 

1. Introduction 
For a long time, community ecology was a science primarily dealing with description of plant and 

animal associations (Keddy 1992). Over the past decades, it has developed towards becoming a 

predictive science. This is underlined by the current discussion of “assembly rules” for ecological 

communities (see Weiher & Keddy 1999a), which not only comprehends the description of 

community patterns, but also the processes and mechanisms leading to such patterns. Over the last 25 

years, emerging concepts dealing with community assembly have been widely applied to a number 

of natural and semi-natural ecosystems, including wetlands (van der Valk 1981), forests (McCune & 

Allen 1985), dune communities (Houle 1996), cliff communities (Booth & Larson 1998, 2000) and 

grassland (Eriksson & Eriksson 1998). These concepts have also found their way into the restoration 

of such systems (see Keddy 1999 and Zedler 2000 for wetlands or Pywell et al. 2002 for grasslands). 
 

However, this approach has rarely been applied to degraded land resulting from industrial activity, an 

anthropogenic ecosystem of growing importance, especially in densely-populated Europe (see 

Bradshaw & Chadwick 1980, Rebele & Dettmar 1996). Previous studies have been largely 

descriptive, including the vicinity of soda factories (e.g. Trzcinska-Tacik 1966, Dangien et al. 1974) 

and of magnesite factories (e.g. Kaleta 1975), fly ash heaps (e.g. Fischer 1976), chemical waste 

dumps (e.g. Klotz 1981), slag heaps ( e.g. Punz 1989, Dettmar 1992), and the vicinity of phosphate 

fertiliser factories (Swieboda 1970, Heinrich 1984, Heinrich et al. 2001).  

There are only a few studies of the vegetation of such sites extending beyond mere description. 

Examples for a more causal analytic approach, which has been advocated by Gemmell (1975), 

include the application of multivariate techniques to to infer causes and mechanisms of assembly 

(e.g. Wiegleb & Felinks 2001a,b), but there are also examples of a more experimental approach (e.g. 

Tischew & Mahn 1998). 
 

This study addresses the processes of plant community assembly at a site adjacent to a former 

phosphorus-fertiliser factory. It is distinguished by a combination of both the descriptive and the 

experimental approach. The relevant concepts of community assembly are applied to the study of a 

number of factors thought to play a key role in governing successional dynamics and spatial patterns 

of vegetation at this industrial site. New insights into the mechanisms underlying the assembly of 

plant communities at such a site are thus provided. 
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2. The Steudnitz field site 
 

2.1 Geography and solid geology 
The field site (Figure 2.1) is a south-east facing slope situated near the village Steudnitz c. 10 km 

north of the town Jena on the western side of the Saale valley in the eastern part of Germany 

(51°01’N, 11°41’E). The Upper Buntsandstein base of the slope is covered by Triassic limestone. On 

the upper part of the slope there is a loess cover of c. 1-2 m thickness. The present study focuses on 

the lower slope, which ranges from 140-170 m above sea level, and is characterised by a slope angle 

of 35-40°. This part of the slope was strongly affected by the emissions of a fertiliser factory. Apart 

from a vegetation survey which is described in Chapter 6, most of the field investigations of this 

study were carried out near the factory (henceforth referred to as the proximal part). A soil and 

vegetation survey (Chapter 6) included also the distal part of the lower slope. The upper end of the 

lower slope is identified by a pronounced edge, beyond which the comparatively flat middle and 

upper parts of the slope (5-20° slope angle) extend up to 200 m above sea level. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2.1. Map of the Steudnitz study area (from Heinrich et al. 2001, altered). The permanent plot on the 

lower slope is indicated by an arrow. 
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2.2 Climate 
The climate in the middle Saale valley is warm and dry, as data from the University of Jena weather 

station show (Kluge & Müller-Westermeier 2000): the average annual precipitation for the period 

between 1966 and 1995 was 604 mm / year, the corresponding annual mean temperature was 9.5 °C. 

The precipitation maximum in the summer months is typical for the continental character of the 

regional climate (Heyer 1993). Between 1999 and 2002, when the present study was carried out, the 

temperatures were comparatively high, with annual means ranging between 10.1 °C (in 2001) and 

11.1 °C (in 2000): the year 2000 was the year with highest annual mean temperature ever recorded in 

Jena. The annual amount of precipitation ranged from 541 mm in 2000 to 641 mm in 2001. The 

seasonal patterns of temperature and precipitation, based on long-term data (1966-1995), are outlined 

in Appendix 1, which also gives monthly values for the period between January 1999 and August 

2002. The wind in the middle Saale valley blows predominantly from south and southwest. 

 

2.3 Site history 
Photographic evidence from the early 20th century indicates that the site was used at the time for 

vineyards and orchards. Between 1925 and 1942, and then again between 1945/46 and the mid-1950s 

cement was produced, the quarried limestone being used as a raw material ( P. Hagenguth, personal 

communication). Subsequent large-scale production of Rhenania phosphate, a calcium sodium 

phosphate fertiliser (CaNaPO4), began in 1957. In this process, phosphate rock, sodium carbonate 

and quartz sand were calcined in a rotary kiln at up to 1 200 °C (for details of the manufacturing 

process see Schmitz et al. 1980 or Young et al. 1985). Lignite and coal provided the energy for the 

production process. The original facility was closed down and replaced by a larger rotary kiln 

(Figure 2.2) in 1969/70. At peak production, c. 100 000 metric tonnes of Rhenania phosphate 

fertiliser were produced, equivalent to c. 25 000 metric tonnes of phosphorus pentoxide (P2O5). From 

1969/70 until the late 1970s PK fertilisers were also produced: calcium sodium phosphate was mixed 

with potash, granulated in a drum by addition of water and then dried. Total production of these 

fertilisers was c. 50 000 metric tonnes. In April 1990, in the wake of reunification, the fertiliser 

factory was closed down. Cement and finely-ground limestone (for use as feed stuff additive for live-

stock and as remedy for the acidification of forest soils caused by acid rain) are still produced in a 

cement factory at the site (Figure see 2.2). 
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Figure 2.2. View of the field site, including the cement factory and the shut-down fertiliser factory with its 

rotary kiln of c. 100 m length (photo by W. Nerb). Field research for this study was mainly carried out in the 

proximal half of the lower slope, as pictured in the photo. 

 

 

 

        
 
Figure 2.3. The proximal part of the lower slope in 1979 (photo by W. Heinrich). 

 4



Chapter II: Field Site 
___________________________________________________________________________________________________________________________________________________________________________________________ 

2.4 Environmental impact of the fertiliser production at the Steudnitz site 
Unlike cement production, fertiliser production had an enormous environmental impact in the 

vicinity of the factory, due to the alkaline dust particles emitted in the course of this production. It is 

estimated that from the chimneys alone, in peak years of fertiliser production, c. 3 000 metric tonnes 

of dust were emitted, and an additional c. 500 to 800 metric tonnes were released during the 

unloading of raw materials and the loading of end products (P. Hagenguth, personal communication). 

Between 1968 and the closure of the factory in 1990, local dust input was monitored by the 

‘Bezirkshygieneinstitut Gera’, a regional authority dealing with issues of health and environment. In 

the immediate neighbourhood of the slope, monthly deposition during peak times of production 

could exceed 100 g/m² by far (Heinrich 1984). There were three main emission sources in the 

production process, the rotary kiln, the cooling drum, and the PK fertiliser facility, which accounted 

for 90 % of the dust emissions of the fertilizer factory (Vogler & Gebauer 1981). The raw materials 

rock phosphate and  soda were emitted from the rotary kiln, whereas the other two facilities mainly 

emitted the end products, Rhenania phosphate and PK fertiliser. From the mid-1970s onwards, the 

dust emissions also contained a considerable amount of cadmium. At that time, Kola apatite, a rock 

phosphate from the Kola peninsula, USSR, was replaced by rock phosphate from North Africa (P. 

Hagenguth, personal communication). The cadmium content of the former is very low, whereas the 

latter is characterised by a very high cadmium content (McLaughlin et al. 1996). All three emission 

sources also emitted fluorine compounds, the fluorine being a component of  both types of phosphate 

rock (McLaughlin et al. 1996, Rodin & Kosynkin 1999). Sulphur dioxide (SO2) emissions from 

lignite-burning also played a considerable role (Vogler & Gebauer 1981). Sulphur trioxide (SO3) and 

hydrochloric acid (HCl) are also mentioned in the literature (Heinrich 1984). Maximum pollution 

occurred between the end of the 1960s and 1980. With the termination of PK fertiliser production, 

pollution levels dropped to some extent. 
 

The impact of the fertiliser production on the environment was already evident with tree death by the 

end of the 1950s. In the beginning, only the vegetation in the immediate vicinity of the fertiliser plant 

was affected: however, the zone of impact subsequently expanded (P. Hagenguth, personal 

communication), especially after the installation of the new rotary kiln at the end of the 1960s. The 

startling extent of these effects, which by then included the complete destruction also of the 

herbaceous vegetation, is depicted in Figure 2.3. The factory emissions, on a local scale, also affected 

agriculture. The fluorine compound emissions caused honeybees to die-off. Cattle suffered a high 

calf abortion rate. Hop plantations had to be relocated into unaffected areas (Vogler & Gebauer 

1981). Orchards also suffered damage (Blechschmidt et al. 1984). 
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2.5 Soil conditions 
Shallow skeletal rendzina soils with a poor water holding capacity are found at the lower slope study 

area. In the transition zone between the lower and the upper slope there are loess rendzina soils. Of 

special interest for the present study are the profound soil changes brought about by the fertiliser 

factory emissions. For some soil factors, these changes and the recovery after cessation of the 

emissions are well-documented. Table 2.1 summarises development in the proximal part of the lower 

slope for the period between 1990 and 1999. 
 

Particularly noteworthy is the high initial total content of sodium indicating a high soil salinity at the 

time the fertiliser plant was shut down and its subsequent decrease by c. 50%. Soil pH at the time of 

factory closure was c. 9. The current value (c. 8) is only slightly higher than the pH of 7.0 to 7.5 

found on comparable unpolluted soils in the region (Heinrich 1984). There was also a strong 

enrichment of the pollutants cadmium and fluorine in the top soil: cadmium levels were still high in 

1999, however fluorine levels had markedly declined by then. This is due to the combination of high 

carbonate and phosphate levels with a high pH, leading to permanent cadmium fixation and 

immobilisation (McLaughlin et al. 1996) and, at the same time, favouring fluoride solubility (e.g. 

Larsen & Widdowson 1971). The gradients of cadmium, sodium and fluorine in soils in the vicinity 

of the fertiliser plant were investigated by Schäller (1987), Soldt & Einax (1998) and others. 

Maximum pollution levels were found north and northeast of the fertiliser factory (i.e. on the 

investigated slope), reflecting the wind conditions in the valley (see Section 2.2). Other changes 

caused by the emissions include exceedingly high levels of total and plant available phosphorus, and 

elevated levels of potassium over the entirety of the lower slope. The soil structure is also modified, 

due to the predominantly sand-grain-sized particles emitted (Metzner et al. 1997). This, in 

combination with the low level of organic matter and the slope aspect and topography, favours a 

quick drying of the soil after rainfall, particularly in summer. Due to the sparse vegetation cover at 

the proximal end of the slope during operation of the factory, organic carbon and total nitrogen 

contents are particulary low there. The situation in the distal part of the slope is different. There, a 

dense vegetation throughout the period of dust deposition allowed for the continuous retention of 

nitrogen in plant biomass. Other important aspects of soil chemistry such as salinity have not been 

included in analyses. Preliminary analysis of the composition of pollutant dust samples collected 

from sheltered locations at the factory site  implies that levels of several additional elements and 

compounds were also elevated (Langer 2000, K. Metzner unpublished, M. Wagner unpublished). 

Results of dust composition analysis are summarised in Appendix 2. These data suggest that PO4
3-, 

SO4
2-, Cl-, NO3

- and K+ were also integral in the initially very high soil salinity, in addition to the 

previously mentioned elevated levels of sodium (Na+) and fluoride (F-). 
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Table 2.1. Soil parameters (means ± standard deviation) from the years 1990 (1991), 1996 (1997) and 1999 in 

the proximal part of the Steudnitz lower slope (from Metzner et al. 1997, M. Wagner unpublished). Unless 

otherwise stated, n = 11 (1990-1996) or n = 24 (1999). * indicates values from 1991, ** indicates values from 

1997 and n = 3, *** indicates n = 10. Unless otherwise indicated, total contents are given. Available contents 

of phosphorus and potassium are based on the CAL method (Schüller 1969). For heavy metals, limit values for 

soils with pH > 7 are given (EU Environment DG 2000). 

 

Soil Factor 1990  

 

1996 1999 proposed EU 

soil limit 

values 
      

plant nutrients      
      

N [%] - 0.07 ± 0.07 0.11 ± 0.03  

P [g × kg-1] 83.9 ± 26.6 * 76.3 ± 26.3 ** -  

P (available) [g × kg-1] - 8.6 ± 3.1 *** 4.4 ± 1.5  

K [g × kg-1] 6.7 ± 2.8 4.0 ± 1.2 4.9 ± 2.0  

K (available) [mg × kg-1] - 281 ± 67 344 ± 137  

Mg [g × kg-1] 4.5 ± 1.0 4.0 ± 2.1 8.5 ± 2.4  
      

heavy metals      
      

Cd [mg × kg-1] 10.8 ± 7.9 * 7.8 ± 2.5 9.6 ± 4.3 1.5 

Pb [mg × kg-1] - 35.9 ± 6.4 20.9 ± 6.6 100 

Cu [mg × kg-1] - 18.6 ± 4.9 23.7 ± 5.8 100 

Ni [mg × kg-1] - 10.4 ± 2.2 13.8 ± 2.3 70 

Cr [mg × kg-1] - 10.6 ± 3.1 - 100 

Zn [mg × kg-1] - 57.9 ± 8.9 73.1 ± 11.4 200 
      

other pollutants      
      

Na [g × kg-1] 16.1 ± 6.0 12.8 ± 5.5 7.9 ± 2.0  

F [g × kg-1] 8.2 ± 3.3 3.2 ± 0.9 ** -  
      

other soil parameters      
      

pH  9.14 ± 0.38 7.9 ± 0.10 8.09 ± 0.14  

sand 

silt 

clay 

[%] 

[%] 

[%] 

- 

- 

- 

58 

34 

8 

54 

36 

10 

 

organic C [%] - 3.7 ± 1.0 6.0 ± 0.6  
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2.6 Previous investigations and the extent of earlier investigations on plant 

communities 
 

This section gives an overview of previous ecological research on the impact of the fertiliser 

production in the Steudnitz area. It does not, however, provide an exhaustive list of all the works so 

far published. 
 

Interest in the ecological and environmental implications of fertiliser production in Steudnitz first 

arose around 1980 (e.g. Peter 1979, Vogler & Gebauer 1981, Bährmann 1982). Heinrich’s (1981a,b) 

review on the impact of air-borne pollution on ecosystems laid the foundations for a number of 

studies published in the 1980s, centring on the impact the emissions had on the slope ecosystem 

adjacent to the fertiliser factory. Most of this work dealt with the slope’s insect fauna. Ecosystem 

functions were discussed by Schäller (1985), Heinrich & Schäller (1987) and Schäller et al. (1987). 

The plant communities were covered by the works of Heinrich (1984) and Marstaller (1987), the 

former dealing with higher plants and the latter with bryophytes. 
 

Soil changes caused by the emissions were subject of a number of studies carried out after the factory 

closure. Temporal dynamics of the soil conditions were covered by Metzner et al. (1997). Soldt & 

Einax (1998) focused on spatial aspects of soil contamination. Langer & Günther (2001) described 

the lingering effects on the soil microbial community and its metabolic activity several years after 

cessation of the emissions. 
 

Dying-off of the vegetation occurred in the immediate vicinity of the factory soon after fertiliser 

production began. Around 1980, vegetation on the slope showed a clear zonation, reflecting the 

spatial pollution gradient resulting from the more than two decades of emissions (Heinrich 1984). 

Closest to the factory, the lower slope was almost bare. Slightly further away from the factory, a 

near-monoculture of the halophytic grass Puccinellia distans (JACQ.) PARL., with scattered Atriplex 
sagittata BORKH. plants, covered the slope (nomenclature follows Rothmaler 2002). This was 

followed at the middle slope, and also in the distal part of the lower slope, by a similarly species-poor 

community dominated by the grass Elytrigia repens (L.) DESV. EX NEVSKI. Even further up on the 

slope, where pollutant input was negligible, was calcareous Bromus erectus HUDS. grassland. Such 

zonation more or less persisted until, in 1990, fertiliser production ceased. In that year, permanent 

plots were established on the lower, middle and upper slopes, in order to monitor vegetation changes 

to be expected in the course of ecosystem regeneration (Heinrich et al. 2001). Vegetation on each 

permanent plot (20 × 30 m, divided in 24 subplots of 5 × 5 m) was recorded in 1990 and all 

subsequent years by visual cover estimates, using the Braun-Blanquet scale (Braun-Blanquet 1964). 

Results are presented and analysed for the period 1990-1999 by Heinrich et al. (2001). In the 

proximal part of the lower slope, gradual natural amelioration of soil conditions, reflected in 
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Table 2.1 by a decrease in sodium and fluorine contents and a decrease in soil pH, allowed 

immigration of higher plants other than Puccinellia distans and Atriplex sagittata, and also of 

bryophytes (Figure 2.4). 

 

0

10

20

30

40

50

0 1 2 3 4 5 6 7 8 9 10 11 12

years after factory closure

nu
m

be
r 

of
 s

pe
ci

es
herbs and grasses
woody plants
bryophytes

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 2.4. Development of plant species richness on the lower slope permanent plot at the Steudnitz field site 

after fertiliser factory closure in 1990 (data from Heinrich et al. 2001 and unpublished). 

 

Subsequently, the species-poor Puccinellia community gave way to the assembly of a diverse ruderal 

plant community. The Puccinellia distans population collapsed, and at the same time, A. sagittata 

and Artemisia vulgaris L. achieved dominance (Heinrich et al. 2001). In 1997, woody plants gained a 

foothold on the lower slope. Currently, this part of the slope is dominated by two composite species, 

in spring by the annual Senecio vernalis WALDST. ET KIT., and in summer by Picris hieracioides L., 

which is perennial. In 2002, 58 species of higher plants (6 of them woody plants) and 12 broyphyte 

species were recorded on the lower slope permanent plot (Heinrich unpublished). In contrast, the 

distal end of the lower slope at present is still vegetated by a species-poor Elytrigia repens grassland. 
 

In addition to the survey on permanent plots, vegetation also was recorded on two occasions along 

transects reaching from the bottom of the slope to the upper slope, in 1996 (Scholze 1997) and again 

in 1999 (Stephan 2001). Scholze (1997) analysed spatial vegetation patterns and correlated them with 

soil data used to characterise the gradient of pollution. Stephan (2001) repeated this three years later, 

along the same transects and using the same method, which allowed characterisation of the 

development between 1996 and 1999. The present thesis extends these previous works and puts the 

accumulated knowledge on the regeneration of this ecosystem into the context of environmental-

filter concepts, which are outlined in Chapter 3. 



Chapter III: Environmental-Filter Concepts 
_____________________________________________________________________________________________________________________________________________________________________________________ 

3. The conceptual framework of this study: environmental-filter 

concepts 
The question of what factors determine the composition and dynamics of ecological communities has 

been at the heart of ecology ever since it was established as a science. Questions associated with 

community assembly were already addressed in the early academic disputes on the nature of plant 

succession (e.g. Clements 1916, Cooper 1926, Gleason 1926). And in 1927, the animal ecologist 

Charles S. Elton coined the phrase limited membership of the community (Elton 1927). This all 

happened long before Jared Diamond (1975), in his study of bird communities on the Bismarck 

Archipelago in the southwest Pacific, coined the term assembly rule, invoking interspecific 

competition to explain apparent constraints on species combinations he had observed. Diamond’s 

(1975) approach is restricted to the demonstration of non-random community patterns, and as such 

differs from current approaches. 

 

3.1 Assembly rules 
A direct descendant of Diamond’s (1975) original approach on community assembly is the so-called 

null model analysis, which aims at the demonstration and analysis of non-random community 

patterns (see Gotelli & Graves 1996), which Diamond called assembly rules. Most community 

ecologists today use the term assembly rule for the specification of processes leading to such non-

random patterns, although at present, different definitions of this term are used by different authors 

(Belyea & Lancaster 1999, Morin 1999, Weiher & Keddy 1999a): the major area of disagreement is 

as to whether the term should be used only for biotic constraints on community development or for 

other kinds of constraint too (Booth & Larson 1999). 
 

A number of authors prescribe to the view that only biotic interactions may comprise assembly rules 

(Lawton 1987, Wilson 1999, Belyea & Lancaster 1999). Wilson and co-workers define assembly 

rules as “ecological restrictions on the observed patterns of species presence or abundance that are 

based on the presence or abundance of one or more other species or groups of species” (Wilson & 

Gitay 1995: 369). Wilson (1999) lists several examples of biotic assembly rules for higher plants, 

derived from interspecific competition, including limiting similarity, guild proportionality and 

biomass constancy. However, higher plants generally represent only one part of the community of 

organisms at a given site, and the restriction of a study to a part of a community can obscure higher-

order patterns and dynamics that might be important for understanding lower-level phenomena 

(Samuels & Drake 1997). The potential importance of other functional groups of organisms in the 

assembly of plant communities as well as the need for further research on these aspects of 

community ecology is emphasised by several authors (e.g. Lawton 1987, Walker & Chapin 1987). 
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An alternative approach is advocated by Keddy and others (Keddy 1992, Weiher & Keddy 1999b, 

Booth & Larson 1999). According to these authors, assembly rules should include any constraint on 

the entry of species into the community. To make the previously descriptive soft science community 

ecology a hard science allowing for predictions, Keddy suggests the development of assembly rules 

based on species traits, including morphological, physiological or ecological features (Keddy 1992). 

For obtaining the necessary autecological data, he favours a screening approach (Keddy 1992). 

Numerous examples of this predictive approach based on screening methods can be found in the 

literature (e.g. Noble & Slatyer 1980, van der Valk 1981, Gaudet & Keddy 1988, Stockey & Hunt 

1994, Diekmann & Falkengren-Grerup 2002). However, in the case of morphospecies consisting of a 

whole range of specialized genotypes, predictions based on autecological data from a different 

population (i.e. information extracted from the literature) might be unsound (for an elaboration of 

this problem see Harper 1982). Life-history typing and functional typing can be considered as 

variations of the screening theme. Advantages and disadvantages of certain plant life-history types 

under different environmental regimes are discussed at length in Crawley (1997a). A valid argument 

for the functional types approach is the fact that species traits are not acted upon independently from 

each other, since selective pressures act on integrated individuals (Gould & Lewontin 1979). An 

example widely used in Europe is the C-S-R classification of plant functional types, which is based 

on resource use and response to disturbance (Grime 1974, 1977).So far, c. 1 000 species of the 

British flora were classified according to these plant strategy types (R. Hunt, personal 

communication). 
 

A third definition of assembly rule is based on the observation that different sequences of species 

invasion may lead to different outcomes in terms of community composition (e.g. Lockwood 1997, 

Samuels & Drake 1997). A number of studies using experimental microcosms (e.g. Drake 1991) or 

computer models (e.g. Lockwood et al. 1997) have demonstrated how the order of colonisation can 

induce so-called priority effects in simplified model systems. Advocates of the ‘biotic interactions 

only’ approach view priority effects as interactions between biotic mechanisms and dispersal 

constraints (Belyea & Lancaster 1999), masking actual biotic assembly rules (Lawton 1987). Young 

et al. (2001) critically discuss the limitations of the priority effects approach and question its 

applicability in real ecosystems, their judgement being based on the apparent lack of realism in 

mesocosm experiments and simulation models. Accordingly, they use the expression “assembly 

model” for this approach, and clearly discriminate between this term and “the related theory of 

assembly rules” (Young et al. 2001: 7). 

 

3.2 Limited membership and environmental filters 
Booth & Larson (1999) rightly point out that at the core of the current assembly rules discussion 

there are a number of topics which have already been debated over the last century. So does the 
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‘biotic interactions only’ approach to assembly rules have a lot in common with the concept of the 

realised niche of a species as opposed to its fundamental niche (Hutchinson 1957). And the ‘any 

constraint’ approach is reminiscent of the discussion of Elton’s (1927) term limited membership in 

Roughgarden & Diamond (1986). Roughgarden & Diamond (1986) suggest three categories of 

causes for limited membership in ecological communities. These are (a) different capacities of 

candidate species to cope with the physico-chemical conditions of the environment, (b) dispersal 

limitations, and (c) species interactions. Advocates of the ‘biotic interactions only’ approach to 

assembly rules acknowledge the existence of categories (a) and (b) (Putman 1994, Belyea & 

Lancaster 1999), but call them external constraints, being fundamentally different from assembly 

rules (Belyea & Lancaster 1999). 
 

While agreeing with the need for a rigorous, predictive approach to community ecology, including all 

kinds of constraints on community membership (see Keddy 1992), the approach chosen in this study 

is to leave the discussion about the exact definition of the term assembly rules to others (see Weiher 

& Keddy 1999a, Temperton et al. in press). 
 

