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Zusammenfassung. Die vorliegende Arbeit untersucht die Stabilität dichte-

getriebener Strömungen in heterogenen porösen Formationen. Dichte-getriebene

Strömungen entstehen durch Unterschiede im Salzgehalt oder der Temperatur in-

nerhalb eines Fluids. Solche Strömungen treten in vielen Situationen auf wie et-

wa bei Sickerwasserbewegungen in Deponien oder nuklearen Endlagerstätten, beim

Wärmetransport in geothermischen Systemen, bei Salzwasser-Intrusionen in

Küstengebieten oder in der Erdölindustrie. Sie berühren viele praktische Anwen-

dungen und deshalb kommt ihrer Untersuchung eine große Bedeutung zu.

In Abhängigkeit von der Richtung der dichte-bedingten Schichtung bezüglich der

Strömungsrichtung treten stabile oder instabile Systeme auf. In diesem Sinne bedeu-

tet “Stabilität” das Fehlen von ständigem Nachfließen eines Fluids in ein anderes.

Andererseits ist unter “Instabilität” das kontinuierliche erratische Verdrängen eines

Fluidkörpers durch einen anderen entlang einer Grenzfläche zu verstehen, das zur

Ausbildung des Finger-Phänomens führt. Im Allgemeinen weist diese Finger-Bildung

auf die Ausbreitung und das stetige Anwachsen kleiner Turbulenzen hin, die in das

System durch physikalische Größen wie die Konzentration eingeführt werden. Bei

der Modellierung dichte-getriebener Systeme können Instabilitäten auch numerische

Ursachen haben, etwa wegen der Verwendung ungeeigneter numerischer Verfahren,

einer ungenügenden Gitterverfeinerung oder (zu) großer Zeitschritte.

Instabile Systeme können zum Beispiel auftreten, wenn ein salzhaltiges Fluid ein

salzärmeres überlagert, wenn eine viskose Flüssigkeit von einer Flüssigkeit mit ei-

ner höheren Viskosität verdrängt wird oder wenn ein kälteres Fluid ein wärmeres

überlagert. Zusätzlich zu diesen Fluideigenschaften beeinflussen auch die Merkma-

le des Mediums wie Dispersion oder Heterogenität die Stabilität dichte-getriebener

Strömungen. Insbesondere die Dispersion verwischt die Lösungswolke des transpor-

tierten Stoffs, wenn sie orthogonal zur Richtung der Finger-Ausbreitung auftritt. Da-

durch verringern und stabilisieren sich die Konzentrationsgradienten, während He-

terogenitäten das System stabilisieren oder auch destabilisieren können. Die dichte-

bedingte Schichtung durch Salinitätsunterschiede wird in dieser Arbeit dargestellt.

Die notwendigen Gleichungen für die Untersuchung wurden hergeleitet, indem die

i



Homogenisierungs-Theorie (Entwicklung 2. Ordnung) auf die Gleichung des

Lösungstransports angewandt wurde. Diese Theorie ist ähnlich wie die Volumen-

mittelung ein Upscaling-Verfahren, genügt aber zusätzlich strikten mathematischen

Beweisen der Existenz und Eindeutigkeit von Lösungen. Man erhält allgemein fol-

gende drei Gleichungen: die Verträglichkeitsbedingung zeigt die Unabhängigkeit ma-

kroskopischer Größen von kleinen Skalen, die Gleichung für kleine Skalen drückt

die mikroskalige Veränderung einer Interessensgröße (in unserem Fall des Massen-

anteils) aus und die homogenisierte Gleichung enthält den hochskalierten Tensor

(in unserem Fall die Makrodispersion) als eine Funktion mesoskaliger Variablen (in

unserem Fall sind dies der gelöste Stoff, die Geschwindigkeit und die Zeit).

Die Untersuchungen wurden in einem heterogenen Medium derart durchgeführt, daß

die individuellen Einflüsse durch die Fluidmerkmale einerseits und die Mediumsei-

genschaften andererseits isoliert werden konnten. Ausgehend von der kleinskaligen

Gleichung wurde ein Stabilitätskriterium für Strömungen in einem heterogenen Me-

dium aus der zeitlichen Entwicklung des Lösungstransports abgeleitet. Die Lösung

der kleinskaligen Gleichung hatte die Form ω1(t) = ω1(0) exp(−Λt), wobei ω1 die

mesoskalige Lösung, t die Zeit und Λ eine Funktion ist, die den Dispersionstensor

und die Einflüsse der mesoskaligen Lösung auf die Geschwindigkeitsfluktuationen

enthält. Offensichtlich wächst ω1 mit zunehmender Dauer unbegrenzt an oder ver-

ringert sich - je nach Vorzeichen von Λ, der Stabilitätszahl. Unbegrenztes Wachstum

nach kleinen Störeinflüssen weist auf instabile Systeme hin. Der Ausdruck für die

Stabilitätszahl war notwendig für das Kriterium, das intensiv durch eine variierende

Geschwindigkeit, Dichte und Viskosität zu einer bestimmten Zeit getestet wurde.

Anschließend wurde das Kriterium erweitert, um auch die bisher vernachlässigten

Dispersionseffekte zu berücksichtigen. Insbesondere untersuchten wir den Schwan-

kungsbereich der Wellenlänge von Störeinflüssen, die durch kleinskalige Diffusion /

Dispersion abgedämpft werden und ein Anwachsen der Finger unterdrücken. Eine

Stabilisierung durch kleinskalige Diffusion / Dispersion tritt innerhalb einer cha-

rakteristischen Breite auf, der Dispersions-Mischungszone. Um das zu erreichen,

wurden Verfahren zur Bestimmung einer kritischen cutoff-Wellenlänge sowie eine
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analytische Funktion zur Beschreibung der Breite der Mischungszone ausgearbeitet.

Störeinflüsse durch unterschiedliche Wellenlängen wurden als Randbedingungen der

Zuflüsse eingesetzt und die Wellenlänge, bei der die Finger-Bildung einsetzt, wurde

durch Simulationen ermittelt. Ein Ausdruck für die Breite der Mischungszone in

Termen der Dispersivitäten wurde ebenfalls hergeleitet und gefittet ! gemäß physi-

kalischer Bedingungen.

Die Variable Λ in den vorhergehenden Abschnitten wurde in Termen der (gelösten)

Rayleigh-Zahl neu erfaßt, um einen Vergleich mit früheren Arbeiten anderer Wis-

senschaftler zu ermöglichen. Die Breite der Mischungszone und die longitudinale

Komponente der Dispersion wurden verwendet, um die Rayleigh-Zahl zu berech-

nen. Dies erfolgte entgegen dem herkömmlichen Gebrauch der Gebietsgröße und

des molekularen Diffusionskoeffizienten, der unkonditionierte instabile Systeme und

einen großen numerischen Wert für die Rayleigh-Zahl zur Folge hatte.

Dieser zusätzliche dispersive Teil ermöglichte eine Vorhersage an Hand der Stabi-

litätszahl, ob ein oder mehrere Finger ausgebildet würden. Die Bildung von mehr

als einem Finger weist auf eine beginnende Konvektion hin, die in direktem Bezug

zur vorherrschenden physikalischen Stabilität des Systems steht. Unsere Wahl an

Eingangsgrößen in die Berechnung der Rayleigh-Zahl führte uns zu der Schlußfol-

gerung, daß die Stabilität von vertikalen Strömungssystemen mit stark verfeinerten

Gittern und Zeitschritten durch geeignete Veränderungen der physikalischen Varia-

blen manipuliert werden könnte.

Das Kriterium wurde weiterhin ausgeweitet, um Heterogenitätseffekte des Mediums

einzubeziehen, namentlich die Varianz und die Korrelationslänge. Dies wurde durch

eine Zerlegung der effektiven Dispersivitäten des heterogenen Mediums in einen lo-

kalen Anteil des homogenen Mediums und diejenigen Anteile umgesetzt, die durch

die Heterogenität des Mediums entstehen. Die Untersuchung bestätigte, daß die

Varianz der Heterogenität immer stabilisierend wirkt, wobei stabile Systeme nur

mit Korrelationslängen unterhalb eines gewissen cutoff-Wertes möglich sind. Die-

ser cutoff-Wert der Korrelationslänge steht anscheinend in direkter Beziehung zur

kritischen Wellenlänge der Störeinflüsse im homogenen Medium.
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Das makroskopische Transportverhalten wurde ebenfalls unter Verwendung des ho-

mogenisierten Dispersionstensors untersucht. Dies erforderte die Auswertung der im

Makrodispersionstensor enthaltenen Elemente durch die großskalige Gleichung der

Homogenisierungs-Theorie. Der Tensor ist symmetrisch mit verschwindenden Nicht-

Diagonaleinträgen. Die dominierenden Diagonal-Einträge sind Funktionen der Zeit,

der Stabilitätszahl des homogenen Mediums sowie der Varianz, der Korrelationslänge

und der Anisotropie des heterogenen Mediums.

Die Zeitabhängigkeit ermöglichte die Analyse der zeitlichen Entwicklung der Koef-

fizienten in Abhängigkeit von Veränderungen anderer Variablen. Insbesondere das

Verhalten des Longitudinal-Koeffizienten lieferte nützliche Informationen hinsicht-

lich der Stabilität des Systems: stabile Systeme weisen asymptotische Koeffizienten

auf, während instabile Systeme durch infinitesimal anwachsende Koeffizienten cha-

rakterisiert sind. Die asymptotischen Longitudinal-Koeffizienten zeigten auch den

approximierten Schwankungsbereich von Dichteunterschieden, die durch die Hete-

rogenitäten des Mediums stabilisiert wurden.

Die numerischen Simulationen wurden mit Hilfe des Software-Pakets d3f durch-

geführt. Feine Gitter (mindestens 831488 Elemente) und Zeitschritte (0,125 Stun-

den) wurden verwendet, die zu Pe ≈ 1, 4× 10−2 beziehungsweise zu Cr ≈ 5× 10−5

führten. Auf diese Weise wurde die Stabilität der numerischen Lösung ohne die

Anwendung von Upwind-Verfahren sichergestellt, was eine künstliche Diffusion ein-

bringen würde.

Zusammenfassend läßt sich sagen, daß die Stabilität dichte-getriebener Strömungen

sowohl in Abhängigkeit von den Fluid- als auch den Mediumseigenschaften unter-

sucht wurde unter Verwendung von Gleichungen, die aus der Homogenisierungs-

Theorie und den zugrundeliegenden Entwicklungen 2. Ordnung abgeleitet wurden.

In homogenen Medien kommt der Dichte, der Topologie der Poren und der kleins-

kalgen Diffusion / Dispersion die hauptsächliche Bedeutung zu. Dies wiederum be-

einflußt die Breite der Mischungszone und den Schwankungsbereich der Wellenlänge

der Störeinflüsse, die zur Finger-Bildung führen können. Für heterogene Medien

sind zusätzlich die Varianz und die Korrelationslänge von Bedeutung. Ein Bezug
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zwischen der Stabilität und der Anzahl der gebildeten Finger wurde erarbeitet. Auf

diese Weise ist es nun möglich, an Hand des Stabilitätskriteriums zu beurteilen,

ob ein System diffusiv oder konvektiv ist und ob konvektive Systeme stabile oder

instabile transiente Lösungen haben.
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Summary. This thesis deals with the stability of density-driven flows in

heterogeneous porous formations. Density-driven flows arise from differences in

salinity or temperature within a fluid body. Such flows occur in many practical cases

like leachate migration at normal and nuclear waste repositories, heat transport in

geothermal systems, salty-water intrusion in coastal aquifers and in the petroleum

Industry. They thereby cut across many practical applications and their study is of

immense practical importance.

Depending on the direction of density stratification in relation to flow, the system

can be stable or unstable. Stability in this sense means the absence of continuous

etching of one fluid body into another. Instability on the other hand is the contin-

ued erratic displacement of one fluid body by another along the common interface,

leading to the fingering phenomenon. Fingering generally indicates the propagation

and continued growth of small disturbances introduced in the system via physi-

cal variables like concentration. In modelling density-driven systems, instabilities

may also be numerical because of inappropriate numerical schemes, insufficient grid

refinement or large time steps.

Systems are in general unstable when a more saline fluid overlays a less saline or

when a less viscous fluid displaces a more viscous one or when a cooler fluid overlays

a warmer one. In addition to those fluid properties, medium properties namely the

dispersion and medium heterogeneity also play important roles in determining the

stability of density-driven systems. Dispersion especially when acting orthogonal to

the direction of finger propagation smears out the solute, thereby diminishing con-

centration gradients and stabilising while heterogeneities can stabilise or destabilise

systems. The density stratification from salinity differences will be presented in this

work.

The necessary equations for the study were derived by applying homogenization

theory (2-scale expansion) to the solute transport equation. The theory is similar

to volume averaging as an upscaling technique but can additionally satisfy rigor-

ous mathematical proofs of existence and uniqueness of solutions. The following

three equations (in general) result: the compatibility condition showing the inde-
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pendency of the macroscopic quantities from small scales, the small-scale equation

that expresses the small-scale variation of the variable of interest (in our case the

mass fraction) and the homogenized equation that contains the upscaled (in our case

macrodispersion) tensor as a function of the mesoscale variables (solute, velocity

and time in our case).

The studies were conducted on a heterogeneous medium in such a way that the

individual contributions from the fluid and medium properties could be isolated.

Starting with the small-scale equation, a stability criterion for flow in a homogeneous

medium was derived from the temporal evolution of the solute. The solution to

the small-scale equation was in the form ω1(t) = ω1(0) exp(−Λt), where ω1 is the

mesoscale solute, Λ a function containing the dispersion tensor and the contribution

of the mesoscale solute to the velocity fluctuations and t the time. Clearly ω1(t)

grows indefinitely with time or decays to zero depending on the sign of Λ, the

stability number. Indefinite growth with time after small perturbations is indicative

of unstable systems. The expression for the stability number was the statement of

the criterion, which was tested extensively by varying velocity, density and viscosity,

one at a time.

The criterion was then extended to include the neglected dispersive effects. Essen-

tially we analysed the range of perturbation wavelengths that could be damped out

by small-scale diffusion/dispersion and prevented from growing into fingers. Sta-

bilisation by small-scale diffusion/dispersion occurs within a certain characteristic

width, the dispersion mixing zone. To that end, methods of determining the critical

(cutoff) wavelength as well as an analytical function for the mixing zone width were

devised. Perturbations of differing wavelengths were imposed as inflow boundary

conditions and the wavelength at which fingering started were readily obtained from

simulations. An expression for the mixing zone width in terms of the dispersivities

was also derived and fitted subject to physical constraints.

The Λ in the preceding paragraphs was reformulated in terms of the (solutal)

Rayleigh number to enable comparison with earlier work by other researchers. The

mixing zone width and the longitudinal dispersion were used to compute the Rayleigh
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number. This was contrary to the traditional use of the domain size and molecu-

lar diffusion coefficient that result in unconditionally unstable systems and a big

numerical value of the number.

With the dispersive part added, it was possible to predict from the stability number

whether one or more fingers formed. The formation of more than one finger indicates

the onset of convection, which is directly related to the prevailing physical stability

of the system. Our choice of inputs into the Rayleigh number led to the conclusion

that with highly refined grids and time steps, the stability of vertical flow systems

could be manipulated by appropriate variations in physical variables.

The criterion was further extended to include medium heterogeneity effects, namely

the variance and correlation length. This was done by decomposing the effective

heterogeneous-medium dispersivities into the local from the homogeneous medium

and the increments caused by the medium heterogeneity. The study confirmed

that heterogeneity variance always stabilises while stable systems are only possible

with correlation lengths below a certain cutoff value. The cutoff correlation length

appeared to have a direct relationship to the critical perturbation wavelength in the

homogeneous medium.

The macroscopic transport behaviour was also studied using the homogenized dis-

persion tensor. This required the evaluation of the elements in the macrodispersion

tensor contained in the large-scale homogenization-theory equation. The tensor is

symmetrical with zero off-diagonal elements. The leading diagonal elements are

functions of time, the homogeneous-medium stability number; and the heteroge-

neous medium variance, correlation length and anisotropy.

The time dependency enabled the temporal evolution of the coefficients to be studied

subject to changes in other variables. The behaviour of the longitudinal coefficient in

particular provided useful information regarding the stability of the system: stable

systems had asymptotic coefficients while unstable systems had infinitely growing

coefficients. The asymptotic longitudinal coefficients also indicated the approximate

range of density contrasts stabilised by medium heterogeneities.
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The software package d3f was used for the numerical simulations. Fine grid (atleast

831488 elements) and time steps (0.125 hours) were used resulting in

Pe ≈ 1.4 × 10−2 and Cr ≈ 5 × 10−5 respectively. These ensured stability of the

numerical solution without applying upwind techniques, which introduce artificial

diffusion.

In summary, the dependency of density-driven flow stability on both fluid and

medium properties was investigated using equations derived using homogenization

theory and the underlying 2-scale expansions. For homogeneous media, the density,

pore topology and small-scale diffusion/dispersion play the principal role. These

determine the size of the mixing zone and the range of perturbation wavelengths

that can persist into fingers. For heterogeneous media, the variance and correlation

lengths additionally play important roles. A link between stability and the number

of fingers was also established. It is now possible to tell from the stability criterion

if the system is diffusive or convective, and whether the convective systems have

stable or unstable transient solutions.
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List of symbols

Symbol Description Units

p Pressure N ·m−2

ρ(ω) Density kg ·m−3

ρ0 Density of pure water kg ·m−3

ρmax Maximal density of saline solution kg ·m−3

α Maximum relative density coefficient

ω Solute mass fraction

ωmax Maximal mass fraction

g Gravitational acceleration m · s−2

µ Viscosity Pa · s

µ0 Viscosity of pure water Pa · s

β Maximum relative viscosity coefficient

k Permeability tensor m2

φ Porosity

X unscaled spatial variable m

L Large scale spatial variable m

l Small scale spatial variable m

x Dimensionless macroscale spatial variable

y Dimensionless mesoscale spatial variable

ε l/L

t Dimensionless temporal variable corresponding to L

τ Dimensionless temporal variable corresponding to l

t̂ unscaled time s

χω Solution to the cell problem

q Spatial variable in Fourier space

u Darcy velocity m · s−1

v ρ(ω)u/φ Linear momentum of flow kg ·m−3 ·m · s−1

v0 Average macroscopic velocity kg ·m−3 ·m · s−1

ṽ Velocity fluctuations kg ·m−3 ·m · s−1
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List of symbols

Symbol Description Units

v0 Total downward velocity kg ·m−3 ·ms·−1

vp0 Pressure-driven velocity component kg ·m−3 ·m · s−1

vg Total gravity-driven velocity kg ·m−3 ·m · s−1

vg0 Gravity-driven velocity component kg ·m−3 ·m · s−1

a −vg0/v
p
0

ω1(q) Mesoscale mass fraction

k̃(q) Permeability heterogeneity m2

M(q) Dependency of ṽ on ω1(q) kg ·m−3 ·m · s−1

L(q) Dependency of ṽ on k̃(q) kg ·m−3 ·m · s−1

G Large scale concentration gradient −

Λo Stability number for flow orthogonal to gravity

Λp Stability number for flow parallel to gravity

D Dispersion tensor m2 · s−1

Deff Macrodispersion tensor m2 · s−1

Dm Molecular diffusion coefficient m2 · s−1

D‖, D⊥ Longitudinal, transverse dispersion m2 · s−1

D? ρ(ω)D/D‖ kg ·m−3

α‖, α⊥ Longitudinal, transverse dispersivity m

Pe Péclet number

Cr Courant number

ei Unit vector in the i principal direction, i = 1, 2 or 3

d Number of spatial dimensions

λ Perturbation wavelength m

λcrit Critical wavelength m

ζ Mixing zone width m

Ra Solutal Rayleigh number -

Ra‖ Longitudinal solutal Rayleigh number -

λh, λv Horizontal, vertical correlation lengths m

xii



List of symbols

Symbol Description Units

ξ λh/λv Anisotropy ratio

εj Integral scale in direction j

κ
LGn

D‖ρ(ω)

Θ
4πκε1ξv0σ

2
f

k̄2
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“What we have to learn to do,

we learn by doing.”

by Aristotle
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Chapter 1

Introduction

1.1 Motivation

The quest for energy is one of the main factors fuelling the un-sustainable exploita-

tion of natural resources. Coal and hydropower drove the industrialisation of many

nations but with climate change and the environmental problems related to coal,

both have become less appealing in many parts of the world. Many developing na-

tions like China, India, Iran and South Africa are looking at nuclear energy to drive

their industrialisation, while the developed Norway, Denmark, Sweden and Ger-

many are moving away from nuclear and venturing into greener alternatives. The

radioactive refuse from nuclear plants requires very careful handling and its disposal

in deep salt formations is overly expensive. Communities living in the vicinity of

the repository sites e.g. Gorleben in Germany fiercely resist the continued deposition

of nuclear waste in their localities. The detailed interactions between the nuclear

material and the ambient aquifer systems are not clearly understood.

The deposition of waste generally changes the physical properties of aquifer systems

i.e. the resident groundwater density, viscosity (and temperature in case of nuclear

waste). The dissolution of solutes leads to systems in which flow and transport pro-

cesses are purely driven by the density differences. In such density-driven systems

the interface between regions with different densities can typically break down as a
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result of the complex exchange of fluid between regions of different solute concentra-

tions. The exchange can lead to the fingering phenomenon and the system is then

said to be unstable.

Fingering alters both the flow velocity and mass of solute transported. The quantity

of species transported have been found to exceed those predicted with passive trac-

ers. The enhanced transport in density-driven systems invalidates break-through

time predictions. For example a 15-day retention period was traditionally required

for microorganisms to remove pathogenic bacteria like E-coli from groundwater. The

15-day retention periods were used to map out safe drinking water zones around con-

tamination sources like barns on farms. The time is appreciably shorter in unstable

density-driven systems and the rule is invalidated.

Research into density-driven phenomena was pioneered by Lord Rayleigh and later

by Elder (1967), whose inspiring work has become a standard against which exten-

sions are benchmarked. The flow and transport processes in density-driven systems

are strongly coupled. Further research in the field was hampered by the limited

computed resources and the absence of appropriate numerical codes. Robust codes

(see list in Kolditz, Ratke, Diersch and Zielke (1998)) only became available in the

1980’s and the field has attracted increasing attention ever since.