Instead, a different concept, based on environmental filters, was chosen for this study. It is not 

uncommon to characterise the different causes for limited membership as filters, through which 

applicant species have to pass in order to become members of a community (e.g. Keddy 1992, Diaz 

et al. 1998). The entirety of these applicant species often is referred to as species pool (for a review 

of the concept see Zobel et al. 1998). Zobel distinguishes between a regional species pool occurring 

in a certain region that is capable of coexisting in the target community and a smaller subset of 

species, the local species pool, able to migrate to the community relatively rapidly (Zobel 1997), by 

which he means within a few years. 
 

In accordance with Roughgarden & Diamond’s (1986) categories, a simple, conceptual, filter-model 

such as the one by Lambers et al. (1998) may consist of three types of filter (see Figure 3.1). 

In this model, species from a regional pool of species have to pass through a series of filters to 

establish in the local vegetation. These filters are the historical filter (Can a species reach the site or 

is it already present in a dormant state?), the abiotic filter (Can the species cope with the physico-

chemical conditions at the site?) and the biotic filter (Can the species cope with competitors, 

predators, herbivores and pathogens?). Several authors, including Diamond & Roughgarden (1986) 

and Lambers et al. (1998), acknowledge that there are interactions between different filter 

components that are important and need to be considered. Examples are the aforementioned priority 

effects, but also the co-determinination of community membership by environmental limits and 

species interactions (Roughgarden & Diamond 1986), the latter including both detrimental (e.g. 

competition) and beneficial (e.g. facilitation) interactions. To accommodate such interactions and 

potentially resulting feedback loops, a dynamic environmental filter model was developed by 

Fattorini & Halle (in press). Their model is depicted in Figure 3.2. 
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Figure 3.2. The dynamic environmental filter model by Fattorini 

feedback loops between the established community and different f

ecological assembly processes. 
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et al. 1998). 
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Since the focus of the present study is on isolated filter components rather than on interactions 

between different filters or filter components, the terminology used in this thesis is geared towards 

compliance with the simple environmental filter model by Lambers et al. (1998). To further 

investigate how environmental filters, past and present, may influence plant community development 

at the Steudnitz field site (Chapter 2), I conducted a number of studies, which are described fully in 

the following chapters. Chapter 4 deals with the influence of seed dispersal – a component of the 

historical filter – and of a gradual reduction in soil salinity – a component of the abiotic filter – on the 

order of colonisation. In Chapter 5, the soil seed bank at the site, another component of the historical 

filter, is described. Chapters 6 and 7 focus on the present role of the abiotic and biotic filter. In 

Chapter 6, a multivariate approach is used to link spatial vegetation patterns with underlying soil 

conditions. This analysis allows conclusions to be drawn regarding the current role of abiotic and 

biotic filter mechanisms and a comparison to be made between observed vegetation patterns and 

predictions based on life-history theory. In Chapter 7, changes in the plant community structure, 

induced by experimental nutrient addition, are interpreted in the context of biotic and abiotic filters. 

In Chapter 8, the final chapter of this thesis, all findings are summarised and discussed within the 

context of the environmental-filter concept. 
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4. Influence of seed dispersal capacity and seedling salt tolerance on 

order of colonisation 
 

4.1 Introduction 
Natural establishment processes on derelict land are known to display a high degree of stochasticity 

(e.g. Bradshaw 1987). Nevertheless, there is growing evidence that a disproportionately large number 

of plant species colonising industrially created habitats feature efficient mechnisms for long-range 

seed dispersal (e.g. Bradshaw 1983, Grime 1986). This suggests that poorly-dispersed species which 

are appropriately adapted to site conditions might be absent from a particular site owing to their 

inability to reach this site (Ash et al. 1994). 
 

It has been pointed out that industrially created habitats resemble islands set in a solid sea (Gray 

1982): they differ from their surroundings in soil chemistry and fertility and physical properties such 

as water supply. This was indeed the case for the Steudnitz field site. As mentioned in Chapter 2, 

recolonisation of the proximal part of the lower slope by a diverse flora began two years after the 

cessation of pollutant dust deposition, indicating the initial existence of an abiotic filter too strong to 

be overcome by species in the first year after factory closure. The main components of this filter may 

have been the high soil salinity and pH, which in subsequent years, as a result of leaching processes, 

declined to normal levels (see Chapter 2). This mitigation of the abiotic filter due to natural 

amelioration of soil conditions should have allowed for the gradual establishment of increasingly less 

tolerant species. 
 

By now, the phase of rapid colonisation by species from the local species pool (sensu Zobel 1997) is 

more or less completed, as indicated by the levelling out of the lower-slope permanent-plot species 

richness curve at c. 50 species (see Figure 2.4). Due to Heinrich et al.’s (2001 and unpublished) 

permanent plot data, each species can be classified with respect to the time of their first appearance 

on the permanent plot. This chapter deals with the influence of seed dispersal capacity and of the 

gradual amelioration of soil conditions on the order of species colonisation at the Steudnitz field site. 

The former aspect is dealt with by investigating the question of whether plant species with a potential 

for long-distance dispersal, as conferred by a plumed seed morphology, appeared earlier in the 

vegetation. The latter aspect is exemplified by the salinity component, investigating the question of 

whether species with more salt-tolerant seedlings tended to colonise the site earlier. This chapter also 

examines whether there is a stronger correlation between seedling salt tolerance and order of 

colonisation for species with efficient long-distance dispersal than for those without. Such a stronger 

correlation for species featuring mechanisms for efficient dispersal might result from a higher 

probability of immediate colonisation once the conditions become suitable for colonisation (i.e. soil 

salinity falls below a species-specific critical threshold). 
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4.2 Methods 
 

4.2.1 Role of dispersal type 
Vegetation data from the Steudnitz lower slope permanent plot (Heinrich et al. 2001 and 

unpublished) were used as baseline data for the order of colonisation. All 80 species colonising the 

lower slope permanent plot between 1992 and 2002 were classified into two groups, according to the 

occurrence of a plumed seed morphology. A comprehensive seed morphology database (Müller-

Schneider 1986) was used for this classification. For statistical analysis, species were ranked 

according to the first year of occurrence on the permanent plot, and a Mann-Whitney test was 

employed to test for significant group differences in the time of first appearance in the vegetation. 

 

4.2.2 Role of seedling salt tolerance 
 

4.2.2.1 Experimental design 

The effects of salt stress on seed germination and on seedling radicle extension were tested under 

controlled conditions, using seeds of species recorded on the permanent plot which were locally 

collected in the respective field season and stored at room temperature for a period of several 

months. The intention was also to test effects of pH, but the use of buffer solutions produced toxicity 

problems, so pH effects were omitted. Salt stress was generated by using sodium chloride (NaCl) 

solutions of different concentrations. 
 

The two species initially present in the permanent plot, Puccinellia distans and Atriplex sagittata, as 

well as 22 species colonising the site between 1992 and 1999 (12 species with plumed seeds and 10 

without, see Appendix 3) were tested. Species from the pool of colonisers were chosen to represent 

the whole range from early colonisation in 1992 to late colonisation in 1999. For Atriplex sagittata, a 

species with dimorphic seeds (Mandák & Pyšek 2001a), only black seeds were tested, since in that 

year only a small number of brown seeds was produced by the plants. Seeds of two of the species, A. 

sagittata and Chenopodium rubrum L., were subjected to cold-moist stratification (five weeks in the 

dark at 5 °C) prior to the experiment to break dormancy. The stratification requirements of the two 

genera are documented in the ECOFLORA database (Fitter & Peat 1994). The experiment consisted 

of five different treatments, one distilled water control treatment and four different sodium chloride 

solution treatments, having osmotic potentials of -0.4, -0.8, -1.2 and -1.6 MPa respectively. The 

necessary calculations were carried out with the help of the computer programme SPMM (Michel & 

Radcliffe 1995). For each species and treatment there were four replicates. Each replicate consisted 

of 20-25 seeds of the respective species (see Appendix 3) sown into a 9 cm Petri dish containing two 

layers of Whatman No. 1 filter paper and 12 ml of the respective solution to moisten the filter 

paper. The Petri dishes were kept under a diurnal regime of 12 h day (light, 22 °C) and 12 h night 
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(dark, 14 °C), because daily temperature fluctuations of this magnitude are known to promote seed 

germination in a wide range of temperate species (Grime et al. 1981). 

In order to keep the solute potentials constant, Petri dishes were sealed with Parafilm at the 

beginning and between counts, and at each count one quarter of the solution was replaced. Counts 

were carried out for the first time three days after the onset of the experiment, and then after 7, 14, 

21, 28, 35, 42 and 49 days. On each occasion, the numbers of germinated seeds, seedlings with a 

radicle length ≥ 5 mm, and seedlings with a radicle length ≥ 10 mm were counted. Seedlings with a 

radicle length ≥ 10 mm were removed from the experiment. 

 

4.2.2.2 Data analysis 

A salt tolerance index (IS) was calculated for each of the tested species in order to characterise salt 

tolerance at the early seedling stage: 

 

               4 

Is = ¼ × (Σ ni) / nc     (4.1) 

              i=1 

 

where ni and nc are the numbers of seedlings with ≥ 5 mm radicle extension for the four salt 

treatments and the control treatment, respectively. Therefore, a species completely insensitive to salt 

concentrations over the range tested will have an index value of close to 1.0, whereas a very sensitive 

species failing altogether even at the lowest salt concentration will have a value of zero. Strength of 

association between salt tolerance index Is of a species and time needed for species establishment 

after factory closure was measured using Spearman rank correlation. This method is recommended 

when observations are in the form of indices, in which case the more strict assumptions of Pearson 

correlation are likely to be violated (Fowler et al. 1998). Significance of the correlation (at P < 0.05) 

was tested using the one-tailed test. 

 

4.3 Results 
Figure 4.1 shows the patterns of arrival of colonising species with plumed propagules (n = 24) and 

those without (n = 56) for the period from 1992 to 2002. Two thirds of the species with plumed 

propagules colonised the slope between 1992 and 1995, and only one species of this group colonised 

after 1999. In contrast, no such colonisation peak in the early 1990s existed for the group of species 

without plumed propagules (Figure 4.1). For this group, the rate of colonisation only marginally 

decreased with time. The Mann-Whitney test confirms that colonisation of the permanent plot by 

those species having plumed seeds occurred significantly earlier (two-tailed test, P = 0.009) than 

colonisation by species lacking this adaptation. 
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Figure 4.1. Total numbers of species colonising the Steudnitz lower slope permanent plot between 1992 and 

2002, divided up into those with plumed propagules and those without (data from Heinrich et al. 2001 and 

unpublished, classification based on Müller-Schneider 1986). 

 

 

Since the mechanism of seed dispersal seems to have influenced the order of colonisation at the 

slope, the Spearman rank correlation was used to establish a link between salt tolerance and time of 

colonisation for both groups of species separately, those with a plumed seed morphology and those 

without. Spearman rank correlation yielded very similar and significant (one-tailed test) correlation 

coefficients for both groups (plumed species: n = 12, rs = -0.66, P = 0.010; species without plumed 

propagules: n = 10, rs = -0.63, P = 0.026). A test for significant differences between the two 

correlation coefficients was not carried out. Due to both the difference between the two coefficients 

as well as the sample sizes being rather small, the power of such a test would have been very small 

(Zar 1999). The correlation between time of first appearance of a species and its seedling salt 

tolerance index IS is visualised in Figure 4.2. The patterns displayed in this figure suggest that 
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salinity affected colonisation in the first few years after factory closure, including 1994. The resulting 

index values for each species are found in Appendix 3. 
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Figure 4.2. Scatter plot of time between factory closure and colonisation vs. seedling salt tolerance index IS. 

The species initially present were Puccinellia distans (IS = 0.91) and Atriplex sagittata (IS = 0.43). 

 

 

4.4 Discussion 
 

4.4.1 The method used for salt tolerance characterisation 
When interpreting the results of the Petri dish experiment, it must be kept in mind, that soil salinity at 

the field site was caused by a mixture of salts, including ions other than sodium and chloride. NaCl 

was selected for this study to allow comparison with results of other published work, the great 

majority of which also uses this salt. 
 

It is not uncommon to use germination (defined as a visible protrusion of the radicle from the seed 

coat, see Kitajima & Fenner 2000) for the characterisation of salt tolerance (see Ungar 1995 and 

references therein). Indeed, several authors have found a correlation between germination response 

and salinity gradient in the field (e.g. Rozema 1975, Bakker et al. 1985, Mariko et al. 1992). 

Halophytes, on average, seem to be able to germinate at somewhat higher salinities than glycophytes 

(Ungar 1995). However, the relationship is not clear-cut. Seeds of a number of highly salt-tolerant 

plants exhibit osmotically induced dormancy (Ungar 1995). There is evidence that in both 
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glycophytes and halophytes germination is often controlled by osmotic potential in the surrounding 

medium, rather than by specific ion effects (Schratz 1934). This is confirmed by comparative 

experiments on the same species as in the present study, using either polyethylene glycol 6000 or 

NaCl for the simulation of corresponding osmotic potentials (data not shown). In contrast, ion 

toxicity mainly affects the subsequent process of seedling growth, thus lending support to Rozema’s 

(1975) hypothesis that the ability of seedlings to tolerate salt stress is a much better measure for the 

characterization of salt tolerance than the ability to germinate. 
 

Thus, in the present study counts of seedlings with radicles longer than 5 mm were used rather than 

germination rates. This is less arbitrary than it seems. In the distilled water control treatment, even in 

those species with the smallest seeds almost 100 % of the germinated seeds managed a radicle 

extension beyond 5 mm. In contrast, even low salinity levels cause necrosis of the radicle tip in a 

number of glycophytes almost immediately after the onset of germination, preventing any further 

root growth (data not shown). Therefore, seed size and seed reserves do not matter as much as one 

would expect. A comparison of the calculated salt tolerance index values with the relevant literature 

shows that the species with an Is value > 0.35 are actually known to display some degree of salt 

tolerance in Central Europe (see Appendix 3). The only exception is Bromus japonicus THUNB., a 

rather large-seeded species which is typical for open ruderal habitats but rare in Germany (Rothmaler 

2002). According to Cooper & Jean (2001), however, it is an abundant species in saline prairie 

habitats in the Northwestern Great Plains of North America. There, it is also found at saltwater 

blowout sites from the oil industries (Halvorson & Lang 1989). Overall, comparison with the 

literature therefore suggests that the calculated salt tolerance index could be useful for characterising 

salt tolerance in glycophytes. As the possibility of seed size exerting some influence on the results 

cannot altogether be ruled out, air-dry seed weights (determined by weighing of batches of 500 seeds 

from the local collections) are provided in Appendix 3. 

 

4.4.2 Order of colonisation 
Plumed-propagule species entered the plant community at the Steudnitz field site earlier than species 

without this dispersal adaptation. This study, like previous studies dealing with plant colonisation of 

industrially created habitats (e.g. Bradshaw 1983, Grime 1986, Ash et al. 1994), underlines the 

importance of efficient long-range dispersal in the early colonisation of derelict industrial sites. The 

same applies to plant community succession in other open sites (Fenner 1987a). 
 

Unlike other studies this study deals with a secondary succession rather than with a primary 

succession, as the substrate of previous plant growth was not destroyed or removed by the 

disturbance caused by the nearby fertiliser production. Instead, it was covered by an additional layer 

of pollutant dust (see Chapter 2). At the onset of vegetation recovery, plant cover on the proximal 

part of the lower slope, comprising Puccinellia distans, already existed. It is generally agreed that 
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seed dispersal is less important in early secondary succession, compared to early primary succession 

(Walker & Chapin 1987). Yet, the secondary succession at the Steudnitz field site shares some 

characteristics with primary succession. Due to the extended period of deposition and the resulting 

accumulation of a pollutant dust layer at the soil surface, the seed bank of previously present species 

was either depleted over the three decades of dust deposition or buried too deeply to play a role after 

the cessation of dust deposition. 
 

Order of colonisation was not only correlated with seed dispersal mode, but also with seedling salt 

tolerance, as shown by Spearman rank correlation. Figure 4.2 suggests that up to 1994 (i.e. four years 

after factory closure) salinity was an important component of the abiotic filter acting as a selective 

force upon species establishment, as only after five years the most salt-intolerant species were able to 

colonise. Spearman rank correlation coefficients were about equal for both plumed-propagule and 

non-plumed-propagule species. Assuming a higher probability of immediate colonisation of suitable 

sites (i.e. soil salinity falls below critical threshold) by plumed-propagule species, one would have 

expected a more predictable colonisation order - and therefore a better correlation – in this group 

compared to the group of non-plumed-propagule species. The data do not confirm this, as both 

groups had almost similar correlation coefficients. However, only a small subset of species was 

tested with respect to salt tolerance. In addition, due to the uneven distribution of plumed and non-

plumed species over the temporal gradient, most of the early colonisers included in the salt tolerance 

experiment were plumed species, whereas most of the late colonisers were non-plumed species. 

Therefore, it might be difficult to establish a difference between the two groups. 
 

The halophytic grass Puccinellia distans maintained its dominance until 1995 and then abruptly 

disappeared (see Chapter 2). This is most likely due to this species  being outcompeted by colonising 

species. The complete collapse of the population in 1996 therefore indicates that salinity played no 

further role at the Steudnitz field site, especially as woody native species, which exhibit a very low 

salt tolerance (Brandes 1999), colonised the slope in the next year. 

 

The abiotic filter probably played a more complex role in the early succession at the Steudnitz field 

site than that suggested by the clear correlation between seedling salt tolerance and order of 

colonisation. Both the modifying influence of soil pH decreasing in parallel with salinity and the role 

of potential nitrate enrichment during the period of dust deposition were not covered by this 

experiment. Subsequent chapters at least touch on the latter aspect. They also provide a detailed 

discussion on the role of other soil factors such as the poor moisture retention and the existing 

nutrient imbalance. 
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5. Soil seed bank 
 

5.1 Introduction 
The pool of species (sensu Zobel 1997, see Chapter 3 in this thesis) trying to establish themselves in 

a plant community at a given site contains species already present in a seed bank and species arriving 

from the outside via dispersal. The importance of seed dispersal mechanisms for patterns of plant 

community assembly at the Steudnitz field site was demonstrated in Chapter 4. The present chapter 

deals with those species present in the soil seed bank. In investigations of the seed rain at a given 

site, often only species from the local vegetation are detected. This is due to the near impossibility of 

detecting the more rare events of long-distance dispersal when using seed traps which commonly 

only cover a very minor fraction of the soil surface. In contrast to the seed rain, the seed flora in the 

soil is much less strongly correlated with the surface vegetation (Harper 1977) and often contains a 

number of species absent from the vegetation. 
 

The study of seed banks as a starting point for explaining actual composition or dynamics of plant 

communities has been advocated by a number of authors. Published examples include studies from a 

variety of habitats, ranging from inland marsh vegetation (e.g. van der Valk & Davis 1978, Ungar & 

Riehl 1980) to cliff communities (Booth & Larson 2000). In such studies, exclusive occurrence of 

species in the seed bank but not in the vegetation is thought to indicate the existence of filter 

mechanisms preventing successful establishment of those species. 
 

There are even instances in which knowledge of the seed bank, combined with information about a 

few other key features of the life history of those species present in the seed bank or vegetation, is 

considered sufficient for the construction of predictive models, such as van der Valk’s (1981) 

quantitative model of wetland succession. Such a model would be helpful for predicting vegetation 

development at the Steudnitz field site, but although a plethora of seed bank persistence data for 

temperate European species have been compiled (Thompson et al. 1997), records for a given species 

often contradict each other and there are no records at all for many species occurring at the Steudnitz 

field site. Therefore, I determined the composition and vertical structure of the soil seed bank at the 

Steudnitz field site, to gain insight into seed bank persistence of species, and to determine what 

species were present in the seed bank but not in the vegetation. Knowledge of seed bank persistence 

of species facilitates interpretation of vegetation patterns, which are the subject of subsequent 

chapters in this thesis. 
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5.2 Methods 
 

5.2.1 Sampling methods 

Adjacent to Heinrich et al.’s (2001) lower slope permanent plot a 12 × 12 m plot was marked out 

with pegs in March 2000. Viable seed bank and vegetation within this plot were sampled in three 

successive years as outlined below. For this purpose, the 12 × 12 m plot was divided into 36 quadrats 

of 2 × 2 m. Yearly sampling of the soil seed bank of 12 randomly selected quadrats took place 

between 15 and 20 March 2000 through 2002 (before seed dispersal had begun in each year). Each 

quadrat was sampled only once in the three-year sampling period. In each quadrat, ten soil cores 

were extracted on a regular grid (one central row of four cores and two outer rows of three cores 

each), using a soil corer with a diameter of 4 cm. After removal of the litter layer, the cores were 

divided into segments of 0-2 cm, 2-5 cm and 5-10 cm, based on Thompson et al.’s (1997) 

recommendation of sampling at least two different layers. The shallow surface layer of 0-2 cm was 

included in the sampling design because, given the inability of many species to emerge from greater 

depths (Harper 1977), this better reflects the potential of regeneration from seeds in the absence of 

soil disturbance than the commonly employed sampling of a 0-5 cm surface layer. The ten segments 

for each depth collected in each 2 × 2 m quadrat were pooled. In each year, a total area of 

c. 1508 cm², corresponding to a soil volume of 15.08 dm³, was sampled. This is well above the 

recommendations given by Hutchings (1986), who recommended 1.0 to 1.2 dm³ of soil for grassland 

communities. 
 

The pooled soil samples were concentrated using the bulk reduction method. This method promotes 

rapid and complete germination of the seeds of many species (ter Heerdt et al. 1996). The soil was 

washed through two sieves of 2.0 mm and 0.2 mm, respectively. By doing so, rhizomes and roots 

were eliminated from the samples, and the removal of coarse and very fine soil particles resulted in 

considerable bulk reduction. The samples were spread in trays into layers with a thickness of 

c. 5 mm, overlying a layer of heat-sterilised sand / standard potting soil mixture with a thickness of 

30 mm. Within two days after sampling, samples were placed in a cold frame (in the University of 

Jena Botanical Garden). There, natural daily temperature fluctuations could promote germination 

(Thompson & Grime 1983, Poschlod 1991). The samples were covered with a fine gauze material, 

which allowed free gas and moisture exchange, but prevented contamination by wind-borne seeds. 

The effectiveness of the gauze was assessed by monitoring three control trays containing 

sand / potting soil mixture only. The trays were watered regularly, and checked for seedlings on a 

weekly basis. Seedlings were identified using the keys of Csapody (1968), Muller (1978) and Hanf 

(1999). If a seedling was not identifiable, it was transplanted into a flower-pot and grown until 

identification was possible. However, in each year a number of seedlings died between counts 

without being identified. In all three years, the experiment was terminated at the end of October, after 
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several weeks of no new seedlings emerging from the samples. Although some viable seeds may 

have remained in the soil samples beyond the experiment, the application of the concentration 

method  should have resulted in complete germination of seeds of most species within the first 6 

weeks of the experiment (see ter Heerdt et al. 1996). 
 

Cover of species was estimated using a simplified percent-cover scale (less than 0.5 % were recorded 

as 0.25 %, between 0.5 and 10 % cover was recorded to the nearest percent, and values higher than 

10 % were rounded to the nearest five percent). In each 2 × 2 m quadrat, the vegetation was sampled 

twice in each year, at the beginning of May and at the end of June.The higher of the two values was 

used for the calculation of the mean cover of a species. 

 

5.2.2 Data analysis and seed bank classification 
Among replicate samples of a particular year, there was a great deal of variation in the number of 

emerged seedlings of a given species. It was therefore not possible to make precise estimates of the 

seed bank density of individual species. Hence, no attempt was made to analyse the temporal seed 

bank dynamics of individual species. 
 

Repeated measures analyses of variance (von Ende 2001) were performed in cases where samples 

could be matched. This was the case when different depths and years were compared simultaneously. 

When testing for differences in the mean number of seeds per unit volume and the mean number of 

seed bank species per pooled soil sample, depth was used as within-subjects factor, and year of 

sampling as between-subjects factor. In the latter case, two instead of three depths (0-5 cm, 5-10 cm) 

were used in order to avoid spurious results arising from different sample volumes. As indicated by 

Mauchly’s test of sphericity (von Ende 2001), there was a sigificant departure from the sphericity 

assumption of repeated measures ANOVA for the mean number of seeds per unit volume (results not 

shown). Thus, Greenhouse-Geisser correction was applied for the correction of significance levels 

(von Ende 2001). 
 

Temporal variation of species density in the vegetation was analysed using one-factorial analysis of 

variance. Since each quadrat was sampled in all three years, repeated measures analysis would have 

been possible, but this option would have prevented the use of post hoc tests. Also analysed by 

means of one-factorial ANOVA were the mean number of seed bank species per sample for the 

pooled profile and the mean number of seeds per sample for the pooled profile. 

For both repeated measures and one-factorial ANOVA, numbers of seeds were log-transformed prior 

to analysis to normalise the data. 
 

Seed bank type of the species found in the seed bank or vegetation was determined using the key 

proposed by Thompson et al. (1997), which is based on the presence or absence of a species in the 

vegetation as well as on the vertical distribution of its seeds in the soil. In this key, species are 
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classified into three categories: transient (persistent for less than one year), short-term persistent 

(persistent for one to five years), and long-term persistent (persistent for more than five years). 

Departing from the key, species were only classified if their calculated seed bank density was 

≥ 20 seeds / m² or if they occurred in the vegetation of at least 25 % of the quadrats either in 2000 or 

in 2001. Species absent from the seed bank were not classified as transient if they occurred in the 

vegetation of fewer than 25 % of the quadrats in either year. In such a case, they might have been 

overlooked in the seed bank due to a low density or clumped distribution. 

 

5.3 Results 

 

5.3.1 Seed bank composition 
Contaminants found among the control trays in 2000 were two seedlings of Sonchus spp. and two 

seedlings of Oxalis spp. Although there were no contaminants recorded in 2001, two more Sonchus 

spp. seedlings were found in the control trays in 2002. Sonchus spp. seedlings found in the samples 

were therefore excluded in spite of the sporadic appearance of Sonchus oleraceus L. and Sonchus 

arvensis L. throughout succession at the field site (see Heinrich et al. 2001). 

Deducting Sonchus spp., 6493 seedlings emerged from the 36 pooled soil samples collected between 

2000 and 2002, of which 6309 were identified and assigned to 26 different species (see Appendix 4). 
 

Five species (Puccinellia distans, Cerastium glutinosum FR., Epilobium tetragonum L., 

Chenopodium rubrum and Atriplex sagittata) constitute c. 88 % of the germinable seed bank, the 

bulk (62.5 %) being seeds of P. distans (see Figure 5.1). 
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Figure 5.1. Soil seed bank composition (percent of total seeds in soil sampled from 0-10 cm depth) at the 

Steudnitz field site near the lower slope permanent plot of Heinrich et al. (2001). The pie chart is based on 

pooled data for 2000 – 2002. 
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Two of the most common species in the seed bank, P. distans and C. rubrum, did not occur in the 

vegetation during the study. Appendix 4 gives a detailed overview of the number of seedlings 

emerged in all three years. Appendix 5 lists the species that were found in the established vegetation 

in at least one year but not recorded as seedlings in any year. 
 

Overall species total for vegetation and seed bank samples increased with time: The same trend was 

significant for the average number of species per 2 × 2 m vegetation quadrat and for the average 

number of species per seed bank sample (see Table 5.1). 

 
Table 5.1. Number of species in the vegetation, seed bank density and number of species per seed bank sample 

(pooled 0-10 cm) for the years 2000-2002. Total numbers and means ± standard deviation (vegetation: n = 36; 

seed bank: n = 12) are given. One-factorial ANOVA P-values indicate significant differences between years. 

Superscripts indicate the identity of means that significantly differ from each other (P < 0.05), as indicated by 

a post-hoc Games-Howell test. Numbers of seeds were log-transformed prior to analysis. 

 

  Year  

 P 2000 2001 2002 Total 

Vegetation      

   Species total  42 48 47 53 

   Species density / 4 m² < 0.001 14.6b ± 2.2 15.7b ± 2.8 18.2a ± 1.5  

      

Seed bank      

   Species total  20 21 24 26 

   Species density / soil sample 0.013 8.3b ± 2.5 8.4b ± 2.4 11.2a ± 2.8  

   No. of seeds / m² 0.609 13 881 ± 9 138 13 018 ± 5 757 16 162 ± 7 296  

 

 

There were no significant differences in the number of seedlings emerged from the samples in 

different years (Table 5.1). Species density per sample was significantly lower in the 5-10 cm layer, 

compared to the 0-5 cm layer (Figure 5.2 and Table 5.2). 
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 Figure 5.2. Mean species density in the soil 

seed bank near the lower slope permanent 

plot of Heinrich et al. (2001) for two depths 

(0-5 cm and 5-10 cm) over the course of three 

years. Error bars represent the standard error 

of the mean (n = 12). 
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As for pooled samples, the number of species per subsample significantly differed between years 

(Table 5.2). The number of seeds per unit volume (displayed in Figure 5.3 as number of seeds per 

dm³) also declined with increasing depth. This trend also was significant (Table 5.2). 

 
Table 5.2. Summary of the repeated measures ANOVAs for average number of species per subsample (two 

depths: 0-5 cm, 5-10 cm) and average number of seeds per dm³ soil (three depths: 0-2 cm, 2-5 cm, 5-10 cm). In 

the latter case, degrees of freedom were Greenhouse-Geisser corrected. Depth was used as within-subjects 

factor, year of sampling was between-subjects factor. Significant results (P < 0.05) are indicated in bold. 

Numbers of seeds were log-transformed prior to analysis. 

 

Parameter Within-

Subjects 

Effects 

Between-

Subjects 

Effects 

d.f. F P 

No. of species / subsample Depth  1 135.35 < 0.001 

 Depth × Year  2 2.17 0.130 

 Error (Depth)  33   

  Intercept 1 439.28 < 0.001 

  Year 2 4.15 0.025 

  Error (Year) 33   

No. of seeds / dm³ soil Depth  1.63 (2) 13.37 < 0.001 

 Depth × Year  3.26 (4) 1.63 0.193 

 Error (Depth)  53.74 (66)   

  Intercept 1 2153.89 < 0.001 

  Year 2 0.62 0.543 

  Error (Year) 33   
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5.3.2 Vertical profile and seed bank classification 

The vertical seed distribution of species occurring at densities ≥ 20 seeds / m² is shown in Figure 5.4. 

Only one species, Puccinellia distans, had a higher density in both lower layers compared to the 0-2 

cm surface layer. All other species, including Chenopodium rubrum, the only other species absent 

from the vegetation, had a higher density near the soil surface. Seeds of two species, Inula conyzae 

(GRIESS.) MEIKLE and Senecio vulgaris L., were almost exclusively found in the surface layer. 
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Figure 5.4. Depth distribution of the 20 most abundant species in the soil seed bank. To make the distributions 

comparable, total bar length was standardised for all graphs. Thus, although absolute scales differ, relative 

scales are the same. 
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Based on the criteria for seed bank classification (Thompson et al. 1997), 26 species which occurred 

in vegetation or seed bank were classified (Table 5.3). 

 
Table 5.3. Seed bank persistence of 26 species occurring in the vegetation or soil seed bank at the Steudnitz 
field site. Persistence types after Thompson et al. (1997): Transient (T) = Seeds persist for less than one year; 
Short-term persistent (SP) = Seeds persist for c. 1-5 years; Long-term persistent (LP) = Seeds persist for at 
least 5 years. For comparison, records from Thompson et al. (1997) are given. In the case of Cerastium 
glutinosum and C. holosteoides, database records are for the aggregates C. pumilum agg. and C. fontanum agg., 
respectively. If available, additional information is given on a number of plant traits. Seed dispersal types 
based on data from Müller-Schneider (1986): WINDc = seeds small and shed from a capsule; WINDw = seeds 
winged or strongly flattened; WINDp = dispersule plumed or wrapped in wooly hairs; ANIMa = adhesive 
dispersal by means of animals; BALL = ballistic dispersal. Life history data is taken from Rothmaler (2002). 
In the case of P. distans, plants at the field site adopted an annual life-style (Heinrich et al. 2001). 
 

Species Persistence 
Type 

Database 
(LP, SP, T) 

Morphological Adaptation for 
Seed Dispersal 

Life History 
Type 

Chenopodium rubrum LP 2, 5, 0 - A 
Puccinellia distans LP 0, 1, 0 - A (P) 
Verbascum lychnitis SP (LP?) no records WINDc B 
Artemisia vulgaris SP 1, 7, 2 WINDc P 
Atriplex sagittata SP no record WINDw A 
Cerastium glutinosum SP 0, 0, 1 WINDc A 
Cerastium holosteoides SP 15, 32, 23 WINDc P 
Cirsium vulgare SP 1, 6, 11 WINDp B 
Conyza canadensis SP 1, 6, 1 WINDp A 
Descurainia sophia SP 0, 2, 0 WINDc A 
Epilobium tetragonum SP 0, 3, 2 WINDp P 
Galium mollugo SP 0, 3, 11 - P 
Picris hieracioides SP 2, 1, 1 WINDp P 
Poa compressa SP 0, 0, 2 WINDp?, ANIMa? P 
Taraxacum officinale SP 8, 26, 38 WINDp P 
Erigeron acris SP / T 0, 0, 1 WINDp BP 
Lactuca serriola SP / T 1, 6, 1 WINDp A 
Senecio vernalis SP / T no record WINDp A 
Bromus japonicus T no record ANIMa A 
Carduus acanthoides T 0, 0, 1 WINDp B 
Galium aparine T 0, 9, 20 ANIMa A 
Inula conyzae T 1, 0, 0 WINDp BP 
Poa angustifolia T 0, 0, 1 ANIMa P 
Senecio vulgaris T 6, 15, 7 WINDp A 
Thlaspi perfoliatum T no record BALL A 
Veronica arvensis T 0, 11, 12 BALL A 
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Only two of the species, P. distans and C. rubrum, were classified as long-term persistent. The 

remainder were mostly classified as short-term persistent (13 spp.) or as transient (8 spp.). The three 

remaining species were classified as intermediate between short-term persistent and transient. 

 

5.4 Discussion 
 

5.4.1 Methodological aspects 
According to Thompson et al.’s (1997) key, species absent from the seed bank but occurring in the 

vegetation should be classified as transient. In the current study, this classification was assigned only 

if a species was present in at least nine vegetation quadrats in 2000 or in 2001; species occurring in 

fewer quadrats were not classified. Rare seed bank species, due to a limited number of samples and a 

large degree of spatial heterogeneity in the soil, might simply have remained undetected. In the 

present study, this common phenomenon of spatial heterogeneity (e.g. Thompson 1986) is 

exemplified by the standard deviation of seed bank densities of individual species often being higher 

than their mean (Appendix 4). Apart from the occurrence of a species in the vegetation, a second 

criterion plays a role in Thompson et al.’s (1997) seed bank key: the presence and vertical 

distribution of seeds in the soil. In the key, the vertical distribution of seeds is indiscriminately used 

as evidence for a certain persistence type, regardless of the fact that the preceding dynamics of a 

species in the overlying vegetation might be influential for the depth distribution. In successional 

systems, this might lead to errors in determination of persistence types. Most of the species classified 

for the Steudnitz field site lacked pronounced directional changes of abundance in the vegetation. 

The only exception to this was the monocarpic perennial Verbascum lychnitis L., which increased 

strongly during the course of the study (see Section 5.4.3). 

 

5.4.2 Seed bank composition and vertical distribution 
Of the 53 species occurring in the vegetation, only 24 were also found in the seed bank. This is not 

surprising. At the time of the study, many of the species occurring at the site were rare or had just 

started to colonise the part of the slope that was sampled (see Appendix 5). Hence, it is reasonable to 

expect that seed bank densities of these species were low, and therefore many of them may have 

remained undetected. A formula provided by Thompson et al. (1997) allows estimation of the 

minimal density of seeds / m² required to have a 95 % chance of finding one seed of a species in a 

given year. In the current study, this density was calculated as 19.8 seeds / m2. If the seed density of a 

species is assumed to remain constant over the three years, then the repeated sampling employed in 

the current study would allow for species with densities > 6.6 seeds / m2 to be detected with a 95 % 

probability. 
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Both the number of species per soil sample and the number of species per vegetation quadrat 

increased with time. The same phenomenon was observed for the vegetation in the nutrient addition 

experiment described in Chapter 7, and the potential role of the spring 2000 drought in causing this 

pattern is discussed in more detail there. Despite regular watering, the drought factor may have 

contributed to the emergence of similar patterns in the seed bank samples. On the other hand, this 

increase of seed bank species richness with time might also be related to the higher probability 

towards the end of the study of detecting species in the seed bank that increased in the vegetation 

during the study. 
 

The number of species (26) I found in the seed bank is similar to the number of species found in the 

seed bank of another temperate European grassland polluted with heavy metal. Near Prayon, 

Belgium, the seed bank of a grassland near an ore smelter contained 25 species (Meerts & 

Grommesch 2001). As in the present study, one tolerant grass species comprised most of the soil 

seed bank. In their study, 95 % of the soil seed bank was comprised of Agrostis capillaris L. seeds. 

In the present study, 62.5 % of the seed bank was comprised of Puccinellia distans. This species is 

no longer present in the vegetation at the Steudnitz site. An extended period of dominance, going 

back as far as the early 1980s (Heinrich 1984) and persisting until 1995 (Heinrich et al. 2001), 

allowed for the build-up of an enormous seed bank currently totalling c. 9 000 seeds / m² in the top 

10 cm of soil (Appendix 4).  
 

Total density of seeds declined with increasing depth: of the seeds sampled in the top 10 cm of soil, 

62 % were found in the 0-5 cm layer. Such a decline with increasing depth is a widely known 

phenomenon, and is even more pronounced in other systems such as permanent grassland 

(Harper 1977). Species density also declined with increasing depth. This might partly be due to 

the seed production of many recent colonisers still increasing and their seeds not having had 

enough time yet to penetrate deeper into the soil. 
 

All species present in the vegetation at the time of the study had higher seed densities near the soil 

surface, whereas the vanished Puccinellia distans had more seeds in subsurface layers (Figure 5.4). 

The only exception was Chenopodium rubrum, which colonised in 1992 and was lost from the 

vegetation three years later (see Heinrich et al. 2001). Seed density of this species was slightly higher 

in the surface layer than in subsurface layers. However, the decrease in seed density with increasing 

depth was less pronounced in this species, compared to those species present in the vegetation 

(Figure 5.4). A similar correlation between abundance of a species in the vegetation and its vertical 

distribution in the seed bank was found in other studies (e.g. Wagner et al. 2003). 

 

5.4.3 Seed bank classification 
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The seed bank data base compiled by Thompson et al. (1997) contains only two records for the 

halophytic grass Puccinellia distans, one of them classifying the species as short-term persistent, the 

other one simply noting its presence in the seed bank. The current study clearly demonstrates the 

potential of this species to form a long-term persistent seed bank, especially so since there appears to 

be no sign of a decline in seed bank density over the duration of the study (Appendix 4). 

Of the five species not included in Thompson et al.’s (1997) database, two species (Verbascum 

lychnitis and Atriplex sagittata) were classified as short-term persistent (Table 5.4). Another species, 

Senecio vernalis, was classified as intermediate between short-term persistent and transient. Finally, 

two species (Bromus japonicus and Thlaspi perfoliatum L.) were classified as (Table 5.4). 
 

In the case of V. lychnitis, currently strongly increasing in the vegetation, the depth distribution 

criterion (Thompson et al. 1997) is not altogether reliable. For a species present in the vegetation to 

be defined as short-term persistent requires the seeds of this species to be present in both upper and 

lower soil layers, and to be more numerous in upper soil layers than in lower soil layers. In the case 

of strongly increasing species in successional systems incorporation of seeds into deeper soil layers 

might be offset by an increased input of freshly produced seeds into the surface soil. This might have 

been the case for V. lychnitis, the aboveground mean cover of which increased fourfold between 

2000 and 2002, from 0.3 % to 1.2 % (see Appendix 4). Therefore, classification of this species as 

short-term persistent remains speculative, especially so since other Verbascum species have been 

found to be extremely long-term persistent: seeds of Verbascum spp. were still viable in the well-

known burial experiment initiated by W.J. Beal after a period of 120 years (Telewski & Zeevaart 

2002). Once the population at the Steudnitz field site has reached equilibrium, relatively more seeds 

might be found in deeper soil layers, which would then justify a classification as long-term 

persistent. 

 

5.4.4 Soil seed bank and plant community assembly 
Only two species currently absent from the vegetation have been found in the seed bank of the 

Steudnitz field site. These two species, Chenopodium rubrum and Puccinellia distans, were among 

the dominants of early succession at the site. C. rubrum was recorded between 1992 and 1994. In 

contrast, Puccinellia distans, a halophytic grass, was already preeminent at the lower slope during 

times of dust emission and continued to be so until 1995. Both species, although no longer occurring 

in the vegetation, are still among the most frequent species in the soil seed bank (Figure 5.1). This 

leaves the question as to why the two species no longer grow at the field site. The collapse of the 

population of P. distans and the disappearance of C. rubrum both more or less coincide with the first 

colonisation of the slope by salt-intolerant species (see Chapter 3). This implies that their 

disappearance might either be a direct or an indirect consequence of decreasing soil salinity. In the 

current study, seeds of both species readily germinated under non-saline conditions. At least in the 

case of P. distans, evidence exists of plants in experimental monocultures growing better in the 
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absence of salinity (Beyschlag et al. 1996). P. distans is generally described as a weak competitor 

(Beyschlag et al. 1996). It can therefore be regarded as one of the species described by Ellenberg 

(1954) as being restricted to sub-optimal conditions because there they are not out-competed by 

superior competitors. In the case of C. rubrum, raised soil salinity was shown to induce a significant 

increase in leaf succulence in a potted plant experiment (Kahles et al. 2002). It remains to be shown, 

however, whether this phenomenon is linked with a salt-induced increase in drought resistance. An 

increased drought resistance resulting from raised salinity is known for other members of the 

Chenopodiaceae (Marschner 1995). Since C .rubrum is a characteristic plant of disturbed nitrogen-

rich habitats (Rothmaler 2002), it is also possible that this species was promoted by potentially 

higher levels of nitrate early on in succession that resulted from high nitrate content of the pollutant 

dust (see Chapter 2). There is some evidence that dark dormancy (Pons 1991) plays a role, because 

both species are known to have a light requirement for germination (Grime et al. 1981). Emergence 

of seedlings of both species at the Steudnitz field site after soil disturbance (M. Wagner, personal 

observation) also implies that dark dormancy, in the absence of disturbance, might play a role. 

In an experiment investigating the potential light-filtering effects of a plant canopy on seed 

germination (Kahles et al. 2002), both species showed no sign of germination inhibition by far-red 

light. Germination percentages were, however, low in that experiment. The evidence is therefore not 

conclusive. 
 

Other annuals found in the seed bank not only possess the capacity for dispersal in time (i.e. soil seed 

bank), but also the capacity for efficient dispersal in space, as indicated by seed morphological 

adaptations (see Table 5.4). In the case of one particular species occurring at high densities in the 

seed bank, Atriplex sagittata, different types of seed are produced, differing in their capacity for 

building up a seed bank and for being dispersed by wind or water (Mandák & Pyšek 2001b). This 

fact is commonly referred to as an explanation for the remarkable persistence of this species in 

successional vegetation (see Wißkirchen & Krause 1994), which was also observed at the Steudnitz 

field site. Apart from Lactuca serriola L., A. sagittata was the only species already found in 1992 

which in 2002 was still present in the vegetation at high densities (see Heinrich et al. 2001). The 

rapid germination of non-dormant seeds in this species is supposed to confer a competitive advantage 

in the absence of disturbance, whereas in the case of disturbance dormant seeds from the seed bank 

supposedly provide a kind of ‘insurance’ against this disturbance (Wißkirchen & Krause 1994). 
 

This study provided evidence that early successional species which have disappeared from the 

vegetation are still present in the seed bank. However, it remains unclear whether disappearance from 

the vegetation was primarily due to out-competing from later colonisers, i.e. due to biotic filtering. 

This seems likely for P. distans. In the case of C. rubrum, increased salinity or nitrate levels may 

have facilitated establishment early in succession. Subsequent reduction of nitrate or salinity levels 

may then have contributed to the disappearance of this species. 
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6. Spatial vegetation patterns and underlying soil gradients 
 

6.1 Introduction 

Previous studies of the successional vegetation at the Steudnitz lower slope were based on quadrat 

sizes of 1.5 × 1.5 m (Scholze 1997, Stephan 2001) and 5 × 5 m (Heinrich et al. 2001) and did not 

include the collection of any soil data. In addition, they were restricted to the proximal part of the 

lower slope and therefore made no use of the large-scale environmental gradient stretching across the 

whole of the lower slope. The study described here is distinguished by the employment of the 

collection of both vegetation and soil data on a small spatial scale. At the same time, the whole of the 

lower slope, including its distal end, is covered. 
 

The central aim of this study is the assessment of the relative roles of environmental stress (sensu 

Grime 1979), a main component of the abiotic filter, and of competition, a main component of the 

biotic filter, in the formation of spatial vegetation patterns. Correlation of environmental gradients 

with patterns of species diversity provides a valuable tool for this task. According to the hump-

backed model of species richness (Grime 1973), species density in herbaceous vegetation peaks at an 

intermediate level of productivity, expressed in terms of standing crop. In contrast, at low levels of 

productivity only a few species are assumed to being able to tolerate the effects of the disturbance or 

stress that has produced the low standing crop. At high levels of productivity, on the other hand, it is 

assumed that only a few species can tolerate the effects of competitive dominants. In the present 

study, the position of the peak in species density in relation to the sampled soil fertility gradient, 

taken as a correlate of productivity, should indicate the relative importance of both competition and 

abiotic stress in community assembly. A peak in species density somewhere near the middle of the 

sampled gradient would indicate that competition plays a prominent role as a filter at the high 

fertility end of the gradient, whereas stress would be more important at the low fertility end. In 

contrast, a monotonic negative relationship between soil fertility and species density over the entirety 

of the sampled gradient would suggest that competition is the dominant force in community 

assembly. Correspondingly, a monotonic positive relationship between fertility and species density 

would imply an outstanding role of abiotic stress. 
 

A second aim of the study is to link the currently existing environmental gradients on a more general 

level with the success of different plant life-history types. This is done in order to find out whether in 

the investigated ecosystem plant life-history type is a species trait with a predictive value regarding 

plant community assembly (Keddy 1992, see also Chapter 3).  

Subsidiary aims of the study are the investigation of interspecific associations between plants at the 

Steudnitz lower slope, the characterisation of the realised niches of the more common species in the 

investigated system, and a more detailed description of the large-scale soil gradients occurring at the 

lower slope, including the relation between different soil factors. 
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6.2 Methods 
 

6.2.1 Field methods 
In mid-June 2000, 140 quadrats of 1m² were randomly located at the lower slope of the Steudnitz 

field site (see Figure 2.3) and marked with pegs. Between 20 June and 30 June 2000, plant cover was 

recorded for each quadrat. Cover of individual species was visually estimated using the same 

simplified percent scale as in the seed bank study (Chapter 5). Slope orientation and slope angle were 

recorded, using a compass and a clinometer respectively. Both on 18 August 2000 and on 27 August 

2000, soil moisture in each plot was measured using a Hydra Soil Moisture Probe (Stevens Vitel Inc., 

Chantilly, VA, USA). Both series of measurements were carried out under similar weather conditions 

(warm and sunny, no rainfall for ≥ 4 days). On both occasions, plot soil moisture was estimated by 

averaging the results of five measurements, arranged in a regular grid (one measurement in the centre 

and near each of the four corners of the quadrat). One series of measurements took c. 8 hours. To 

correct for effects of diurnal soil moisture fluctuations on the results, the second series of 

measurements was carried out in reverse order, and a soil moisture index, based on the moisture 

values of both series, was calculated for the ith quadrat using the formula: 

 

IM(i) = {[(m1(i) / m1(max)) + (m2(i) / m2(max))] / 2} × 100  (6.1) 

 

where m1(i) and m2(i) denote the soil moisture in the ith quadrat in the first and second series of 

measurements respectively; m1(max) and m2(max) stand for the maximum found in any quadrat during 

the respective series. Thus, the highest possible index value is 100. 

Between 28 and 30 September 2000, soil sampling was carried out using a soil corer of 1 cm 

diameter. On each plot, the upper 10 cms of the soil profile were sampled by extracting 25 soil cores 

from a regular 5 × 5 grid. Soil cores for each plot were pooled prior to subsequent soil processing and 

analysis. 

 

6.2.2 Soil analysis 
Directly after collection in the field, samples were oven-dried for seven days at 30° C and then sieved 

with a 2 mm sieve, in order to separate gravel and fine-earth fractions. Sample total weight and the 

weight of the gravel fraction were determined, and percent by weight gravel content was calculated. 

Soil pH (10 g soil / 25 ml 0.1 M KCl ) and electrical conductivity (EC), the latter measured from a 

1:5 extract in water (20 g soil / 100 ml distilled water), were measured as described in Rowell (1997). 

Soil organic matter content was estimated from loss-on-ignition (L.O.I.). After oven-drying at 105 °C 

samples were repeatedly ignited at 430 °C until weight constancy was achieved. At this temperature, 

the presence of CaCO3 in the samples does not affect the results (Davies 1974). The difference 
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between oven-dry weight and weight after the ignition procedure served as an estimate of organic 

matter content. Plant-available phosphorus and potassium, henceforth referred to as PCAL and KCAL, 

were extracted with the CAL method, using calcium lactate / calcium acetate as extractants (Schüller 

1969). Total nitrogen (Ntotal) was determined with the method of Hendershot (1985). Total carbon 

was measured with an element analyser (Vario EL, Elementar Analysensysteme, Hanau, Germany). 

Soil organic C content was estimated via multiplication of the percent loss-on-ignition (L.O.I.) values 

by the factor 0.49 (the arithmetic mean of the range of organic C / organic matter ratios generally 

found in soils; Brady & Weil 2002). Estimated organic C content then was subtracted from total 

carbon content, giving rise to an estimate of mineral carbon (Cmin) content. 

 

6.2.3 Exploratory data analysis 
Initially, soil data and vegetation data were analysed separately. Correlation between soil parameters 

was calculated and pairwise association between species was tested. This was followed by a joint 

analysis of soil and vegetation data, in order to explore interrelations between plant community 

structure and underlying soil conditions. This was done by means of direct ordination using 

Canonical Correspondence Analysis (CCA). Subsequently, General Linear Models were applied to 

the CCA model, to obtain regressions of a number of parameters in CCA ordination space. 