Dimensionless numbers were used to demarcate the stability regimes of density-

driven systems. Even then, there is no known stability criterion that can make use

of physical variables to predict the onset of fingering in density-driven systems. This

work is a derivation and testing of such a criterion. A combination of both fluid

and medium properties will be investigated. Viscosity and dispersion are known

to stabilise while the density and temperature destabilise. The flow velocity can

also stabilise or destabilise according to its direction in relation to finger develop-

ment. The medium heterogeneity is known to stabilise through increased mixing

but also destabilise if for example the arrangement of the permeability blocks offers

preferential flow paths.

The specific objective of this work is to derive a stability criterion that quantifies

the effects of density, viscosity, dispersion and medium heterogeneity and use the
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criterion to predict the onset of fingering. We intend to specifically investigate

the effects of the density contrast and the role played by dispersion lengths and

perturbation wavelengths as well as the individual medium heterogeneity properties.

These effects will be formulated into a criterion.

A medium saturated with a single liquid phase (water) in which a solute is completely

dissolved will be considered. The software package d3f (Fein and Schneider 1999)

will be used for the numerical simulations.

1.2 Outline

The remainder of this work is organised as follows: general ideas about modelling

flow and transport processes in porous media and the methodology used in this

work are presented in chapter 2. A review of previous work on stability and a

typical derivation of the flow and transport equations from the Reynolds transport

theory are also presented there.

The balance equations needed to solve a density-driven system, the state depen-

dencies, a brief review of the Oberbeck-Boussinesq approximations and an overview

of the homogenization theory are also presented in chapter 2. The current work

and its contributions, a typical implementation of a Boundary Value Problem in the

d3f program and the model setup and simulation parameters used in this work are

presented at the end of the chapter.

The application of the homogenization theory to the transport equation to derive

the small- and large-scale equations is presented in chapter 3. The treatment of

the small-scale equation to derive the stability criterion for flow in a homogeneous

medium is also given there. The definition of an optimal grid using the problem

from Schincariol, Schwartz and Mendoza (1997) is also presented there. The results

of testing the derived criterion for the effects of density, viscosity and velocity are

presented there as well. A comparison of the results obtained in this work to others

derived by invoking the Boussinesq approximation is presented at the end of the
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chapter.

The earlier criterion is reformulated in terms of a Rayleigh number and extended

to include dispersion in chapter 4. It is also there that a method is devised to

determine the critical perturbation wavelength. Basing on physical considerations,

an analytical function for the mixing zone is derived, fitted and tested. The extended

criterion is then tested for the onset of convection and subsequent development of

fingers. The effects of density and dispersivity are also tested and the results are

presented there as well.

The extension of the criterion to include medium heterogeneities is given in chapter

5. The results from testing the criterion for the effects of density, medium het-

erogeneity and dispersivity are presented there. The application of the large-scale

homogenization theory equation to study large-scale mixing is presented there as

well. The macrodispersion coefficients are derived and their temporal evolution pre-

sented for a range of physical variables. A stability criterion is finally stated at

the end of the chapter to predict the onset of unstable convection in density-driven

systems.

A discussion of results, conclusion and outlook are presented in chapter 6 while the

derivation of mathematical formulas is finally presented in Appendix A.
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Chapter 2

General Concepts and

Methodology

This chapter introduces the general ideas regarding the modelling of flow and trans-

port processes in porous media, particularly soil. Previous stability studies and the

contributions from the current work are also presented here as well as the system

of equations required to solve a density-driven system. The homogenization theory

procedure is also introduced and its application to the various equations and the

different possible outcomes briefly explained. The procedure followed in the im-

plementation of a typical problem in the d3f program is also presented and briefly

explained.

The model setups used in this work to study the different flow configurations and

the reference simulation parameters are also presented here.

Throughout the work, a medium saturated with water in which a solute is dissolved

will be considered. It is also assumed that a homogeneous liquid phase is maintained

upon dissolution and the solute neither reacts with nor adsorbs on the soil matrix.

The absence of sources and sinks is further assumed and we do not invoke the

Oberbeck-Boussinesq approximations.
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2.1 Flow and Transport in Porous Media

Porous media are generally made up of a solid matrix and a void space in which

one or more phases may reside. The void space is assumed to be interconnected

(see Bear and Bachmat (1991) for types of connectivities) without dead ends. The

ratio of the voids to the total volume is defined as the porosity of the medium.

Flow and transport processes occur within the void space at the pore scale but due

to the immense amount of data and the uncertainty regarding the individual pore

geometry and topology, the pore-scale quantities are up-scaled to another scale (Bear

and Bachmat 1991, Kolditz 2001) where measurements can be reasonably made.

The continuum hypothesis which neglects the particulate nature of matter and as-

sumes it to be continuous throughout the domain is adopted. Matter can then be

described by a set of variables that are continuous and differentiable functions in

space and time. To realise a continuum either spatial averaging (Bear and Bach-

mat 1991) or homogenization theory (Hornung 1996) techniques have to be used.

Hornung (1996) distinguishes the two methods according to their respective method-

ologies: spatial averaging uses the representative elementary volume REV while ho-

mogenization achieves the upscaling by letting the microscale vanish to zero. The

REV shown as the range r1 ≤ r ≤ r2 in Fig. 2.1 should be sufficiently large so that

the inhomogeneity of the averaged microscopic quantity vanishes but small enough

to preserve the macroscopic heterogeneity.

r

Φl

r1 r2
0

1

Φ

Fig. 2.1 The REV (Bear and Bachmat 1991)
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A rapidly oscillating real-valued function u can be smoothened by local averages of

the form 〈u〉(x) =

∫
V (x)

u(y)dy where V (x) is a neighbourhood of x of the size REV.

Homogenization theory on the other hand works with a family of functions uε,

defined on two spatial scales l and L shown in Fig. 2.2. The scales are assumed to

be well-separated L >> l and the functions uε to oscillate rapidly on l but change

slowly on L. The hydraulic conductivity and porosity are prominent examples that

exhibit such variability. A spatial parameter ε := l/L is further defined and the

problem in question considered to be part of the family of functions.

l L

Fig. 2.2 The two homogenization theory scales (Attinger 2006)

The limit u = lim
ε→0

uε is taken to be a result of the upscaling process. Homogenization

then consists of finding differential equations that the limit satisfies and proving

certain properties of the differential equations. The ability of homogenization theory

to withstand rigorous mathematical scrutiny e.g. proofs of existence and uniqueness

of solutions gives it an edge over spatial averaging.

According to (Bear and Bachmat 1991), the continuum model has the following

advantages:

i. Specifying the exact configuration of the interphase interface is not necessary

ii. It describes pore-scale processes in terms of differentiable quantities, thus en-

abling solutions to problems via mathematical analysis

iii. The mesoscale quantities are measurable and useful in practical problems.
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The continuum model and homogenization theory were used to up-scale the flow

and transport processes.

2.1.1 Description of Flow and Transport Processes

This section develops a model that describes density-driven flow and transport pro-

cesses at the macroscopic level. The model consists of constitutive relations describ-

ing the properties of the phases involved and balance equations for the species being

transported and initial and boundary conditions stated at the macroscopic level.

Reynolds Transport Theory

The observation of processes within a defined control volume enables a simplified

mathematical description of complex problems. Two approaches can be distin-

guished: the Lagrangian where the control volume moves and paths of individual

particles are tracked and the Eulerian in which the control volume is stationary. In

the latter approach, one is interested in an averaged property e.g. concentration

of a cloud of particles. The properties are assumed to be a spatial continuum and

partial differential equations can be used to describe them.

Let a fluid flow into a control volume ΩV through an area A, with velocity u, which

is in general not constant across A and not in the direction of the normal vector n.

The volume flux Q[m3/s] is defined by

Q =

∫
∂ΩV

(u · n)dA . (2.1)

By convention n points outwards and an inflow or outflow determines the sign of

the flux. Multiplying Q with the density ρ(ω) gives the mass flux
.
m [kg/s]:

.
m= ρ(ω)Q . (2.2)

This work concerns density-driven systems hence the explicit dependency of ρ on ω
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in (2.2). The mass fraction ω is the dimensionless form of concentration c [ML−3],

implemented in the software package d3f . They are related via c = ωρ(ω). The

same treatment is however valid for non density-driven systems. Generally if B is

an arbitrary extensive property1 of a flow field e.g. mass, energy or momentum, an

extensive value b = dB/dm related to the mass can further be defined. The total

amount of B in a control volume is given by

B =

∫
ΩV

bρ(ω) dΩV . (2.3)

One is usually interested in the temporal changes of B within ΩV . The contributions

are the accumulation of B within ΩV ; the in- or out-fluxes of B across the control

surfaces of ΩV and its rate of internal production (Helmig 2004). This is the Reynolds

Transport Theory which can be formulated as

dB

dt
=

accumulation term︷ ︸︸ ︷∫
ΩV

∂

∂t
(bρ(ω)) dΩV +

boundary fluxes︷ ︸︸ ︷∫
∂ΩV

bρ(ω)(u · n)dA+

sources/sinks︷ ︸︸ ︷∫
ΩV

R(bρ(ω)) dΩV . (2.4)

Equation (2.4) is only valid for control volumes that do not change in space. In case

of deformable control volumes, the relative velocity ur between the fluid and the

control volume is used instead of u. Non deformable control volumes are considered

in this work and source/sink terms are neglected.

The flux term is composed of advective and dispersive parts, which must be consid-

ered separately because of the difference in time scales over which they occur. Using

the theorem of Gauss, the flux perpendicular to a closed surface can be written as

the divergence of that flux within the volume. Furthermore, integration and dif-

ferentiation can be interchanged since the control volume does not deform (Helmig

2004).

1A property that depends on the quantity of material in a system while intensive properties
like viscosity, temperature and density do not.
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Equation (2.4) can be rewritten for a general extensive thermodynamic property as

∫
ΩV

∂

∂t
b dΩV +

∫
ΩV

∇ · j(b) dΩV = 0 , (2.5)

where j(b) is the flux within the control volume. The quantity b must be a continuous

and integrable function on Ω× (0, T ]→ R. Ω ⊂ Rd is an open subset of the physical

space in d dimensions and (0, T ] is a finite time interval. Since (2.5) holds pointwise

in the control volume, the integral signs can be dropped leading to

∂

∂t
b(k) + ∇ · j(k) = 0 , (2.6)

where k is in general any constituent in the fluid phase.

The Nabla Notation ∇

The nabla notation is a shortened way of writing multi-dimensional spatial deriva-

tives. For a scalar s and vector u in 2-D, the operator is defined by the following

respective vector and scalar (Holzbecher 1998):

∇s =


∂s

∂x
∂s

∂y

 and ∇ · u =
∂ux
∂x

+
∂uy
∂y

. The operation ∇ · u represents the dot

multiplication of vectors, thus the scalar outcome.

The Accumulation Term

Generally, the mass accumulation term in (2.6) is given by

b(k) = φρ(ω)ω(k) , (2.7)

where φ is the porosity and ω(k) is the mass fraction of the kth fluid component in the

system. k = 1 in this work. The dependency of density on salinity in density-driven

systems has to be specified before hand in order to close the system (see section

2.2.2).
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The Flux Term

The following assumptions are usually made for ground water flow (Kolditz 2001):

• advective flux by the bulk fluid flow is much larger than the sum of diffusive

and dispersive fluxes

• The inertia and convective acceleration terms can be neglected

• Macroscopic dispersive fluxes may be written according to Fick’s law.

The fluxes in the subsurface are driven by advection and hydrodynamic dispersion

and can be written as a sum

j = jadv + jdisp , (2.8)

where jadv and jdisp are the advective and dispersive fluxes respectively. The hy-

drodynamic dispersion is composed of the mechanical dispersion and molecular dif-

fusion. Depending on the nature of the system, it is usual to consider only the

predominant processes and talk about convection- or diffusion-dominated systems.

Convection-diffusion systems are also possible when both processes are relevant.

The Advective Flux

The advective flux is defined as the quantity of substance transported by mean drift

jadv = ρ(ω)ωu . (2.9)

The velocity u can be readily obtained from Darcy’s law.

The Dispersive Flux

The dispersive flux is obtained from Fick’s second law

jdisp = −φρ(ω)D ·∇ω , (2.10)
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where the dispersion tensor D is composed of the diffusive and hydrodynamic parts

and is second-order symmetric in one principal direction and another normal to it.

The tensor is implemented according to Scheidegger’s law:

D = DmI + (α‖ − α⊥)
v ⊗ v

‖v‖
+ α⊥‖v‖I , (2.11)

where I is an identity matrix, Dm the molecular diffusion coefficient, α‖, α⊥ the

respective longitudinal and transverse dispersion lengths and v = u/φ the velocity

with the norm ‖v‖ =
√

v · v.

2.2 The Stability of Density-driven Systems

Variable density flows arise in many practical applications like thermally induced

flows in deep aquifers for geothermal energy exploration, oil recovery from aquifers,

contaminant migration at normal and nuclear waste disposal facilities and concentra-

tion gradient-induced saline water intrusion in coastal aquifers. In all these systems,

salinity or temperature differences cause density stratification which drives the flow

and transport processes.

The systems are non-linear due to the coupling in the fluid flow and solute trans-

port, which makes them difficult to solve. Spatial and temporal density variations

are fundamental because many different but physically correct flow patterns may

arise (Diersch and Kolditz 2002). In particular, density-driven systems may show

unstable behaviour. A prominent example is the salty and freshwater system. If the

salty water is on top, unstable salty fingers intruding into the freshwater can be ob-

served whereas the reverse configuration shows no fingering. The first configuration

is physically unstable while the latter is stable. The derivation of criteria to predict

stability behaviour transitions in density-driven systems is still a challenge (Sim-

mons, Fenstemaker and Sharp 2001).

The phenomenon of instability can be explained physically by taking into account the

forces that act on density driven fluids at rest or in motion. They may individually

12



have stabilising or destabilising effects to the system. A stable system is in general

attained when the external forces like inertia, viscous stresses and buoyancy balance

and a state of minimum energy is reached in which no states of lower energy are

accessible. A perturbed system moves back to this stable state e.g. point A in Fig.

2.3. In contrast, the system shows unstable behaviour if states of lower energy are

accessible and an infinitesimal perturbation causes it to evolve to a different state

with lower energy e.g. point B in Fig. 2.3.

x
A

BPE

Fig. 2.3 Stable and unstable states

Viscosity dissipates the energy of a disturbance and stabilises the system. For this

reason, any bounded flow is stable if viscosity is large enough (Drazin and Reid

2004). It can also diffuse momentum, thereby some systems like parallel shear flow

show unstable behaviour although the same are stable in an inviscid fluid. Thermal

conductivity and molecular diffusion smoothen out temperature and concentration

gradients respectively and so have stabilising effects. Buoyancy forces have a desta-

bilising effect when a denser liquid lies on top of a less dense one. Boundaries

constrain the development of instabilities and the closer boundaries are the more

stable a system becomes (Drazin and Reid 2004). Boundaries can however result

into stronger shear in boundary layers, which leads to instabilities when diffused out

by viscosity.

In principle, an unstable configuration results when a denser fluid overlays a less

dense one as was already described above. However, such a system can still remain

stable if the mobility (viscosity) term does not favour finger formation (Holzbecher
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1998) or when the velocity, normal to the direction of finger development is so high

that instabilities form but have no time to grow into fingers; or when mixing from

dispersion and medium heterogeneities smoothes them out. This work attempts to

combine a number of physical variables into a stability criterion and use it to predict

the onset of fingering in density-driven systems.

In addition to physical instabilities, numerical instabilities may be introduced by

inappropriate numerical schemes. The corresponding mathematical models often

provide numerically non-unique solutions (Diersch and Kolditz 2002), which accord-

ing to Oldenburg and Pruess (1995) and Frolkovič and De Schepper (2001) arise

from insufficient grid refinement and extrapolation of the initial conditions if the

grid is not aligned with the sides of the domain. In mathematical analysis the first

step is to determine the original state of the system, which is referred to as the

basic state. In density driven flows, the basic state involves velocities, pressures and

solute concentrations. The numerical solution must satisfy the describing equations

as well as the applicable boundary conditions.

Physically, one wishes to know whether the basic state can be observed or not. If it

is disturbed even so slightly, the perturbation decays away or grows in magnitude.

Growth continues infinitely or evolves to another steady-state, which thermodynam-

ically means another state with lower energy.

2.2.1 Previous Stability Studies

Early stability studies are documented in Chang and Slattery (1986) where tribute

is paid to the pioneering works of both Lord Rayleigh and Elder. It is also mentioned

how some e.g. Wooding (1962) studied the stability of vertical miscible displacements

in homogeneous media and concluded that the interface could be stable or unstable

depending on the wavenumber. They also document how others like Perrine and Gay

(1966) wrongly concluded that instabilities could not form in homogeneous media,

while subsequent ones like Settari, Price and Dupont (1977) showed that instabilities

could form in homogeneous media provided mixing effects were sufficiently small.
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Experimental stability studies can be found in e.g. Schincariol and Schwartz (1990),

Liu and Dane (1996a) and Wang (2002) while numerical studies are documented in

Wooding (1962), Chang and Slattery (1986; 1988), Coskuner and Bentsen (1990),

Coskuner (1993), Schincariol, Schwartz and Mendoza (1994), Schincariol et al. (1997),

Kretz, Berest, Hulin and Salin (2003), Chao-Ying and Hoetzl (2004), Held, Attinger

and Kinzelbach (2005) and Kuznetsov and Nield (2008). Gravity-driven flow was

studied by Tan and Homsy (1986), Chikhliwala, Huang and Yortsos (1988), Ursino

(2000), Eliassi and Glass (2001), Dautov, Egorov, Nieber and Sheshukov (2002),

Egorov, Dautov, Nieber and Sheshukov (2003), Van-Duijn, Pieters and Raats (2004)

and Brailovsky, Babchin, Frankel and Sivashinsky (2006) whereas Pieters (2004) in-

vestigated both.

No stability criteria were developed in most of the works listed above. However, a

criterion was derived in Coskuner and Bentsen (1990) and was extended by Coskuner

(1993) to investigate the effect of domain dimensions on flow stability. The effects of

density and viscosity on macrodispersion were studied by Welty and Gelhar (1991)

who derived an expression that was later used by Kretz et al. (2003) for stability

analyses. Held et al. (2005) also derived a stability criterion for density-driven flow

that is the basis of this work.

Apart from fluid properties mentioned previously, medium properties also play a cru-

cial role in determining the stability of systems. Diffusion and small-scale dispersion

are the main stabilising mechanisms (Landman, Johannsen and Schotting 2007).

Figure 2.4 shows the origin of small-scale dispersion: variable size and orientation

of pores and non uniformity of velocity within individual pores (Holzbecher 1998,

Fetter 1999). The spreading causes a mixing zone to develop whose width increases

(a) Variable pore size (b) Pore orientation (c) Pore velocity

Fig. 2.4 The origin of dispersion (Holzbecher 1998)
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with the prevailing diffusion/dispersion, in accordance with the scale-dependency of

dispersion (Gelhar and Axness 1983, Dagan 1987; 1988; 1990, Kempers and Haas

1994, Kitanidis 1998). Flow is stable at the small scale only when the spreading (and

therefore the mixing zone) is big enough to prevent the instabilities from growing

into fingers. Even then instabilities with big enough wavelengths can still develop

into fingers. The stability of a system is thereby controlled by the perturbation

wavelength and the width of the mixing zone (Marle 1981, Simmons et al. 2001).

Most of the investigations here will be limited to downward flow, solely driven by

density differences. The stability of such systems was initially studied by Lord

Rayleigh and later by Elder (1967) whose inspirational work became a benchmark for

studying convective systems. He used the Rayleigh and other dimensionless numbers

to investigate the onset of convection in a system heated from below. Over the years,

other researchers like Oldenburg and Pruess (1995), Diersch and Kolditz (1998),

Holzbecher (1998), Kolditz et al. (1998), Oldenburg and Pruess (1998), Reeves and

Ewiera (2000), Frolkovič and De Schepper (2001), Diersch and Kolditz (2002), Jo-

hannsen (2002; 2003) have used the haline equivalent of the original thermal Elder

problem to study convection patterns caused by salinity stratification. Many of

these reported differences in fingering patterns depending on the level of grid refine-

ment and the density contrast. For sufficiently refined grids, Oldenburg and Pruess

(1995), Diersch and Kolditz (1998) and Frolkovič and De Schepper (2001) observed

comparable finger evolutions.

The solutal Rayleigh number Ras is the ratio of the destabilising buoyancy to the

stabilising viscous and dispersive forces (Simmons et al. 2001) and is approximately

400 (Oldenburg and Pruess 1995, Diersch and Kolditz 1998, Holzbecher 1998, Kolditz

et al. 1998, Oltean, Felder and Buès 2000, Johannsen 2002, Johannsen, Kinzelbach,

Oswald and Wittum 2002). Only molecular diffusion is taken into account, which is

erroneous considering the 20% density contrast and the evident convection patterns

in most of the results. The entire domain height (150m for the classical Elder

problem) is also used in the computation.

Alternative formulations for the Rayleigh number that take dispersion into account
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can be found in e.g. Schincariol et al. (1997), Reeves and Ewiera (2000) and Diersch

and Kolditz (2002). Schincariol et al. (1997) further proposed the use of a charac-

teristic length instead of the entire domain size but also pointed out the problems

pertaining to what it should actually be.

The classical haline Elder problem described above is subsequently referred to as

the Elder problem and the subscript in Ras is dropped henceforth. For the Elder

problem, Diersch and Kolditz (2002) identified 3 regimes and correspondingly 2

critical Rayleigh numbers:

i. The predominantly diffusive regime for Rayleigh numbers smaller than the

first critical, Rac1 ≈ 4π2

ii. The convective regime with stable numerical solutions for 4π2 ≤ Ra ≤ Rac2 ,

with the second critical number Rac2 in the range 240− 300

iii. The unstable convective regime for Ra > Rac2 .

Johannsen (2002) independently showed that the number of fingers evolved from

one for very small Ra to three (in some solution branches) at Ra > 300, with the

latter coinciding with the second critical number in Diersch and Kolditz (2002) for

the onset of the unstable convective regime.