 

6.2.3.1 Correlation between abiotic parameters 

Data of ten environmental parameters (PCAL, KCAL, Ntotal, Cmin, EC, pH, L.O.I., soil moisture, gravel 

content, slope angle) were tested for normal distribution by means of a one-Sample Kolmogorov-

Smirnov test (two-tailed exact test by Monte Carlo simulation, 10000 permutations). Results (not 

shown) indicated a significant departure from the normality assumption in the case of KCAL, Ntotal, 

Cmin, gravel content and slope angle. The nonparametric method by Spearman was therefore used for 

the calculation of correlation coefficients (Zar 1999). Two-tailed tests were used for testing the 

significance of the correlations. Holm’s sequential Bonferroni method (Holm 1979) was used for 

adjustment of the type I error rate, in order to limit the overall error rate. 

 

6.2.3.2 Pairwise association between plant species 

Pairwise association between species (Greig-Smith 1983) was tested using the two-sided version of 

the Fisher exact test. All possible pairwise combinations of the 16 most common species (occurring 

in ≥ 22 quadrats) were tested using presence / absence data. For each pair of species, numbers of 

separate and joint absences and occurences were arranged in a 2 × 2 contingency table. Preliminary 

analyses with simulated data showed that inclusion of those species occurring in fewer quadrats 

would have led to the testing of species pairs for which the limitations of the Fisher exact test would 

have precluded finding a significant negative association (Zar 1999). Type I error rate α was not 

adjusted for the number of comparisons, since in the case of species associations this would have led 
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to a much lower power of the tests, potentially causing a large number of pairwise associations to 

remain undetected (Sokal & Rohlf 1995). On the other hand, the strategy of not adjusting the error 

rate does lead to erroneous rejection of the null hypothesis in some of the tests. In the current context 

(120 pairwise comparisons, type I error rate of α = 0.05), c. 6 out of 120 (= ½ × 16 × 15) tests can be 

expected to erroneously indicate a significant association on a chance basis. In addition to the Fisher 

exact test, Spearman’s r was calculated as a measure of the strength of association. 

 

6.2.3.3 Ordination 

To prevent species with a large variance from unduly influencing the results, log-transformation of 

the species cover data was carried out prior to ordination (ter Braak & Šmilauer 1998). By 

logarithmic transformation, the presence / absence of species is emphasised, without completely 

neglecting quantitative aspects (Wildi 1986). Species occurring in fewer than four samples were 

excluded. Very rare species often are not accurately depicted in ordination diagrams. In addition, 

these species add considerable noise to multivariate data sets (Gauch 1982). For constrained 

ordination, Canonical Correspondence Analysis (CCA) was the method of choice, as indicated by the 

length of the longest gradient (4.09 units) in an initial Detrended Correspondence Analysis (ter Braak 

& Šmilauer 1998). The environmental data consisted of the same environmental variables as listed in 

Section 6.2.3.2. Four of the variables - KCAL, Ntotal, Cmin, and gravel content - had a right skewed 

distribution and were log-transformed (using the natural logarithm ln) prior to analysis (ter Braak & 

Šmilauer 1998). One variable, slope angle, had a left skewed distribution. This was remedied by 

transformation using the following formula: 

 

βT(i) = exp (β(i) / β(max))      (6.2) 

 

where βT(i) denotes the slope angle of a sample plot and β(max) stands for the maximum slope angle 

measured during the investigation. 
 

In order to achieve an optimal CCA model, manual forward selection, in combination with partial 

Monte Carlo permutation tests (reduced model, 999 permutations), was used for step-wise inclusion 

of additional variables on the basis of maximum extra fit. Additional variables were included as long 

as their inclusion was associated with a significant (P < 0.05) increase in variance explained by the 

model. Significance of the axes of the resulting CCA model was tested using Monte Carlo 

permutation (1999 permutations under the reduced model). For the testing of higher axes the sample 

scores of all previous axes were specified as additional covariables (Lepš & Šmilauer 2000). 

Comparison with Correspondence Analysis (CA) allowed an overall assessment of the CCA model 

in terms of variance explained (ter Braak 1995). 
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Finally, several derived variables were linked with the explanatory variables of the model, among 

them community characteristics and proportionate cover of different life history types. Community 

characteristics included total cover of higher plants, total cover of bryophytes and two parameters of 

species diversity: species density / m² and evenness. As evenness measure, modified Hill’s ratio F2,1 

was chosen (see Alatalo 1981). Proportionate cover of life history types was derived in two steps. 

First, each species was classified into one of five categories: annuals; monocarpic perennials, 

including biennial species; polycarpic grasses; polycarpic herbs; woody plants. Classification was 

based on Rothmaler (2002). In the case of two species, for which Rothmaler (2002) provided more 

than one option, classification was based on personal observation. Thus, Inula conyzae was classified 

as polycarpic perennial, and not as long-lived monocarpic species and Torilis japonica 

(HOUTT.) DC.was classified as biennial (i.e. as long-lived monocarpic plant), and not as annual. In a 

second step, total cover produced by each of the groups was standardised for each quadrat by 

division by total cover of all higher plants in that quadrat. In addition to the five above listed 

categories, a category of leguminous species (= members of the Fabaceae) was devised, comprising 

legume species already assigned to one of the other categories. All derived variables were included 

as passive variables and their patterns in ordination space were modelled by means of General Linear 

Model (GLM) regression techniques, as provided in the CanoDraw programme (ter Braak & 

Šmilauer 2002). Model selection was based on a stepwise selection procedure using the Akaike 

Information Criterion (AIC). By doing so, out of five candidate models (linear, quadratic, cubic; the 

latter two types with and without inclusion of an interaction term) the one with the best fit was 

chosen (ter Braak & Šmilauer 2002). The same regression techniques were applied to individual 

species recorded in at least 10 quadrats, to model their realised niche at the Steudnitz site. 

 

6.3 Results 
 

6.3.1 Correlation between abiotic parameters 
27 out of 45 correlations were found to be significant after application of Holm’s (1979) sequential 

Bonferroni procedure. The strongest positive correlation was found between gravel content and Cmin. 

In turn, both of these parameters are strongly negatively correlated with PCAL. Both PCAL and Ntotal 

show a strong positive relationship with loss-on-ignition, and a less pronounced, but nevertheless 

significant negative correlation with soil pH. KCAL is also positively correlated with loss-on-ignition, 

but not with soil pH. Soil pH - positively correlated with both gravel content and Cmin - is negatively 

correlated not only with PCAL and with Ntotal, but also with loss-on-ignition. Soil electrical 

conductivity is positively correlated with PCAL, KCAL, Ntotal and loss-on-ignition. Soil moisture is 

negatively correlated with slope angle, which in turn is positively correlated with gravel content. 

Spearman r values for all pairwise combinations are listed in Table 6.1. 
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Table 6.1. Spearman rank correlation coefficients for pairwise correlations between 10 abiotic parameters (9 

soil parameters and slope angle). Significant correlations at the 5 % level (two-tailed test, sequential 

Bonferroni-adjustment) are highlighted. 

 

 PCAL KCAL Ntotal L.O.I. Cmin pH moisture gravel slope 

conductivity 0.517 0.316 0.596 0.622 -0.451 -0.321 -0.174 -0.453 0.203 

PCAL  0.259 0.517 0.743 -0.891 -0.538 0.079 -0.807 -0.086 

KCAL   0.412 0.513 -0.184 -0.175 -0.232 -0.070 0.006 

Ntotal    0.787 -0.320 -0.457 -0.206 -0.338 0.171 

L.O.I.     -0.546 -0.562 -0.142 -0.540 0.013 

Cmin      0.501 -0.190 0.835 0.158 

pH       -0.088 0.555 0.168 

moisture        -0.224 -0.277 

gravel         0.269 

 

 

6.3.2 Pairwise association between plant species 
Significant positive and negative associations detected by the association analysis are graphically 

displayed in Figure 6.1 as constellation diagrams (constructed according to Agnew 1961). At the 5 % 

level, 39 out of 120 pairwise associations were found to be significant. Of these, 31 were positive, 

and eight were negative associations. Strong positive associations were found among Atriplex 

sagittata, Senecio vernalis and Lactuca serriola, forming a triplet of species, and also among 

Epilobium tetragonum, Artemisia vulgaris and Picris hieracioides, forming another triplet (Figure 

6.1). While there were no direct positive associations between these two groups of species, they are 

were linked with each other via Cirsium vulgare (SAVI) TEN., Inula conyzae and Poa compressa, all 

of which are positively associated with at least one member of each triplet. The strongest positive 

association was found between Poa compressa and Bromus japonicus (r = +0.654). Consequently, 

the negative associations of these two species were similar. Both were strongly negatively associated 

with Elytrigia repens and its associate species, Cirsium arvense (L.) SCOP. and Galium aparine L.. 

Another strong negative association was found between Elytrigia repens and Artemisia vulgaris. Of 

the eight significant negative associations, four did involve E. repens, the dominant species in the 

distal part of the lower slope. 
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Figure 6.1. Constellation diagrams showing significant pairwise associations between the 16 most common 

species at the Steudnitz lower slope. Positive and negative associations are shown in the upper and lower 

diagram, respectively. Analysis was based on 140 randomly allocated sample quadrats (size: 1 m²). Line type 

indicates strength of the association (dotted line: 0.175 ≤ r ≤ 0.219 and 0.01 ≤ P ≤ 0.05; dashed line: 0.229 ≤ r 

≤ 0.271 and 0.001 ≤ P ≤ 0.01; solid line: r ≥ 0.293 and P < 0.001). For species abbreviations see Appendix 6. 
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6.3.3 Ordination 
 

6.3.3.1 Canonical Correspondence Analysis (CCA) 

Forward selection resulted in five environmental parameters being included into the CCA model as 

explanatory variables. These variables were slope angle, total nitrogen (Ntotal), electrical conductivity 

(EC), soil moisture and gravel content. The remaining parameters (L.O.I., Cmin, pH, PCAL, KCAL), 

mainly due to correlation with already selected parameters, did not significantly increase the variance 

explained by the model. The quality of the chosen model is summarised in Table 6.2. 
 

Table 6.2. Explanatory power of the Canonical Correspondence Analysis of the 140 lower slope 1 m² relevés. 

For comparison, values of the equivalent Correspondance Analysis are also presented. Significance levels, 

eigenvalues (EV) and percentage of the species variability explained are given for the first four axes. P-values 

were obtained by Monte Carlo permutation. 

 

 CCA CA 

 P EV % explained EV % explained 

axis 1 < 0.001 0.289 5.7 0.433 8.6 

axis 2) < 0.001 0.130 2.6 0.286 5.6 

axis 3 0.026 0.063 1.2 0.273 5.4 

axis 4 0.088 0.052 1.1 0.258 5.1 

all canonical axes  0.577 11.4 -  

sum of all EV  5.059  5.059  

 

 

The sum of canonical eigenvalues in the CCA is 0.577. This amounts to 11.4 % of the overall 

variability in the species data. In the CCA biplot of the first two axes (Figure 6.2), axis 1 is strongly 

correlated with soil factors indicating developmental status in terms of organic matter accumulation 

and nutrient availability. Sample plots on the right-hand side of the biplot are distinguished by a 

skeletal soil (i.e. high gravel content, low N and P levels and low organic matter content). Sample 

plots characterised by a high soil organic matter content and by high N and P levels are located on 

the left-hand side of the ordination diagram. The second CCA axis, in turn, is strongly correlated 

with volumetric soil water content after several days of drought and with slope angle. In spite of the 

third axis still being significant and the fourth axis being near-significant, these axes only explain a 

small fraction of variation in the species composition (Table 6.2) and are therefore not displayed. 
 

Several species occur preferentially on dry nutrient-poor skeletal soil. This pattern is most 

pronounced for Poa compressa, Bromus japonicus, Festuca rubra L., Verbascum lychnitis, Thlaspi 

perfoliatum and Anthemis tinctoria L. (see Figure 6.2). Other species perform best on nitrogen-rich 

soil, including Arrhenaterum elatius (L.) BEAUV. EX J. PRESL ET C. PRESL, Elytrigia repens,  
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Figure 6.2. CCA species-environment biplot based on vegetation and soil data of 140 quadrats of 1 m² 

recorded on the Steudnitz field site. Only significant (forward selection, 1999 Monte Carlo permutations) 

explanatory variables are included. Explanatory variables are rescaled (× 10). The first two axes are shown, 

explaining 8.3 % of the species variability and 72.6 % of the species-environment relation. In the top right 

corner, variables not included by forward selection are shown as supplementary variables together with the 

explanatory variables. For species abbreviations see Appendix 6. 

 

 

Galium aparine, Urtica dioica L., Scrophularia nodosa L., Fallopia convolvulus (L.) Á. LÖVE, 

Rumex crispus L., Verbascum thapsus L., the vine Clematis vitalba L. and the shrub Sambucus 

nigra L. (see Figure 6.2). Other woody species (Rosa canina L., Cornus sanguinea L., Fraxinus 

excelsior L.) primarily are located  in the top half of the biplot, indicating a potential correlation with 

soil moisture. The same applies to a number of herbaceous species, including Epilobium 

angustifolium L., Conyza canadensis (L.) CRONQUIST, Myosotis arvensis (L.) HILL, Taraxacum 

officinale WEBER, Vicia tetrasperma (L.) SCHREB. and the grass Poa trivialis L. (Figure 6.2). Most of 

these species occur on the more level parts of the slope. 
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6.3.3.2 General Linear Models 
 

Community Parameters 
Community parameters vary significantly in CCA ordination space (Figure 6.3 and Appendix 7).  
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Figure 6.3. Modelled patterns of four community characteristics, overlayed with CCA explanatory variables. 

The GLM option of the CanoDraw programme was used, with model selection based on the Akaike 

Information Criterion (see text). 

 

Species density varies both along the first and the second CCA axis. The highest number of species 

per m² is found in those plots with the highest soil moisture levels. Species density is somewhat 

lower under dry and nutrient-poor conditions. A particularly low species density is observed at high 

soil nitrogen levels. Under the latter conditions, evenness is low as well. Maximum evenness can be 

found at average soil moisture levels combined with below-average nutrient levels. 

Higher-plant cover is lowest on nitrogen-poor soil prone to drying out. In contrast, high levels of soil 

moisture and, even more so, high levels of soil nitrogen are associated with a dense vegetation. 

Bryophyte total cover largely seems to be a function of soil moisture. Both parameters are positively 

correlated with each other. 
 

Life history categories 
Regression of the proportionate cover of life history types reveals distinct and highly significant (see 

Appendix 7) patterns in ordination space for all types (Figure 6.4). 
 

Annual species on the whole play a much larger role on the steeper parts of the slope characerised by 

low soil moisture retention. Longer-lived monocarpic species, on the other hand, seem to be better 

adapted to nitrogen-poor conditions. Polycarpic herbs are most prominent under moist conditions, 
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with a secondary peak in dry nutrient-poor microhabitats. Polycarpic grasses are most prominent at 

high nitrogen levels whereas a secondary peak of relative abundance occurs under nitrogen-poor but 

not too dry conditions.Woody plants also exhibit a bimodal pattern, with one maximum at high 

nitrogen levels and another at high soil moisture levels. Legumes are excluded from the vegetation at 

the highest nitrogen levels and at the lowest soil moisture levels. They are most abundant under 

conditions of high soil moisture. 
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Figure 6.4. Modelled patterns of six different plant life-history categories, overlayed with CCA explanatory 

variables. The GLM option of the CanoDraw programme was used, with model selection based on the Akaike 

Information Criterion (see text). 

 
 

Individual species 
For 20 out of those 23 species occurring in at least ten sample quadrats, GLM regression resulted in a 

significant model (Appendix 8). These models are graphically summarised in Figure 6.5. 

Individual patterns of most annual species are in good agreement with the patterns of the annual life-

history type. This especially applies to the winter annuals Lactuca serriola, Thlaspi perfoliatum and 

Senecio vernalis. Patterns deviate slightly in the case of the summer annual Atriplex sagittata and the 

annual grass Bromus japonicus. Nevertheless, the centre of the realised niche of these species is  
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Figure 6.5. Modelled patterns of abundance in CCA ordination space of the most common species at the 

Steudnitz lower slope. The GLM option of the CanoDraw programme was used, with model selection based on 

the Akaike Information Criterion (see text). Only those species with models significantly better (P < 0.05) than 

the respective null model are displayed. Contour lines represent percent cover isolines. Additional information 

is given on life-span of species: A = annual, B = monocarpic biennial / perennial, P = polycarpic perennial. 

Subscript letters indicate whether a plant is a grass (G) or a herb (H). In the case of annuals, subscripts in 

parentheses indicate whether a plant is a summer annual (S) or a winter annual (W). Explanatory variables of 

the CCA model (printed in bold), along with those environmental variables not included into the CCA model, 

are illustrated in a separate diagram. 
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located in the lower part of the diagram, indicating a higher abundance on the drier parts of the slope. 

In the case of A. sagittata, the main peak of abundance coincides also with high levels of plant-

available potassium. The annual Galium aparine, in turn, seems to be positively correlated with soil 

nitrogen levels. Another nitrophilous species, the polycarpic herb Urtica dioica, seems to be less 

strongly correlated with soil nitrogen and more linked to high levels of soil phosphorus and / or soil 

moisture. 

A positive correlation with soil moisture is still more evident for other polycarpic herbs such as 

Picris hieracioides, Cirsium arvense, Taraxacum officinale and Epilobium tetragonum. Monocarpic 

perennials show a wider range of patterns. Verbascum lychnitis seems to conform best with the 

pattern of the monocarpic-perennial life-history type, being most abundant in nutrient-poor 

conditions. Cirsium vulgare and Inula conyzae are most abundant under ‘average’ environmental 

conditions, as indicated by peak occurrence in the centre of the graph. Carduus crispus L. and Torilis 

japonica are positively correlated with soil moisture and / or soil phosphorus levels. As for the 

perennial grasses, the main peak of this life-history type, occurring at high nitrogen levels, is largely 

due to the strong performance of Elytrigia repens under these conditions, whereas the secondary 

peak occurring under nutrient-poor but not too dry conditions is a result of Poa angustifolia L. 

performing relatively well under such conditions. 

 

6.4 Discussion 
 

6.4.1 Correlation between soil parameters 
The strong positive correlation between gravel content and Cmin is clear, given the underlying 

limestone geology of the slope: high Cmin values of the field site soil reflect the high content of 

calcium carbonate (CaCO3). Equally clear is the strong positive correlation between L.O.I. and Ntotal, 

since the great bulk of soil nitrogen (95 to 99 %, according to Brady & Weil 2002), is stored in 

organic compounds, and not in mineral form. The positive correlation of soil pH with Cmin indicates 

that soil pH, initially being raised by the deposition of sodium-enriched pollutant dust (Chaper 2), is 

no longer consequent on this earlier deposition: the current pH of 7.3 to 8.5 is within the normal 

range for calcareous soils. According to Kissel et al. (1985), the pH of a soil will generally be in the 

range of 7.6 to 8.3 when its CaCO3 content is > 2 % by weight. The strong positive correlation of soil 

EC with loss-on-ignition also indicates that soil salinity does no longer contribute to soil EC. Only in 

one quadrat was EC high enough (0.41 dS × m-1 in the 1:5 water extract) to indicate a raised salinity 

with potentially adverse effects for sensitive plants (Rowell 1997, Brady & Weil 2002), and the 

vegetation in this quadrat was dominated by the salt-tolerant Atriplex sagittata (65 % cover). The 

generally low EC is consistent with the low contents of an array of soluble ions found in the soil in 

2002 (see Appendix 2). It is also in good accordance with the results of Chapter 5, demonstrating that 

even the most salt-sensitive plant species had begun to colonise the slope by the mid-1990s. The 
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negative correlation of PCAL with Cmin and with pH can be explained with inorganic P compounds 

being precipitated at high pH as less soluble or (even insoluble) calcium compounds (Brady & Weil 

2002). It is noteworthy that this apparently now results in higher levels of plant-available phosphorus 

further away from the source of emission. The strong positive correlation of PCAL with L.O.I. results 

from the tendency of phosphorus to be incorporated into the structures of organic compounds. This 

does not occur with potassium, in spite of this nutrient also playing numerous roles in plant and 

animal nutrition (Brady & Weil 2002). However, in spite of the correlation being weaker than the 

correlation between PCAL and L.O.I., KCAL is also positively correlated with loss-on-ignition. 

 

6.4.2 Pairwise association between plant species 
Execution of 120 statistical tests with a chosen significance level of P = 0.05 should result in about 

six erroneous rejections of the null hypothesis a on a chance basis. Rejection of the null hypothesis in 

the case of association analysis gives a significant association between two species. The actual 

number of significant associations found in this study was 39, which is markedly higher than 6, 

clearly implying non-random community patterns. When looking simultaneously at both positive and 

negative associations, none of the 16 species included in the analysis had fewer than two significant 

associations with other species. 
 

31 of the 39 significant associations were positive. When interpreting this fact, the inherent 

limitations of the association analysis method must be kept in mind: the finding of an association 

itself does not allow for conclusions on the causal mechanism. Pairwise interspecific associations 

might not only be caused by direct interaction between the involved species, but also by the response 

of both species to a third species (Crawley 1997b) or to abiotic factors (Greig-Smith 1983). The 

results of association analysis also depend on the chosen quadrat size (Greig-Smith 1983). In the 

present study, the quadrat size was 1 m², with most species covering only a small percentage of the 

ground in most quadrats. Although smaller than in previous studies, the quadrat size used in the 

present study was still comparatively large. Thus, in this study, positive associations between species 

might well be attributable to a similarity in niche requirements. This does however not exclude the 

existence of facilitative plant-plant interactions at the site. Some evidence for facilitation at the 

Steudnitz site has been found in an experiment by Temperton & Zirr (in press), who tested for 

positive effects of Picris hieracioides rosettes on seedling emergence of 6 other species occurring at 

the slope. In the current study, the strong positive association between the annual species Senecio 

vernalis, Lactuca serriola and Atriplex sagittata on the one hand, and between the perennial species 

Epilobium tetragonum, Artemisia vulgaris and Picris hieracioides on the other hand, hints at the 

importance of the regeneration niche for the shaping of the realised niche of these species in the 

studied system. 
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Four out of eight significant negative associations involve Elytrigia repens (Figure 6.1). Dense 

stands of E. repens usually are characterised by high soil levels of nitrogen and phosphorus (see 

Figures 6.2 and 6.5), which, in the absence of interspecific competition, would presumably be 

beneficial for most of the species occurring at the slope. Thus, negative association of a species with 

E. repens most likely results from competitive exclusion of this species by E. repens, rather than 

from fundamental niche differences. E. repens is characterised by a marked tendency for lateral 

expansion and is classified as C / CR strategist within the CSR system of strategy types (Grime et al. 

1988), indicating the high competitive ability of this species. The pronounced litter layer underneath 

this species at the Steudnitz field site (M. Wagner, personal observation) might prevent establishment 

of a number of species from seeds. E. repens is also negatively associated with Artemisia vulgaris 

and Atriplex sagittata, the two species which replaced Puccinellia distans as dominants on the more 

polluted parts of the lower slope a few years after dust emissions had ceased (see Chapter 2). The 

negative associations between P. compressa / B. japonicus and Cirsium arvense / Galium aparine, 

the latter pair of species being positively associated with E. repens, have to be interpreted differently. 

Neither C. arvense nor G. aparine are particularly dominant in the plots they occur in. Therefore, 

those negative associations most likely are not caused by direct interactions between the involved 

species, but are mediated by E. repens. 

 

6.4.3 Canonical Correspondence Analysis 
 

6.4.3.1 CCA model quality 

The first two axes of the selected CCA model explain 8.3 % of the overall variability in the species 

data (Table 6.2). The first two axes in an unconstrained CA explain 14.2 % of the variation. Thus, the 

small percentage explained by the selected explanatory variables is not a result of the wrong factors 

being measured. It is rather due to a large stochastic component in the species data and / or the 

simultaneous influence of many factors. In spite of the small percentage explained by the first two 

axes, both of them are highly significant (P < 0.001), indicating suitability of the CCA model for 

drawing conclusions on the forces structuring the plant communities at the Steudnitz field site. 

 

6.4.3.2 Main environmental gradients 

Environmental gradients are a “powerful research tool” (Keddy 1991: 181), when used for the 

investigation of ecological community assembly. According to Keddy (1991) there are two basic 

types of environmental gradients: those that are spatially continuous and those that are not. The 

existence of the latter type is also accredited for by Crawley’s statement that “apparently uniform 

areas actually consist of many, subtly different microhabitats” (Crawley 1997b: 484). The size of 

quadrats employed in a vegetation survey therefore is a vital consideration if a study aims at 

uncovering those less conspicuous small-scale microhabitat differences, in order to link them to the 
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realised niche of individual plant species. Both gradient types were retrieved by the Canonical 

Correspondence Analysis, indicating the suitability of the chosen quadrat size for detecting such 

small-scale microhabitat differences. 
 

The first axis reflects the correlation of large-scale variation in plant community structure along with 

the complex pollution gradient extending between the proximal and the distal end of the lower slope. 

The second axis demonstrates that, on a smaller scale, variation in species composition is linked with 

soil moisture. 

 

6.4.3.3 Abiotic vs. biotic filter 

Within the context of this dissertation no experimental testing of the role of interpecific competition 

in plant community assembly was carried out. Nevertheless, some conclusions can be drawn based 

on patterns of species diversity in CCA ordination space. Interrelations between species density and 

the main environmental gradients at the Steudnitz field site (see Figure 6.3) are consistent with the 

hump-backed model of species richness (Grime 1973). High levels of productivity, as indicated by 

high vegetation-cover and high levels of soil nitrogen and phosphorus, seem to lead to the exclusion 

of a disproportionately large number of species. On the other hand, high stress levels caused by a low 

soil fertility also seem to lead to a reduction in species density. In agreement with the hump-backed 

model of species density, the highest species densities are found in quadrats characterised by 

intermediate levels of nitrogen and of plant-available phosphorus and by high soil moisture levels. 