Natural porous media are heterogeneous with the hydraulic conductivity showing

spatial variability. Schincariol (1998) studied the role of local scale heterogeneities

in the initiation of perturbations: how perturbations could be stabilised in certain

regions or developed into fingers in others. Swartz and Schwartz (1998) carried

out flow-tank experiments with layered media and analysed the effects of flow rate,

density contrast and permeability differences on mixing patterns of unstable flow

configurations and were able to reasonably predict the wavelengths of the ensuing

fingering patterns.

As a consequence of the conductivity heterogeneity, flow and transport processes

show spatial variability as well. A stochastic modelling approach that treats hy-

draulic conductivity as a random variable in space (Welty and Gelhar 1991, Gelhar
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1993, Kitanidis 1998, Dentz 2000, Rubin 2003, Welty, Kane III and Kauffman 2003)

is usually employed to offset the data requirements. The spatially varying conduc-

tivity field in a given aquifer is identified with one single realisation of a spatial

stochastic process defined by the ensemble of all possible realisations (Gelhar 1993,

Dentz 2000, Rubin 2003). Spatial statistical invariance or second order stationarity

is usually assumed so that the ensemble average does not depend on position but

rather on the magnitude and orientation of the vector separating any two points.

Different degrees of heterogeneities exist at different scales in heterogeneous media

and cause spreading effects similar to dispersive mixing. However unlike dispersive

mixing which is always a stabilising mechanism, heterogeneities trigger instabil-

ity formation at small scales but can promote or suppress finger formation at the

larger scales. To this end, heterogeneities may cause spreading effects that stabilise

unstable flow conditions on one hand but can also favour finger formation on the

other. This leads to the central question: under which conditions do heterogeneities

stabilise or destabilise density-driven flow?

In the case of conservative solute or tracer transport, heterogeneities cause mixing

or increased dispersivity against the local values. Several methods exist for the

determination of macrodispersion coefficients: volume averaging (Kitanidis 1998,

Wang and Kitanidis 1999); stochastic theory (Gelhar and Axness 1983, Dagan 1986;

1987; 1988; 1990, Gelhar 1993); and homogenization theory (Held et al. 2005).

The scale-dependency (increase with the travel distance) of dispersion is documented

in e.g. Gelhar and Axness (1983), Dagan (1987; 1988; 1990), Buès and Aachib

(1991), Kempers and Haas (1994), Irwin, Botz and Greenkorn (1996), Kitanidis

(1998), Attinger, Dentz, Kinzelbach and Kinzelbach (1999), Fetter (1999) and Hsu

(2003). The earlier experimental work of Irwin et al. (1996) investigated the scale

dependency of longitudinal dispersion and found that the coefficient reached an

asymptotic limit after about 20-30 hydraulic units. That conclusion was consistent

with the earlier work of Dagan (1988) who found that asymptotic behaviour was

attained after travel distances of the order of tens of conductivity scales. Dagan

(1987; 1988) and Kitanidis (1998) point out that solute transport does not neces-
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sarily satisfy the advection-diffusion equation. Dagan (1988) and Kitanidis (1998)

mention that the equation is only applicable in the asymptotic regime.

Fetter (1999) explains the scale dependence of dispersion as follows: as the flow

path becomes longer, the transported solute samples more and more variations in

conductivity. Consequently, the deviations of the velocity from the mean become

bigger, resulting in increased dispersion. If the flow path is long enough so as to

sample all possible conductivity variations, the dispersion reaches a maximum: the

asymptotic limit mentioned above.

It is also documented in e.g. Tan and Homsy (1986), Dagan (1987) and Dentz

(2000) that field-scale longitudinal coefficients are orders of magnitude larger than

those determined from experimental samples. This is also explained by the larger

heterogeneity scales encountered in natural formations.

In the numerical studies of flow and transport in heterogeneous media, the arrange-

ment of permeability zones in the domain depends on how the permeability field is

generated. Simmons et al. (2001) compared statistically random to periodic fields

and showed how unrealistic fingers developed in the latter even for favourable den-

sity and viscosity contrasts. Hsu (2003) also investigated the influence of the log-

conductivity auto-covariance structure on the macrodispersion coefficient. He com-

pared the exponential, Gaussian, spherical and linear models and reported slight

differences in the pre-asymptotic regions but no effect on the ultimate macrodisper-

sion coefficients. He concluded that non-ergodicity effects are more significant than

the log-conductivity auto-covariance functions. The stochastic method in which

non-ergodicity is implied (Dagan 1988, Attinger et al. 1999, Dentz, Kinzelbach, At-

tinger and Kinzelbach 2003) would then be the most appropriate method by which

to study dispersion.

Dentz et al. (2003) assumed a vanishing concentration at infinity and a normalised

initial concentration distribution to derive the first and second moments of the solute

distribution. The two moments can be used to characterise the solute distribution

in the domain, giving respectively the position of the centre of mass of the plume

and the squared width of the plume in a given direction at any time. The first
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time-derivative of the second centred moment was used by e.g. Kitanidis (1998) and

Dentz (2000) to obtain the effective dispersion coefficient.

Heterogeneous mixing has been studied by observing the transient evolution of the

macrodispersion coefficients (Welty and Gelhar 1991, Kretz et al. 2003, Welty et al.

2003, Held et al. 2005). It was shown in Welty and Gelhar (1991) that flow configu-

rations that favour finger formation give rise to infinitely large longitudinal mixing

under conditions of large displacement. Kitanidis (1998) used a similar argument

by imposing as boundary conditions that particles travel finite distances and square

distances in finite times. Landman, Johannsen and Schotting (2007) and Landman,

Schotting, Egorov and Demidov (2007) considered the effects of stable density con-

trasts and noted a reduction in dispersive mixing. Woumeni and Vauclin (2006)

reported big ranges in dispersivities for stable configurations in the same aquifer

due to heterogeneity and scale effects. The role of dispersion under unfavourable

density contrasts can be found in e.g. Liu and Dane (1996b), Schincariol (1998) and

Swartz and Schwartz (1998). Heterogeneity effects for viscous fingering can be found

in e.g. Tan and Homsy (1986).

Adopting the conclusions from Welty and Gelhar (1991), Landman, Johannsen and

Schotting (2007) and Landman, Schotting, Egorov and Demidov (2007), the tem-

poral evolution of the longitudinal macrodispersion coefficient can be used to infer

system stability: a coefficient that continues to grow with time represents unstable

systems while asymptotic coefficients represent stable systems.

2.2.2 The Balance and State Equations2

The formulations derived in section 2.1.1 can be used to obtain the conservation

equations for: fluid mass (2.12), solute mass (2.13) and fluid momentum or the Darcy

equation (2.14) where the inertial effects have been neglected. The Darcy equation is

in essence a balance between the driving forces due to gravity and pressure gradients

2This section is contained in Musuuza et al. (2009) doi 10.1010/adwatres.2009.01.012
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and drag forces exerted by the solid phase on the fluid phase (Pieters 2004).

∂(φρ(ω))

∂t̂
+ ∇X · (ρ(ω)u) = 0 (2.12)

∂(φρ(ω)ω)

∂t̂
+ ∇X ·

(
ρ(ω)ωu− φρ(ω)D∇Xω

)
= 0 (2.13)

u =− k

µ(ω)
(∇Xp− ρ(ω)g) .(2.14)

In the above equations, ω is the solute mass fraction [-], ρ(ω) the fluid density

[kg · m−3], φ the porosity [-], D the diffusion/dispersion tensor [m2 · s−1], u the

Darcy velocity [m · s−1], k the intrinsic permeability tensor [m2], µ(ω) the dynamic

viscosity [Pa·s], p the pressure [N ·m−2], X, t̂ the respective space and time variables

and g the gravitational acceleration [m · s−2]. The system is defined on J ×Ω where

the domain Ω ⊂ R2 and time J = (0, T ) with T the end time. Boundary and initial

conditions complete the model.

The coupling through the density ρ(ω) makes density-driven systems difficult to

solve. In fact analytical solutions for coupled systems are only known for simplified

situations (Frolkovič and De Schepper 2001). In addition to boundary and initial

conditions, state dependencies that describe the relationships ρ(ω) and µ(ω) are

required beforehand to close the system.

The available options are constant (Fein and Schneider 1999), linear (Frind 1982,

Coskuner and Bentsen 1990, Holzbecher 1998, Kolditz et al. 1998, Ackerer, Younes

and Mose 1999, Fein and Schneider 1999, Held et al. 2005, Bhadauria 2007), real (an

exponential fit of experimental data) (Manickam and Homsy 1993, Holzbecher 1998,

Kolditz et al. 1998, Fein and Schneider 1999, Diersch and Kolditz 2002, Kretz et al.

2003, Talon, Martin, Rakotomalala and Salin 2004, Ghesmat and Azaiez 2007) and

ideal (derivation based on thermodynamic considerations) (Oldenburg and Pruess

1995, Holzbecher 1998, Fein and Schneider 1999, Johannsen 2002).

To allow for smooth continuity of the work by Held et al. (2005), the linear relation-
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ships for density and viscosity were used in this work:

ρ(ω) = ρ0(1 + αω) (2.15)

µ(ω) = µ0(1 + βω) . (2.16)

In the above, ρ0 and µ0 are the density and viscosity of pure water and α and β the

coefficients defining the maximum relative density and viscosity respectively.

Other state dependencies would result in different stability numbers but simula-

tions with linear and ideal implementations showed no significant difference in the

fingering patterns.

The Oberbeck-Boussinesq Approximation

The variable-density system of equations is coupled through the dependency of ρ

on ω. Its analysis is substantially simplified by applying the Oberbeck-Boussinesq

approximation, which neglects all changes in density other than in the buoyancy

term ρ(ω)g of the Darcy equation (Nield and Bejan 1992, Holzbecher 1998, Diersch

and Kolditz 2002, Johannsen 2003). The approximation results in divergence-free

velocity (∇ · u = 0) and incompressibility, which is a common assumption in most

analytical and stability analyses. The Oberbeck-Boussinesq approximation remains

valid if the density changes remain small compared to the reference density ρ0 but

becomes invalid for large contrasts (Nield and Bejan 1992) when the isobars are

no longer orthogonal to the velocity vectors (Held et al. 2005). It was not clear

what consequences resulted when full dependencies were incorporated (Diersch and

Kolditz 2002). The full equations were implemented in this work and it will be

shown that the assumption has a stabilising effect.

2.3 The Current Work and Contributions

This work is an extension to the ideas introduced by Held et al. (2005) that applied

homogenization theory to relate mesoscale velocity and solute fluctuations. In this

22



sense, the approach is similar to local-averaging approaches as used by Chang and

Slattery (1988) and similar to other scaling analyses as presented by Coskuner and

Bentsen (1990). Pressure, solute concentration and velocity are assumed to be

perturbed at the mesoscale. The system behaviour as a response to these small-

scale perturbations is studied at the macroscale. A prerequisite for density-driven

flow through a homogeneous porous medium to be stable at large spatial or temporal

scales is the stability at small scales.

A stability criterion is derived via homogenization theory and the underlying two

scale expansions, first for a homogeneous medium without dispersion and then ex-

tended to include dispersive and medium heterogeneity effects. The small-scale

stability criterion for flow in a homogeneous medium stems from the small-scale

evolution of the mass fraction, which has the form ω1(t) = ω1(0) exp(−Λt), where

ω1(0) is the initial small-scale mass fraction, Λ the stability number and t the time.

ω1(t) decays to zero or grows indefinitely depending on whether Λ (a function of

density, viscosity, concentration gradients and the large scale velocity) is negative

or positive. Λ will be tested for the effects of density, viscosity and flow velocity in

section 3.4 for flow aligned orthogonal to gravity.

The extension to dispersive effects essentially entails the analysis of how the mixing

zone controls the spectrum of perturbation wavelengths that can develop into fin-

gers. The dispersive contribution is a function of the perturbation wavelengths, the

dispersivities and the characteristic length. A method of perturbing the inflow with

sinus functions of different wavelengths will be proposed and presented. The wave-

length at which fingering is first observed corresponds to the critical perturbation

wavelength.

By following the ideas in Kempers and Haas (1994) and physical constraints, an

analytical expression for the mixing zone is derived as a product of dispersivities.

The dispersive contribution is then a function of the perturbation wavelength and

the dispersivities.

To ease comparison with previous research, the stability number without dispersion

was reformulated in form of a Rayleigh number Ra. Unlike previous researches, the
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effects of dispersion were taken into account and the characteristic length, taken

equal to the mixing zone width was used instead of the entire domain size. These in

addition to the smaller density contrasts resulted into significantly smaller Ra than

the traditional 400 widely reported in literature. However, the phenomena observed

previously could still be reproduced.

As an example, the transition in the number of fingers documented in Johannsen

(2002) was correlated with the three regimes in Diersch and Kolditz (2002). The

two concepts were then extended to stability studies as explained in the following.

Upon reformulating the stability number Λp in terms of Ra and adding the dispersive

part, a new number Λ?
p was obtained. Λ?

p was then used to predict stability according

to the number of fingers present. Systems with one finger arise at small Ra (density

contrasts) when transport is predominantly diffusive. The absence of convection

means the systems are physically stable and are predicted with Λ?
p > 0. Gradual

increase in density contrast causes convection cells to develop. The cells result in

the formation of two fingers and from the criterion Λ?
p < 0. The change in sign of the

stability number therefore predicts the onset of convection i.e. the change from one

to two fingers. The system is however still in the stable convective regime (Diersch

and Kolditz 2002).

Further increase in the density contrast reduces the stability number further. In-

creased density contrast leads to more convection cells (Frolkovič and De Schepper

2001) whose erratic interactions lead to the formation of further fingers (Frolkovič

and De Schepper 2001). The formation of additional fingers marks the transition

into the unstable convective regime. Diersch and Kolditz (2002) explain that the

regime is characterised by many transient solutions that do not persist in time. How-

ever, the stability criterion does not predict a definite number where the transition

occurs but rather a range.

Figure 2.5 summarises the three flow regimes from Diersch and Kolditz (2002) and

the increase of Ra with density contrast (Diersch and Kolditz 2002, Johannsen 2002).

Those ideas were combined in this work whereby the computed stability number
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Ra, Elder 0 4π2 240-300

Regime Diffusive Stable convective Unstable convective

Λ?p Λ?p > 0 Λ?p < 0

Fingers 1 2 3

Fig. 2.5 Demarcation of the flow regimes by the stability criterion

could be used to infer the number of fingers (prediction of flow regime) as shown in

Fig. 2.6. The main interest was on the transition from two to three fingers: the onset
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Fig. 2.6 The relation between Λ?
p and the number of fingers

of the unstable convective regime. Stability is in the physical sense rather than the

purely mathematical. We look at finger formation and development primarily as a

consequence of changes in physical variables.

The expression for Λ?
p was modified to accommodate heterogeneity effects. Mixing

from heterogeneities increases the dispersivities against their local values. The effec-

tive heterogeneous-medium dispersivity is expressed in terms of the local homoge-

neous medium value α and the change δ(α) induced by the heterogeneous medium:

αeff = α + δ(α). The effective values are substituted into the previously derived

criterion and the products evaluated with the products of δ(α) terms neglected in

consistency with the linear perturbation theory used elsewhere in this work.

One then obtains a new stability number Λ??
p in terms of the previous Λ?

p and an

additional term which is a function of the longitudinal dispersivity in heterogeneous

media. That dispersivity has been shown in e.g. Gelhar (1993) to be the product of

the heterogeneity variance σ2 and the correlation length λv. The final expression has

the ratio σ2 : λv thus capturing the respective stabilising and destabilising effects

of variance and correlation length that can be confirmed in numerical simulations.

From the previous discussion a change in the number of fingers can be used to
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indicate the direction of stability transition.

The reduction in the number of fingers with variables that cause stabilisation of

systems was revisited. It will be shown that increasing the variance always leads to

a reduction in the number of fingers while increasing the correlation length beyond

a certain value eventually leads to the formation of the third finger. The cutoff

correlation length appeared to be related to the critical perturbation wavelength

that was obtained for the homogeneous medium.

The expression for Λ??
p is valid under conditions of complete mixing at the small scale.

If those conditions are not met, one has to study large-scale mixing by computing

macrodispersion coefficients.

The large-scale transport equation (derived via homogenization theory and contain-

ing the macrodispersion tensor) (Held et al. 2005) was used to study mixing effects

in heterogeneous media. The individual tensor elements initially evaluated to func-

tions containing diffusion and averaged products of the solution to the cell problem

(generalised small-scale equation) and the mesoscale velocity fluctuations. The so-

lutions to the cell problem were expressed as definite time integrals. The mesoscale

velocity was split into contributions from the fluctuations in the solute and medium

heterogeneity, whose separate derivations are presented in Appendices A.1 and A.2.

Carrying out the averaging operations on the tensor elements was essentially the

evaluation of integrals over the entire space and finite times. By expressing the

respective terms as Gaussian functions and neglecting molecular diffusion, the in-

tegrals could be conveniently evaluated with the software MAPLE R©: analytically

over time and then completely by numerical techniques. The evaluation gave a

symmetric tensor with zero off-diagonal elements, while the leading diagonal ele-

ments were functions of time and depicted the scale dependency mentioned in the

preceding sections.

Passive tracers were “emulated” by setting the density and viscosity effects to zero

and the trends in the computed coefficients were found to agree with those in liter-

ature. Favourable density contrasts were then investigated by arbitrarily choosing
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positive stability numbers and studying the trend in the coefficients. Much as these

scenarios were not of much interest, the following temporal evolutions of the coef-

ficients were obtained: the longitudinal and transverse coefficients respectively de-

creased and increased asymptotically with increasing stability numbers. This meant

that variables that stabilise like the heterogeneity variance were expected to produce

a reduction in the longitudinal coefficient.

From the foregoing, the longitudinal coefficient increased with system instability. It

will be shown that for moderately unfavourable density contrasts (negative stability

numbers), asymptotic longitudinal coefficients could still be obtained. This physi-

cally indicated the range of unfavourable density contrasts that were stabilised by

medium heterogeneity. With further increase in the density contrast, coefficients

that grew indefinitely with time were obtained, which was consistent with the con-

clusions from previous researchers. Additionally, increasing the correlation length

resulted in increased longitudinal coefficients, hence a reduction in system stability,

while the reverse was true for the heterogeneity variance.

The foregoing discussion pertained to isotropic media. By defining the anisotropy

ratio as ξ = λh : λv, longitudinal coefficients that reduced with the anisotropy ratio

were obtained, which was consistent with physical expectations. However, ξ is not

incorporated in the stability criterion.

In summary, homogenization theory was used to develop equations from which a

stability criterion for density-driven systems was derived. The criterion quantifies

the effects of density, viscosity, dispersion and medium heterogeneity. The criterion

adequately predicted the stability transition for systems aligned orthogonal to grav-

ity but also predicted the onset of convection in vertical systems. Previous results

about the number of fingers and flow regimes were extended to study stability. The

usual notion of unconditional instability of Elder-type systems was found not to be

entirely true.

This work also answered the question regarding when medium heterogeneity sta-

bilised or destabilised systems. Heterogeneities stabilise at large heterogeneity vari-

ances, small correlation lengths, and high medium anisotropies. The investigations
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also revealed that the critical wavelengths in homogeneous medium and the hetero-

geneity correlation length do not have a one-to-one relation.

2.3.1 Overview of the Homogenization Theory

The homogenization theory is briefly presented in this section. The link between

homogenization and stability studies is also developed and presented here. To anal-

yse the stability of a flow pattern, one essentially analyses the temporal evolution

of the small-scale interactions of the solute with the flow field and porous medium.

Due to the strong coupling between fluid flow and solute transport, perturbations in

the salt mass cause fluctuations in the flow field which may couple back and amplify

or damp the salt mass fluctuations.

Homogenization theory is a two-scale expansion technique designed to quantify the

impact of small perturbations on the large-scale behaviour of a system. This work

proposes to employ homogenization techniques to derive equations that describe the

large-scale density-driven flow and transport behaviour and to give an indication of

the system’s response to small-scale perturbations in the salt mass fraction. The pre-

sentation here is very basic and reference to standard textbooks like Hornung (1996),

Cioranescu and Donato (1999) and Pavliotis and Stuart (2007) is recommended for

details.

Two spatial scales are considered: the large scale L at which the processes are

observed and the mesoscale l related to small-scale fluctuations in the properties.

To do the analysis, two dimensionless spatial variables x and y are introduced such

that x = X/L and y = X/l, where X is the unscaled spatial variable. The ratio

between the two scales is further defined as ε = l/L, leading to y = x/ε. All

spatially varying quantities (u, p, ω) vary on x and y. Taking limits as ε → 0 and

performing an asymptotic analysis enables the derivation of the small- and large-

scale (homogenized) equations (Lunati, Attinger and Kinzelbach 2002, Held et al.

2005). The proofs of existence and uniqueness of solutions to the partial differential

equations derived in that limit make homogenization theory superior to volume
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averaging.

If D‖ and D⊥ are the respective longitudinal and transverse components of the

diffusion/dispersion tensor, the tensor in two dimensions is usually written:

D =

 D‖ 0

0 D⊥

 ,

with D⊥/D‖ � 1. By scaling diffusively two dimensionless temporal variables are

introduced: t = D‖t̂/L
2 and τ = D‖t̂/l

2 corresponding to the macro- and meso-

length scales respectively, where t̂ is the unscaled time. It follows that τ = t/ε2.

Using the chain rule of differentiation one obtains:

∇X =
1

L

(
∇x +

1

ε
∇y

)
, (2.17)

∂

∂t̂
=

D‖
L2

(
∂

∂t
+

1

ε2
∂

∂τ

)
. (2.18)

The two equations express the space and time derivatives in the respective 2-scale

dimensionless variables. In the subsequent, ∇X is written without the subscript to

shorten the notation and the assumption of well-separated scales is used such that

L� l so that ε� 1.

The 2-scale mass fraction variation, denoted by the ε superscript can be written as

an asymptotic expansion in powers of ε (Auriault 2002, Lunati et al. 2002, Held

et al. 2005):

ωε(x,y, t, τ) = ω0(x, t) + εω1(x,y, t, τ) +O(ε2) , (2.19)

where ω0(x, t) is the large-scale mass fraction and the ε superscript indicates the

variations on 2-scales. The function ω1(x,y, t, τ) is assumed to be periodic (of

period 1) in the second variable. The homogenization of the transport equation will

be presented in this work to derive the macrodispersion tensor. Homogenization of

the pressure equation for the homogenized permeability tensor can be found in Held

et al. (2005). To that end, the ω in (2.13) is expanded according to (2.19); and (2.17)

and (2.18) applied to the respective derivatives to yield an equation containing terms

with different powers of ε:
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(. . .)ε−2 + (. . .)ε−1 + (. . .)ε0 = f , (2.20)

where f contains the source/sink terms if present. By letting ε → 0 and collecting

terms with the same orders of ε, one obtains the following three equations:

i) ε−2: the compatibility condition stating the independency of large-scale solu-

tions from small scales

ii) ε−1: the small-scale equation describing the variation of the quantity of interest

at the mesoscale

iii) ε0: the large-scale equation containing the homogenized tensor as a function of

small-scale variations. Depending on whether homogenization theory is applied

to the pressure, solute transport or heat transport equation, the homogenized

permeability, macrodispersion or thermal diffusivity tensor results.

The coefficients of ε−2 and ε−1 must vanish to zero to avoid division by zero. A

detailed application of the procedure to the transport equation is presented in section

3.1.

2.3.2 Overview of the d3f Program

The program package d3f (Fein and Schneider 1999) was used for the numerical

simulations in this work. The program consists of three major parts (Johannsen et al.

2002): the preprocessor that designs the geometry and defines physical parameters

interactively; the simulator that generates the grid and solves the variable-density

system and the postprocessor that supports data extraction and visualisation.

The simulator is based on the UG software package (Bastian, Birken, Johannsen,

Lang, Neuss and Rentz-Reichert 1997). The domain is discretised by means of

unstructured meshes consisting of quadrilaterals in two dimensions. A fully im-

plicit/fully coupled solution technique for the cell-centred finite volume discretisa-

tion with consistent velocity approximation is implemented (Johannsen et al. 2002).
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The following is a brief description of the discretisation techniques for the respective

derivatives in the flow and transport equations.

The Spatial Discretisation

The code uses the cell-centred finite volume technique for the spatial discretisation

with continuous piecewise trilinear trial functions (Johannsen et al. 2002). Figure 2.7

shows a simplified construction for quadrilateral elements in 2-D. Mesh generation is

furnished by connecting the midpoints xij of the quadrilateral element edge between

nodes xi and xj with xe, the centroid of the elements e. The line segment Γeij is

then obtained while boundary segments Γbjk are obtained by connecting the nodes

and the midpoints of boundary edges (Frolkovič 1998a). It must be ensured that

inner nodes are presented first followed by boundary nodes (Knabner 2003). The

volume Vi is defined as the polygon enclosing discretisation node i. The cell-centred

T 1 T 2

Vi

Γ1
ij Γ2

ij

Γb
jk

xi

xj

xm

xk

x2
im

Fig. 2.7 Construction of the cell-centred finite volume elements

finite volume technique is locally mass-conserving (Frolkovič 1998b, Leveque 2002)

and second-order consistent for the unknowns p and ω (Johannsen et al. 2002). The

approximated solution changes only due to the boundary conditions (Reeves and

Ewiera 2000).
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The Temporal Discretisation

The implicit Euler method is used for the discretisation of the time derivatives:

∂ω

∂t
≈ ωm − ωm−1

τm
. (2.21)

ωm = ω(tm) denotes the mass fraction at any discrete time. The time is such

that 0 = t0 < t1 < . . . < tm < tm+1 < . . . , with the time step denoted by

τm = tm − tm−1, which need not be uniform (Frolkovič 1998a). An equation similar

to (2.21) can analogously be written for the pressure.

The Numerical Solution Strategy

Let for each time step tm and grid node xi the unknown mass fraction and pres-

sure are associated with the respective approximate values: ωmi ≈ ω(xi, t
m) and

pmi ≈ p(xi, t
m). A nonlinear system of algebraic equations can be derived of the

form (Frolkovič 1998a)

Fm(. . . , ωmi , . . . , p
m
i , ω

m−1
i , . . . , pm−1

i , . . .) = 0 . (2.22)

Typically the nodal values are solved by using the respective known values from pre-

vious time steps with values at m = 0 given by the initial and boundary conditions.

To have a solution that is defined for each point in the domain at all times, the nodal

values need to be interpolated using the finite element techniques (Leveque 2002).

The Galerkin Finite Element Method is implemented in the d3f program. Please

see Frolkovič (1998a) for more specific details while general discretisation techniques

and solutions to partial differential equations can be found in standard textbooks

on the subject like Knabner (2003).

Implementation of a BVP in d3f

The program package offers the possibility to implement problems using either the

graphical user interface GUI or script files. In the following, implementation using
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script files will be described. After a successful compilation of the module, the

simulator is started by invoking the tstep script. For successful execution, the

subdirectories config, data, logfiles, metas and scripts must exist and reside in the

path where the script is invoked. Their contents are briefly described now.

scripts This folder contains the script init.scr that controls the simulation. Whether

to create a new grid or use an existing one, use full equations or invoke the

Boussinesq approximation, the level of grid refinement, the time stepping, the

end time, upwind technique, the treatment of diffusion, type of smoother, the

linear, nonlinear and multi-grid solvers, the heap allocation and output-control

parameters are all set there. One has the choice to output the pressure, veloc-

ity and concentration to the screen, ppm, ps, bwps and meta devices. The

generated mesh is written in the xdr file format (see Bastian et al. (1997))

and can be viewed with the GRAPE application. When saved, the meta files

can be used to make a video by specifying the start and end files as well as

the interval. Other parameters offer total control over frame translation.

data This contains the mesh generation files named mesh xx.gn giving access to

the grid levels and the multigrid file mg.ug.mg.xdr. When the parameter in

the init.scr file is set to generate a new grid, these files are overwritten,

otherwise the existing ones are used.

logfiles This is where the output from the simulator is written in the file logfile

but is also printed on the screen. Among the logged items are the properties

of the created grid: at each level of refinement the number of vertices, nodes,

edges, elements, sides, connections and the minimum and maximum edges.

The amount of memory used from the allocated heap is also printed. Errors

are also reported if encountered.

At each time step, the pressure and mass fraction solutions, the Nusselt, Pèclet

and Courant numbers, the times required to solve the defect, Jacobi and linear

matrices as well as the total time, time step and the number of iterations for

the linear and nonlinear solvers are also logged.
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config The 5 configuration files reside here. The hydrogeology file contains data

about the physical properties of the liquid phase, the state dependencies and

the number and properties of the hydrogeological units. The file geometry

contains the geometrical description of all the units named in hydrogeology.

In 2-D, the points defining line segments and the lines segments describing

polygons have to be given in a chronological order to ensure closure. The

file boundary contains data regarding the boundary conditions for the flow

and transport equations. It is possible to define either time-dependent or

independent boundary conditions.

The files source and initial provide information regarding the location of

sources and sinks and initial conditions respectively.

metas The graphic outputs are saved in this directory.

It is possible to implement boundary conditions, permeability distributions, etc as

functions defined in the file $d3fROOT/df/gen/problems/lgm funcs.c. If additional

functions are required, they should be defined in that file and the module recompiled.

There is also a possibility to have the solution vectors for pressure, velocity and

mass fraction as well as the generated permeability field along with the grid coor-

dinates written as matrices in text files. That is particularly important when one

requires to use an external program like MATLAB R© that provide superior visualisation

capabilities to the default postprocessor.

In that case, one writes a c-file containing numerical procedure macros that cre-

ate, initialise and execute the vector-writing function, places the file in the path

$UGROOT/np and adapts the makefile in that directory to build the required ob-

jective. Additionally, the three numerical procedures have to be called in the file

$UGROOT/pm/df.pm. The function is finally called in the tstep script, as often as

required and the path where the files should be written specified. A recompilation

of the module is again required to make the new functions available.

The output graphic files specified in the init.scr file are saved by the simulator

at every time step. After long simulation times, quite big storage is used up. The
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default behaviour can be modified by specifying in the tstep script the number of

computation time steps after which data is to be saved.

This work expanded the functionality of the program by defining the sinus boundary

condition function and saving the solutions in every point at every time step.

2.3.3 Model Set-up and Simulation Parameters

This section gives the model set-ups and simulation parameters used in the stability

studies. Two configurations will be considered: the horizontal in which the solute

enters at the side of the domain and the vertical system in which the solute travels

downwards under the action of gravity. The two occur in practice in saltwater

intrusion into coastal aquifers and at the vicinity of waste repositories respectively.

The Horizontal Flow System

The initial stability criterion for the homogeneous medium was tested on the problem

defined in Schincariol et al. (1997), which was itself based on experimental results

documented in Schincariol and Schwartz (1990). Figure 2.8 shows the problem setup

in which water flowed from left to right. Pressure heads were maintained across the

domain to achieve an initial velocity of 2.75× 10−6m/s .

Source

ω =


1, if 0.36 ≤ z ≤ 0.42;
0, otherwise.

p = 5000− 9792.34z

∇ω · n = 0

p = 4980.48− 9792.34z

u · n = 0, ∇ω · n = 0

u · n = 0, ∇ω · n = 0

(0.0,0.0)

(0.0,0.5)

(1.0625,0.0)

(1.0625,0.5)

Mean flow

x

z

Fig. 2.8 Model set-up for the orthogonal system
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The Vertical Flow System

A vertical setup shown in Fig. 2.9 was used to study dispersive and heterogeneity

effects. The domain was increased to allow the salt more time and also achieve

a Rayleigh number of 300 computed in the traditional way, at which some solu-

tions in Johannsen (2002) showed three fingers. The sinus function in the figure

u · n = 0
∇ω · n = 0

u · n = 0
∇ω · n = 0

u · n = 0, ω = 0

ω(x, t) =

(
A0

h
1.0 + sin

“
2π(x−δ)

λ

”i
;

1.0 .

p = 0
0.4 ≤ x ≤ 1.1

(0.0,0.0)

(0.0,1.1)

(1.5,0.0)

(1.5,1.1)

Ω

Fig. 2.9 Model set-up for vertical systems

was required to initiate perturbations in the homogeneous medium. The medium

heterogeneities initiate perturbations in heterogeneous media, hence the constant

boundary condition.

Simulation Parameters

The simulation parameters, also adopted from Schincariol et al. (1997) are shown

in Table 2.1. The same were used for the vertical systems apart from the maximal

density was reduced to ensure moderate fingering. The starred domain size and the

longitudinal and transverse dispersion lengths were also changed from the values

used in Schincariol et al. (1997).
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Table 2.1 Simulation parameters

Parameter Notation Value Unit
Porosity n 0.38 –
Molecular diffusion coefficient of NaCl Dm 1.61× 10−9 m2 · s−1

Longitudinal dispersivity α‖ 1.0× 10−3 m
Transverse dispersivity α⊥ 2.0× 10−4 m
Domain Length in flow direction L 1.0625 m
Viscosity of pure water at 200C µ0 1.002× 10−3 Pa · s
Density of pure water at 200C ρ0 998.2 kg ·m−3

Maximal density of solution (2000mg/l NaCl at 200C) ρmax 999.7 kg ·m−3

Gravity vector g -9.81 m · s−2

Maximal density of NaCl at 200C? ρmax 998.5 kg ·m−3

Longitudinal dispersivity? α‖ 1.5× 10−3 m
Transverse dispersivity? α⊥ 1.0× 10−4 m
Domain Length in flow direction? L 1.1 m
Vertical correlation length λv 0.0075 m
Horizontal correlation length λh 0.0075 m
Permeability kI2 5.7× 10−11I2 m2

Heterogeneity variance σ2 0.60 -

? values used for the vertical configuration.
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Chapter 3

Stability Analyses for a

Homogeneous Medium1

In this chapter the homogenization theory ideas are applied to the solute transport

equation. Following the procedure outlined in section 2.3.1, three equations result

namely the compatibility condition, which is a statement of the independency of

macroscopic quantities from small scales and the small- and large-scale equations.

The small-scale equation expresses the variations of the solute at the mesoscale and

will be used to derive the stability criterion: first for a homogeneous medium without

dispersion and subsequently extended to include the dispersive and heterogeneity

effects.

The large-scale equation contains the homogenized macrodispersion tensor. The

equation will be used to derive the entries in the tensor. The temporal evolution

of the tensor elements will be studied in detail in response to changes in several

physical variables.

1Published in Musuuza et al. (2009) doi 10.1010/adwatres.2009.01.012
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3.1 Homogenization of the Transport Equation

In this section we derive the equations mentioned in the preceeding section. We

proceed by substituting the 2-scale expansion for the mass fraction

ωε(x,y, t, τ) = ω0(x, t) + εω1(x,y, t, τ) +O(ε2)

into the solute transport equation

∂(φρ(ω)ω)

∂t̂
+ ∇X ·

(
ρ(ω)ωu− φρ(ω)D∇Xω

)
= 0 .

We then apply the respective 2-scale expansions for the derivatives in space

∇X =
1

L

(
∇x +

1

ε
∇y

)

and time
∂

∂t̂
=
D‖
L2

(
∂

∂t
+

1

ε2
∂

∂τ

)
to the appropriate terms in the transport equation.

It is necessary to additionally assume steady states and neglect the medium specific

storativity: ∂(φρ(ω))/∂t̂ = 0. By using the fluid flow equation

∂(φρ(ω))

∂t̂
+ ∇X · (ρ(ω)u) = 0

one also obtains the incompressibility condition ∇ · (ρ(ω)u) = 0. The Darcy flux

ρ(ω)u is therefore divergence-free. Using these in the transport equation (2.13)

and writing vε = ρ(ω)u/φ for the linear momentum of the flow, which we call the

modified two-scale groundwater velocity, one obtains:

ρ(ω)
∂ωε

∂t̂
+ vε ·∇ωε −∇ · (ρ(ω)D∇ωε) = 0 . (3.1)
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The velocity vε is split into the mean v0 and fluctuation ṽ according to:

vε = v0 + ṽ . (3.2)

Scaling of velocity that shows a non-vanishing mean drift into two scales is com-

plicated by its interactions with the two-scale mass fraction, precisely because the

time scales associated with advective and diffusive processes are different (Pavliotis

2002). According to Lunati et al. (2002), if time is scaled diffusively, there are three

parts in the advective term of the two-scale transport equation:

i) the large scale concentration gradient times the mean drift

ii) the large scale concentration gradient times local variations in the velocity field

iii) the small scale concentration gradient times the total drift.

Only the first term is a purely macroscopic quantity whereas the last two are not

and are thus multiplied with 1/ε, as shown and explained in Lunati et al. (2002). It

is possible to employ a different scaling technique in which the transport equation

is written in terms of the large- and small-scale Pèclet numbers (see e.g. Pavliotis

(2002)). The method however leads to different results.

The accumulation, advective and dispersive terms of (3.1) are considered separately

in the following. The two-scale expansion for the mass fraction and the expressions

for the space and time derivatives on page 40 are then used.

The accumulation term ρ(ω)
∂ωε

∂t̂
.

ρ(ω)
∂ωε

∂t̂
=
ρ(ω)D‖
L2

(
∂ω0

∂t
+ ε

∂ω1

∂t
+

1

ε2
∂ω0

∂τ
+

1

ε

∂ω1

∂τ

)
+O(ε) . (3.3)
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The advective term vε ·∇ωε.

vε ·∇ωε =
1

L

(
v0 +

1

ε
ṽ

)
·∇xω

ε +
1

L

(
1

ε
v0 +

1

ε
ṽ

)
· 1

ε
∇yω

ε +O(ε)

=
1

L

(
v0 +

1

ε
ṽ

)
· (∇xω0 + ε∇xω1)

+
1

Lε2
(v0 + ṽ) · (∇yω0 + ε∇yω1) + O(ε) . (3.4)

The expansion techniques from Lunati et al. (2002) that were briefly explained above

have been used to obtain (3.4).

The diffusive/dispersive term ∇ ·D∇ωε.

∇ · ρ(ω)D∇ωε =
1

L2
∇x · ρ(ω)D

(
∇xω0 + ε∇xω1 +

1

ε
∇yω0 + ∇yω1

)
+

1

L2

1

ε
∇y · ρ(ω)D

(
∇xω0 +

1

ε
∇yω0 + ε∇xω1 + ∇yω1

)
+O(ε)

=
1

L2
∇x · ρ(ω)D

(
∇xω0 + ∇yω1 +

1

ε
∇yω0

)
+

1

L2

1

ε
∇y · ρ(ω)D

(
1

ε
∇yω0 + ∇yω1 + ∇xω0 + ε∇xω1

)
. (3.5)

To shorten the notation, vε and ωε are subsequently written without the ε super-

script. Terms from (3.3), (3.4) and (3.5) having the same powers of ε are now

collected and divided through by D‖/L
2.

Terms in ε−2.

ρ(ω)
∂ω0

∂τ
+

L

D‖
(v0 + ṽ) ·∇yω0 −∇y ·D?∇yω0 = 0 , (3.6)

where D? = ρ(ω)D/D‖. The relation (3.6) evidently satisfies the compatibility

condition due to ∂ω0/∂τ = 0 and ∇yω0 = 0: the large scale solution is independent

of small scales (i.e. ω0 = ω0(x, t)).
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Terms in ε−1.

ρ(ω)
∂ω1

∂τ
+

L

D‖
ṽ ·∇xω0 +

L

D‖
(v0 + ṽ) ·∇yω1 −∇y ·D?∇xω0 −∇y ·D?∇yω1 = 0 .

The term ∇y ·D?∇xω0 drops out because ω0 = ω0(x, t) to give

ρ(ω)
∂ω1

∂τ
+

L

D‖
v ·∇yω1 +

L

D‖
ṽ ·∇xω0 −∇y ·D?∇yω1 = 0 . (3.7)

Equation (3.7) relates the small-scale rate of change of mass fraction to velocity

fluctuations: the link between homogenization theory and stability. This relation

will be used to derive the stability criterion for a homogeneous medium in chapters

3 and 4 and for a heterogeneous medium in chapter 5. It requires homogeneous

Dirichlet boundary conditions.

Terms in ε0.

ρ(ω)
∂ω0

∂t
+
L

D‖
v0 ·∇xω0 +

L

D‖
ṽ ·∇xω1−∇x ·D?∇xω0−∇x ·D?∇yω1−∇y ·D?∇xω1 = 0

(3.8)

When present, sink and source terms appear in the right hand side. From (3.8)

the large-scale transport equation is sought, whose solution is ω0(x, t). To do this

one has to first solve (3.7) for ω1 (depends on ω0). Following Held et al. (2005),

assume a solution of the form ω1 = χω ·∇xω0. By introducing this in (3.7), one

obtains a cell problem which has to be solved for χω(τ,y), together with periodic

or homogeneous Dirichlet boundary conditions on Y = [0, 1]d (eventually rescaled),

with d the number of spatial dimensions. The cell problem is given explicitly in

chapter 5 where it is used to derive the elements of the macrodispersion tensor.

Now, by integrating (3.8) with respect to the variable y over the cell domain Y , the

last two terms drop out because of the 1-periodicity of ω1 to yield:

ρ(ω)
∂ω0

∂t
+

L

D‖
v0 ·∇xω0 −∇x ·D?∇xω0 +

L

D‖
∇x · ṽ ⊗ χω∇xω0 = 0 , (3.9)
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where generally f̄ =

∫
Y

f(y)dy. The divergence-free velocity assumption has also

been used. The integration is actually an averaging of that function over the

mesoscale. Further, by defining the macrodispersion tensor Deff = D?− L

D‖
ṽ ⊗ χω,

(3.9) can be written as

ρ(ω)
∂ω0

∂t
+

L

D‖
v0 ·∇xω0 −∇x ·Deff∇xω0 = 0 , (3.10)

which is the macroscale equation for the mass fraction. The entries of the macrodis-

persion tensor in 2-dimensions (d = 2) can be evaluated explicitly as

Deff =

 ρ− L

D‖
ṽ1χω1 − L

D‖
ṽ1χω2

− L

D‖
ṽ2χω1 ρ

D⊥
D‖
− L

D‖
ṽ2χω2

 . (3.11)

The macrodispersion tensor relates the small-scale velocity fluctuations to large-

scale mixing effects. This relation will be used to derive formulations for the mixing

coefficients in heterogeneous media in section 5.3.

Making use of homogenization theory one expects to see the impact of small scale

instabilities on the

small scale: in homogenization theory, large-scale parameters are usually evalu-

ated by first solving the so called auxiliary equations (3.7) defined on the

small scale. These solutions are then inserted in and averaged over formu-

las for the large scale parameters. If these auxiliary equations show unstable

behaviour, the system behaviour is unstable on the small and large scales.

large scale: scaling up conservative solute concentration, usually small-scale per-

turbations in the flow field result in large-scale spreading effects. If the density-

driven flow is unstable on small scales, diverging spreading effects should be

found on larger scales too, unless there are large-scale stabilising mechanisms.
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3.2 The Small-Scale Stability Criterion

A stability criterion for flow in a homogeneous medium without dispersion is derived

in this section. The derivation is accomplished by transforming the small-scale

equation

ρ(ω)
∂ω1

∂τ
+

L

D‖
v ·∇yω1 +

L

D‖
ṽ ·∇xω0 −∇y ·D?∇yω1 = 0

into Fourier space. The solution ω1 to the equation is assumed to depend on the

large-scale mass fraction and have the form ω1(x,y, t, τ) = χω · ∇xω0(x, t), with χω

the solution to the cell problem. By assuming the large-scale concentration gradient

∇xω0 to be constant on small scales (Held et al. 2005), one has ω1 = ω1(y, τ). This

allows the small-scale equation to be solved directly using the Fourier transform

method without expressing it explicitly in terms of χω as was done in Held et al.

(2005).

Generally, the Fourier transform of a variable r is defined as

r(y, τ) =
1

(2π)d

∫
Rd
eiq·yr̂(q, τ)dq , (3.12)

where q denotes the Fourier space variable and d the number of spatial dimensions.

One then has:

v ·∇yω1(y, τ) = v ·∇y
1

(2π)d

∫
Rd
eiq·yω̂1(q, τ)dq

=
1

(2π)d

∫
Rd
iv · qω̂1(q, τ)eiq·ydq .

Similarly,

∇y ·D?∇yω1(y, τ) = − 1

(2π)d

∫
Rd

D?q · qω̂1(q, τ)eiq·ydq .

To shorten the notation, ω1 is subsequently written everywhere for ω̂1. The possi-

bility of confusion is minimal because ω̂1 is a function of q, whereas ω1 is a function

of y and these dependencies are always written explicitly. Using the above results,
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the small-scale equation can be written in Fourier space as:

ρ(ω)
∂ω1(q, τ)

∂τ
+ i

L

D‖
q · vω1(q, τ) + D?q · qω1(q, τ) = − L

D‖
ṽ(q) ·G , (3.13)

with G the Fourier transform of ∇xω0, which is supposed to be constant (Held et al.