Species density is somewhat lower in dry and in nutrient-poor microhabitats, and extremely low 

under conditions of high soil fertility. All told, these results indicate that in different parts of the 

slope either competition or stress predominates in the filtering of candidates from the pool of 

applicant species. Regarding stress, both nutrient stress and drought stress seem to play a role. The 

nutrient with the biggest influence on species density and composition most likely is nitrogen. 

Nitrogen varies much more along the first CCA axis than plant-available phosphorus,with the levels 

of the latter being raised considerably along the whole of the main environmental gradient.  
 

The species density maximum at high moisture levels indicates that a number of species from the 

local species pool, due to a lack of drought tolerance, might be restricted to such conditions of a 

higher than average soil moisture. Similarly, several of the species present under nutrient-rich 

conditions might not be able to persist at low nutrient levels. This is very likely the case in the annual 

Galium aparine, the abundance of which clearly correlates with soil N levels (Figure 6.5). The strong 

positive response of this species to N addition is documented elsewhere (e.g. Pyšek & Lepš 1991, see 

also Chapter 7 in this dissertation). In the case of another nitrophilous species, Urtica dioica, patterns 

of occurrence (Figure 6.5) reflect as well the well-known preference of moist sites (Reif et al. 1985) 

and the known positive effects of high phosphate levels on growth (Pigott 1971). Patterns of 

occurrence of the summer annual Atriplex sagitatta (Figure 6.5) hint at the potential importance of 
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soil potassium for this species achieving the status of a dominant. This is underlined by similar 

findings in other studies (e.g. Wißkirchen & Krause 1994). 
 

In contrast, the low species density at high levels of soil fertility (Figure 6.3) can be assumed to be a 

result of the competitive exclusion of a large number of species in the dense vegetation by Elytrigia 

repens (see Figure 6.5). The low evenness at the high-productivity end of the gradient (Figure 6.3) 

underlines the existence of a pronounced dominance hierarchy (see del Moral & Jones 2002). 

 

6.4.3.4 Life history strategy – a trait with predictive value for assembly in this study? 

GLM regressions of the proportionate cover of all life history categories without exception produced 

highly significant models (woody species: P = 0.002; all others: P < 0.001). 
 

Modelled patterns of abundance of annual species (Figure 6.4) indicate an association with 

microhabitats characterised by great steepness and a tendency to dry out quickly after rainfall. The 

majority of annual species displayed in Figure 6.5 conform to this pattern, including Atriplex 

sagittata, Lactuca serriola, Senecio vernalis, Thlaspi perfoliatum and Bromus japonicus. Veronica 

arvensis L. and Descurainia sophia (L.) WEBB EX PRANTL might show similar distributional patterns, 

as indicated by their position in the CCA species-environment biplot (Figure 6.2), but data for these 

species are not sufficient to model their patterns of occurrence in ordination space individually. With 

the exception of the summer annual A. sagittata are all those annual species winter annuals 

(Rothmaler 2002). The importance of water supply at the seedling stage for differentiation in the 

regeneration niche has previously been pointed out for chalk grassland by Grubb (1977). The present 

system, in some aspects, including soil moisture regime, is edaphically similar to chalk grassland. 

According to Grubb, winter annuals are well adapted to the chalk grassland ecosystem, because they 

are past the susceptible seedling stage when the characteristic summer drought sets in (Grubb 1976). 

Because of the germination of winter annuals taking place soon after the drought, gaps created by the 

drought are preferably colonised by them, rather than by spring-germinating species. Hopkins (1978) 

likewise postulated that in chalk grasslands short-lived species should be more likely to escape 

severe drought stress as seeds and re-establish themselves in the greater proportion of bare areas 

caused by drought. A contrast between short-lived and perennial species is also emphasised by other 

authors. A promotion of monocarpic species by drought due to the debilitation of perennials has been 

found by Prince et al. (1985) and by Dunnett et al. (1998). 
 

Apart from a life history compatible with the summer drought, several of the aforementioned annuals 

are known to possess morphological adaptations to drought in the adult stage. The root architecture 

of L. serriola is designed for maximising water capture in lower soil layers (Jackson 1995, Gallardo 

et al. 1996). The almost vertical orientation of L. serriola leaves in exposed habitats enhances 

photosynthesis during cooler periods in the morning and afternoon, simultaneously reducing water 
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loss and optimising water use efficiency (Werk & Ehleringer 1984, 1985). The wooly-pubescent leaf 

surface of S. vernalis (Rothmaler 2002) most likely serves a similar purpose. 
 

Polycarpic herbs are in this study more common on those parts of the slope characterised by a high 

soil moisture (Figure 6.4). Examples include Urtica dioica, Picris hieracioides, Cirsium arvense, 

Taraxacum officinale and Epilobium tetragonum (Figure 6.5). At least one of these species. P. 

hieracioides, germinates in late spring (Muller 1978) and is therefore more likely to still being in the 

seedling stage when the summer drought sets in. Hence, this species depends on a more stable 

environment in terms of soil moisture. 
 

The contrasting patterns of abundance for annuals and polycarpic herbs with respect to the drought-

proneness of the microhabitat is in accordance with models of life history evolution such as the r / K 

concept (Pianka 1970) and the related CSR concept (Grime 1974, 1977). Soil moisture levels which 

are inadequately low for plant growth can result in both stress and disturbance (Grime 2001). 

According to Grime, vegetation disturbance by climate is “prevalent where conditions encouraging 

the establishment (but not the uninterrupted growth) of competitors alternate abruptly with seasons 

imposing severe stress” (Grime 2001: 81). This kind of climatic disturbance also operates at the 

Steudnitz field site. Presumably it is more pronounced on those parts of the slope which are most 

prone to drying out. Grime’s (2001) statement that potentially fast-growing ephemeral plants are 

favoured under such circumstances is supported by the findings of this study and by several of the 

above mentioned studies (Hopkins 1978, Prince et al. 1985, Dunnett et al. 1998). 
 

Monocarpic perennials are most abundant at the low-nitrogen end of the sampled gradient, with an 

intermediate tendency for soil to dry out (Figure 6.4). According to Hart (1977), monocarpic 

perennials do preferentially occur on sites of intermediate stability, in the present case exemplified 

by an intermediate tendency to dry out. Silvertown (1983) points out the importance of high survival 

of nonflowering rosettes for biennials in order to gain an advantage over annual plants. The species 

largely responsible for the observed overall patterns of relative abundance of monocarpic perennials 

(Figure 6.4), Verbascum lychnitis (Figure 6.5), is characterised by a deep tap root enabling the plant 

to obtain water deep in the subsoil even in times of severe drought (Kutschera & Lichtenegger 1992). 

Drought-related mortality of rosettes of this species should therefore be relatively low. According to 

Kelly (1985), the additional risk of death for a biennial during its second year of growth, compared to 

an annual, must be offset by the  higher seed output made possible by the excess of resources 

accumulated during the second year. This might be especially important under the nitrogen-poor soil 

conditions characterising the proximal end of the lower slope. 
 

Relative abundance of polycarpic grasses shows a bimodal distribution in CCA ordination space, 

with a main peak of abundance under nitrogen-rich conditions, and a secondary peak under nitrogen-

poor and rather moist conditions (Figure 6.4). The secondary peak is largely due to Poa 
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angustifolia L., whereas the main peak is almost exclusively caused by the dominance of Elytrigia 

repens at high nitrogen levels. This fits with the assumption of higher nitrogen levels promoting the 

dominance of clonal species with a distinct potential for lateral expansion (de Kroon & Bobbink 

1997), since E. repens represents such a species (Grime et al. 1988). 
 

Soil moisture and soil nitrogen status seemingly also play a role in the establishment of woody plants 

and of leguminous herbaceous plants. With the notable exception of Clematis vitalba and Sambucus 

nigra, both of which preferentially occur on N-enriched soils, woody plants tend to occur mainly on 

sample plots characterised by high soil moisture. As a result, there is a bimodal pattern of woody 

plant abundance in ordination space (Figure 6.4). Preferred occurrence in quadrats with high soil 

moisture retention is most conspicuous in Cornus sanguinea, Rosa canina, and to a lesser extent, also 

in Fraxinus excelsior (Figure 6.2). Individuals were at the time of recording mostly seedlings and 

small saplings, making it unlikely that the high soil moisture is a result of, rather than a prerequisite 

for, the establishment of these taxa. These species are the exact opposite of fast-growing ephemerals, 

and therefore the results also are in agreement with life history theory. An overriding role of drought 

stress in controlling establishment of woody plants has also been found in related habitats, such as 

old-fields (e.g. deSteven 1991, McCarthy 1994, Berkowitz et al. 1995, Meiners et al. 2000). As in 

other studies (e.g. Dunne & Parker 1999), the spatial patterns of tree recruitment at the Steudnitz 

field site to some extent reflect local soil moisture variations. 
 

In the case of leguminous species the apparent limitations imposed by drought cannot be explained in 

the same way. As annuals, occurrence of the most abundant legumes at the Steudnitz field site (Vicia 

tetrasperma, Vicia hirsuta (L.) GRAY, Vicia angustifolia L.) should in theory be promoted by 

disturbance. Limitation of legumes by drought has however been noted in other studies of plant 

community succession on nitrogen-poor soils, for example by Ritchie & Tilman (1995). In their 

study, a severe drought caused a dramatic decline in total legume biomass both in a successional old-

field and a savanna, and it took several years for legume biomass to return to pre-disturbance levels 

(Ritchie & Tilman 1995). Optimum moisture in terms of realised niche is higher for the most 

common legumes at the site (V. hirsuta and V. tetrasperma, both characteristic for disturbed sites) 

than for typical chalk-grassland legumes absent from the slope but otherwise widespread in the 

region (e.g. Anthyllis vulneraria L., Hippocrepis comosa L., Onobrychis viciifolia SCOP.). This fact is 

illustrated by the higher Ellenberg moisture indicator values ( 4 and 5, respectively) for the former 

two species, compared to species of the latter group, characterised by the moisture value 3 (Ellenberg 

1992). The distribution of legumes in the field with respect to drought might therefore simply be an 

artefact resulting from the absence of drought-tolerant chalk-grassland species. On the other hand, 

legumes might be more dependent on sufficient precipitation than members of other plant families, 

since this may be a critical prerequisite for the release of the characteristic hardseededness of 

legumes (Merou & Papanastasis 2000). For this reason, annual legumes might differ from other 
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annuals in terms of their realised niche. The performance of leguminous species on the middle slope 

is different from that on the lower slope. In recent years, V. hirsuta and V. tetrasperma thrived on the 

middle slope permanent plot (W. Heinrich, unpublished). On the deeper soils of the more level 

middle slope, drought stress is less pronounced. Here, the combination of high phosphorus levels 

with low nitrogen levels, shown in many previous studies in other systems to promote legumes (e.g. 

Willems et al. 1993, Kirkham et al. 1996, Brewer & Cralle 2003), provides optimum conditions for 

legumes. 
 

The results of proportionate cover GLM regression models for different life-history categories are 

more or less in agreement with life history theory and the findings of previous studies on plant 

community composition. They also indicate that plant life history is a species trait with a predictive 

value regarding plant community assembly (sensu Keddy 1992) at the Steudnitz field site. 
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7. Nutrient imbalance and plant community structure: a nutrient 

addition experiment 
 

7.1 Introduction 
The potential importance of resource levels, in particular of soil nitrogen and moisture, for 

community assembly processes at the Steudnitz field site, was highlighted in the preceding chapter. 

This chapter deals in more detail with the influence of soil nutrients on plant community structure. 

Both excess and deficiency of soil nutrients can have a profound influence on the vegetation. 
 

An increased supply of nutrients - brought about by processes such as natural succession, 

atmospheric pollution and extensive fertiliser use - can have pronounced effects on terrestrial 

ecosystems (Marrs & Gough 1989). Increased aerial deposition of nitrogen compounds 

(Brimblecombe & Stedman 1982) led to a disproportionate increase of soil nitrogen levels, causing 

nutrients to be available at excess levels in many ecosystems. This led to complex changes in 

community and ecosystem processes (e.g. Jefferies & Maron 1997), including in many cases an 

increased ecosystem productivity and shifts in plant species composition (e.g. Berendse et al. 1993). 

Such effects have commonly been explored in experiments simulating nitrogen deposition by means 

of fertiliser addition (see Eviner et al. 2000). In managed grasslands, a common result of these 

experiments seems to be an increased dominance of graminoid species (e.g. Thurston 1969, van 

Hecke et al. 1981, Ginzo et al. 1982, Heil & Diemont 1983, Bobbink et al. 1988, Bobbink 1991, 

Mountford et al. 1993). A shift towards graminoid species induced by N fertilisation could also be 

demonstrated in some unmanaged successional old field systems (e.g. Tilman 1987), but not in 

others (e.g. Goldberg & Miller 1990). 
 

In contrast, in the case of nitrogen-poor soils it has been suggested that the successional sequence 

might be determined by the ability of different plant species to grow at low nitrogen levels in both 

the primary (e.g. Marrs & Bradshaw 1993) and secondary (e.g. Tilman 1986) types of succession. 
 

The proximal part of the lower slope at the Steudnitz field site is characterised by a combination of 

relatively low nitrogen levels with very high levels of total and extractable phosphorus and an above-

average potassium content (see Chapter 2). At the same time, the vegetation is dominated by ruderal 

dicotyledonous herbs, with graminoid species only playing a subordinate role (see Chapter 6 and 

Heinrich et al. 2001). In contrast, dominance of the grass Elytrigia repens at the far end of the lower 

slope is associated with high levels of soil nitrogen (see Chapter 6). This chapter describes an 

experiment designed to find out whether the low relative abundance of grasses near the former 

fertiliser factory is due to the low local nitrogen levels, both in terms of (a) total levels and 

(b) relative levels when compared to levels of phosphorus and potassium. The experiment also 

allows conclusions to be made about the potential influence of nitrogen on successional patterns, as 
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suggested by the findings of the field survey described in Chapter 6. Consistency between the 

occurrence of plant species along the natural nitrogen gradient (illustrated in Figure 6.5) and their 

response to nitrogen addition (this chapter) would be evidence for such an influence. In addition, 

effects of different fertiliser treatments on above-ground primary production are investigated, 

allowing for a discussion of nutrient limitation at the community level. Finally, treatment-dependent 

changes of evenness and species richness, the latter broken down in colonisation and extinction 

events, can be quantified. The results might provide clues to problems such as whether nitrophilous 

plants are barred from colonisation of this part of the slope by the low present day nitrogen levels or 

whether the addition of nitrogen increases interspecific competition. 

 

7.2 Methods 
 

7.2.1 Experimental design 
Treatments were established in a row of six contiguous complete blocks, oriented perpendicularly to 

the slope. Each block consisted of four square plots of 2 × 2 m (Figure 7.1).  
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Figure 7.1. Design of an experimental 

block in the nutrient addition experiment, 

consisting of 4 treatment plots. Subplots 

are shown for one treatment plot: b2000, 

b2001 and b2002 denote the areas sampled 

for aboveground biomass in the respective 

year, and the 1 m² subplot for visual cover 

estimates is also indicated. Further details 

in the text. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Because the area available for experimentation on this part of the lower slope was limited, there was 

no within-block replication of single treatments. Treatments were: (a) addition of nitrogen (N); (b) 

addition of nitrogen, phosphorus and potassium (henceforth referred to as NPK treatment); (c) 

addition of micronutrients; (d) no fertiliser addition (= control treatment). Details are given in Table 

7.1. The blocks were set up in September 1999. Due to the experimental site being a slope, slow-

release fertilisers (Osmocote and Scotts Micromax) were used and timing of their application  
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(mid-March in the years 2000 to 2002) was chosen to coincide with the onset of the growing season, 

to minimise losses due to leaching, whilst maximising uptake of the applied nutrients by the 

vegetation (Eviner et al. 2000). 

 

 
Table 7.1. Summary of the different treatments applied in the fertiliser addition experiment. 

 

Treatment Fertiliser Type Nutrients added / yr × m² Remarks 

NPK Osmocote 17-10-12 8.5 g N, 5 g P, 6 g K slow-release pellets; active 

ingredients: ammonium nitrate, 

potassium sulphate, ammonium 

phosphates, calcium phosphates 

N Osmocote 23-0-0 8.5 g N slow-release pellets; active 

ingredient: ammonium nitrate 

micronutrients Scotts Micromax 6 g S, 0.05 g B, 0.25 g Cu, 

6 g Fe, 1.25 g Mn, 0.025 g 

Mo, 0.5 g Zn 

fine powder 

control - - - 

 

 

The N and NPK treatments were randomly allocated to the lower plots within each block, whereas 

the micronutrients and control treatments were randomly allocated to the upper plots. This was done 

in order to avoid spurious effects resulting from nitrogen leaching downwards from N or NPK plots 

into plots of the other types. The upper and lower rows were separated by a strip of 0.5 m, and the 

vegetation of upper row plots and lower row plots was similar in composition. Because of the 

powdery character of the micronutrient fertiliser, fertilisers were distributed under windless 

conditions. Vegetation sampling was carried out in two different ways. Standing biomass was 

harvested from a 47 cm x 71 cm subplot (equalling 1/3 m²) located on the left-hand side of each 

treatment plot in the first week of July in the years 2000 to 2002. Each year, a different subplot was 

used (Figure 7.1). Vegetation was cut at ground level using scissors. Samples were stored in closed 

plastic bags in a 5 °C cold-storage chamber and processed within 48 hours. Standing dead material 

from the previous year was removed, and the live material was sorted to species level, dried to 

constant weight at 80 °C in a drying chamber, and weighed. Two species, Cerastium glutinosum and 

Cerastium holosteoides FR. EM. HYL., were pooled as they were not clearly distinguishable that late 

in the year. Non-destructive sampling of the vegetation was carried out by estimating the percent 

cover of all species in rectangles of 1 m² located on the right-hand side of the treatment plots (Figure 

7.1). The same simplified percent cover scale as in the seed bank study (see Chapter 5) was used. In 

each year, cover estimates were carried out both at the beginning of May and in mid-July. By doing 
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so, the inclusion of early species, such as Erophila verna (L.) CHEVALL., was ensured. For species 

recorded on both occasions, the higher of the two cover values was used in subsequent data analysis. 

No baseline data of the vegetation was collected prior to the first imposition of the experimental 

treatments; however, baseline data were collected for soil parameters. The soil was sampled to a 

depth of 10 cm prior to the onset of the experiment in October 1999. Sampling was repeated at the 

beginning of March 2002, just before the third annual fertiliser application. On both occasions a soil 

corer of 1 cm diameter was used for extracting 25 soil cores - laid out in a regular 5 × 5 grid - from 

each treatment plot. Soil cores for each treatment plot were pooled prior to soil analysis. Soil pH, 

loss-on-ignition (L.O.I.), plant-available P (PCAL) and K (KCAL) and total N (Ntotal) were determined 

using the methods described in Chapter 6. A summary of the results is provided in Appendix 9. 

 

7.2.2 Data analysis 
 

7.2.2.1 Univariate community characteristics 

Univariate community characteristics were analysed using a repeated measures General Linear 

Model (GLM), in order to test (a) for significant differences between years, and (b) for significant 

differences between the responses to the various treatments.  
 

Community characteristics included cover and biomass totals as well as the portion made up by 

graminoids for both above-ground biomass and plant cover. For both data sets, measures of plant 

species diversity were calculated. Whereas the most popular diversity indices are difficult to interpret 

because they incorporate both species richness and relative abundance of the component species at 

the same time (Magurran 1988), the approach used in this study aims at avoiding these difficulties. 

Separate measures for both components of diversity were used. Treatment effects on species richness 

were assessed via the calculation of species density (i.e. number of species per m²). Equality of 

species abundances was measured by computing the modified Hill’s ratio recommended by Alatalo 

(1981). This index is one of several evenness indices largely uncorrelated with species richness. It 

focuses on the more common species within a community and therefore is robust with respect to rare 

species (Alatalo 1981). 
 

In the repeated measures GLM, time (three levels) was used as within-subjects factor. Treatment and 

block identity were analysed as between-subjects factors. An important assumption for the use of 

GLMs is the homogeneity of within-group variances (Quinn & Keough 2002). As indicated by 

Levene’s test, this assumption was not fulfilled. Therefore, parameters were power transformed. The 

spread-versus-level option in SPSS (SPSS Inc. 1999) allows for each parameter separately to 

estimate the optimal power for a transformation to stabilise variances. Transformation did not 

improve variance homogeneity in the case of cover subplot species density. Therefore, 

untransformed data were used for analysis of this parameter. For repeated measures analysis, another 

 57



Chapter VII: Nutrient Addition 
_____________________________________________________________________________________________________________________________________________________________________________________ 

important assumption is the sphericity of the variance-covariance matrix (von Ende 2001, Quinn & 

Keough 2002). As indicated by Mauchly’s test of sphericity (von Ende 2001), there was a significant 

departure from this assumption in the case of several parameters (results not shown). Thus, 

Greenhouse-Geisser correction was applied for the correction of significance levels (von Ende 2001). 

Because of the lack of within-block replication, all repeated measures GLMs were based on the 

assumption of the absence of treatment by block interactions. The corresponding interaction term 

therefore was not included in the model (Quinn & Keough 2002). In the case of significance of the 

within-subjects factor time or its interaction with block identity or treatment type, the sum of squares 

was partitioned in order to test whether the trend was significantly linear or significantly quadratic 

(or both). 

 

7.2.2.2 Species-specific response and community response 

Analysis on the species level was carried out for the most common species, occurring in ≥ 24 of the 

72 (= 24 treatment plots x 3 years) samples gathered in 2000-2002, using repeated measure GLM as 

described in the previous section. While power transformation resulted in a considerable stabilisation 

of within-group variances for a number of species especially in the cover data set, improvement was 

only marginal for the biomass data. 
 

Since most of the species exhibited treatment-independent temporal trends, multivariate analysis of 

the complete cover and biomass data sets was carried out as well. Inclusion of appropriate 

covariables in multivariate analysis allows for the elimination of treatment-independent temporal 

effects and for clearer illustration of treatment effects. In a species declining during succession, a 

positive treatment effect might manifest itself in an attenuated population decline compared to the 

control. In contrast, if a species increases during succession, a positive effect might be expressed as a 

stronger increase. In the ordination diagram, these two scenarios cannot be distinguished. Net 

differences between treatments are illustrated irrespective of the underlying general tendencies. On 

the other hand, summarising three years’ data in such a model makes this method unsuitable for the 

detection of transient non-linear species dynamics (which can occur in experiments very similar to 

this one, see Tilman 1987). This means that a species increasing between the first and the second 

year of the experiment and then again decreasing to initial levels is depicted in exactly the same way 

as a species not exhibiting any dynamics at all. The combined use of both the repeated measures 

GLM and the multivariate analysis should result in an increased understanding of the system. 

For the multivariate analyses, species occurring in less than 10 % of the 72 samples were eliminated 

from the data sets. Rare species add noise to multivariate data sets (Gauch 1982). Also, they often are 

not accurately depicted in ordination diagrams. Thus, 24 species remained in the percent cover data 

set and 20 species in the biomass data set. Since the duration of the experiment seemed too short for 

a considerable number of extinction and colonisation events to occur, the analysis focused on 

treatment-induced cover changes of the species which were initially present. Therefore, data were not 

 58



Chapter VII: Nutrient Addition 
_____________________________________________________________________________________________________________________________________________________________________________________ 

transformed prior to analysis. Partial Redundancy Analysis (pRDA) in the CANOCO package (ter 

Braak & Šmilauer 1998) was used for both the biomass data and the cover data, as the species 

composition in the plots was rather homogeneous (Lepš & Šmilauer 2000). The appropriateness of 

the linear model was also indicated by the length of the longest gradient in an initial Detrended 

Correspondence Analysis being lower than 3.0 in both cases (biomass data: 2.544, percent cover 

data: 2.833; see ter Braak & Šmilauer 1998). As I was most interested in the effects of particular 

treatments on community composition, the corresponding interactions of treatments with time were 

used as explanatory variables in the analysis (Lepš & Šmilauer 2000). Plot identity, time, and time × 

block interaction were included as covariables. The inclusion of plot identity (coded as dummy 

variables) secures that only the changes within each plot were analysed by the pRDA. Because of the 

inclusion of time as a covariable, the revealed trends have to be seen as relative to the average trend 

in the community (Lepš & Šmilauer 2000). Values for this covariable ranged from 1 to 3 for the 

years 2000 to 2002, respectively. In such a model, plots of different treatments are assumed to 

already differ slightly in vegetation composition in the summer of 2000 as a result of the March 2000 

fertiliser application. Based on this, the model fits the linear increase in difference over time. The 

time × block interaction was included in order to remove the effect of block on dynamics (J. Lepš, 

personal communication). In order to test for treatment-dependent shifts in species composition, 

significance of the first axis was tested using Monte Carlo permutation (9999 permutations under the 

reduced model). After specifying the sample scores of axis 1 as additional covariable (Lepš & 

Šmilauer 2000), the significance of the second axis was also tested. Permutations were restricted 

according to the experimental design and the investigated hypothesis. Therefore, individual treatment 

plots were defined as whole-plots, each whole-plot consisting of three split-plots (corresponding to 

the three years). While the whole-plots were permuted at random within each complete block, the 

split-plots of each whole-plot were kept together. Eigenvalues were compared with those of Principal 

Components Analysis (PCA) of the same data (ter Braak 1995). 