2005). The velocity fluctuations ṽ(q) are generally caused by fluctuations in the

mass fraction and the permeability field. In the following we assume ṽ(q) to be

caused by fluctuations in the mass fraction ω1 only. One can then write

ṽ(q, τ) = M(q)ω1(q, τ) , (3.14)

where M(q) is the contribution of the mass fraction to the velocity fluctuations.

Explicit formulas for M(q) are derived in appendix A.1 for the case of a divergence-

free velocity field.

Using (3.14) in (3.13) one obtains

ρ(ω)
∂ω1(q, τ)

∂τ
+ i

L

D‖
v · qω1(q, τ) + D?q · qω1(q, τ)

= − L

D‖
M(q) ·Gω1(q, τ) . (3.15)

Equation (3.15) clearly has the form

∂ω1

∂τ
+ bω1 = 0 (3.16)

with b =
1

ρ(ω)

(
i
L

D‖
v · q + D?q · q +

L

D‖
M(q) ·G

)
. Its solution is ω1 = ω1(0)e−bt.

If one is interested in the long-time behaviour of the system, a stability criterion

can easily be formulated:

If the real part of b is positive, then the solution is stable.

In our case, this means the solution is stable if

Λ(q) := D?q · q +
L

D‖
M(q) ·G ≥ 0 . (3.17)
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In other words, the solution is unstable if there exists q such that Λ(q) < 0. Physi-

cally, it means that the solution grows indefinitely with time in the point q. When

dispersion is not considered, one can derive from (3.17) a stability criterion which

does not depend on q. The quantity M(q) is used in sections 3.2.1 and 3.2.2 to

derive stability criteria for flow processes aligned parallel and orthogonal to gravity.

3.2.1 The Small-scale Criterion for Flow Parallel to Gravity

The mean flow v0 and the gravity force g are assumed to be parallel. Thus, we

assume v0 and g to point against the vertical e2-direction: v0 = v0e2 and vg0 = vg0e2,

with v0, v
g
0 < 0 . The mean velocity, the gravity-driven velocity and concentration

gradient then read:

v0 =

 0

v0

, vg0 =

 0

vg0

, G =

 0

G2

.

Equation (3.15) then becomes

ρ
∂ω1(q, τ)

∂τ
+ i

L

D‖
q2v0ω1(q, τ) + D?q · qω1(q, τ) = − L

D‖
M(q) ·Gω1(q, τ) , (3.18)

where M(q) ·G is given by

M(q) ·G = M2(q)G2

= (α− β)

[(
1− q2

2

‖q‖2

)
v0G2

]
+ α

[(
1− q2

2

‖q‖2

)
vg0G2

]
. (3.19)

To isolate the dominant contribution of M(q) ·G, it is expanded around q2 = 0:

M2(q)G2 = (α− β)v0G2 + αvg0G2 +O(q2) , (3.20)

which gives together with (3.17)

Λp =
L

D‖
G2((α− β)v0 + αvg0) . (3.21)

The diffusion/dispersion effects have been neglected in (3.21). A positive Λp in-
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dicates stable flow while a negative Λp indicates unstable behaviour. The various

parameters appearing in the expression affect Λp differently: increasing the density

of the displacing fluid would increase its tendency to “sink” into the displaced water

and thus destabilise the system while increasing the viscosity of the displacing fluid

increases stability by dissipating the energy of the instabilities. Increased velocity

(in the direction of finger growth) on the other hand favours finger propagation

and thus destabilises the system. When orthogonal to the direction of finger devel-

opment, high velocity offers less time to instabilities to grow into fingers, thereby

stabilising the system.

3.2.2 The Small-scale Criterion for Flow Orthogonal to Grav-

ity

We need to define the following three vectors for the mean velocity due to exter-

nal pressure, the gravity-driven velocity and concentration gradient respectively as

follows:

v0 =

 vp0

vg0

, vg0 =

 0

vg0

, G =

 G1

G2

.

Equation (3.15) then reads

ρ(ω)
∂ω1(q, τ)

∂τ
+ i

L

D‖
(q1v

p
0 + q2v

g
0)ω1(q, τ) + D?q · qω1(q, τ)

= − L

D‖
(M1(q)G1 +M2(q)G2)ω1(q, τ) . (3.22)

Analogous to section 3.2.1 we now expand the product M(q) ·G around

q1v
p
0 + q2v

g
0 = 0, which results in q1 = −q2

vg0
vp0

. We further define the ratio

a =
q1

q2

= −v
g
0

vp0
(3.23)

and use the ratio q1/q2 in evaluating the vector products in Appendix A.1 leading

48



to the explicit form of M(q):

M(q) =

 M1(q)

M2(q)

 =
1

a2 + 1

 (α− β)vp0 − a(2α− β)vg0

a2(2α− β)vg0 − a(α− β)vp0

 . (3.24)

We use the ratio of the velocities from (3.23) in (3.24) to further obtain:

M(q) ·G = (vg0G2 + vp0G1)

[
(α− β) +

(
a2

a2 + 1

)
α

]
+O(q1v

p
0 + q2v

g
0) . (3.25)

Equation (3.25) together with (3.17) give the stability number (3.26) in which the

diffusion/dispersion effects are neglected:

Λo =
L

D‖
(vg0G2 + vp0G1)

[
(α− β) +

(
a2

a2 + 1

)
α

]
. (3.26)

L is the macroscopic length taken equal to the domain size in mean flow direction,

D‖ the longitudinal dispersion, α and β are the maximum relative density and

viscosity coefficients computed from the respective state dependencies; vp0 the large

scale pressure-driven velocity component; vg0 the gravity-driven velocity component;

a the ratio−vg0/v
p
0 andG1, G2 the respective concentration gradients in the directions

orthogonal and parallel to gravity respectively. As noted before, flow is stable for

positive Λo.

Λo and Λp are dimensionless due to the density terms contained in the velocities.

3.3 The Large-scale Stability Criterion

Investigating the stability on larger scales requires the evaluation of the macrodis-

persion coefficients (3.11). Generally, the macrodispersion coefficients depend on

ṽi and χωj . If ṽi and χωj show indefinite temporal growth independent of q (in the

direction of finger development), the flow behaviour is unstable on small scales.

Consequently, Deff
ij (in the same direction) also grows indefinitely with time and

in the absence of other stabilising mechanisms, unstable behaviour at small scales
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results in unstable behaviour at larger scales. Large-scale heterogeneous effects are

presented in section 5.3

3.4 Numerical Results

The criterion for systems aligned orthogonal to gravity (see Fig. 2.8 on page 35) is

tested and the results presented in this section. The parameters given in Table 2.1 on

page 37 were used. The choice was motivated by experimental work in Schincariol

and Schwartz (1990), from which the research to analyse the effect of numerical

effects on stability (Schincariol et al. 1994) was based. The authors also undertook

similar studies to analyse heterogeneous effects among others.

The study of numerical effects in Schincariol et al. (1994) was particularly important

in obtaining an optimum grid refinement capable of delivering a solution free from

numerical artifacts. With a stable solution ensured, it was unnecessary to apply

upwind techniques, which would otherwise have introduced artificial diffusion that

in turn would have distorted the actual stability states.

3.4.1 The Schincariol Problem

As stated above, the problem was initially introduced in experimental work by Schin-

cariol and Schwartz (1990). Schincariol et al. (1994) studied numerical instabilities

by successively refining the mesh and time steps until a numerically stable solution

was obtained. They then induced physical instabilities in the numerically stable

solution by repeatedly changing the width of the solute inlet.

We study the effect of increasing grid refinement (subsequently reducing the Pèclet

number) and present the results in the following. A problem was implemented using

similar Pèclet and Courant numbers, simulation parameters, domain size, boundary

conditions and state dependencies as those in Schincariol et al. (1994). Dispersion
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was treated according to Scheidegger’s law:

D = DmId + (α‖ − α⊥)
v ⊗ v

‖v‖
+ α⊥‖v‖Id

where α‖, α⊥ are the longitudinal and transverse dispersivities respectively, Dm the

molecular diffusion coefficient, Id the identity matrix and v the velocity with the

norm ‖v‖ =
√

v · v. The results are shown in the Fig. 3.1. The clear improvement

(a) Pe=16.5, Cr=0.22 (b) Pe=8.40, Cr=0.40 (c) Pe=2.32, Cr=1.10

Fig. 3.1 A reproduction of Schincariol results with full equations

in the numerical solution with grid refinement is also documented in Oldenburg and

Pruess (1995), Frolkovič and De Schepper (2001) and Diersch and Kolditz (2002).

These results were not part of the stability analyses but simply a means to achieve

an optimum grid free from numerical errors. Finer mesh and time refinements than

in Fig. 3.1c were adopted as standard in all subsequent simulations. Next, we study

physical instabilities by varying the density, viscosity and flow velocity, one at a

time on a numerically stable configuration. The results are then compared to the

predictions from the computed stability numbers.

3.4.2 Stability Investigations

For the reference problem from Schincariol et al. (1994), vp0 and the component G2

of the vector G are positive while the component G1 and vg0 are negative. We apply

the stability number (3.26) for flow orthogonal to gravity:

Λo =
L

D‖
(vg0G2 + vp0G1)

[
(α− β) +

(
a2

a2 + 1

)
α

]
.

When the pressure-driven velocity component vp0 is very small, a becomes very large

and the term a2/(a2 + 1) → 1, reducing the square bracket to (2α − β). We also
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have vg0G2 +vp0G1 < 0 in this case and flow remains stable as long as (2α−β) < 0 or

α < β/2. The other possibility is a large pressure-driven velocity component that

makes a2/(a2 + 1)→ 0 but that could not be simulated.

The diffusive scaling results in a dimensionless stability number, which is accom-

plished by multiplication with L/D‖ where L is the domain length in mean flow

direction and D‖ the longitudinal dispersion. With negligible molecular diffusion,

D‖ ≈ ‖v‖α‖.

Before the results of the numerical simulations are presented, we need to clarify the

decision regarding stable and unstable simulations. The distinction was not very

easy since for most flow configurations a salt finger evolves at the tip of the plume.

The lobe at the tip is caused by the action of the horizontal velocity component

sweeping away small-wavelength perturbations, causing salt to accumulate in the tip

and form the lobe. In stable configurations it is assumed that after a certain time

the finger evolution stabilises with only the tip and nearly no additional undulations.

Figure 3.2 shows the computations for the 2nd and 3rd entries in Table 3.1, predicted

as stable and unstable respectively.

(a) ρ = 1000.0 kg ·m−3 (b) ρ = 1000.2 kg ·m−3

Fig. 3.2 Density effects: β = 3.992× 10−3

To investigate the stability of the systems in Fig. 3.2 further, the fingers were allowed

more evolution time in a domain twice the length of the test problem. The respective

results are shown in figures 3.3 and 3.4.

(a) 80hrs (b) 120hrs (c) 160hrs

Fig. 3.3 Finger evolution in a bigger domain, ρ = 1000 kg ·m−3

The differences became more pronounced: more fingers formed and the tip of the
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(a) 80hrs (b) 120hrs (c) 160hrs

Fig. 3.4 Finger evolution in a bigger domain, ρ = 1000.2 kg ·m−3

plume sank through a bigger vertical distance in Fig. 3.4, the unstable case. One

can therefore hypothesise that there exists a critical horizontal plane that separates

stable and unstable flows. If the front travels beyond that plane, the system is

unstable, otherwise it is stable.

A maximum grid diameter of 0.00281 (Pe=1.614 and Cr=0.157) was used as the

standard discretisation for figures 3.2 through 3.7. The stability number was com-

puted using (3.26) with the parameters in Table 2.1. The effects of density and

viscosity on stability were investigated separately at an end time of 90 hours, while

flow velocity required different end times mentioned in section 3.4.2.3.

3.4.2.1 Density Effects

At a constant maximal viscosity of 1.006 × 10−3Pa · s (β = 0.00399) and

vp0 = 2.75 × 10−6 m · s−1, the maximum density was gradually increased and the

computed stability numbers and simulated flow patterns are shown in Table 3.1 and

figures 3.2 and 3.5. The bold face entries in Table 3.1 correspond to the grey-area

cases in Fig. 3.2 that were clarified in a bigger domain.

Table 3.1 Stability results for variable density at constant viscosity β = 0.00399

Maximal Density α β stability no. Λo Simulation
[kg.m−3] (×10−3) (×10−3) (×10−3) stable?
999.70 1.5027 3.99 5.8377 Yes

1000.00 1.8032 3.99 2.2813 Yes
1000.20 2.0036 3.99 -0.0896 No
1000.40 2.2040 3.99 -2.4606 No

The foregoing analysis was made without the Boussinesq approximation. Figure 3.6

shows the finger evolution with the approximation invoked in the simulator.

The results showed no significant differences at a maximum density contrast of

0.22%. However, all subsequent analyses were made without the approximation. A
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(a) ρ = 999.7 kg ·m−3 (b) ρ = 1000.4 kg ·m−3

Fig. 3.5 Density effects: β = 3.992× 10−3

(a) ρ = 999.7 kg ·m−3 (b) ρ = 1000.4 kg ·m−3

Fig. 3.6 Density effects with the Oberbeck-Boussinesq approximation

comparison with stability numbers computed with equations in which the approxi-

mation had been invoked presented in section 3.5.

3.4.2.2 Viscosity Effects

To study the effect of viscosity, an attempt was made to stabilise the unstable flow

configuration in Fig. 3.2b by increasing viscosity. The results are shown in Table 3.2

and Fig. 3.7.

Table 3.2 Variable viscosity effects at constant density α = 0.0020036

Viscosity β α stability no. Λo Simulation
[Pa.s] (×10−3) (×10−3) (×10−3) stable?

0.001006 3.992 2.0036 -0.09 No
0.001200 197.605 2.0036 1145.50 Yes
0.001250 247.505 2.0036 1440.70 Yes

(a) µ = 0.001006 (b) µ = 0.001200 (c) µ = 0.001250

Fig. 3.7 Viscosity effects: α = 2.1038 · 10−3

Again, the simulated results in Fig. 3.7 are in reasonable agreement with the theory

in Table 3.2. Viscosity dissipates the energy of instabilities and the successive energy
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deficiencies result in reduced finger growth as Fig. 3.7 clearly shows. Another visible

effect of increasing viscosity is the reduction in the horizontal distance covered by

the plume, caused by increased viscous drag.

3.4.2.3 Flow velocity Effects

The following are the results for the effect of the pressure-driven velocity component

vp0. The respective criteria for stability at low and high flow are (α < β/2) and

(α− β) + a2/(a2 + 1)α < 0 as was explained on page 51.

With a maximum grid diameter of 0.00281, the velocity was set to 1.5×10−6 m ·s−1

(Pe=1.25, Cr=0.086) and the stability condition at low flow tested. Low flow velocity

offers enough time for instabilities to develop into fingers, thus destabilising the

system. High velocity on the other hand hinders the growth of instabilities: a

velocity of 1.9× 10−4 m · s−1 (Pe=2.466, Cr=10.82) was used to test if the criterion

could capture the phenomena. The α and β combinations for the computations and

simulations were set to the values in Table 3.3 and the results are given in Fig. 3.8:

figures 3.8a (after 180hrs) and 3.8b (after 100hrs) show the respective stable and

unstable cases at low velocity while Fig. 3.8c (after 90min) shows stable flow at high

velocity.

Table 3.3 Flow velocity effects at various densities and viscosities

Velocity Maximal α β Stability Simulation
(×10−6) Density Viscosity (×10−3) (×10−3) Number Λo Stable?
m · s−1 kg ·m−3 (×10−3) Pa · s (×10−3)

1.5 (Low) 999.0 1.0060 0.8014 3.9920 14.1252 Yes
1.5 (Low) 1000.0 1.0050 1.8032 2.9920 -3.6211 No
190 (High) 1000.3 1.0060 2.1040 3.9960 0.0230 Yes

The stability predictions at low flow were in good agreement with simulations but

came very late at high flow. The simulations stabilised at vp0 = 5×10−6 m·s−1 while

the earliest that the criterion could predict was 1.9×10−4 m ·s−1, at which velocity

the flow was advection-dominated. The use of upwind schemes is recommended

by Frolkovič and De Schepper (2001) for advection-dominated flow but we did not

apply any such techniques.
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(a) low velocity, stable (b) low velocity, unstable (c) high velocity

Fig. 3.8 Velocity effects

3.5 Discussion of Results

In contrast to the approach presented here, most other investigations like the one

of Welty and Gelhar (1991) and Coskuner (1993) applied the Oberbeck-Boussinesq

assumption. Since both do not explicitly state a stability criterion of flow orthogonal

to gravity, we could not compare different criteria directly. The following can be

derived from an expression in Welty and Gelhar:

ΛWelty
o = (vg0G2 + vp0G1)

[
−β +

(
a2

a2 + 1

)
(α− β)

]
, (3.27)

where the formalisms and notations introduced earlier are still valid.

We assumed that the most important difference between the results developed here

and Welty and Gelhar’s is the Boussinesq assumption. In the following, the assump-

tion with its underlying disregard of density variations except in the buoyancy term

is taken as the sole basis for the comparison. Table 3.4 compares the respective

stability numbers computed using (3.26) and (3.27) against numerical simulations.

The stabilising effect of the Boussinesq assumption becomes evident in the stable

predictions from (3.27) at fairly big density contrasts.

Table 3.4 A comparison between the current and Welty’s results

Max. Stability number Λo × 10−3 Numerical
density Flow orthogonal to gravity Simulation

(kg ·m−3) Current work Welty’s Stable?
999.7 5.8377 38.3478 Yes

1000.0 2.2813 36.5697 Yes
1000.4 -2.4606 34.1988 No
1002.0 -21.4280 24.7152 No
1006.0 -68.8465 1.0062 No
1006.5 -74.7738 -1.9574 No
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Next are numerical simulations at ρmax = 1000.4 and 1002 kg ·m−3, a sample pair

of densities where the criteria conflicted. The criterion from Welty and Gelhar pre-

dicted that flow remains stable at densities well beyond 1002.0 kg ·m−3 (Table 3.4)

whereas the one derived here predicted instabilities at 1000.2 kg ·m−3. Figures 3.9a

and 3.9b show the evolution of fingers at 1000.4kg ·m−3 and 1002.0kg ·m−3 respec-

tively with Pe=1.614 and Cr=0.157 after 90 and 85 hours respectively.

At 1000.4 kg ·m−3, the initial instabilities do not develop into a distinctive finger

until after 80 hours. At 1002.0 kg ·m−3, a distinctive finger that was visible after

40 hours continued to grow and hit the bottom of the domain after 50 hours indi-

cating a very unstable system. That is contrary to the stable prediction from Welty

and Gelhar. Therefore, the current criterion with its limitations was able to make

superior predictions at a smaller density contrast.

(a) ρ = 1000.4 kg ·m−3 (b) ρ = 1002.0 kg ·m−3

Fig. 3.9 Evolution of fingers at conflicting stability predictions

The derived criterion which utilises the full equations was able to predict the onset

of instabilities much earlier at 0.20% density contrast while Welty and Gelhar’s first

predicted instabilities at a density contrast of 0.83% and produced bigger stabil-

ity numbers at any given density contrast. The effect of invoking the Boussinesq

assumption therefore results in stabilisation of the system.

The stability predictions with increasing flow velocity came very long after the nu-

merical simulations had stabilised. This failure was attributed to the dispersive

effects that were not included in the criterion, yet dispersion was implemented in

the simulator according to Scheidegger’s law where it varies as a function of the

velocity to the power 2.
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Chapter 4

Homogeneous Medium: Extension

to Dispersion1

The previously derived stability numbers neglected the effects of dispersion and

medium heterogeneity. The stability number

Λp =
LG2

D‖

(
(α− β)v0 + αvg0

)
for systems parallel to gravity is extended in this chapter to include dispersion. The

impact of small-scale dispersion on stability can be accounted for by analysing the

spectrum of perturbation wavelengths that the dispersive mixing can damp out and

prevent from growing into fingers. Another important factor is the characteristic

region or the dispersion mixing zone within which the dispersive effects are felt.

Perturbations with different wavelengths will be induced by a sinus function imposed

as a boundary condition at the solute inflow region. An expression for the mixing

zone width will also be derived and presented here. The earlier stability number will

be rewritten in form of a Rayleigh number to enable comparison with other works.

The stability is related to the Rayleigh number and the number of fingers present.

1Published in Musuuza et al. (2011) doi:10.1016/j.advwatres.2010.11.008
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4.1 Stabilising Effects of Small-Scale Dispersion

Small-scale dispersion is the main stabilising mechanism in homogeneous media.

It initiates the exchange of solute between regions with different concentrations,

leading to the formation of a mixing zone. The mechanism is analogous to capillary

effects in multiphase systems that cause fluid exchange between regions of different

saturations. The width of the zone grows with time and is proportional to the

prevailing mixing (Marle 1981). The zone retards the growth of instabilities and

can completely smooth out perturbations with wavelengths below a certain critical

value.

The inclusion of dispersion in the earlier criterion is in essence an account for the

action of the mixing zone hindering the growth of fingers for a certain range of

instability wavelengths. To that end, the method of normal modes (Coskuner and

Bentsen 1990, Farber 1997, Drazin and Reid 2004) is used to postulate the solution

of the homogenization theory small-scale equation

ρ(ω)
∂ω1

∂τ
+

L

D‖
v ·∇yω1 +

L

D‖
ṽ ·∇xω0 −∇y ·D?∇yω1 = 0

as a product

ω1(y, τ) = ω1(y2, τ) exp

(
−iy1

λ
ζ

)
, (4.1)

where λ is the perturbation wavelength and ζ the characteristic length, whose inclu-

sion maintains the dimensionless form of (4.1). For vertical flow v1 = 0 so we have

v ·∇yω1(y, τ) = v2
∂ω1(y, τ)

∂y2

and the term
L

D‖
ṽ(y, τ) ·∇xω0 can be approximated

to Λpω1(y, τ). The small-scale equation then becomes

exp

(
−i
(
ζ

λ

)
y1

)[
ρ(ω)

∂ω1(y2, τ)

∂τ
+

L

D‖
v2
∂ω1(y2, τ)

∂y2

+ Λpω1(y2, τ)

−D?

(
∂2ω1(y2, τ)

∂y2
2

− 2i

(
ζ

λ

)
∂ω1(y2, τ)

∂y2

−
(
ζ

λ

)2

ω1(y2, τ)

)]
= 0 . (4.2)

The ω1 and ∂ω1 terms scale with ε0 and ε−1 respectively (Held et al. 2005). If we
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stick to the linear perturbation theory, the ∂ω1 and higher derivative terms drop out

to leave Λp +
(
ζ
λ

)2
D? = 0. Using the expression for the modified dispersion tensor

D? = ρ(ω)
D

D‖

and concentrating on the stabilising transverse component of the tensor one obtains

the new stability number in which dispersive effects are included:

Λ?
p = Λp +

D⊥
D‖

(
ζ

λ

)2

, (4.3)

where D⊥, D‖ are respectively the transverse and longitudinal dispersion. It is not

necessary to write the ρ(ω) from D? because a similar term from the velocity fluc-

tuations ṽ is embedded in the Λp that appears in (4.2) and the density terms cancel

out. Therefore (4.3) is dimensionless.

According to Swartz and Schwartz (1998), there exists a critical perturbation wave-

length below which fingers do not develop i.e. a threshold perturbation wavelength

below which small-scale mixing can sufficiently reduce the concentration gradients

and damp out instabilities. Thus for some unfavourable density contrasts (Λ < 0),

inclusion of dispersion shifts the system towards stability.

The second term in the right-hand side of (4.3) always evaluates to a positive quan-

tity. The dispersive contribution therefore always stabilises, with the effects increas-

ing with the transverse dispersion and the characteristic length while it reduces with

the longitudinal dispersion and the perturbation wavelength.

By definition there is an inverse relationship between λ and the wavenumber γ

(Schincariol et al. 1997, Swartz and Schwartz 1998). An expression similar to (4.3)

but with γ [m−1] was derived in e.g. Coskuner and Bentsen (1990). The biggest

wavelength for which flow is stable corresponds to the smallest wavenumber at which

unstable flow becomes stable.

The Rayleigh number gives the ratio of the destabilising gravity and buoyancy effects

to the stabilising viscous and dispersive effects. For solute-induced convection (Old-
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enburg and Pruess 1995, Schincariol et al. 1997, Holzbecher 1998, Kolditz et al. 1998,

Reeves and Ewiera 2000, Diersch and Kolditz 2002, Johannsen 2002) the Rayleigh

number is given as

Ra =
k∆ρH|g|
Dmφµ0

, (4.4)

where k is the permeability, ∆ρ the density contrast, H the domain height, φ the

porosity, µ0 the pure water viscosity and Dm the molecular diffusion coefficient.

Previous stability studies evolved at establishing the critical Rayleigh number Rac

for the onset of convection. For the Elder problem, Ra ≈ 400 (Elder 1967, Johannsen

2003, Oldenburg and Pruess 1995; 1998, Diersch and Kolditz 2002, Kolditz et al.

1998, Meca, Alhama and González-Fernández 2007) and Rac = 4π2 (Elder 1967,

Coskuner and Bentsen 1990, Kolditz et al. 1998, Diersch and Kolditz 2002). They use

the entire domain height and consider only diffusion, which is unrealistic considering

the big density contrast of 20%.

We now reformulate the stability number (without dispersion)

Λp =
L

D‖
G2((α− β)v0 + αvg0)

in terms of Ra to enable a direct comparison with what others did. In the absence

of external pressure, the total downward velocity v0 is purely gravity-driven and is

given according to Held et al. (2005) as

vg0 =
kρ0g

φµ0

. (4.5)

The stability number then becomes Λp =
kζG2ρ0g

D‖φµ0

(2α − β). From the equation of

state for density

ρ(ω) = ρ0(1 + αω)

one can write the changes in density as ∆ρ(ω) = G2ρ0α. By denoting
kζ∆ρg

D‖φµ0

as the

longitudinal solutal Rayleigh number Ra‖, the stability number becomes

Λp = Ra‖

(
2α− β
α

)
. (4.6)
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A transverse solutal Rayleigh number Ra⊥ can similarly be defined by using D⊥

(Schincariol et al. 1997, Diersch and Kolditz 2002). The ratio η = Ra⊥ : Ra‖ was

reported in Schincariol et al. (1997) to provide useful information regarding stability

transition.

The argument in Schincariol et al. (1997) has been followed: the characteristic

length and dispersion are used instead of the domain size and molecular diffusion

respectively (see also Oldenburg and Pruess (1995), Reeves and Ewiera (2000) and

Diersch and Kolditz (2002)).

The reformulation of Λp in terms of a Rayleigh number dependent on the charac-

teristic length required the replacement of the domain size L with the characteristic

length ζ. That affects the magnitude of Λp but not the sign. The use of ζ is plausible

because the criterion was derived from the small-scale rather than the macroscopic

equation and secondly we are seeking an intermediate scale (an aggregation of several

small scales) at which to study the dispersive effects.

4.1.1 The Perturbation Wavelength λ

The perturbation wavelength is fundamental in existing stability criteria (Schincariol

1998). Perturbations with small wavelengths have closely spaced troughs and crests

as shown in Fig. 4.1.

x

λ = 0.1

λ = 0.5

λ = 1.5

f(x)

Fig. 4.1 Trough/Crest spacing for different wavelengths

The troughs at low wavelengths can easily be merged into an almost continuous

front by fluid exchange arising from dispersion. That phenomenon is similar to the
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stabilising effect of capillary forces in multiphase flow systems with small perturba-

tion wavelengths (Marle 1981). However, the crests provide numerous motions in

the opposite direction that reduce the quantity of solute entering the domain and

retards the overall advance of the front, thus hindering finger development.

The distance between adjacent troughs and crests is increased at bigger wavelengths

and fluid exchange by dispersion might fail to merge them. The troughs can then in-

dividually or aggregatively initiate and propagate fingers. This phenomenon is again

similar to the failure by capillary forces to stabilise systems with large perturbation

wavelengths (Marle 1981).

Marle (1981) also documents the existence of a critical wavelength in perturbations

with regular spatial periodicity. We propose to perturb the inflow with sinus func-

tions of varying wavelengths (see also Schincariol et al. (1994; 1997)), from which

λcrit can be obtained as the biggest stable wavelength. The following function was

used as the inflow boundary condition:

ω(x, t) = A0

[
1.0 + sin

(
2π(x− δ)

λ

)]
. (4.7)

A0 = 0.5 is the amplitude chosen such that the maximum mass fraction was 1 when

the sinus function attained its peak. δ = 0.4 the abscissa of the start of the inflow

zone (see Figure 2.9), x the horizontal distance into the inflow region and λ the

wavelength of the perturbation. 1.0 was added to avoid unphysical negative mass

fractions i.e. constrained the minimum mass fraction to zero. A similar function was

used in Marle (1981) to perturb the position of the interface between two fluids.

4.1.2 The Characteristic Scaling Length

There are several possibilities for the characteristic length ζ: the homogenization

theory cell size, the discretisation mesh diameter and the width of the mixing zone.

The latter is adopted because the cell size cannot be precisely quantified while a

big mesh diameter increases numerical instabilities and destabilises the system. The

characteristic length can be taken equal to the width of the mixing zone (Buès and
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Aachib 1991). The width of the dispersion zone was shown in Kempers and Haas

(1994) to be ζ = (α‖X)
1
2 , where X is an average displacement that depends on both

fluid and medium properties.

It was necessary at this point to investigate the requirement that ζ(α‖) should

stabilise the system, which is shown in section 4.2.3.2. When (4.3) is written in

an equivalent form (4.8), further credence is given to the supposition that ζ is a

function of a stabilising quantity α‖.

Λ?
p =

1

D‖

[
LG2 ((α− β)v0 + αvg0) +

ζ2D⊥
λ2

]
> 0 , (4.8)

ζ2 = α‖X . (4.9)

In the subsequent, the average displacement X is assumed as a function of the

medium properties (dispersivities) only:

X = αm‖ α
n
⊥ , (4.10)

where m,n are some real numbers. Substituting (4.10) and the approximations

D‖ ≈ ‖v‖α‖ and D⊥ ≈ ‖v‖α⊥ in (4.3) gives

Λ?
p = Λp +

αm‖ α
n+1
⊥

λ2
. (4.11)

Dimensional consistency of (4.10) requires m+ n = 1 from which (4.11) becomes

Λ?
p = Λp +

αm‖ α
2−m
⊥

λ2
. (4.12)

It was again necessary to check whether α⊥ stabilised the system, which is shown

in section 4.2.3.3. The stabilising effects of α‖ and α⊥ require that their respective

indices in (4.12) be bigger than zero i.e. (m > 0) and (2 − m > 0), which leads

to 0 < m < 2 as an additional constraint. The value of m can be estimated by

computing Λ?
p at constant ρmax, µ, λ and various α‖ and noting the range for which

all α‖ give Λ?
p > 0. The procedure is repeated for various α⊥ and the second range
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of stable m obtained. Intersecting the two regions gives the approximate m.

4.2 Numerical Results

Johannsen (2002) showed the existence of 11 steady-state solutions for the Elder

problem: 1 stable and 3 unstable with one finger, 1 stable and 4 unstable with two

fingers; and 1 stable and 1 unstable with three fingers. Both the numbers of possible

solutions and fingers depended on and increased with the prevailing Ra. For the

domain in Fig. 2.9 and the reference parameters we have Ra ≈ 300 (computed with

molecular diffusion and domain height), which would capture all the 11 possible

solutions.

Frolkovič and De Schepper (2001) mention that Elder-type problems usually show

unstable behaviour. They attribute the usually-observed 2 fingers to convective

transport of brine, which causes recirculation cells (Fig. 4.2). The density differences

in the vicinity of the cells can lead to the formation of other fingers while the

interactions between neighbouring fingers can cause them to merge at later times.

They obtained patterns with one, two or three fingers corresponding to different

levels of mesh refinement.

Fig. 4.2 The recirculation cells

In our simulations the number of fingers increased from one to three with increasing

density contrast. One finger could be observed for very small density contrasts

or after very long times when the fingers merged due to the impervious bottom

boundary. The Rayleigh number increases with density contrast (Fig. 4.3) and

following the ideas of Johannsen (2002) the system stability can be deduced: the

transition from stable to unstable is generally indicated by an increase in the number
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of fingers.
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Fig. 4.3 The dependency of the number of fingers on Ra‖

The different regimes documented in Diersch and Kolditz (2002) can be incorporated

as follows: the small Rayleigh numbers result from very small density contrasts when

gravity effects are negligible. Increasing the density results in the formation of two

convective cells in which the local velocity vectors change direction as shown in

Fig 4.2. The cells can lead to finger formation, which corresponds to the onset of

the two-finger regime in simulations. Further increase in density creates stronger

recirculation that can lead to formation of additional fingers e.g. the third and

possibly more.

Figure 4.4 summarises the previous results from Diersch and Kolditz (2002)† and

Johannsen (2002)§ and the application of the two in this work‡ into a stability

criterion that predicts the flow regime (indication of system stability) as a function

of the number of fingers formed.

†Ra 0 4π2 240-300

†Regime Diffusive Stable convective Unstable convective

‡Λ?p Λ?p > 0 −1.172 < Λ?p < 0 Λ?p < −1.976

†,§,‡ Fingers 1 2 3

Fig. 4.4 Relating the previous and current results

The current work concisely predicted the transition from one to two-finger regimes

through the change of sign of the stability number but there were some instances

where the predicted stability number was positive but there were visible remnants

of the second finger in numerical simulations. That overlap is represented with the

first hatching in Fig. 4.4. Holzbecher (1998), Diersch and Kolditz (2002) report that

the onset of convection can be accurately predicted with the first critical Rayleigh
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number Racr1 ≈ 4π2.

The transition from two to three fingers can be clearly shown in numerical simu-

lations but cannot be pinpointed from the stability criterion. The transition with

Λ?
p < 0 is thus indicated with a gradual colour change from yellow to red. We hy-

pothesise that there is a definite range of Λ?
p over which the transition occurs and we

indicate that with the second hatching in Figure 4.4. Diersch and Kolditz (2002) also

reported a wide range of the second critical Rayleigh numbers (240 < Racr2 < 300)

over which the second transition occurred.

4.2.1 Determination of the Critical Wavelength

This section presents the simulations performed at the reference parameters with

varying wavelengths of the perturbing sinus function to estimate the cutoff wave-

length. The two fingers were always observed for λ ≤ 1.0 × 10−3m (Fig. 4.5a) but

a third appeared at λ = 2.0 × 10−3m (Fig. 4.5b) and more appeared at bigger

wavelengths e.g. λ = 4.0× 10−3m in Fig. 4.5c.
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(c) λ = 4.0× 10−3m

Fig. 4.5 Estimation of the critical wavelength

Following the foregoing discussion λ = 2.0 × 10−3m was adopted as the reference

wavelength. Attempts will be made in the subsequent analyses to increase stabilising

variables at that perturbation wavelength so as to smooth out the third finger. That

would mean shifting the system from the unstable into the stable-convective regime.
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4.2.2 Derivation and Testing of the Proposed Mixing Zone

Width

In this section the proposed expression for the width of the mixing zone is derived and

tested. An attempt was made to capture the transition from one to two fingers i.e.

the onset of convection. The density contrast was therefore reduced to 998.35 kgm−3,

at which two fingers were first observed.

The procedure outlined in section 4.1.2 to estimate m was followed. Figures 4.6a

and 4.6b are for varying α‖ and α⊥ respectively while the red and blue parts of the

curves indicate the regions corresponding to Λ?
p < 0 and Λ?

p > 0 respectively.
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Fig. 4.6 Fitting the proposed dispersion zone width

The sub-plots in Fig. 4.6a satisfy the condition Λ?
p > 0 for m ≥ 1.49 while in Fig.

4.6b the condition is satisfied for m ≤ 1.51. Intersecting the two regions gives

m ≈ 1.5. Figure 4.6b additionally shows that α⊥ in (4.10) has a negative index,

which is physically consistent because the longitudinal mixing zone reduces as the

transverse dispersivity increases.

Figures 4.7 and 4.8 show the simulations at the parameter sets used in Fig. 4.6. The

transition from two to one finger is captured reasonably well. With m = 3
2

and

n = −1
2
, the approximate mean displacement from (4.10) becomes

X = α
3
2

‖ α
− 1

2
⊥ . (4.13)
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Fig. 4.7 α‖ for Figure 4.6a
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Fig. 4.8 α⊥ for Figure 4.6b

The width of the mixing zone consequently becomes

ζ =

(
α5
‖

α⊥

) 1
4

. (4.14)

The new stability number from (4.6) and (4.12) then becomes:

Λ?
p := Ra‖

(
2α− β
α

)
+
α

3
2

‖ α
1
2
⊥

λ2
. (4.15)

To test the validity of (4.15) the dispersivities therein were varied in such a way as to

preserve their product constant. Table 4.1 shows the stability numbers obtained with

ρmax = 998.5kg ·m−3, λ = 0.002m and various combinations of the dispersivities.

Table 4.1 Testing the dispersion zone width

Dispersivities (m) Λ?
p Figure

α‖ = 1.5× 10−3 α⊥ = 1.0× 10−4 Number
α‖ α⊥ -1.976 4.9a
8α‖ 8−3 · α⊥ -1.452 4.9b
10α‖ 10−3 · α⊥ -1.265 4.9c

The stability numbers increased down the table indicating a shift towards stability.

70



The numerical computations at the parameters used in the tabulation are shown in

Fig. 4.9.
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Fig. 4.9 Testing the dispersion width

Figure 4.9a has three fingers which reduce to two in figures 4.9b and 4.9c. The

transition from 3 to 2 fingers indicates a shift from an unstable state towards a

relatively more stable one. The proposed formulation of the mixing zone could

therefore capture the stability transition. With large enough dispersivities, the

concentration gradients might be reduced sufficiently so that transport becomes

nearly diffusive and a single finger results. However due to the selected domain size,

the stability numbers remained negative for all reasonable combinations of α‖ and

α⊥.

4.2.3 Testing the Proposed Criterion

In this section stability numbers are computed using the derived expression (4.15)

and numerical simulations performed to test it for density and dispersivity effects.

4.2.3.1 Density Effects

Table 4.2 shows Λ?
p computed from (4.15) at various density contrasts alongside the

old Λp with α‖ = 1.50× 10−3m, λ = 0.002m and α⊥ = 1× 10−4m.

The simulations with only one finger (Fig. 4.10a) and with two not fully developed

fingers (Fig. 4.10b) were predicted with positive stability numbers (stable). These

cases had very small density contrasts and transport was nearly diffusive.

With subsequent density increments, the stability numbers changed sign between
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Table 4.2 The new stability numbers for various densities

Max. Density Stability Numbers Figure
ρmax (kg ·m−3) Λp Λ?

p Number
998.25 3.881 4.026 4.10a
998.30 0.769 0.914 4.10b
998.35 -0.571 -0.426 4.10c
998.40 -1.317 -1.172 4.11a
998.50 -2.121 -1.976 4.11b

0.1

0.1 0.1

0.10.10.2

0.2

0.20.20.3

0.3

0.30.3
0.4 0.4

0.4
0.4 0.4 0.4

0.
4

0.5 0.
5

0.5 0.50.
50.50.5

 

 
0.3 0.6 0.9 1.2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

0.1

0.2

0.3

0.4

0.5

(a) ρmax = 998.25kg ·m−3
0.

1

0.1 0.1

0.1

0.2

0.2

0.
2

0.20.3

0.3

0.3
0.3

0.4

0.4

0.4

0.4

0.5 0.
5 0.5 0.
5 0.
50.5

 

 
0.3 0.6 0.9 1.2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

0.1

0.2

0.3

0.4

0.5

(b) ρmax = 998.30kg ·m−3

0.
1

0.1

0.1

0.
1

0.1

0.2

0.2

0.2

0.2

0.
2

0.2

0.
3

0.
3

0.3

0.3
0.30.4

0.4 0.4
0.40.5 0.

5 0.5

0.
5 0.

50.5

 

 
0.3 0.6 0.9 1.2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

0.1

0.2

0.3

0.4

0.5
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Fig. 4.10 The onset of convection

ρmax = 998.30 and 998.35kg ·m−3. The transition was matched in numerical sim-

ulations with the appearance of two clearly developed fingers (Fig. 4.10c), which

physically corresponds to the onset of convection. A further increase in density re-

sulted in more pronounced two fingers that persisted with time (Fig. 4.11a): the

stable convective regime in Diersch and Kolditz (2002).
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(b) ρmax = 998.50kg ·m−3

Fig. 4.11 Fingering at higher densities

High density contrast results in random alterations in the rotation of the local ve-

locity vectors that interact erratically Frolkovič and De Schepper (2001). The in-

teractions give rise to the development of the third finger (Fig. 4.11b) and that

corresponds to the onset of the unstable convective regime documented in Diersch

and Kolditz (2002).

We have thus reconciled the earlier findings by Johannsen (2002) that the Rayleigh

number and the observed number of fingers increase with the density contrast and
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by Diersch and Kolditz (2002) regarding the existence of three regimes related to

the number of fingers present. In the following, we attempt to stabilise the system

in Fig. 4.11b by increasing dispersivities. The stabilising effect is expected to result

in a reduction in the number of fingers.

4.2.3.2 Longitudinal Dispersivity Effects

In this section we present the investigations for the effect of α‖. Table 4.3 shows the

stability numbers computed with different α‖ at λ = 2× 10−3m, α⊥ = 1.0× 10−4m

and ρmax = 998.5kg ·m−3.

Table 4.3 The effect of α‖
Dispersivity Stability Number Figure
α‖(×10−3)m Λ?

p number
1.5 -1.976 4.12a
7.5 -1.761 4.12b
10.0 -1.153 4.12c

The criterion predicted an increase in stability with increasing longitudinal disper-

sivity. Increased stability is due to a reduction in the concentration gradient arising

from increased smearing of the solute. Figure 4.12 shows the evolution of fingers at

the various α‖.

Figure 4.12a is the reference simulation, which is in the unstable convective regime.

The increase in stability predicted by the criterion is shown in the reduction of the

number of fingers from three to two with increasing dispersivity. The difference in
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Fig. 4.12 The effect of α‖

the distances travelled in figures 4.12b and 4.12b can be accounted for as follows:

The rotation of the local velocity vectors inside the recirculation cells (Fig. 4.2) cause
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solute transport towards the middle of the front. That results in up-welling (Diersch

and Kolditz 2002), which suppressed the middle finger that initially formed. Parts

of the two cells merge at later times and cause the middle part of the front to move

further down (downwell) at the expense of the outer fingers. Up-welling followed by

down-welling were also reported in Frolkovič and De Schepper (2001) and Diersch

and Kolditz (2002) and are said to occur at convergent grids only.

4.2.3.3 Transverse Dispersivity Effects

The transverse dispersivity increases mixing in the transverse direction thereby re-

tarding finger growth. Table 4.4 shows the stability numbers computed with different

α⊥ at α‖ = 1.5× 10−3m, ρmax = 998.5kg ·m−3 and λ = 2× 10−3m.

Table 4.4 The effect of α⊥
Dispersivity Stability Number Figure
α⊥(×10−4)m Λ?

p number
1.0 -1.976 4.13a
10.0 -0.734 4.13b
30.0 -0.111 4.13c

The stability numbers predicted an increase in the stability with increasing α⊥. A

reduction in the number of fingers was therefore expected. The evolution of fingers

for the parameters given above and various α⊥ is shown in Fig. 4.13.
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Fig. 4.13 The effect of α⊥

Figure 4.13a has clearly formed three fingers indicating a highly unstable system.

The stabilising tendency is shown by the reduction in the number of fingers and

the vertical distance travelled by the fingers in figures 4.13b and 4.13c. The vertical

distance travelled by the solute front was not significantly affected by the increasing
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transverse dispersivity in the first two sub-figures although the enhanced spreading

manifested itself in wider outer fingers.

The investigations have shown that the longitudinal dispersivity is more stabilis-

ing than the transverse. To capture the effects of the transverse dispersivity it

was necessary to increase α⊥ beyond α‖, which is practically unrealistic. However

the proposed criterion predicted the stability transition at the unreasonably high

transverse dispersivities.

4.2.4 Discussion of Results

The fingers in figures 4.5a through 4.13c are generally asymmetric, save for very

small density contrasts. Asymmetric fingering was documented in Kolditz et al.