 

7.3 Results 
 

7.3.1 Univariate community characteristics 
 

Biomass data 
Above-ground biomass differed significantly between years (Table 7.2). There was a general 

increase in biomass over time (Figure 7.2a). The highly significant time × treatment interaction term 

indicates that the magnitude of this increase depended on the treatment. Figure 7.2a shows that the 

increase was much larger on the plots fertilised with N or NPK fertilisers. Standing biomass on the  

control plots was a mere 25 % higher in 2001 and 2002, compared with 2000. In contrast, biomass on 

the N plots roughly doubled from c. 150 g × m-2 to c. 300 g × m-2. Third year biomass on the NPK 
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Table 7.2. Repeated measures GLM results for the univariate plant community parameters collected in the 

nutrient addition experiment. Due to a lack of within-block replication, no treatment × block interaction was 

included in the model. Prior to analysis, homogeneity of within-group variances was improved by power 

transformation for all parameters apart from the number species per cover subplot. Potential violation of the 

sphericity assumption of repeated measures GLM was taken into consideration by applying a Greenhouse-

Geisser correction. Uncorrected degrees of freedom were d.f.TIME = 2, d.f.TIME × BLOCK = 10, 

d.f.TIME × TREATMENT = 6, d.f.ERROR = 30. Significant P-values (P < 0.05) are indicated by bold style. In this case, 

superscript letters L and Q denote significant linear and quadratic within-subject contrasts. 

 

Parameter Within-Subjects  biomass data cover data 

 Effects  d.f. F P d.f. F P 

biomass Time  1.87 39.17 < 0.001LQ 1.98 84.97 < 0.001LQ

/ cover Time × Block  9.33 1.03 0.445 9.87 1.38 0.238 

total Time × Treatment  5.60 7.49 < 0.001L 5.92 17.73 < 0.001LQ

 Error  27.98   29.62   

proportion Time  1.71 27.13 < 0.001L 1.56 39.25 < 0.001LQ

of grass Time × Block  8.57 2.20 0.059 7.81 2.54 0.039L 

[%] Time × Treatment  5.14 4.16 0.006LQ 4.68 3.02 0.032Q 

 Error  25.71   23.42   

number of  Time  1.97 54.08 < 0.001L 1.75 3.78 0.041L 

species / Time × Block  9.85 0.59 0.807 8.76 1.56 0.179 

subplot Time × Treatment  5.91 0.83 0.552 5.26 2.87 0.032L 

 Error  29.56   26.29   

modified  Time  1.69 0.48 0.592 1.75 3.22 0.062 

Hill’s ratio Time × Block  8.43 1.06 0.423 8.75 0.62 0.769 

evenness Time × Treatment  5.06 0.90 0.497 5.25 0.45 0.819 

 Error  25.30   26.26   

 

 

plots was even higher (c. 375 g × m-2), although differences between N and NPK plots are not 

significant (Figure 7.2a). Remarkably, effects of the N and NPK treatments only manifest themselves 

from the second year onwards. The percentage of grass biomass did also differ significantly between 

years (Table 7.2). Again, there was a significant time × treatment interaction. Figure 7.2b illustrates 

the general increase of the relative contribution of grasses to aboveground primary production. It also 

shows that the significant time by treatment interaction is largely due to the disproportionately large 

relative increase on the N plots between year two and year three of the experiment. Third year grass 

biomass on N plots amounted to 49 % of total plant biomass, compared to 8 % in the first year. 
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Figure 7.2. Univariate community characteristics  for the treatments of the nutrient addition experiment. For 

the period from 2000 to 2002 the means are shown (error bars represent 1 S.E.M.). From the top to the bottom 

the following parameters are illustrated for the biomass data: (a) total biomass, (b) percentage of grasses, 

(c) species density per subplot, (d) modified Hill’s ratio evenness (Alatalo 1981). The same parameters are 

shown for the cover data (e-h). Treatments were: control = no fertiliser addition; micro = addition of 

micronutrients; N = nitrogen addition; NPK = addition of nitrogen, phosphorus and potassium. 
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At the same time, this increase was smallest (from 9 % to 19 %) on the micronutrient plots. Unlike 

the N treatment, the NPK treatment in the third year yielded a percentage of grass biomass not 

markedly different from the one found on the untreated controls (Figure 7.2b). 
 

Species density on the biomass subplots increased steadily and significantly (Table 7.2) over time 

(Figure 7.2c). The extent of this increase did not vary significantly between treatments. Species 

density per 1/3 m² totalled between 9 and 10 species in 2000 and between 14 and 16 species in 2002. 

Modified Hill’s ratio evenness did slightly decrease on N plots and slightly increase in the other 

treatments (Figure 7.3d). There were however no significant linear trends (Table 7.2). 
 

Cover data 

As indicated by the repeated measures GLM (Table 7.2), total plant cover differed  significantly 

between years. An increase with time was observed (Figure 7.2e). In good consistency with the 

biomass data, this increase was small in the micronutrient and control treatments and pronounced in 

the N and NPK treatments. In the first year, total cover ranged between 40 and 45 % irrespective of 

treatment. In 2002, the third year of the experiment, average total plant cover was > 80 % on the N 

and NPK plots, whereas on the micronutrient and control plots it was around 50 %. This difference is 

reflected in the highly significant time by treatment interaction (Table 7.2). The contribution of grass 

species to total plant cover differed significantly between years, increasing with time in all treatments 

(Figure 7.2f). Due to this increase being more pronounced on the N and NPK plots, the time by 

treatment interaction is also significant. As in the biomass data, the relative contribution of grasses 

increased enormously on the N and NPK plots between the second and the third year (Figure 7.2f). 
 

The mean number of species recorded on a 1 m² cover subplot differed significantly among years 

(Table 7.2) and in general was higher in 2002 than in 2000. In contrast to species density on the 

1/3 m² biomass subplots, the magnitude of this increase differed significantly between treatments, as 

reflected in the significant time × treatment interaction. The increase was small on the control plots 

(13.5 species / m² to 14.0 species / m²), and on the micronutrient plots species density even was 

marginally lower in 2002 than in 2000. In contrast, there was a pronounced increase in species 

density on the N and NPK plots (from between 13 and 14 species / m² to c. 16 species / m²). A 

tendency of modified Hill’s ratio evenness on cover subplots to increase with time fell short of 

significance (F = 3.22, d.f. = 1.75, P = 0.062). 

 

7.3.2 Species-specific response and community response 
Summarised results of the repeated measures GLMs are shown in Table 7.3. For conciseness, 

between-subjects effects are not reported in this table. Whenever required, they are referred to in the 

text. 
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Table 7.3. Repeated measures GLM results for cover and biomass data of the plant species most common in 

the nutrient addition experiment (≥ 24 out of 72 subplots). Due to a lack of within-block replication, no 

treatment × block interaction was included in the model. Power transformated data were used (see text). 

Potential violation of the sphericity assumption of repeated measures GLM was taken into consideration by 

applying a Greenhouse-Geisser correction. Uncorrected degrees of freedom were d.f.TIME = 2, d.f.TIME x BLOCK = 

10, d.f.TIME x TREATMENT = 6, d.f.ERROR = 30. Significant P values (P < 0.05) are indicated by bold style. In this 

case, superscript letters L and Q denote significant linear and quadratic within-subject contrasts. 

 

Species Within-Subjects biomass data cover data 

 Effects d.f. F P d.f. F P 

 Time 1.95 1.81 0.183 1.32 9.53 0.003LQ 
Artemisia Time x Block 9.73 0.56 0.829 6.61 3.12 0.023Q 
vulgaris Time x Treatment 5.84 2.35 0.058 3.97 10.22 < 0.001LQ

 Error 29.20   19.83   

 Time 1.74 34.63 < 0.001LQ 1.50 37.46 < 0.001LQ

Atriplex Time x Block 8.69 2.90 0.017Q 7.50 6.84 < 0.001LQ

sagittata Time x Treatment 5.21 1.11 0.379 4.50 1.49 0.236 
 Error 26.06   22.51   

 Time 1.39 47.24 < 0.001L 1.38 47.14 < 0.001LQ

Bromus Time x Block 6.96 3.01 0.024Q 6.89 3.72 0.009L 
japonicus Time x Treatment 4.18 10.41 < 0.001LQ 4.13 7.50 < 0.001LQ

 Error 20.88   20.66   

 Time 1.60 16.93 < 0.001L - - - 
Cerastium Time x Block 7.98 3.14 0.014L - - - 

spp. Time x Treatment 4.79 1.04 0.415 - - - 
 Error 23.94   -   

 Time - - - 1.72 3.23 0.063 
Cerastium Time x Block - - - 8.59 1.50 0.203 
glutinosum Time x Treatment - - - 5.16 0.36 0.873 

 Error -   25.78   

 Time - - - 1.22 7.82 0.009LQ 
Cerastium Time x Block - - - 6.08 1.98 0.121 

holosteoides Time x Treatment - - - 3.65 0.66 0.613 
 Error -   18.23   

 Time 1.42 4.27 0.039Q 1.40 7.43 0.007LQ 
Cirsium Time x Block 7.11 2.16 0.079 6.99 1.15 0.373 
vulgare Time x Treatment 4.26 1.44 0.254 4.19 1.05 0.409 

 Error 21.32   20.96   

 Time 1.02 12.96 0.002LQ - - - 
Conyza Time x Block 5.08 1.24 0.341 - - - 

canadensis Time x Treatment 3.05 0.85 0.491 - - - 
 Error 15.24   -   

 Time 1.21 12.24 0.002LQ 1.19 11.54 0.002Q 
Epilobium Time x Block 6.05 1.83 0.149 5.93 1.90 0.137 
tetragonum Time x Treatment 3.63 4.03 0.019LQ 3.56 4.86 0.009LQ 

 Error 22.70   17.78   
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Table 7.3 (continued) 

 

Species Within-Subjects biomass data cover data 

 Effects d.f. F P d.f. F P 

 Time - - - 1.49 4.44 0.033Q 
Galium Time x Block - - - 7.43 1.79 0.136 
aparine Time x Treatment - - - 4.46 5.83 0.002L 

 Error -   22.28   

 Time 1.37 5.88 0.017L 1.97 23.58 < 0.001L 
Inula Time x Block 6.85 0.83 0.569 9.86 1.79 0.108 

conyzae Time x Treatment 5.77 0.86 0.507 5.92 3.13 0.017L 
 Error 20.54   29.59   

 Time 1.47 12.16 < 0.001L 1.98 5.27 0.011L 
Lactuca Time x Block 7.33 1.87 0.122 9.88 1.83 0.099 
serriola Time x Treatment 4.40 2.56 0.063 5.93 2.46 0.048L 

 Error 21.99   29.63   

 Time 1.42 9.30 0.003Q 1.91 3.91 0.033Q 
Picris Time x Block 7.09 0.87 0,549 9.53 1.61 0.156 

hieracioides Time x Treatment 4.26 1.32 0.296 5.72 3.37 0.013Q 
 Error 21.28   28.58   

 Time 1.63 2.99 0.078 1.36 2.33 0.136 
Poa Time x Block 8.14 0.97 0.481 6.80 0.96 0.483 

angustifolia Time x Treatment 4.88 0.58 0.708 4.08 0.67 0.621 
 Error 24.42   20.41   

 Time 1.92 3.17 0.059 1.64 7.61 0.004L 
Poa Time x Block 9.61 0.64 0.760 8.22 1.08 0.409 

compressa Time x Treatment 5.76 0.78 0.587 4.93 2.18 0.090 
 Error 28.82   24.67   

 Time 1.89 2.85 0.077 1.37 3.80 0.053 
Senecio Time x Block 9.46 3.10 0.009L 6.85 3.94 0.007L 
vernalis Time x Treatment 5.68 1.80 0.138 4.11 1.31 0.297 

 Error 28.39   20.56   

 Time 1.64 12.69 < 0.001L 1.95 14.30 < 0.001LQ 
Taraxacum Time x Block 8.20 0.82 0.596 9.77 1.29 0.284 
officinale Time x Treatment 4.92 1.45 0.241 5.86 0.69 0.659 

 Error 24.61   29.30   

 Time 1.82 7.26 0.004L 1.80 35.25 < 0.001L 
Verbascum Time x Block 9.11 2.26 0.048Q 9.01 1.47 0.211 

lychnitis Time x Treatment 5.47 1.61 0.187 5.41 0.70 0.639 
 Error 27.33   27.04   

 
 

The treatment responses of individual species are illustrated in Figure 7.3 for the biomass data and in 

Figure 7.4 for the cover data. Overall, both the cover and biomass data of a species yielded very 

similar results in most cases. The GLM results for both the cover and biomass data indicate that 

almost all common species, perhaps with the exception of the perennial grass Poa angustifolia, are 

subject to treatment-independent temporal dynamics (Table 7.3). 
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Figure 7.3. Mean annual above-ground biomass [g × m²] of the most common species in the biomass subplots 

of the nutrient addition epxeriment. Treatments are: c = unfertilised control; m = micronutrient addition; 

N = nitrogen addition; NPK = addition of nitrogen, phosphorus and potassium. 



Chapter VII: Nutrient Addition 
_____________________________________________________________________________________________________________________________________________________________________________________ 

 

  

2000
2001

2002c

m

N

NPK

0

2

4

6

8

10

Artem isia
vulgaris

2000
2001

2002c

m

N

NPK

0

2

4

6

8

Atriplex
sagittata

2000
2001

2002c

m

N

NPK

0

5

10

15

20

25

Bromus
japonicus

2000
2001

2002c

m

N

NPK

0

2

4

6

Cerastium
glutinosum

2000
2001

2002c

m

N

NPK

0.0

0.5

1.0

1.5

Cerastium
holosteoides

2000
2001

2002c

m

N

NPK

0

2

4

6

8

Cirsium
vulgare

2000
2001

2002c

m

N

NPK

0.0

0.5

1.0

1.5

2.0

Epilobium
tetragonum

2000
2001

2002c

m

N

NPK

0

1

2

3

4

Galium
aparine

2000
2001

2002c

m

N

NPK

0

1

2

3

4

5

Inula
conyzae

2000
2001

2002c

m

N

NPK

0

1

2

3

4

5

Lactuca
serriola

2000
2001

2002c

m

N

NPK

0

10

20

30

Picris
hieracioides

2000
2001

2002c

m

N

NPK

0.0

0.5

1.0

1.5

2.0

Poa
angustifolia

2000
2001

2002c

m

N

NPK

0

2

4

6

8

Poa
compressa

2000
2001

2002c

m

N

NPK

0

5

10

15

Senecio
vernalis

2000
2001

2002c

m

N

NPK

0

2

4

6

8

10

Verbascum
lychnitis

2000
2001

2002c

m

N

NPK

0

1

2

3

4

Taraxacum
officinale

Figure 7.4. Mean annual cover [%] of the most 

common species in the cover subplots of the nutrient 

addition experiment. Treatments are: c = unfertilised 

control; m = micronutrient addition; N = nitrogen 

addition; NPK = addition of nitrogen, phosphorus and 

potassium. 
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This tendency was most pronounced in two annual species which were largely unaffected by 

treatments, Atriplex sagittata and Conyza canadensis. C. canadensis was virtually absent in 2000 and 

in 2001, but quite abundant in 2002 (Figure 7.3). In contrast, A. sagittata was most abundant in 2000 

and much less abundant in 2001 and 2002 (Figures 7.3 and 7.4). Dynamics of the biennial Cirsium 

vulgare were very similar to those of A. sagittata, but less pronounced. A number of species 

significantly increased in abundance largely uninfluenced by treatment (Table 7.3). The tendency 

was most clear in the polycarpic perennials Poa compressa and Taraxacum officinale and the 

monocarpic perennial Verbascum lychnitis (Figures 7.3 and 7.4). Another group of species is 

characterised by a pronounced treatment-dependent response as illustrated by a significant 

time × treatment interaction. Among them are the annual grass Bromus japonicus, the annual herbs 

Lactuca serriola and Galium aparine and the polycarpic perennials Epilobium tetragonum and 

Artemisia vulgaris (Table 7.3). In the case of B. japonicus, there is a strong positive response to N 

and NPK addition which seems to be slightly more pronounced in the N treatment (Figures 7.3 and 

7.4). Patterns are very similar for G. aparine (Figure 7.4). In the case of L. serriola, the increase 

seems to be stronger with the addition of NPK fertiliser. For the annual herb Senecio vernalis, the 

time × treatment interaction of both the biomass and cover data is non-significant (Table 7.3). 

Nevertheless, there is a consistent difference between treatments, indicated by a highly significant 

treatment effect (biomass: F = 13.29, d.f. = 3, P < 0.001; cover: F = 13.48, d.f. = 3, P < 0.001). Post-

hoc Games Howell tests reveal that average biomass of S. vernalis is significantly (P < 0.05) lower 

on control and micronutrient plots, compared to N and NPK plots. The percent cover also was 

significantly lower on micronutrient but not on control plots, compared to N and NPK plots. 
 

A summary of both the partial Redundancy Analyses (pRDA) and the Principal Components 

Analyses (PCA) is provided in Table 7.4, and pRDA results are graphically displayed in Figure 

7.5. 
 
Table 7.4. Summary of partial Redundancy Analyses and Principal Components Analyses of biomass and 

percent cover data from the nutrient addition experiment. Abbreviations as follows: EV = axis eigenvalue; 

% = percentage of species variability explained by axis; F = F-ratio; P = corresponding probability value, 

obtained by Monte Carlo permutation test (9 999 permutations); Subscripts indicate axis number (except for 

EVU = sum of unconstrained eigenvalues). 

 

Analysis Data Set EV1 EV2 %1 %2 EVU F1 P1 F2 P2 

partial RDA biomass 0.065 0.013 14.2 2.9 0.455 2.76 < 0.001 1.37 0.274 

partial RDA % cover 0.053 0.014 16.1 4.3 0.331 3.66 < 0.001 2.10 0.147 

PCA biomass 0.358 0.232 35.8 23.2 1.000 - - - - 

PCA % cover 0.312 0.214 31.2 21.4 1.000 - - - - 
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Figure 7.5. Biplots showing the first two axes of partial Redundancy Analyses of the nutrient addition 

experiment. Both biomass and cover data were analysed separately. Explanatory variables are treatment × time 

interactions (nit*year = nitrogen addition, npk*year = addition of NPK fertiliser, mic*year = micronutrient 

addition, con*year = unfertilised control). The first two axes explain 17.1 % (biomass data) and 20.4 % (cover 

data) of the species variability, respectively. For species abbreviations see Appendix 6. 
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Eigenvalues for the first two axes of the partial RDAs are well below those of the PCAs. This is not 

surprising given the large fraction of variance removed by the covariables used in the partial RDAs 

(55 % in the biomass data set, 67 % in the cover data set). Nevertheless, the first pRDA axis explains 

between 14 and 16 percent of the remaining variation, and Monte Carlo permutation tests yield 

highly significant results for the first pRDA axis.  

Orientation of explanatory variable vectors is quite similar with respect to the first pRDA axis in both 

analyses. In both cases, the N × year and NPK × year vectors point towards the left-hand side, and 

the micronutrient × year and control × year vectors point towards the right-hand side (Figure 7.5). 

The N × year and NPK × year vectors have the highest scores - with opposite algebraic signs - on the 

second pRDA axis. However, the second axis, as indicated by Monte Carlo tests, was non-significant 

in both cases. 
 

Among the displayed species, those with (a) a more or less identical response in both pRDAs, or (b) 

with an exceptionally good fit to the explanatory variables in at least one pRDA, indicated by the 

length of the species vector, deserve attention. An equally strong promotion by both the N and the 

NPK treatment is indicated for Epilobium tetragonum. In the case of Bromus japonicus, one of the 

most strongly responding species, the N treatment seems to be slightly more beneficial. In contrast, 

Lactuca serriola, Artemisia vulgaris, Cirsium vulgare and Senecio vernalis seem to respond more 

strongly to the NPK treatment. In the cover-based pRDA, but not in the biomass-based pRDA, 

Galium aparine shows a much more pronounced reaction to N than to NPK fertilisation. Species 

lacking a clear positive response to N or NPK fertilisation include the perennial herb Picris 

hieracioides and the grasses Poa compressa and Poa angustifolia. 

 

7.4 Discussion 
 

7.4.1 Nutrient limitation 
Above-ground biomass strongly increased in the second year both in the N and NPK treatments. This 

increase was of a similar magnitude in both treatments, implying that the net primary productivity 

(NPP) of the extant plant community is primarily limited by nitrogen. Third year values were slightly 

higher on the NPK plots (377 g × m-2), compared to the N plots (302 g × m-2) This difference, due to 

large within-treatment variability, is however not significant. Continuation of the experiment, 

planned within the context of a mycorrhizal experiment (V. Blanke, personal communication), might 

provide more conclusive evidence as to whether this difference indicates a secondary nutrient 

limitation by one of the other macronutrients once the nitrogen limitation is eliminated. If this is the 

case then the difference in above-ground primary productivity will persist. 
 

Interestingly, the c. 150 g × m-² above-ground biomass measured on the unfertilised control plots are 

about 50 % lower than the values obtained in 1980 from a Puccinellia distans stand on the most 
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degraded part of the slope (Heinrich 1984), in spite of the then used method (clipping at ground level 

and drying at 80 °C; H.-U. Peter, personal communication) being very similar to the method used in 

this study. The productivity levels reported by Heinrich (1984) are even higher than those found in a 

study where monocultures of P. distans was grown in experimental field plots under non-limiting 

water and nutrient conditions (see Beyschlag et al. 1992). This implies that at that time nitrogen was 

not a limiting nutrient. A likely explanation is that nitrate contained in the pollutant dust (see 

Appendix 2) may have prevented nitrogen limitation to occur during the period of dust deposition. 

The current nitrogen limitation however, for a number of reasons, is reasonable. The occurrence of 

nitrogen limitation is widespread in terrestrial ecosystems (Vitousek & Howarth 1991). Nitrogen 

retention within ecosystems is dominated by biological processes such as plant uptake and microbial 

immobilisation (Vitousek & Howarth 1991). Obstruction of these processes usually results in 

mobilisation and increased losses of nitrogen via leaching, denitrification, and erosion (e.g. Vitousek 

& Matson 1985). The study area, the proximal part of the lower slope, was partially devoid of 

vegetation between the early 1980s and the time of factory closure (Heinrich et al. 2001), and soil 

microbial biomass is still reduced in the more polluted part of the slope (Langer & Günther 2001). 

Hence, more than three decades of pollutant dust deposition may have hindered nitrogen retention 

processes and this may be the main reason for the observed low levels of soil nitrogen, in spite of the 

potential input of nitrate resulting from earlier deposition. The same deposition process caused 

phosphorus (the other main nutrient commonly limiting NPP in terrestrial systems; see Koerselman 

& Meuleman 1996) to be strongly enriched. 
 

The absence of a growth response by the plant community in the first year calls for an explanation. 

Biological immobilisation of the first dose of nitrogen by the soil microbial community might have 

played a minor role in this delay of a growth response. Chapin et al. (1986) characterise the soil 

microbial community as powerful competitors for added nutrients and recommend large nutrient 

additions that are sufficient to saturate chemical and microbial immobilization processes. However, 

the nitrogen addition rates in the N and NPK treatments of this study (8.5 g × m-2 × yr-1) were only 

slightly lower than the 10 to 20 g × m-2 recommended for achieving a quick response (Eviner et al. 

2000): thus, temporary immobilisation of the added nitrogen by the soil microbial community cannot 

have overridingly contributed to the delayed response. This is also supported by the fact that no 

accumulation of nitrogen in the soil was observed in response to N or NPK fertiliser addition (see 

Appendix 9). A more convincing explanation for the lack of response in the first year may be 

provided by the below-average spring 2000 rainfall. The relatively small difference in control plot 

primary production between the rainfall-deficient year, 2000, and the years 2001 and 2002 should not 

be taken as evidence for a subordinate role of the water factor. Rather, a co-limitation of primary 

production by both water supply and nitrogen supply seems a likely explanation for the observed 

patterns. Remedy of just one factor might have only a small impact, explaining the small response to 
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added nitrogen in the particularly rain-deficient year 2000 and the small response to increased 

rainfall on the control plots in the subsequent years which were characterised by high rainfall. Such a 

co-limitation by water and nitrogen commonly occurs in grasslands in arid climatic regions (e.g. 

Kirchner 1977, Lauenroth et al. 1978, Fisher et al. 1988). Furthermore, co-limitation by water and a 

mineral nutrient has also been found in the temperate climatic region, including the co-limitation of 

primary productivity by nitrogen and water in a 1st year old-field community in Michigan (Goldberg 

& Miller 1990) and the co-limitation of seedling growth by phosphorus and water in a calcareous 

grassland in England (Grime & Curtis 1976). A negative effect of drought on nitrogen fertiliser 

effectiveness has also been observed in a long-term study on successional old-fields, where 

aboveground biomass was correlated with rate of N addition in all years but 1988, the year of a 

severe drought (Tilman 1993). 

 

7.4.2 Species-specific response to treatments 
Repeated measures GLMs of individual species responses illustrate that abundance of most species 

varies significantly between years irrespective of fertiliser application. Particularly strong 

fluctuations were observed in the case of the biennial Cirsium vulgare and the annuals Atriplex 

sagittata and Conyza canadensis. The former two species showed peak abundance in the dry summer 

of 2000, whereas the latter species peaked in 2002, a year characterised by above-average rainfall. 

This pattern is consistent with the occurrence of A. sagittata and C.vulgare in microhabitats prone to 

drying out and of C. canadensis in microhabitats with a better soil moisture retention (see Chapter 6, 

Figures 6.2 and 6.5). In contrast, those species characterised by a steady and treatment-independent 

increase in abundance (Poa compressa, Taraxacum officinale and Verbascum lychnitis) were 

perennials. It is not surprising that annual and biennial species, abundance of which strongly depends 

on environmental conditions during establishment, show irregular patterns of abundance with time. 

In contrast, the steady increase of the above mentioned perennials irrespective of treatment suggests 

that none of these species has yet reached its equilibrium density. 
 

A number of species show a pronounced response to N and NPK fertilisers. The perennials Artemisia 

vulgaris and Epilobium tetragonum responded primarily by means of a strongly increased shoot 

growth (M. Wagner, personal observation). The annuals Galium aparine, Bromus japonicus, Senecio 

vernalis and Lactuca serriola, which seemed to more permanently benefit from the N and NPK 

fertiliser addition, seemingly responded not only with increased growth, but also via a numerical 

response due to increased seed set (M. Wagner, personal observation) or reduced mortality. 
 

These effects were most evident in the case of G. aparine, which grew much bigger on N and NPK 

plots (M. Wagner, personal observation), and also colonised three N cover subplots where it 

previously was absent, although, at the same time, the number of subplots of other treatments 

inhabited by G. aparine declined. Strong promotion of this species by nitrogen fertilization has also 
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been demonstrated for arable fields (e.g. Koch 1957, Pyšek & Lepš 1991, Gerowitt 1999). At the 

Steunitz field site there is a strong positive relationship between the abundance of G. aparine and soil 

nitrogen level (Chapter 6, Figure 6.5). The low abundance in the proximal part of the lower slope 

may be ascribed to low levels of soil nitrogen. The scarcity of nitrogen in this case seems to act as a 

component of the abiotic filter. The same might hold true for other species, such as Urtica dioica L. 

and Elytrigia repens (see Figure 6.5). A prominent ecological feature of G. aparine is its capacity for 

adhesive seed dispersal by means of humans or animals. Other species confined to more nitrogen-

rich soils at the slope might not yet have colonised the N or NPK plots for a lack of similarly 

efficient dispersal mechanisms. 
 

In the case of of Bromus japonicus, a dramatic increase in abundance resulting from nitrogen 

fertilisation has previously been documented for North American rangeland plant communities 

(Hewlett et al. 1981). Whereas effects of the N and NPK additions on community net primary 

productivity NPP became visible in the second year (Figure 7.2), the pronounced increase of B. 

japonicus occurred mainly in the third year (Figures 7.3 and 7.4). This suggests that the increased 

third year biomass / cover of this species primarily resulted from an increase in population size due 

to an increased seed production in the second year. The higher abundance of B. japonicus on those 

parts of the slope characterised by low nitrogen levels (see Figure 6.5), in combination with the 

strong negative association between B. japonicus and E. repens (= the dominant species in the more 

nitrogen-rich part of the slope), suggests that competitive exclusion of B. japonicus by E. repens 

plays an important role in the patterns of occurrence of B. japonicus at the field site. The current 

increase in abundance of this species might be regarded as a transient phenomenon, which is 

expected to disappear with the advanced colonisation of the treatment plots by competitive species. 
 

The only species with a marked positive response to N / NPK addition in the first year of the 

experiment was Senecio vernalis. Unlike the other species positively responding to N addition in the 

current experiment, S. vernalis finishes its life cycle well before the onset of the summer drought, 

which was most extreme in the first year of the experiment (see Apendix 1).  
 

In summary, patterns of individual species’ responses lend support to the hypothesis that soil water 

and soil nitrogen are co-limiting the growth of plants at the field site. 

 

7.4.3 Changes in community structure 
The timing of the fertiliser application (mid-March) and the type of fertiliser used in the N and NPK 

treatments (Osmocote slow-release fertilisers with an average duration of release of 5 to 6 months) 

should have resulted in seasonal N supply patterns resembling the seasonal patterns of the N 

mineralisation rate in unmanipulated temperate soils (see Davy & Taylor 1974). Seasonal N supply 

patterns on N-manipulated plots and control plots should thus be more or less similar and treatment 
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effects on community composition should not be the product of differences in temporal N availability 

patterns. 
 

The results of the multivariate analysis showed a significant influence of the applied treatments on 

plant community structure, indicated by highly significant pRDA 1st axes (Table 7.4). The prominent 

role of nitrogen is underlined by the similar orientation of both the N × year vector and the 

NPK × year vector with respect to the first axis (Figure 7.5), and by the fact that the second axis in 

both pRDAs falls short of significance. 
 

The shift in community composition induced by application of nitrogen alone was slightly more 

pronounced compared to the application of all three macronutrients together. This is indicated by the 

higher absolute value of the 1st axis score in the case of the the N × year vector, compared to the 

NPK × year vector (Figure 7.5). A somewhat larger effect of N addition compared to NPK addition 

was found with respect to the relative contribution of grasses to total biomass / cover (Figure 7.2). 

These observations are in accordance with hypotheses emphasising the role of resource ratios (e.g. 

Tilman 1985, Braakhekke & Hooftman 1999), as the addition of the limiting nutrient nitrogen on its 

own results in a larger alteration of macronutrient ratios compared to the simultaneous addition of all 

macronutrients. In this study, most of the effect was accounted for by the annual grass Bromus 

japonicus. The absence of perennial grasses characterised by a marked tendency for lateral expansion 

and a known positive response to N fertilization was probably a prerequiste for the strong increase of 

B. japonicus in response to N addition in this study. The perennial grasses present on the 

experimental plots studied here, Poa angustifolia and P. compressa, lack the tendency for nitrogen-

mediated clonal expansion. In contrast, Elytrigia repens, known for its positive response to nitrogen 

fertilisation (e.g. Tilman 1987, Story et al. 1989), is a dominant species at the distal end of the lower 

slope, but absent from the experimental plots studied here. 
 

Average number of species increased markedly on the small (1/3 m²) biomass subplots. A similarly 

significant but much smaller increase was observed on the larger (1 m²) cover subplots (Figure 7.2 

and Table 7.2). The more pronounced increase on the smaller subplot type indicates that it did at 

least partly result from the spread of existing species, leading to the homogenisation of an initially 

heterogeneous vegetation. Similar phenomena have been observed in other successional systems (e.g. 

del Moral & Jones 2002). The general increase in species richness during the experiment might, in 

part, be an artefact of the extraordinarily dry weather in the first year of the experiment. The 2000 

drought might have caused the temporary disappearance of a number of species. Due to a lack of 

comparative data for 1999, this hypothesis cannot be evaluated. An immediate drop in species 

richness caused by severe drought followed by an increase in species richness in subsequent years is 

known from other systems, such as old-field plant communities (Tilman & El Haddi 1992), which 

are structurally very similar to this system. 
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The magnitude of increase in species density on the cover subplots was treatment-dependent. The 

increase was more pronounced in the N and NPK treatments than in the control and micronutrient 

treatments (Figure 7.2). Tilman (1993) points out the importance of the duration of a particular study 

in assessing the effects of fertiliser addition on plant diversity. A transient increase in species 

richness after fertilisation has been observed in old-field successional communities (e.g. Tilman 

1987, Carson & Barrett 1988). Tilman (1993) ascribes this effect to nitrogen-dependent germination 

of seed bank species. In this study, only a few species accounted for the more pronounced increase in 

species richness on N and NPK plots. The raw data (not shown) indicates that this stronger increase 

was caused to a large extent by a few species only, and was not only a result from species actively 

colonising more NPK and N plots, compared to control and micronutrient plots, but also of species 

being less likely to disappear from N / NPK fertilised plots. Two species, Atriplex sagittata and 

Epilobium tetragonum, disappeared from the vegetation of a remarkably large number of control and 

micronutrient plots, but from relatively few of the N and NPK plots. Two other species, Poa 

angustifolia and Conyza canadensis, managed to invade more previously unoccupied N / NPK plots 

than control and micronutrient plots. The same holds true for Galium aparine on N plots, compared 

to the other three treatments. All of these species, P. angustifolia and G. aparine excepted, more or 

less regularly occur in the seed bank of the field site (Chapter 5). Furthermore, for at least two of 

these four species, stimulation of germination by nitrate is known from the literature: the germination 

of G. aparine is markedly stimulated by application of potassium nitrate (Froud-Williams 1985); in 

the case of A. sagittata, the germination of the more common, small black seed type, which is 

characterised by a high degree of dormancy, is stimulated by moderate amounts of nitrate (Mandák 

& Pyšek 2001a). Thus, the mechanism postulated by Tilman (1993) might also play a role in the 

present study. 
 

The tendency of cover subplot evenness to increase with time (Figure 7.2) fell short of significance 

(Table 7.2). Observed patterns of evenness and species density imply that the application of N or 

NPK fertilisers has not yet induced the development of dominance hierarchies or the competitive 

exclusion of species. This underlines the conclusions drawn in Chapter 6 that abiotic stress at present 

plays a more important role on this part of the slope than biotic factors. Stephan (2001) has come to 

similar conclusions in her study. 
 

There is evidence from this experiment that the scarcity of nitrogen in the proximal part of the lower 

slope affects some species more than others and that severity of the summer drought also plays a role 

in the abiotic filtering of plant species. Thus, this experiment has produced experimental evidence in 

support of those abiotic filter mechanisms postulated in the preceding chapter. 
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8. Conclusions and directions for future research 
The research presented in this dissertation illustrates the complex dynamics of plant community 

assembly in an ecosystem degraded by industrial activities but in the process of regeneration. A 

diverse array of factors, here referred to as “environmental filters”, is involved in this assembly 

process. Most of these environmental filters vary in importance over different timescales and along 

existing spatial gradients The subject is complicated, as the overall result is more than its 

constitutuent parts: there are complex interactions between different environmental filters. Ecologists 

increasingly realise this fact (see Fattorini & Halle in press). This study does not give a complete 

account of these filter components and their interactions. Instead, a number of filters or filter 

components, deemed important at the study site in the past or at present, were selected for 

investigation. In this final chapter, the role of these factors at the Steudnitz site is discussed, some 

general remarks on the role of stress in assembly processes on derelict industrial land are made, and 

directions for future research are proposed. 

 

8.1 Plant community assembly at the Steudnitz site 
 

8.1.1 Early colonisation and priority effects 
During early colonisation of the lower slope, which was simultaneous with the amelioration of site 

conditions after closure of the fertiliser factory, no attempt was made to study seed rain originating 

beyond the site, seed bank composition at the site, or the plants growing in the vicinity of the site. In 

this study the role of the historical filter in early colonisation of the Steudnitz lower slope could 

therefore only be assessed indirectly. An existing permanent plot allowed an indirect assessment of 

the role of dispersal processes. Classification of all colonising species into two groups, according to 

their seed morphology, revealed that colonisation of species with a “plumed” seed morphology 

occurred earlier than colonisation by other species. This trend was shown to be highly significant in 

Chapter 3, despite the assumed stochastic nature of natural establishment processes on derelict land 

(e.g. Bradshaw 1987). Similar results have been obtained for the colonisation of spoil heaps in 

Britain (Grime 1986). At present, most of the suitable species from the local species pool sensu 

Zobel (1997) seem to have colonised the site already, as indicated by the number of species 

occurring at the site over recent years remaining more or less constant (see Figure 2.4). 
 

Salt tolerance of the incoming species also played a role, as demonstrated in Chapter 3 by the 

correlation between the seedling salt tolerance of 22 species and the time of their first appearance in 

the vegetation of the permanent plot. The first species colonising the site were characterised by an 

above average tolerance to salinity. In the current study, the correlation between time of first 

appearance and perceived salt tolerance was equally strong for both the species with a plumed seed 

morphology and those without. A difference between the groups would have been expected on the 
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grounds of a postulated higher probability for plumed-propagule species to immediately colonise 

sites becoming suitable as a result of decreasing soil salinity. However, only a small subset of species 

was tested with respect to salt tolerance. Also, due to the uneven distribution of plumed and non-

plumed species over the temporal gradient, early colonisers were mainly represented by plumed-

propagule species, and late colonisers mainly by non-plumed-propagule species. 
 

The high concentration of nitrate in pollutant dust samples (K. Metzner unpublished and M. Wagner 

unpublished, see Appendix 2) implies that nitrate might also have played a role in early plant 

community assembly. Two lines of evidence support this assumption. One is the high above-ground 

primary productivity measured during times of dust deposition in those Puccinellia distans stands 

dominating the most degraded part of the slope (Heinrich 1984), compared to the currently low, 

nitrogen-limited, primary production on the same part of the slope (see Chapter 7). The second line 

of evidence is the abrupt disappearance of Chenopodium rubrum following peak abundance in 1994 

(Heinrich et al. 2001). Chenopodium rubrum is a nitrophilous species characteristic of disturbed sites 

(Rothmaler 2002) and still present at high density in the seed bank (see Chapter 5). A dependance of 

C. rubrum on high nitrate levels, in the light of the presently low soil levels (Appendix 2) of this ion, 

would provide an explanation for the abrupt disappearance of this plant species. Puccinellia distans, 

despite being the most abundant species in the soil seed bank (Chapter 5), also no longer occurs in 

the vegetation. Disappearance from the vegetation was much less abrupt for this species (see 

Heinrich et al. 2001), implying that outcompetition by other species might have been the main reason 

for disappearance of this species at the field site. In both species, dark dormancy is likely to 

contribute to inhibition of recruitment from the seed bank and continued persistence in the seed bank 

at high densities (see Chapter 5). Seedlings of both species emerged at the field site after soil 

disturbance (M. Wagner, personal observation). 
 

In this study, priority effects resulting from an interaction between the historical filter and the biotic 

filter were not investigated. Such effects, which can lead to founder-controlled communities, are 

occasionally discussed in the context of natural revegetation of derelict industrial land (e.g. Mahn & 

Tischew 1995). Priority effects are most conspicuous in those cases where a species already present 

inhibits (sensu Connell & Slatyer 1977) colonisation by other species. Tall perennial species, with a 

strong tendency to expand by means of clonal growth and to build up a thick litter layer, are best 

geared for such an inhibition of their competitors (Grime 1979). One such species is the grass 

Calamagrostis epigejos (L.) ROTH which forms monospecific stands in lignite mining sites (Jakob 

et al. 1996). In the present study, succession at the distal end of the lower slope is arrested by dense 

stands of a different perennial grass, Elytrigia repens. In the immediate vicinity of the former 

fertiliser factory, where the lower slope permanent plot is located, this species only plays a minor 

role. In fact, none of the early colonisers on this part of the slope can be characterised as having a 
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high potential for lateral expansion. Therefore, persistent priority effects in this part of the slope, if 

they have occurred at all, were probably quite subtle. 

 

8.1.2 Currently-operating environmental filters 
Canonical Corresponence Analysis, in combination with subsequent GLM regression modelling of 

patterns of species diversity, indicates that both the abiotic filter and the biotic filter currently have 

an influence on plant community assembly at the site (Chapter 6). This is in good agreement with the 

findings of Stephan (2001). Based on CSR strategy types, she concluded that adjacent to the fertiliser 

factory abiotic stress was more important on the lower slope, whereas competition played a larger 

role on the upper slope (Stephan 2001). In the present study, there is evidence for a major role of 

competition at the distal end of the lower slope, where species density is low in spite of abiotic 

conditions being favourable for plant growth. This presumably is due to the competitive exclusion of 

other species by E. repens. 
 

In contrast, species composition of the vegetation in the proximal part of the lower slope seems to be 

primarily determined by the abiotic filter. There is some evidence that colonisation by nitrophilous 

species such as Galium aparine might be inhibited by low levels of soil nitrogen there (Chapter 7). A 

strong influence of nitrogen level on the abundance of species could be demonstrated in a nutrient 

addition experiment (Chapter 7). A number of species, among them Bromus japonicus, Epilobium 

tetragonum, Lactuca serriola and Galium aparine, responded positively to the addition of nitrogen, 

whereas other species were more or less unaffected (Figure 7.5). In the case of E. tetragonum and B. 

japonicus, this seems surprising, since both of these species mainly occur on the more nitrogen-poor 

parts of the slope (Figure 6.5). Absence of superior competitors, such as Elytrigia repens, from the 

experimental plots might be responsible for this positive response, illustrating that the realised niche 

of a species is defined by the identity of co-occurring species. In the absence of E. repens, B. 
japonicus seems to be able to occupy a wider realised niche. A strong increase of B. japonicus 

following nitrogen addition is also known from other systems (Hewlett et al. 1981). The GLM 

regression of this species, exhibiting a secondary maximum at higher nitrogen levels, also hints at 

this potential (see Figure 6.5). 
 

The influence of soil moisture on species composition, in the absence of evidence resulting from 

experimental manipulation of this factor, is best reflected in the CCA results. Axis 2 of the CCA 

model is strongly related to soil moisture (Figure 6.2), and correlation of this axis with the 

occurrence of a number of plant life history types is in good agreement with life history theory (see 

Chapter 6). Slope areas characterised by particularly low soil moisture levels are distinguished by a 

high cover of annual species, most of which are winter annuals. Winter annuals, as opposed to 

summer annuals, are capable of early colonisation of those gaps resulting from the summer drought. 

At the same time, it is ensured that the particularly vulnerable seedling stage is passed before the 
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onset of the next summer drought. In contrast, longer-lived perennial herbs and woody species are 

more predominant in areas characterised by a less extreme soil moisture regime. These results are in 

agreement with life history theory and the findings of previous studies (see Chapter 6). They also 

indicate that plant life history can be used as a trait with a predictive value regarding plant 

community assembly (sensu Keddy 1992) at the Steudnitz field site. 

 

8.2 Abiotic stress and plant community assembly in industrial ecosystems 
The Steudnitz site, like many other derelict industrial sites, was characterised by conditions for plant 

growth initially being markedly adverse. Grime (1979) defines such conditions limiting the 

production of biomass as stress. In contrast, he refers to the removal of existing biomass as 

disturbance. The high stress levels that plants are exposed to on derelict industrial land are not 

always linked to soil toxicity, as it was the case in this study. In the absence of toxicity, early stages 

of plant colonisation of freshly created raw substrates regularly are influenced by the low levels of 

available resources, including soil nutrients (e.g. Marrs & Bradshaw 1993). 
 

In the present study, the overall pattern of early plant colonisation could largely be explained without 

reference to biotic interactions (see Chapter 4). An approach including abiotic constraints on the 

entry of species into plant communities, such as the one advocated by Keddy (1992), seems to be 

more useful in the context of this and other studies on derelict industrial land characterised by high 

levels of stress sensu Grime (1979). Keddy suggests that one should base predictions about 

community assembly on species traits, which “could include morphological, physiological or 

ecological features” (Keddy 1992: 159). This was also the approach used in Chapter 4, using a 

morphological trait (adaptation to long-distance seed dispersal) and a physiological trait (salt 

tolerance at the early seedling stage). 
 

Measuring the stress tolerance of seedlings is an easy method of characterisation, and it also is likely 

to be an appropriate one. As put by Angevine & Chabot (1979: 189), “the germination of seeds and 

subsequent early growth of seedlings are not only essential phases of the life cycle of all higher 

plants, but represent periods of maximum vulnerability to physical changes in the environment and 

minimal potential for homeostatic response or physiological retrenchment.” 

This is one of the reasons why mortality risk usually is much higher in the early post-germination 

stage, compared to later stages in the life-cycle (Fenner 1987b), and why the regeneration niche is so 

important for the species composition of plant communities (see Grubb 1977). Therefore, the 

bottleneck for species colonisation in stressful habitats could lie with the ability of seedlings to 

withstand the adverse abiotic conditions in such habitats. 
 

The importance of stress tolerance for community assembly is best illustrated in systems where stress 

levels change over time. Short-term extremes of environmental conditions can cause the species 

composition of communities to undergo selection, reflecting the different capacities of species to 
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withstand these extremes. Examples from non-industrial systems include the dependance of 

floodplain meadow species composition on the duration of the spring flood (Eliashevich 1982), and 

of dry grassland community structure on the extent of droughts in summer (Hopkins 1978, Ellenberg 

1996). In the present study, it was the order of colonisation which was influenced by the gradual 

amelioration of soil conditions provided by the leaching process. Also, as in dry grassland, the 

pronounced climatic between-year variation over the duration of the study seemed to have had an 

influence on community composition (see Chapter 7). Climatic variation might also be relevant in 

other industrial ecosystems characterised by high average levels of drought stress. 
 

The importance of stress levels for community composition was previously pointed out in Grime’s 

(1979) conceptual model, providing an explanation for the relationship between total biomass and 

species density found in herbaceous vegetation by Al-Mufti et al. (1977). In this so-called “hump-

backed” model of species density, community membership in productive habitats is restricted by 

competition for light, and membership in unproductive habitats is restricted mainly by extreme 

conditions of stress and / or disturbance. Grime’s model and more recent models, specifying the 

relative importance of facilitation along stress gradients (Belcher et al. 1995, Callaway & Walker 

1997, Brooker & Callaghan 1998, Bruno et al. 2003), can be amalgamated into a simple conceptual 

community assembly model summarising how the relative importance of the abiotic stress filter, 

interspecific facilitation and competition could vary along a stress gradient (Figure 8.1). 
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Figure 8.1. Conceptual model of the relative importance of the abiotic stress filter and of plant-plant 

interactions (facilitation) and competition) for plant community assembly along a hypothetical stress gradient 

(from Wagner in press). 
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Exact curve shapes would depend on the identity or combination of stress factors particular to a 

system. The abiotic environment does not only have a direct effect on community assembly via the 

abiotic stress filter, it also has indirect effects through the modulation of biotic interactions: the 

relative competitive ability of the involved species depends on the abiotic environment, and so does 

the strength of facilitative interactions (e.g. Bruno et al. 2003). The model does not incorporate other 

factors such as disturbance, life history processes, and interactions with other biota (for these factors 

see Walker & Chapin 1987). However, it can be used to illustrate how the importance of various 

filter components during the development / recovery of industrial ecosystems varies over time. At the 

beginning, when stress levels are high, abiotic stress is the overriding factor in plant community 

assembly. The time span required for development of a mature ecosystem development varies, 

depending on the nature and initial levels of toxicity and resource deficiency. In this study, salinity 

was a major component of the abiotic filter for the first 5 years of the regeneration process (Chapter 

4). In other industrial systems, ecosystem development might be arrested for a much longer time, 

sometimes for centuries. Examples include areas contaminated by heavy metals and some mine-spoil 

substrates characterised by continuous production of acidity due to pyrite oxidation (Bradshaw & 

Chadwick 1980).  
 

At the Steudnitz site, there is some evidence that facilitation currently plays some role in the 

proximal part of the lower slope (Temperton & Zirr in press), whereas competition is not that 

relevant (Chapter 7 and Stephan 2001). In contrast, in the distal part of the lower slope, the 

ecosystem is more developed, and competitive exclusion of other species by Elytrigia repens seems 

to be a predominant force in the structuring of the plant community. The conceptual model shown in 

figure 8.1 therefore can be used for the illustration of both spatial gradients of degradation and 

temporal processes of ecosystem recovery. 

 

8.3 Directions for future research 
Due to the multitude of factors influencing plant community assembly at the Steudnitz site, this study 

can only provide a starting point for investigating the underlying mechanisms. Current, ongoing 

research is concentrated on the role of mycorrhizae in alleviating the effects of abiotic stress caused 

by nitrogen limitation and drought stress (V. Blanke, personal communication). Future research 

could, for example, focus on the further investigation of the role of soil moisture, and the correlation 

of soil moisture levels with plant life history types should be verified experimentally. Research on 

the role of biotic filters and on interactions between both biotic and abiotic filters is strongly 

advocated. 
 

Understanding of the processes underlying the vegetation patterns at the Steudnitz site could also be 

furthered by the development of simulation models. Processes relevant for assembly could be 

incorporated in such models and tested with respect to their suitability for generating patterns similar 
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to those observed in the field. This thesis, for a number of reasons, might provide the foundations for 

such a line of research: in addition to providing a description of vegetation patterns and their 

correlation with environmental variables, it has also generated hypotheses which are testable through 

simulation, and data that can be used in the parameterisation of simulation models. 



Summary 
___________________________________________________________________________________________________________________________________________________________________________________________ 

Summary 
Industrially degraded land is an anthropogenic ecosystem of growing importance. In spite of a large 
number of studies describing the vegetation of such sites, mechanisms of plant community assembly 
are still poorly understood. To gain insights into these mechanisms, this study combines descriptive 
and experimental approaches within the context of recently developed environmental-filter concepts. 
The study was carried out at the Steudnitz field site, which is the lower part of a calcareous slope 
degraded by deposition of alkaline dust emitted during operation (1957-1990) of an adjacent fertiliser 
factory. The influence of environmental filters on temporal patterns of colonisation and spatial 
vegetation patterns was investigated in four separate experiments. 
 

Order of colonisation 

• The species colonising the site after factory closure were classified according to whether they 
disperse by plumed propagules. Seedling salt tolerance was determined for a subset of species. 

• Plumed-propagule species entered the community earlier than species without this adaptation. 