(1998) and attributed to insufficient grid refinement (numerical errors). However,

symmetric patterns could be achieved with the same grid refinement but a different

boundary condition. Figure 4.14a shows the symmetric pattern after 2000hrs at

ρmax = 998.7kg · m−3 with the unperturbed ω = 1.0 boundary condition while

Fig. 4.14b is the asymmetric pattern at identical parameters but a sinus boundary

condition.
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Fig. 4.14 Effect of boundary condition on finger symmetry

The symmetry in Fig. 4.14a indicates sufficient grid refinement (Pe = 1.4 × 10−2).

We therefore attribute the asymmetric behaviour in Fig. 4.14b to the boundary

condition. Marle (1981) also documented the asymmetric evolution of an interface

initially perturbed by symmetric sinusoidal functions while Frolkovič and De Schep-

per (2001) showed very big variations in the numerical solution caused by very slight

perturbations in the solute initial condition.
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Figure 4.14 additionally shows that the concentration front in the unperturbed sys-

tem travels through a bigger vertical distance. This is due to a reduction in solute

mass and hence in the propagation velocity caused by the fluctuating sinus function

at the inflow. It is possible that comparable distances are travelled with sufficiently

large wavelengths.

The constant inflow boundary condition in Fig. 4.14a corresponds to an infinite

perturbation wavelength and the numerous fingers indicate a highly unstable con-

figuration. This is consistent with equation 4.3 on page 61 that stability diminishes

with increasing perturbation wavelength.

The proposed stability criterion produced satisfactory results for density and longi-

tudinal dispersivity but was hypersensitive to changes in the transverse dispersivity.

We have shown that all simulations with more than one finger were predicted with

Λ?
p < 0. Considering the predictions from density and longitudinal dispersivity,

it appears that the transition from two to three fingers occurred over the range

−1.976 ≤ Λ?
p ≤ −1.172.

The stability criterion can be thus stated that predicts the various flow regimes

(number of fingers) using the stability numbers:

I: 1 finger: nearly diffusive system Λ?
p > 0,

II: 2 fingers: stable convective system −1.172 < Λ?
p < 0,

III: 3 fingers: unstable convective system Λ?
p < −1.976.

The transition from 2 to 3 fingers occurred over the range −1.976 < Λ?
p < −1.172

indicated by the second hatched region in Fig. 4.4 on page 67.

We neglected diffusion and assumed the mixing zone width to be a function of the

dispersivities only. This is not entirely true because molecular diffusion is responsible

for transport across streamlines, and therefore contributes to the mixing zone. The

expression for the mixing zone could be improved by explicitly taking into account

the dependency on density (see e.g. Kempers and Haas (1994)) and the contribution

from molecular diffusion.
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The effects of velocity were not explicity studied. The flow systems considered

here are purely density-driven without external pressures. The velocity effects are

therefore implicitly included within the density investigations.

We have shown that α‖ has a stabilising effect, a fact that is not widely docu-

mented. What is available in literature is the uncontrolled mixing resulting from

very big longitudinal dispersion coefficients D‖ (Welty and Gelhar 1991, Held et al.

2005, Landman, Johannsen and Schotting 2007, Landman, Schotting, Egorov and

Demidov 2007). The dispersion coefficients in density-driven systems depend on the

density contrast (Kempers and Haas 1994, Held et al. 2005) and are therefore a com-

bination of two factors with opposing effects. Kempers and Haas (1994) mention

that the destabilising density effects override the stabilising dispersivity thus the

widely documented uncontrolled mixing resulting from big dispersion coefficients.

As was the case in chapter 3, the intensity of fingering cannot be precisely inferred

from the magnitude of the stability number. This is again the case for the patterns

at ρmax = 998.40 (Fig. 4.11a on page 72) and α‖ = 10.0 × 10−3 (Fig. 4.12c on

page 73), which are significantly different but predicted with Λ?
p = −1.176 and

−1.153 respectively. Only the sign of Λ?
p can indicate whether there is one or more

fingers. The magnitude can distinguish between 2 and 3 fingers using the ranges in

Fig. 4.4.

For the destabilising density effects, the fingers become thinner and longer in figures

4.10a through 4.11b, while they become broader and shorter for the stabilising effects

of longitudinal and transverse dispersivity in Fig. 4.12 and 4.13 respectively. This

suggests that in addition to the horizontal plane hypothesised in chapter 3, there

might exist a critical finger width demarcating stable and unstable configurations.

The width of the dispersion zone first increases with time then attains an asymptotic

value (Marle 1981, Buès and Aachib 1991). Consequently, it is possible that a system

that appears unstable at very early times owing to insufficient dispersive mixing

becomes stabilised at later times. Therefore it was necessary to let the simulations

run for reasonably long times of up to 7000 hours to achieve stationarity in the

evolutions.
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Chapter 5

Stability Analyses for a

Heterogeneous Medium1

The stability criterion developed and tested in the preceding chapters is extended

here to include medium heterogeneity effects. Additionally, the elements in the

macrodispersion tensor derived via homogenization theory are derived and pre-

sented. Their temporal evolution for various heterogeneity parameters is also eval-

uated and presented.

5.1 The Stochastic Permeability Field

Deterministic models are of limited value to model natural formations because of

the underlying complexity and uncertainty. A stochastic model is used to formalise

the uncertainty in space functions by regarding them as random spatial variables

characterised statistically (Dagan 1986). A random function is characterised by a

joint probability density function p.d.f. of its values at arbitrary points and the p.d.f.

is characterised by the various moments, the first two being the expected value and

the 2-point covariance (Gelhar 1993). The output is only part of the many possible

outcomes from all points (Fetter 1999), the ensemble.

1Manuscript submitted to Advances in Water Resources
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The spatially varying permeability field k can be conveniently expressed as a func-

tion of the position vector x by taking the natural logarithm: f(x) = ln k(x) where

f is the natural log permeability (Gelhar and Axness 1983, Dagan 1988, Welty and

Gelhar 1991). f(x) is split into the constant average f̄(x) and randomly fluctuat-

ing part f̃(x) according to f(x) = f̄(x) + f̃(x), which imposes the condition that

f̃(x) = 0. The over-bar quantity denotes the ensemble average but statistical sta-

tionarity enables the use of one realisation to represent the ensemble (Dagan 1987,

Gelhar 1993) and infer statistical moments. If the logarithm of the permeability

values is normally distributed, the log-normal permeability model is obtained. The

model yields a smooth distribution of permeability about the mean value while

avoiding the unphysical situation of negative values (Drummond and Horgan 1987,

Gelhar 1993).

The stationarity (statistical homogeneity) assumption is usually adopted in stochas-

tic studies (Gelhar and Axness 1983, Dagan 1986; 1988, Welty and Gelhar 1991, Gel-

har 1993, Fetter 1999) and asserts that the average permeability is independent of

location in the domain and the covariance corresponding to 2 points only depends on

the length and orientation of the vector separating the points. If statistical isotropy

is further assumed, the covariance is then independent of the vector orientation.

As a consequence the covariance of the fluctuations around the mean value only

depends on the difference between their arguments.

Heterogeneous fields were generated using the spectral techniques developed by

Robin, Gutjahr, Sudicky and Wilson (1993). We assumed the log-normal prob-

ability density function, statistical stationarity and isotropy (Dagan 1987; 1988,

Schincariol and Schwartz 1990, Schincariol 1998) and a Gaussian auto-covariance

function (Held et al. 2005). Such an auto-covariance function in 2 spatial directions

reads:

wf (x) = σ2
f exp

(
−

2∑
j=1

|xj|2

2λ2
j

)
. (5.1)

σ2
f is the distribution variance and xj and λj are the respective components of

the space vector and correlation length in direction j. For the exponential auto-
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covariance function, please see Gelhar and Axness (1983), Dagan (1988), Fetter

(1999) and Rubin (2003).

5.2 Stability Analyses in Heterogeneous Media

A stability criterion was derived in chapter 4 for a homogeneous medium including

dispersive effects. The effects of dispersion and medium heterogeneity are similar in

that they result in the spreading (mixing) of the solute in the domain. The previous

analysis can thereby be extended to heterogeneous media with minimal changes.

We take the net medium heterogeneity effect as the effects of the small-scale disper-

sion occurring over several pores coupled with the large-scale spreading caused by

the heterogeneities. To that end, the heterogeneous-medium dispersivity is consid-

ered as the effective composed of the local from the homogeneous medium and an

increment δ(α) arising from the medium heterogeneity: αeff = α+δ(α). With this, a

new stability number Λ??
p for a heterogeneous medium can be written as the total of

the contributions from the homogeneous medium Λ?
p and the part from the medium

heterogeneity. Substituting αeff in the homogeneous medium stability number

Λ?
p := Λp +

α
3
2

‖ α
1
2
⊥

λ2
,

one can write: Λ??
p = Λp +

αeff
3
2

‖ αeff
1
2

⊥
λ2
v

, which upon further substitution gives

Λ??
p = Λp +

[
(α‖ + δ(α‖))

3(α⊥ + δ(α⊥))
] 1

2

λ2
v

. (5.2)

The correlation length λv plays the role previously played by the perturbation wave-

length in the homogeneous medium to filter out instabilities that grow into fingers.

The dispersivity terms are then multiplied out and in accordance with the linear
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perturbation theory, the products of δ(α) terms are neglected. We then obtain

Λ??
p ≈ Λp +

(
α3
‖α⊥ + α3

‖δ(α⊥) + 3α2
‖δ(α‖)

) 1
2

λ2
v

. (5.3)

We now assume that the change of dispersivity in the transverse direction is very

small and can be neglected (see also Dagan (1988)) to obtain

Λ??
p ≈ Λp +

(
α3
‖α⊥

) 1
2

λ2
v

[
1 + 3

(
δ(α‖)

α‖

)] 1
2

. (5.4)

Expanding the square bracket as a series up to the linear term gives

Λ??
p ≈ Λp +

(
α3
‖α⊥

) 1
2

λ2
v

+
3δ(α‖)

(
α3
‖α⊥

) 1
2

2α‖λ2
v

. (5.5)

At this point we consider a simple linear relationship: λv = nλ relating the het-

erogeneous medium correlation length and the homogeneous medium perturbation

wavelength. The asymptotic longitudinal dispersivity for heterogeneous media is

given by δ(α‖) = σ2λv (Gelhar and Axness 1983, Gelhar 1993, Kempers and Haas

1994), where σ2 is the heterogeneity variance. The second term on the right hand

side of (5.5) can be rewritten in terms of the homogeneous medium perturbation

wavelength consequently allowing the introduction of Λ?
p. The following expression

then results for the new stability number:

Λ??
p ≈ Λ?

p −
(
n2 − 1

) (α3
‖α⊥

) 1
2

λ2
v

+
3σ2

(
α‖α⊥

) 1
2

2λv
. (5.6)

The value of n can be estimated via numerical simulations by varying the correlation

length and noting when fingering starts. Equation (5.6) shows that in addition to

the dispersivities, σ2 also stabilises while λv destabilises the system.

It should be noted that (5.6) is only meaningful if mixing on the cell problem level

is egordic. This might only happen if the problem on the cell problem level is stable.

If the problem is already unstable on the cell-problem level, no stabilisation occurs
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due to heterogeneities.

5.2.1 Hypothesis

For homogeneous media, the small-scale problem was stable for perturbation wave-

lengths smaller than the critical. If diffusion and small-scale dispersion, the main

stabilising mechanisms are insufficient to limit the growth of perturbations into fin-

gers, the system becomes unstable at the small scale and the fingers are observed at

the large scale as well.

Medium heterogeneities on the other hand control the formation and growth of

instabilities. An unstable problem at the small scale might be stable at larger scales if

the spreading caused by heterogeneities can arrest the growth of instabilities. In that

case, the macroscopic transverse dispersion coefficient exceeds the local dispersion.

It is also possible that heterogeneities cannot smooth out the instabilities making

unstable small scale systems unstable at the large scales as well.

A third possibility is when the perturbation wavelengths are smaller than the critical

thus a stable small scale problem, which in the presence of heterogeneities should

also be stable at large scales. However when the heterogeneities are distributed in

such a way as to offer preferential flow paths, they can promote finger growth and

destabilise systems that were stable at small scales.

The question of whether heterogeneities have stabilising or destabilising effects leads

us to the following hypothesis: within a certain range of density contrasts, increasing

σ2 sufficiently can result into stable behaviour if the correlation length lies in a

certain range. In particular, there also exists a critical correlation length λv,crit

below which configurations are stable. It might also be that a favourable density

contrast in a homogeneous medium leads to fingering in a heterogeneous medium.

From the hypothesis, it is expected that by increasing σ2, both the density contrast

and λv,crit at which fingering occurs increase.
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5.3 Large-scale Mixing in Heterogeneous Media

The small-scale stability criterion in chapter 3 was based on the assumption that

velocity fluctuations were caused by the small-scale variations of solute only. The

formulations used were general and can be extended to heterogeneous media by in-

corporating the (previously neglected) heterogeneity effects. The expression for the

mesoscale velocity fluctuations is modified in the following to include the contribu-

tions from the medium heterogeneity. Held et al. (2005) suggested the following

relationship:

ṽ(q, τ) = M(q)ω1(q, τ) + L(q)k̃(q) . (5.7)

Where k̃(q) is the fluctuation of the log-transformed permeability and L(q) the

contribution of the permeability heterogeneity to the mesoscale velocity fluctuations

(see appendix A.2 for derivation). We then obtain the following small-scale equation

(in Fourier space)

ρ(ω)
∂ω1(q, τ)

∂τ
+ i

L

D‖
v · qω1(q, τ) + D?q · qω1(q, τ)

= − L

D‖

(
M(q) ·Gω1(q, τ) +L(q)k̃(q)

)
, (5.8)

where i is the imaginary unit
√
−1, v the total velocity, and G the large scale

concentration gradient.

In order to evaluate the elements in the macrodispersion tensor, the cell problem

has to be written explicitly and solved. First the solution to (5.8), which depends

on the large-scale mass fraction is assumed to have the form

ω1(q, τ) = χω(q, τ) ·G , (5.9)

where the vector χω is the solute distribution in the reference homogenization theory

cell. Substitution of (5.9) into (5.8) gives the cell problem (Held et al. 2005)

ρ(ω)
∂χωn
∂τ

+ i
L

D‖
v · qχωn + D?q ·qχωn +

L

D‖
M(q) ·Gχωn = − L

D‖
L(q) ·Gk̃(q) , (5.10)
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with χωn(q, τ), n = 1, 2. Solving the cell problem with the boundary condition

χωn(0, τ) = 0 yields (see also Held et al. (2005)):

χωn(q, τ)

= −κ
∫ τ

0

dτ
′
Ln(q)k̃(q) exp

(
−
(
i

L

ρ(ω)D‖
v · q +

D?q · q
ρ(ω)

+
Λ

ρ(ω)

)
τ
′
)
, (5.11)

where Λ is the stability number. Vertical systems are considered here so we adopt

Λp computed from (3.21). The notation κ =
LGn

D‖ρ(ω)
has been introduced to shorten

the expression and will be used subsequently.

The large-scale transport equation from homogenization theory (see chapter 3 for

derivation) reads

ρ(ω)
∂ω0

∂t
+

L

D‖
v0 ·∇xω0 −∇x ·Deff∇xω0 = 0 , (5.12)

where the 0 subscript indicates macroscopic quantities and Deff is the macrodisper-

sion tensor defined as

Deff = D? − ṽ ⊗ χω . (5.13)

In 2 dimensions, the elements of the tensor in (5.13) evaluate to

Deff =

 ρ− L

D‖
ṽ1χω1 − L

D‖
ṽ1χω2

− L

D‖
ṽ2χω1 ρ

D⊥
D‖
− L

D‖
ṽ2χω2

 . (5.14)

5.3.1 Macrodispersion Coefficients for Flow Parallel to Grav-

ity

In this section the expressions used to compute the respective entries in the macrodis-

persion tensor are presented. The full derivations are given in appendix A.3. We

consider vertical flow with v1 = v0 aligned parallel to the gravity vector and no flow

in the transverse direction i.e. v2 = 0. L(q) (see appendix A.2 for derivation) then

becomes
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L(q) =

 L1(q)

L2(q)

 =
1

k̄

(
1

q2
1 + q2

2

) q2
2v0

−q1q2v0

 . (5.15)

The appropriate components of L(q) from (5.15) have to be substituted into (5.11).

5.3.1.1 The Diagonal Elements

The longitudinal macrodispersion coefficients (see appendix A.3.1 for derivation)

takes the form

Deff
11 = Θ

∫ ∞
s

dη

∫ ∞
0

ds
3π

4κ3(ξ2 + η)5/2
·[

A

(
2Λ2

p(1 + η)
(
2erf(C)− erf(B)− erf(D)

)
+ κ2

(
2Λpτ(erf(C)− erf(D))

+erf(C)− erf(B)
) )
− 2Λpκ

√
(1 + η)(1− 2F +G)

]
. (5.16)

Where,

A =
√
π exp

(
Λ2
p(1 + η)

κ2

)
, B =

Λp

√
1 + η

κ
, Θ =

4πκε1ξv0σ
2
f

k̄2
,

C =

(
(τκ2 + 2Λp + 2Λpη)

2κ
√

(1 + η)

)
, D =

Λpη + τκ2 + Λp

κ
√

1 + η
, κ =

LGn

D‖ρ
,

F = exp

(
−τ(τκ2 + 4Λp + 4Λpη)

4(1 + η)

)
and G = exp

(
−τ(τκ2 + 2Λp + 2Λpη)

1 + η

)
The transverse macrodispersion coefficient (evaluated in appendix A.3.2) takes the

form

Deff
22 = Θ

∫ ∞
s

dη

∫ ∞
0

ds
π

4κ5(ξ2 + η)3/2(1 + η)3/2

×
{
A? 2Λ2

p(η + 1)

[
2Λ2

p(η + 1)
(
erf(D)− 2erf(C) + erf(B)

)
+ κ2

(
(τΛp + 1)erf(D)− (2τΛp + 5)erf(C) + 3erf(B)

) ]
+ 2Λpκ(η + 1)

[
2Λ2

p(η + 1)(G− 2F + 1)

+κ2(G− 3F + 2)

]
+ κ5τF

}
, (5.17)
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where in addition to the above definitions, A? = A
√

1 + η .

5.3.1.2 The Off-diagonal Elements

The off-diagonal elements evaluate to zero (see appendix A.3.3), resulting in a sym-

metric macrodispersion tensor.

There are no closed-form analytical solutions for (5.16) and (5.17), therefore the

equations had to be solved numerically using MAPLE R©.

5.3.2 The Temporal Evolution of the Coefficients

In this section we present the temporal evolution of the macrodispersion coeffi-

cients computed by evaluating the integrals in (5.16) and (5.17) using the software

MAPLE R©. First we consider a system without density and viscosity contrasts

and compare the results to those found in literature. We then include favourable

and unfavourable density and viscosity contrasts and compare the results to what

is expected from physical considerations.

5.3.2.1 Macrodispersion Coefficients without Density Effects.

Passive tracer scenarios were achieved by using Λp = 0 in (5.16) and (5.17). Figure

5.1 shows the evolutions of the dispersion coefficients for such tracers at different

anisotropy ratios, defined as ξ = λh/λv, where λh and λv are respectively the hor-

izontal and vertical correlation lengths. For the longitudinal coefficients plotted in

Fig. 5.1a, there is a remarkable reduction in magnitude with increasing anisotropy

ratio. However, the transverse coefficients in Fig. 5.1b show no observable change.

The anisotropy ξ was increased by decreasing the vertical correlation length. Small

vertical correlation lengths make the medium very heterogeneous in the vertical

direction, which impedes vertical transport. The reduced transport in turn reduces

dispersion and thus the smaller longitudinal coefficients.

Dagan (1988) considered flow orthogonal to gravity for a passive tracer and defined
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(a) Longitudinal coefficient Deff
11 (b) Transverse coefficient Deff

22

Fig. 5.1 Macrodispersion coefficients for passive tracers

the anisotropy ratio as ξ? = λv/λh. He presented longitudinal (in our case the

transverse) coefficients that were unaffected by ξ? and the transverse (in our case

the longitudinal) coefficients that increased with increasing ξ?. Due to the inverse

relationship between ξ and ξ?, our results are in agreement with his. He also pre-

sented for his configuration longitudinal dispersion coefficients that vanished to zero

after long times, which is again consistent with those in Fig. 5.1b.

5.3.2.2 Macrodispersion Coefficients with Density Effects.

In this section we consider favourable and unfavourable density contrasts and com-

pute the corresponding macrodispersion coefficients and study their temporal evo-

lution.

Favourable Density and Viscosity Contrasts

A stabilised system can be as a result of very small density contrasts or increased

transverse mixing. A reduction in density contrast reduces the downward plume

propagation and hence the longitudinal dispersion. Increased heterogeneity and/or

transverse dispersivity on the other hand increase transverse spreading thus increas-

ing transverse dispersion. We therefore expect the combined effect of a stabilised

system to be a reduction and an increase in the longitudinal and transverse macrodis-
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persion coefficients respectively.

Figure 5.2 shows the evolution of the longitudinal and transverse macrodispersion

coefficients for various arbitrarily chosen positive stability numbers (stable density

contrasts).

(a) Longitudinal coefficient Deff
11 (b) Transverse coefficient Deff

22

Fig. 5.2 Coefficients for favourable density and viscosity contrasts

As expected, the longitudinal coefficient reduces with stability while the transverse

coefficient increases.

Unfavourable Density and Viscosity Contrasts

A destabilised system can be achieved by opposite effects to those mentioned above:

an increase in density contrast, reduction in transverse dispersivity or a decrease

in medium heterogeneity. These cause a respective reduction and increase in the

transverse and longitudinal macrodispersions. In the following we present the evo-

lution of the dispersion coefficients for various unstable density contrasts, perme-

ability heterogeneity variance, vertical correlation lengths, dispersivity and medium

anisotropy.

Macrodispersion Coefficients for Different Λp.

Small variations in density contrast were shown to have big effects on stability in

chapter 3. We use various Λp < 0 to compute the dispersion coefficients and attempt
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to infer the system stability from the temporal evolution and boundedness of the

longitudinal coefficient.