• Early-successional species also were characterised by a high seedling salt tolerance. Up to 1994, 
salinity acted as a selective force upon species establishment. 

 

Soil seed bank 

• The soil seed bank was sampled in all three years of the study. 24 of the 53 species occurring in 
the vegetation were also found in the seed bank. 

• Two species no longer occurring in the vegetation, the halophytic grass Puccinellia distans and 
the herb Chenopodium rubrum, were also found in the seed bank in large numbers. Potential 
reasons for their disappearance from the vegetation are increased competition from late colonisers 
and, in the case of the nitrophilous C. rubrum, leaching-out of the nitrate supplied by previous 
dust deposition from the fertiliser factory. 

• Seed bank persistence type was determined for 26 species, including five species for which no 
previous information on persistence was available. 

 

Spatial vegetation patterns 

• Vegetation patterns were investigated by recording the visual cover of plant species in randomly 
located 1 m² quadrats. Field measurements included slope angle and soil moisture. Soil pH, 
electrical conductivity, organic matter content, total nitrogen, and plant-available phosphorus and 
potassium were determined. 

• Salinity and pH have returned to normal levels, whereas levels of plant-available phosphorus are 
still raised throughout the site. In the proximal part of the site P-availability is somewhat reduced 
by higher pH and carbonate levels, leading to permanent phosphorus fixation. 

• Thirty-one significant interspecific associations were positive, and eight were negative. Strong 
positive associations occurred between species with similar life histories. Half of the sigificant 
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negative associations involved Elytrigia repens, a perennial grass with a marked tendency for 
clonal expansion which dominates the vegetation in the distal part of the site. 

• Soil nitrogen and moisture play a major role in the structuring of plant communities. The soil 
underneath the species-poor Elytrigia grassland is characterised by high nitrogen levels and a high 
organic matter content. The ruderal communities of the proximal part of the slope occur on 
skeletal, nitrogen-poor soil. Soil moisture, which is related to small-scale variation in species 
composition, is negatively correlated with slope angle and varies independently of the large-scale 
pollution gradient. 

• Annual species, most of them being winter annuals which complete their life cycle before the 
onset of the summer drought and which in autumn are able to quickly colonise gaps created by the 
summer drought, are associated with microhabitats characterised by a great steepness and a 
tendency to dry out quickly after rainfall. Polycarpic herbs, woody species and legumes are more 
abundant on those parts of the slope characterised by a high soil moisture. Monocarpic perennials 
are most abundant at the low-nutrient end of the sampled gradient. Polycarpic grasses peak in 
abundance under nitrogen-rich conditions, fitting with the assumption of high nitrogen levels 
promoting dominance of species characterised by clonal expansion. Life history in this study is a 
trait with predictive value for community assembly. 

• Patterns of species density, evenness and higher plant total cover indicate that abiotic stress is 
more important for community assembly in the more degraded part of the site, whereas 
competitive exclusion by Elytrigia repens is more important at the distal end of the slope. 

 

Nutrient addition 

• Effects of experimental nutrient addition were assessed over the course of three years using sorted 
biomass and visual cover techniques. 

• At present, above-ground primary productivity is co-limited by soil moisture and nitrogen. 

• Increased soil nitrogen levels affects plant community structure in the thort term by strongly 
promoting a number of species: Galium aparine, Bromus japonicus, Epilobium tetragonum, 
Senecio vernalis, Artemisia vulgaris, Lactuca serriola. 

• Patterns of species diversity indicate that those changes in community structure so far do not 
result from competitive exclusion. 

Overall, dispersal limitations and salinity levels were major factors influencing the order of 
colonisation in the first few years after factory closure. At present there is still a strong abiotic filter 
acting upon species establishment and performance. This filter is mainly due to plant stress resulting 
from low levels of soil moisture and, in the proximal part of the lower slope, low soil nitrogen. The 
results of the study fit well with a conceptual model describing the relative roles of the abiotic filter 
and of competition along temporal and spatial stress gradients. 
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Zusammenfassung 
 

Industriell beeinträchtigte Flächen sind anthropogene Ökosysteme von wachsender Bedeutung. 
Obwohl eine große Zahl deskriptiver Studien  der Vegetation solcher Standorte existiert, ist wenig 
über Mechanismen des Zusammentretens solcher Pflanzengemeinschaften bekannt. Eine möglichen 
Erklärungsansatz bieten Umweltfiler-Modelle, die hier zur Interpretation einer Kombination von 
beschreibenden und experimentellen Arbeiten herangezogen werden. Untersuchungsgebiet war der 
untere Abschnitt eines Muschelkalk-Hanges, welcher durch Einträge alkalischer Stäube aus einer 
nahegelegenen Kunstdünger-Fabrik (1957-1990) beeinträchtigt wurde. Der Einfluss von 
Umweltfiltern auf die zeitliche Abfolge von Besiedlungsprozessen und auf räumliche 
Vegetationsmuster wurde in vier separaten Studien untersucht. 
 

Reihenfolge der Besiedlung 
• Die Arten, welche sich nach Stillegung der Fabrik ansiedelten, wurden hinsichtlich ihrer 

Diasporenmorphologie klassifiziert. Für einen Teil der Arten wurde die Salztoleranz der 
Keimlinge bestimmt. 

• Arten mit pappusartigen Anhängen an den Diasporen, die sie zur Fernausbreitung befähigen, 
siedelten sich rascher an als Arten ohne diese Anpassung. 

• Frühe Arten zeichneten sich durch überdurchschnittlich hohe Salztoleranz im Keimlings-Stadium 
aus. Bis 1994 wurden Etablierungsprozesse durch Bodensalinität beeinflusst. 

 

Diasporenbank 
• Die Diasporenbank in 0-10 cm Bodentiefe wurde über drei Jahre erfasst. 24 von 53 in der 

Vegetation vorkommenden Arten wurden auch in der Diasporenbank nachgewiesen. 
• Zwei aus der Vegetation verschwundene Arten, Puccinellia distans und Chenopodium rubrum, 

traten gehäuft in der Diasporenbank auf. Möglicher Grund für das Verschwinden dieser Arten ist 
verstärkte Konkurrenz durch später aufgetretene Arten. Insbesondere bei der nitrophilen Art C. 
rubrum mag auch ein Rückgang von Nitrat im Boden, welches bis 1990 durch Staubeintrag erhöht 
gewesen sein dürfte, zum Verschwinden beigetragen haben. 

• Persistenz in der Diasporenbank wurde für 26 Arten bestimmt (darunter fünf Arten, für die zuvor 
keine entsprechende Information bekannt war). 

 

Räumliche Vegetationsmuster 
• In 140 zufällig verteilten Quadraten von 1 m² Fläche wurde die Deckung der vorkommenden 

Pflanzenarten aufgenommen. Hangneigung und Bodenfeuchte wurden in situ gemessen. 
Bodenanalysen beeinhalteten Bestimmung von pH, elektrischer Leitfähigleit, organischer 
Substanz und von N (Gesamtgehalt) sowie von P und K (pflanzenverfügbare Gehalte). 

• Salinität und pH sind nicht mehr erhöht. Pflanzenverfügbarer Phosphor ist noch immer im 
gesamten UG erhöht. Nahe der Fabrik ist die P-Verfügbarkeit etwas geringer. Dies liegt an 
Fixierungsprozessen, die durch hohe Carbonat-Gehalte und den höheren pH-Wert begünstigt 
werden. 

• Einunddreißig paarweise Arten-Assoziationen waren signifikant positiv. Starke positive 
Assoziationen traten auf zwischen Arten mit einer ähnlichen Lebensgeschichte. An vier der acht 
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signifikanten negativen Assoziationen war die Quecke Elytrigia repens beteiligt, ein ausdauerndes 
Gras mit einem ausgeprägten Hang zur klonalen Ausbreitung, welches teilweise 
Dominanzbestände bildet. 

• Stickstoff und Bodenfeuchte spielen eine große Rolle für das Verteilungsmuster von 
Pflanzenarten am Hang. Artenarme Elytrigia-Bestände zeichnen sich durch hohe Bodenstickstoff-
Werte aus. Diversere ruderale Pflanzengemeinschaften in Fabriknähe treten auf rohen, durch 
Stickstoff-Armut gekennzeichneten, Böden auf. Die Bodenfeuchte, welche die kleinräumige 
Vegetationszusammensetzung beeinflusst, ist negativ mit der Hangneigung korreliert und variiert 
unabhängig vom großräumigen Belastungs-Gradienten. 

• Annuelle Arten, insbesondere Winterannuelle, welche ihren Lebenszyklus vor Beginn der 
Sommertrockenheit abschließen und in der Lage sind trockenheitsbedingte Lücken im Herbst 
rasch zu besiedeln, kommen vor allem in steilen, zur raschen Austrocknung tendierenden 
Hangbereichen vor. Iteropare krautige Pflanzen, Gehölze und Leguminosen kommen gehäuft in 
feuchteren Hangbereichen vor. Semelpare mehrjährige Kräuter sind am häufigsten in 
nährstoffarmeren Bereichen zu finden. Ausdauernde Gräser dominieren bei hohen 
Bodenstickstoff-Werten, was mit der Annahme übereinstimmt, dass zur raschen klonalen 
Ausbreitung befähigte Arten unter solchen Bedingungen zur Dominanz gelangen. 
Lebensgeschichte erweist sich im Rahmen dieser Studie als geeigneter Parameter zur Vorhersage 
der Zusammensetzung von Pflanzengemeinschaften. 

• Muster des Artenreichtums, der Evenness und der Gesamtdeckung höherer Pflanzen zeigen an, 
dass im stärker beeinträchtigen Teil des UG’s abiotischer Stress einen größeren Einfluß auf die 
Artenzusammensetzung hat, während in anderen Bereichen Konkurrenzausschluß durch die 
Quecke eine größere Rolle spielt. 

 

Düngeversuch 
• Die Auswirkungen experimenteller Nährstoffzufuhr wurden über den Zeitraum von drei Jahren 

untersucht, indem Deckung und Biomasse der Arten erfasst wurden. 
• Gegenwärtig ist die Primärproduktion durch Stickstoff und Bodenfeuchtigkeit limitiert. 
• Erhöhte N-Verfügbarkeit wirkt sich kurzfristig auf die Struktur der Artengemeinschaft aus, indem 

einige Arten stark gefördert werden: insbesondere sind dies Galium aparine, Bromus japonicus, 
Epilobium tetragonum, Senecio vernalis, Artemisia vulgaris und Lactuca serriola. 

• Diversitäts-Muster zeigen an dass diese Änderungen der Pflanzengemeinschafts-Struktur nicht 
das Resultat von Konkurrenzausschluß-Prozessen sind. 

 

Während unterschiedliche Ausbreitungsfähigkeit und Salztoleranz der Arten die Reihenfolge der 
Besiedlung in den ersten Jahren nach Werkstillegung beeinflussten, werden gegenwärtige 
Besiedlungsprozesse vor allem durch abiotischen Trockenstress (im werksnahen Bereich auch durch 
N-Mangel-Stress) beeinflusst. Die Ergebnisse der Arbeit lassen sich mit einem konzeptionellen 
Modell vereinbaren, welches die relative Rolle von abiotischem Filters und von Konkurrenz entlang 
zeitlicher und räumlicher Stress-Gradienten beschreibt. 
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Appendix 1. Air temperature and precipitation data of the University of Jena weather station. Monthly and 

annual values for the period of this study (1999 - 2002) and a reference period (1966 – 1995) are given. 

 

 1999 2000 2001 2002 1966-1995 
Air temperature [°C]      
      

annual mean 10.4 11.1 10.1 - 9.5 
mean April to June 13.7 15.3 13.1 14.0 12.9 
      

January 4.0 2.0 1.6 1.9 1.0 
February 1.6 5.3 3.5 6.2 1.5 
March 6.3 6.6 5.2 6.3 5.0 
April 9.6 11.7 8.6 8.5 8.5 
May 15.1 15.9 15.3 15.1 13.6 
June 16.3 18.4 15.5 18.4 16.6 
July 19.9 16.8 19.7 19.2 18.6 
August 17.5 19.1 19.8 19.8 17.8 
September 17.3 15.0 13.0 - 14.1 
October 9.7 11.8 13.0 - 9.8 
November 4.5 6.8 5.0 - 5.0 
December 3.5 3.8 0.7 - 2.2 
      

Precipitation [mm]      
      

annual amount 582.2 540.7 640.9 - 603.8 
April to June 151.1 104.9 136.6 141.7 190.8 
      

January 25.9 35.8 19.9 20.2 36.9 
February 46.4 47.9 26.2 67.9 33.5 
March 41.2 87.2 90.8 50.0 45.7 
April 29.9 34.3 30.6 34.2 54.4 
May 54.7 33.7 45.7 62.4 60.0 
June 66.5 36.9 60.3 45.1 76.3 
July 108.9 59.7 127.1 58.3 59.2 
August 67.3 70.2 27.0 121.3 65.5 
September 15.1 56.1 48.5 - 43.9 
October 15.5 29.4 33.2 - 41.4 
November 71.4 28.1 72.0 - 42.3 
December 39.4 21.4 59.6 - 44.6 

 

 

 

 

 

 

 A1



 

 A2

Appendix 2. Composition of dust samples from sheltered locations within the factory premises. Samples 

were collected in 1997 (Langer 2000 and K. Metzner, unpublished) and in 2000 (M. Wagner, unpublished). 

Metzner collected and separately analysed 11 samples from all over the site, Langer and Wagner pooled 

their samples prior to analysis. Data for a soil sample collected in 2002 are provided for comparison. 

 

Metzner (n=11) Wagner (n=1) Langer (n=1) soil in 2002 Factor 
median range value value  

pH 10.4 8.6 – 11.1 - 9.3  
      

texture      
sand [%] 34 (mean: 43) 2 – 85 - -  
silt [%] 14 (mean: 28) 7 – 73 - -  
clay [%] 22 (mean: 29) 1 – 71 - -  
      

anions (soluble)      
PO4

3- [mg x kg-1] 36 000 0 – 105 900 11 790 1 940 18 
SO4

2- [mg x kg-1] 13 940 460 – 96 950 22 400 - 22 
F- [mg x kg-1] 3 670 50 – 15 280 1 710 300 5 
Cl- [mg x kg-1] 1 170 200 – 23 360 2 100 - 25 
NO3

- [mg x kg-1] 570 160 – 2 160 540 - 28 
      

cations (soluble)      
Na+ [mg x kg-1] - - 58 020 123 000 140 
K+ [mg x kg-1] - - 600 610 15 
Ca2+ [mg x kg-1] - - 160 11 52 
Mg2+ [mg x kg-1] - - 58 37.5 3 
      

elements (total)      
Na [mg x kg-1] 76 400 24 210 – 104 450 - 188 000  
K [mg x kg-1] 820 500 – 9 460 - 2 700  
Ca [mg x kg-1] 94 380 49 600 – 174 850 - 151 000  
Mg [mg x kg-1] 3 370 860 – 8 250 - 4 700  
      

F [mg x kg-1] - - - 5 300  
P [mg x kg-1] - - - 53 000  
      

Cd [mg x kg-1] 4 1 – 29 - 250  
Zn [mg x kg-1] 220 160 – 540 - 120  
Mn [mg x kg-1] - - - 100  
Pb [mg x kg-1] 48 8 – 150 - 82  
Ni [mg x kg-1] 20 0.3 – 81 - -  
Cr [mg x kg-1] - - - 68  
Cu [mg x kg-1] 30 11 – 170 - 17  
As [mg x kg-1] - - - 2  
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Appendix 5. List of species present in the vegetation of the seed bank plot which were not found in the seed bank 
in any year. Species are listed in alphabetical order. In brackets information on percent cover: 3 yr. mean value 
given in bold, followed by values for the single years 2000, 2001 and 2002. – indicates absence from the 
vegetation in a given year. 
 
Acer campestre (< 0.05 | < 0.05, < 0.05, < 0.05), Anthemis tinctoria (0.1 | < 0.05, 0.1, 0.3), Bromus erectus 
(< 0.05 | -, -, < 0.05), Bromus japonicus (0.9 | 0.8, 0.9, 0.9), Carduus crispus (< 0.05 | -, < 0.05, -), Cirsium 
arvense (< 0.05 | < 0.05, < 0.05, < 0.05), Cornus sanguinea (< 0.05 | < 0.05, < 0.05, < 0.05), Crepis biennis 
(< 0.05 | -, < 0.05, 0.1), Daucus carota (0.1 | -, < 0.05, 0.2), Elytrigia repens (0.2 | 0.2, 0.2, 0.2), Erophila 
verna (< 0.05 | < 0.05, < 0.05, -), Falcaroa vulgaris (< 0.05 | < 0.05, < 0.05, < 0.05), Festuca rubra (< 0.05 | -, 
< 0.05, < 0.05), Fraxinus excelsior (0.1, < 0.05, 0.1, 0.1), Galium aparine (0.1 | 0.2, 0.1, < 0.05), Geum 
urbanum (< 0.05 | -, -, < 0.05), Hieracium piloselloides (< 0.05 | < 0.05, < 0.05, < 0.05), Lepidium ruderale 
(< 0.05 | < 0.05, -, -), Myosotis arvensis (< 0.05 | < 0.05, < 0.05, < 0.05), Poa nemoralis (< 0.05 | < 0.05, -, -), 
Prunus avium (< 0.05 | -, < 0.05, -), Rosa canina (0.2 | 0.2, 0.1, 0.2), Saxifraga tridactylites (0.1 | < 0.05, < 
0.05, 0.2), Sedum maximum (< 0.05 | < 0.05, < 0.05, < 0.05), Torilis japonica (< 0.05 | < 0.05, < 0.05, < 0.05), 
Trifolium campestre (0.1 | -, 0.1, 0-3), Veronica arvensis (0.1 | < 0.05, 0.1, 0.1), Vicia angustifolia (0.1 | < 
0.05, < 0.05, 0.2), Vicia tetrasperma (< 0.05 | -, -, < 0.05) 
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Appendix 6. Abbreviations of species used in constellation diagrams (Chapter 6) and ordination biplots (Chapters 
6 and 7). 
 
 
Anthemis tinctoria    ant.tin 
Arenaria serpyllifolia   are.ser 
Arrhenaterum elatius   arr.ela 
Artemisia vulgaris    art.vul  art_vul 
Atriplex sagittata    atr.sag  atr_sag 
Bromus japonicus    bro.jap  bro_jap 
Carduus acanthoides   car.aca 
Carduus crispus     car.cri 
Cerastium glutinosum   cer.glu 
Cerastium holosteoides   cer.hol cer_hol 
Cirsium arvense     cir.arv  cir_arv 
Cirsium vulgare     cir.vul  cir_vul 
Clematis vitalba     cle.vit 
Conyza canadensis    con.can 
Cornus sanguinea    cor.san 
Crepis biennis     cre.bie 
Daucus carota     dau.car 
Descurainia sophia    des.sop 
Elytrigia repens     ely.rep ely_rep 
Epilobium angustifolium  epi.ang 
Epilobium tetragonum   epi.tet  epi_tet 
Erophila verna     ero.ver 
Fallopia convolvulus   fal.con 
Festuca arundinacea   fes.aru 
Festuca rubra     fes.rub 
Fraxinus excelsior    fra.exc 
Galium aparine     gal.apa gal_apa 
Galium mollugo     gal.mol 

Hieracium piloselloides  hie.pil 
Inula conyzae     inu.con inu_con 
Lactuca serriola     lac.ser  lac_ser 
Myosotis arvensis    myo.arv 
Pastinaca sativa     pas.sat 
Picris hieracioides    pic.hie  pic_hie 
Poa angustifolia     poa.ang poa_ang 
Poa compressa     poa.com poa_com 
Poa trivialis      poa.tri 
Rosa canina      ros.can 
Rumex crispus     rum.cri 
Sambucus nigra     sam.nig 
Scrophularia nodosa   scr.nod 
Senecio vernalis     sen.ver sen_ver 
Senecio vulgaris     sen.vul 
Solidago canadensis   sol.can 
Sonchus arvensis    son.arv 
Taraxacum officinale   tar.off  tar_off 
Thlaspi perfoliatum    thl.per 
Torilis japonica     tor.jap 
Urtica dioica      urt.dio 
Verbascum lychnitis   ver.lyc 
Verbascum thapsus    ver.tha 
Veronica arvensis    ver.arv 
Vicia angustifolia    vic.ang 
Vicia hirsuta      vic.hir 
Vicia tetrasperma    vic.tet 
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Appendix 7. Summary of GLM regression models selected for pattern of species density, evenness, total cover of 
higher plants and of bryophytes, proportional cover of six plant life history categories. The type of the selected 
model is indicated (L = linear; Q = quadratic without interaction term; C = cubic without interaction term; QI = 
quadratic with interaction term; CI = cubic with interaction term) and fitted model quality is summarised on the 
basis of a deviance-based F-ratio test (ter Braak & Šmilauer 2002). Further details in the text. 
 

Modelled Parameter Unit Selected 

model 

Null 

model d.f.

Model 

residual d.f. 

F-

ratio 

P 

Species Density no. × m-2 Q 139 135 17.34 < 0.000001

Evenness F2,1 Ratio (Alatalo1981) Q 139 135 3.53 0.008979 

Higher Plant Cover % QI 139 134 46.47 < 0.000001

Moss Cover % Q 139 135 21.78 < 0.000001

Annuals % Higher Plant Cover Q 139 135 8.48 0.000004 

Monocarpic Perennials % Higher Plant Cover L 139 137 12.13 0.000014 

Polycarpic Herbs % Higher Plant Cover CI 139 130 9.17 < 0.000001

Polycarpic Grasses % Higher Plant Cover CI 139 130 13.73 < 0.000001

Woody Plants % Higher Plant Cover CI 139 130 3.15 0.001786 

Legumes % Higher Plant Cover C 139 133 4.42 0.000414 
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Appendix 8. Summary of GLM regression models selected for patterns of abundance of individual species, 
expressed as percent cover. Only the most common species occurring in ≥ 10 quadrats are included in the 
analysis. The type of the selected model is indicated (N = null model; L = linear; Q = quadratic without interaction 
term; C = cubic without interaction term; QI = quadratic with interaction term; CI = cubic with interaction term) 
and fitted model quality is summarised on the basis of a deviance-based F-ratio test (ter Braak & Šmilauer 2002). 
Species for which model significance could not be achieved by any model are highlighted by bold script. Further 
details in the text. 
 

Modelled Species Number of 

occurrences

Selected 

model 

Null model 

d.f. 

Model 

residual 

d.f. 

F-

ratio 

P 

Artemisia vulgaris 109 QI 139 134 2.48 0.035213 

Elytrigia repens 90 CI 139 130 19.53 < 0.000001 

Epilobium tetragonum 84 QI 139 134 4.22 0.001345 

Inula conyzae 82 Q 139 135 3.63 0.007705 

Lactuca serriola 82 Q 139 135 7.08 0.000033 

Cirsium vulgare 78 C 139 133 3.58 0.002530 

Picris hieracioides 74 CI 139 130 6.63 < 0.000001 

Atriplex sagittata 73 CI 139 130 4.69 0.000021 

Galium aparine 62 L 139 137 6.22 0.002593 

Senecio vernalis 56 Q 139 135 3.70 0.006794 

Poa compressa 45 L 139 137 5.58 0.004695 

Bromus japonicus 44 C 139 133 6.41 0.000006 

Poa angustifolia 42 CI 139 130 4.76 0.000018 

Cerastium holosteoides 30 N 139 - - - 

Cirsium arvense 29 L 139 137 4.12 0.08301 

Taraxacum officinale 22 Q 139 135 6.53 0.000078 

Verbascum lychnitis 18 C 139 133 5.11 0.000095 

Carduus crispus 17 L 139 137 4.00 0.020471 

Thlaspi perfoliatum 17 Q 139 135 2.92 0.023530 

Torilis japonica 16 L 139 137 3.92 0.022127 

Urtica dioica 11 QI 139 134 3.45 0.005745 

Sonchus arvensis 10 N 139 - - - 

Vicia hirsuta 10 N 139 - - - 
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Appendix 9. Soil parameters for the treatments of the nutrient addition experiment. Means ± standard deviation 

are given (n = 6). 

 
 control micronutrients N NPK 
 1999 2002 1999 2002 1999 2002 1999 2002 
pH 8.09 ± 0.13 7.94 ± 0.07 8.03 ± 0.13 7.97 ± 0.14 8.21 ± 0.14 7.97 ± 0.09 8.05 ± 0.13 7.88 ± 0.06
L.O.I. [%] 6.26 ± 0.27 6.48 ± 0.99 5.76 ± 0.85 5.74 ± 1.39 6.03 ± 0.41 6.39 ± 0.66 5.97 ± 0.81 5.99 ± 0.86
Ntotal [%] 0.12 ± 0.03 0.12 ± 0.05 0.10 ± 0.02 0.11 ± 0.04 0.12 ± 0.03 0.13 ± 0.04 0.11 ± 0.03 0.13 ± 0.06

PCAL [g × kg-1] 4.14 ± 1.41 4.51 ± 1.78 3.69 ± 1.17 2.94 ± 1.38 4.75 ± 0.98 5.14 ± 1.78 5.09 ± 2.22 4.44 ± 2.69

KCAL [g × kg-1] 0.34 ± 0.15 0.33 ± 0.15 0.28 ± 0.14 0.32 ± 0.23 0.40 ± 0.12 0.43 ± 0.12 0.35 ± 0.14 0.44 ± 0.14
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