Figure 5.3 shows such evolutions for different values of Λp computed using the pa-

rameters form Schincariol et al. (1994) in an isotropic medium. Figure 5.3a is the

longitudinal coefficient that increases as Λp decreases (increase in density contrast)

while Fig. 5.3b is the transverse coefficient which decreases marginally with decreas-

ing Λp. Systems with Λp � 0 have high energy that successively becomes harder to

dissipate. Gravity effects predominate over mixing and the longitudinal coefficient

grows uncontrollably.

(a) Longitudinal coefficients Deff
11 (b) Transverse coefficients Deff

22

Fig. 5.3 Coefficients for unfavourable density and viscosity contrasts

In Fig. 5.3a the heterogeneities stabilised the system at Λp = −0.006 (red curve) as

shown from the asymptotic behaviour. Subsequent increments in density resulted in

steeper curves until Λp = −0.03, when the growth became unlimited. Mixing from

the prevailing heterogeneity was then insufficient to prevent fingering. Therefore

density contrasts with asymptotic (finite) Deff
11 had been stabilised by medium het-

erogeneity while those showing infinite growth of the coefficient remained unstable.

Comparable results can be found in Welty and Gelhar (1991) but unlike here, the

coefficients grew indefinitely with time for all Λp < 0 and boundedness was only for

Λp ≥ 0.
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Longitudinal Coefficients for Different λv.

The pre-factor Θ in (5.16) can be modified such that Θ = λvΘ
?. We then expect

longitudinal coefficients that increase with λv. That is physically meaningful because

increasing λv reduces the vertical heterogeneity and enhances solute transport in

the vertical direction, hence bigger longitudinal coefficients. Figure 5.4 shows the

evolution of the longitudinal coefficient at Λp = −0.006 and arbitrary λv values.

Fig. 5.4 Deff
11 for various λv

Variations in λv shifted the curves upwards, increased the slopes of the curves and

shifted the time required to reach equilibrium to the right but the asymptotic be-

haviour almost persisted. It was shown in figures 5.2a and 5.3a that an upward shift

and increased slope of the longitudinal coefficient indicate reduced system stability.

Very large correlation lengths might cause the unbounded coefficients obtained with

density but the restrictions by the computing infrastructure never permitted that to

be realised. The shift of the time-to-equilibrium to the right is due to instabilities

with big amplitudes requiring longer times to be smoothed out.

Transverse Coefficients for Different σ2.

It was mentioned previously that increasing variance means including more hetero-

geneities in the distribution and results in a more heterogeneous medium. High

heterogeneity enhances mixing which shifts the instability wavelengths towards the

stable range. We therefore expect the stability of the large-scale system to increase
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with σ2.

If the pre-factor in (5.17) is modified such that Θ = Θ??σ2 we obtain a transverse

macrodispersion coefficient shown in Fig. 5.5 that increases with σ2. It was demon-

strated in Fig. 5.2b that an upward shift in the transverse dispersion coefficient

indicates increased system stability, thus the stabilising effect of σ2 is captured in a

way consistent with physical expectations.

Fig. 5.5 Deff
22 for various σ2

Macrodispersion Coefficients for Different ξ.

The anisotropy ξ was defined as the ratio of correlation lengths λh/λv. Increasing

ξ can arise from either increasing λh or decreasing λv. The medium would respec-

tively become more homogeneous in the horizontal direction (increased Deff
22 ) or more

heterogeneous in the vertical direction (reduced Deff
11 ).

If the pre-factor in (5.17) is modified such that Θ = ξΘ???, a transverse coefficient

that increases with ξ is obtained. Figure 5.6a shows such transverse coefficients

that capture the enhanced stability. Figure 5.6b also shows a Deff
11 that reduces with

ξ, thus also capturing the practical phenomenon. A long time should however be

considered for Deff
22 .
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(a) Transverse coefficient Deff
22 (b) Longitudinal coefficient Deff

11

Fig. 5.6 Macrodispersion coefficients for various ξ

Finite Pèclet numbers.

The foregoing results were obtained on the assumption of infinite Pèclet numbers,

which made the term containing the dispersivities vanish to zero. Studying the

effect of dispersivity on the evolution of the coefficient required the relaxation of

that assumption to use finite Pèclet numbers. That could however not be done with

the available computing resources.

5.4 Numerical Stability Analysis Results

The stability numbers computed from the proposed expression for Λ??
p are presented

in this section and compared against numerical simulations. The investigations are

limited to a downward vertical displacement of a less dense fluid by a denser one

(Fig. 2.9).

For the case of a homogeneous medium with dispersion, the transition between

different regimes could be predicted from the magnitude of the stability number.

The regimes were the nearly diffusive with one finger and predicted with a posi-

tive stability number, the stable-convective regime with two fingers predicted with

−1.172 < Λ?
p < 0 and the unstable-convective regime with three fingers predicted

with Λ?
p < −1.976. The interest here is the transition from two to three fingers. The
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stabilisation from medium heterogeneity is expected to increase the density contrasts

at which fingers appear. That in effect shifts the two-to-three-finger transition zone

to the right i.e. towards smaller stability numbers.

It is not necessary to perturb the inflow region as was done in chapter 4 because

the medium heterogeneities accomplish the task of initiating perturbations. The

relative mass fraction ω = 1.0 is used as the transport equation Dirichlet boundary

condition at the inflow region. It is defined as ω/ωmax but we simply refer to it as

mass fraction without loss of generality.

The software package d3f (Fein and Schneider 1999) was still used for the numerical

simulations with 831488 elements and a time step of 0.125 hours. These fine grid and

time steps (Pe ≈ 1.4×10−4 and Cr ≈ 3.2×10−6) ensured stability of the numerical

solution without upwind (Frolkovič 1998b, Frolkovič and De Schepper 2001).

The parameters used in the simulations are given in Table 2.1, the same adopted from

Schincariol et al. (1997). The maximal density, domain length and dispersivities used

in chapter 4 were again used here.

5.4.1 Relation Between λ and λv: Effects of the Correlation

Length

To fully develop the stability number, the n in (5.6) needs to be estimated. For

that, simulations were performed at various λv and σ2 to determine when fingers

first formed (see similar procedure for λcrit in chapter 4). The results are shown in

figures 5.7 through 5.9 .
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Fig. 5.7 Different λv, σ
2 = 0.30 and ρmax = 998.5 kg ·m−3
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Fig. 5.8 Different λv, σ
2 = 0.40 and ρmax = 998.5 kg ·m−3
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(c) λv = 0.020m

Fig. 5.9 Different λv, σ
2 = 0.50 and ρmax = 998.5 kg ·m−3

From the figures, λv = 7.5× 10−3m was the smallest correlation length at which the

third finger appeared, marking the transition into the unstable-convective regime.

Analogous to the work for the homogeneous medium, that is taken as the criti-

cal correlation length resulting in the relation λv ≈ 3.5λ. Increasing the medium

heterogeneity requires bigger correlation lengths to offset the mixing, as shown in

figures 5.8 and 5.9. Table 5.1 shows the stability numbers computed using (5.6)

with n = 3.5, the highlighting indicates stability transition from 2 to 3 fingers.

Table 5.1 Effect of λv

λv(×10−3) σ2

m 0.30 0.40 0.50
5.0 -1.529 -1.441 -1.363
7.5 -1.859 -1.819 -1.785
10.0 -1.975 -1.952 -1.930
20.0 -2.083 -2.079 -2.079

The decreasing stability numbers down the columns in Table 5.1 correctly matched

the stability transition in the figures. The simulation in Fig. 5.9 did not return a

third finger but rather a distortion in finger symmetry due to channelling effects and

therefore an indication of instability. The transition to three fingers suggests that if

the correlation length could be sufficiently reduced, heterogeneous mixing could be
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so much that no convection would take place and one finger would result. However,

resolving such small heterogeneities was not possible with the available computing

infrastructure.

5.4.2 Density Effects

The effect of density contrast is investigated next by estimating the density contrast

required to induce fingering at different degrees of medium heterogeneity. Table 5.2

shows the stability numbers computed at λv = 7.0 × 10−3m and various maximal

densities and σ2. The correlation length was chosen slightly smaller than the smallest

critical obtained in the previous section to avoid unstable starting configurations.

Table 5.2 Density effects

ρmax σ2

0.40 0.60 0.65
998.4 -0.967 -0.893 -0.877
998.5 -1.771 -1.699 -1.682
998.6 -2.200 -2.125 -2.108
998.7 -2.467 -2.397 -2.375

The evolution of fingers at the same parameters and maximal densities up to the

onset of fingering are shown in figures 5.10 through 5.12. The stabilising effect of

medium heterogeneity is shown by the increased density contrasts required to induce

fingering at high variances.
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(b) ρmax = 998.50

Fig. 5.10 Onset of fingering at σ2 = 0.40

A density of 998.5 resulted in three fingers in a homogeneous medium (previous

chapter) whereas only two are formed here when σ2 ≥ 0.6. At ρmax = 998.6 a
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(c) ρmax = 998.60

Fig. 5.11 Onset of fingering at σ2 = 0.60
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(c) ρmax = 998.70

Fig. 5.12 Onset of fingering at σ2 = 0.65

third finger just begins to form at σ2 = 0.60 in Fig. 5.11c and does not form at all

at σ2 = 0.65 in Fig. 5.12b. The two fingers at ρmax = 998.4 are also significantly

stunted compared to what they were in the homogeneous medium. The increase in

density contrast required to produce three fingers is an indication of stabilisation by

medium heterogeneity.

5.4.3 Medium Heterogeneity Effects

The effects of varying the medium heterogeneity at a fixed density contrast are

presented in this section. The heterogeneity variance increases transverse mixing

and hence stabilises while anisotropy in the form defined here also stabilises. The

vertical correlation length increases the homogeneity of the medium and was already

shown to destabilise beyond a certain cutoff.

5.4.3.1 Effects of σ2

Table 5.3 shows the stability numbers computed at the reference parameters in

Table 2.1 and λv = 7.5× 10−3 with various σ2. The stabilising effect of the medium
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heterogeneity is indicated by the increasing stability numbers.

Table 5.3 Effect of σ2

σ2 Λ??
p

0.40 -2.200
0.60 -2.125
0.65 -2.108

Figure 5.13 shows the evolution of fingers at the σ2 in Table 5.3. The increase in

stability is indicated by the middle finger in Fig. 5.13a that is smoothed out at

higher σ2 in Fig. 5.13c and the difference in the vertical distances travelled by the

solute.
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(a) σ2 = 0.40 after 4000 hr.
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(c) σ2 = 0.65

Fig. 5.13 The effect of increasing σ2

The simulation at σ2 = 0.4 is reported at an early time because after 7000 hours

when other are taken, the fingers are already recombined into two. Even with a

much bigger vertical distance, the misconception that a less heterogeneous medium

was more stable had to be avoided.

5.4.3.2 Effect of the Medium Anisotropy ξ

The anisotropy ratio was defined as ξ = λh/λv. Increase in ξ was achieved by

decreasing the vertical correlation length while the horizontal was kept constant.

The increased medium heterogeneity in the vertical direction retards the advance

of the front and dissipates the energy of the instabilities through spreading/mixing

effects and thus results in a stabilised system.

Below are simulations at ρmax = 998.5kg · m−3, σ2 = 0.40, λh = 0.0075m and

various λv so as to result in the respective ξ. The horizontal correlation length was
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maintained at the constant value to achieve a system close to the transition point.
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(b) ξ = 100

Fig. 5.14 The effect of ξ at σ2 = 0.40

No stability numbers could be computed because the criterion does not explicitly

contain the medium anisotropy. The stabilising effect of increasing ξ was however

captured by the macrodispersion coefficients in Fig. 5.6 on page 93.

5.4.4 Effect of Dispersivity

In this section we present the effect of varying α‖ and α⊥ on flow stability.

5.4.4.1 Effect of the Longitudinal Dispersivity α‖.

The results of varying the longitudinal dispersivity at the reference parameters,

σ2 = 0.60, ρmax = 998.6, λv = 0.0075 and various α‖ are presented here. Table 5.4

shows the stability numbers, with a gradual increase indicating increased stability.

Table 5.4 Effect of α‖

α‖ × 10−3m Λ??
p

1.5 -2.180
7.5 -2.098
10.0 -1.751

The simulations show three fingers at first, which reduce to two at higher dispersivity.
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(c) α‖ = 10.0× 10−3

Fig. 5.15 The effect of α‖ in a heterogeneous medium

5.4.4.2 Effect of Transverse Dispersivity α⊥.

In this section the effect of varying α⊥ at σ2 = 0.6, ρmax = 998.6, λv = 0.0075

and α‖ = 1.5× 10−3 are presented. Table 5.5 shows the stability numbers and Fig.

5.16 the simulations at the same parameters. The increase in stability is shown by

the increase in the stability numbers and the transition from three to two fingers

respectively.

Table 5.5 Effect of α⊥

α⊥(×10−4)m Λ??
p

1.0 -2.180
5.0 -0.881
10.0 -0.269

The criterion is very sensitive to changes in the transverse dispersivity, as was already

noted for the homogeneous medium. It predicted the last entry in the table with

a very big number while the simulations still showed strong convection. That was

wrong.
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Fig. 5.16 The effect of α⊥ in a heterogeneous medium

Apart from the transverse dispersivity, the remainder of the variables showed the

transition from two to three fingers over the range −2.3725 < Λ??
p < 2.1252.
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5.4.5 Discussion of Results

We used the expressions derived previously to evaluate the macrodispersion tensor

elements for vertically downward density-driven flow. We obtained a symmetric

tensor with zero off-diagonal elements. By turning off the density and viscosity

contrast terms, we “emulated” passive tracers and our results compared well to

those found in literature. The longitudinal coefficient showed scale dependency

(asymptotic behaviour) and also reduced with increasing medium anisotropy while

the transverse coefficient was not affected by anisotropy changes but reduced to zero

after long times as documented in literature.

The behaviour of the longitudinal and transverse coefficients for systems with density

and viscosity contrasts were then investigated. For stable systems, the longitudinal

and transverse coefficients respectively decreased and increased with increasing sys-

tem stability. As explained in the text, these behaviours were also consistent with

the physical expectations.

For unfavourable densities, longitudinal and transverse coefficients that respectively

increased and reduced with increasing system instability were obtained. The lon-

gitudinal coefficients showed asymptotic behaviour for moderate unstable density

contrasts but grew indefinitely for larger densities. The asymptotic longitudinal co-

efficients could therefore be used to predict the range of unstable density contrasts

stabilised by medium heterogeneities.

Transverse coefficients were obtained that increased with variance and medium

anisotropy while the longitudinal coefficients increased with density contrast and

correlation length. Deff
11 also decreased with anisotropy and all these observations

were consistent with physical expectations. For an isotropic medium it was found

that the longitudinal coefficient and the time it required to attain equilibrium in-

creased with λv.

The numerical simulations returned a reduction in the number of fingers with stabil-

ising variables and vice-versa. A transition from two to three fingers was obtained as

the correlation length was increased beyond a certain value. The correlation length
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at which the third finger appeared was a few multiples of the critical wavelength

obtained previously in the homogeneous medium. The relation between the critical

perturbation wavelength and the correlation length was not rigorously pursued. We

assumed a simple linear relation that we collaborated with numerical simulations

and assumed the numbers that fit. A rigorous analysis would be required to build

the relationship.

The stability number at ρmax = 998.5 kg · m−3 increased from −1.976 in a homo-

geneous medium to −1.699 in the heterogeneous medium (at σ2 = 0.6). At that

density, three fingers previously formed in the homogeneous medium while the third

finger first formed at ρmax = 998.6 kg · m−3 in the heterogeneous medium, at a

stability number of −2.125.

A comparison of the ranges of the stability numbers at which the transition from 2 to

3 fingers occurs in a homogeneous and heterogeneous medium is shown in Fig. 5.17.

Regime Diffusive Stable convective Unstable convective

Homogeneous Λ?p > 0 −1.172 < Λ?p < 0 Λ?p < −1.967

No. of Fingers 1 2 3

Heterogeneous Λ??p > 0 −2.125 < Λ??p < 0 Λ??p < −2.372

Fig. 5.17 The regimes demarcated by the stability number

The region is shifted from the second hatched region on the first row to the dotted

hatch in the second row. The reduction in the stability number means increased

density at which fingering occurs in heterogeneous media. Heterogeneous mixing

reduces the spectrum with long wavelengths that can grow into fingers, thereby

stabilising. The stability criterion did not pinpoint the transition point from two to

three fingers but from figures 5.11 through 5.15 and the corresponding tables, the

range −2.372 < Λ??
p < −2.125 is satisfied. The following criterion can be formulated

from that range of stability numbers:

I: 1 finger: nearly diffusive system Λ??
p > 0,

II: 2 fingers: stable convective system −2.125 < Λ??
p < 0,

III: 3 fingers: unstable convective system Λ??
p < −2.372.
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It was also shown in numerical simulations and the criterion that both dispersivities

have stabilising properties, with the longitudinal more stabilising than the trans-

verse. The criterion was very senstive to changes in the transverse dispersivity and

in fact switched signs when the simulations still showed more than one finger. This

was a failure probably arising from the expression for the dispersion zone width

fitted in chapter 4. It might need to be re-investigated.

The assumption of very large Pèclet numbers could not be relaxed to study the

impact of dispersivities on the macrodispersion coefficients. This was due to the

limitations from the available computing resources. Related to that, the effect of

medium anisotropy on stabiity could not be quantified because the variable is not

included in the stability number. However anisotropy was qualitatively found to

stabilise in numerical simulations.

Longitudinal and transverse coefficients that respectively reduced and increased with

anisotropy were obtained indicating stabilising capabilities. This was a collaboration

of the simulation results on one hand but also the physical considerations mentioned

in the text.

The stabilisation from heterogeneity variance for a range of density contrasts, the

estimation of the the cutoff correlation length and the shift of the region over which

the transition from 2 to 3 fingers occurred provided proof of the hypotheses stated

at the beginning the work. However, no instance was obtained where a favourable

density contrast in a homogeneous medium resulted into fingering in a heterogeneous

medium.
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Chapter 6

Discussion and Conclusion

6.1 Discussion

The homogenization theory ideas from Held et al. (2005) were extended to derive

expressions for the stability criterion and the macrodispersion tensor for density-

driven flow in a saturated heterogeneous medium. Assumptions regarding isothermal

conditions, absence of sources and sinks, chemical reactions and sorption were made.

Steady states were also assumed in the mathematical analyses. That required to let

the numerical simulations run for a long time to achieve stationarity in the finger

evolution.

The work also utilised linear dependencies of density on both mass fraction and

viscosity. This eased the underlying mathematics on one hand but also ensured

continuity with the previous work of Held et al. (2005). Implementation of different

state dependencies would result in different stability criteria formulations. However

when the ideal relationship that is widely used e.g. in Oldenburg and Pruess (1995),

Diersch and Kolditz (2002) and Johannsen (2002) was implemented, no significant

differences were observed in the fingers at the low density contrasts used in this

work.

The 2-scale expansion used for velocity was adopted from Lunati et al. (2002). Other

methods exists where the expansions are done e.g. in terms of small and large Pèclet

105



numbers. The two methods are comparable intermediately but the final results are

different. The choice of Lunati et al.’s method was again to seamlessly extend the

earlier work of Held et al. (2005).

The Oberbeck-Boussinesq approximation has been widely used in many previous

studies. It was documented e.g. in Kolditz et al. (1998) that the effect of using the

full equations was not known. It was ascertained here that whereas the numerical

simulations with and without the approximation return no significant differences at

low density contrasts, the predictions from criteria formulated with and without the

approximation were completely different. The criterion derived in this work with the

full equations made more timely stability transition predictions. The approximations

have a stabilising effect arising from the neglected density terms.

A small domain was used throughout this work to achieve very fine grid and time

refinement. The fine refinement was desired to ensure stability of the numerical

solution without having to use upwind techniques. Much as the techniques are

recommended e.g. by Frolkovič and De Schepper (2001) for convection-dominated

problems, the numerical diffusion they introduce would distort the true stability

state of the system. Big domains would have presented computational bottlenecks.

The dispersive part was expressed in terms of the perturbation wavelength, the

mixing zone width and the two principal-direction dispersivities. An analytical

expression for the mixing zone was derived and fitted. A method was also devised

to induce perturbations with different wavelengths at the inflow zone, from which

the critical wavelength could be obtained. The perturbation of the inflow region

however resulted in loss of symmetry of the concentration front, a phenomenon also

reported in Marle (1981) where a comparable perturbing function was used.

In the derivation of the expression for the mixing zone, molecular diffusion was

neglected. Much as this simplified the analysis, the mechanism is responsible for

transport of species across streamlines. It therefore contributes to the spreading

mechanism and hence the mixing zone. Its exclusion is therefore erroneous and

ought to be revisited.
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To enable comparison with earlier researchers, it was necessary to reformulate the

stability criterion in form of a Rayleigh number. Contrary to the usual procedure,

the characteristic length (taken equal to the mixing zone width) and the effective

dispersion were used instead of the domain size and molecular diffusion respectively.

Viscosity was also included in addition to the density contrast. This resulted in

Rayleigh numbers which were much smaller than what is found in literature but

the documented phenomena e.g. the increase of the Rayleigh number with density

contrast, the three regimes in Diersch and Kolditz (2002) and the transition in the

number of fingers in Johannsen (2002) could be achieved.

The transition in the number of fingers (an indication of system stability) could

also be modified by appropriately choosing the density, viscosity and dispersion

lengths. We concluded that the unconditional instability widely reported for Elder-

type systems is possibly a consequence of the high density contrasts (usually 20% is

used) and insufficient stabilisation from diffusion. Those bottlenecks were overcome

in this work by the inclusion of dispersion and the low densities.

The stability number could correctly predict the onset of convection (appearance of

second finger) by changing sign from positive to negative. The appearance of subse-

quent fingers e.g. the third occurred at higher densities (smaller stability numbers)

but no definite stability number was obtained at which the transition from two to

three fingers occurred. A range was obtained for the transition.

Lognormally distributed permeability fields with Gaussian auto-correlation func-

tions were used in this work. The choice of the lognormal distribution was primarily

justified by the desire to avoid unphysical negative hydraulic conductivities. Gaus-

sian auto-correlated fields are also suitable for conductivity fields without abrupt

changes like fractures.

The extension of the stability studies to heterogeneous media was achieved by con-

ceptualising large-scale mixing as a coupling of small-scale dispersion and macrodis-

persion acting at larger scales. One then has a large-scale mixing zone controlled by

the effective dispersivities defined in terms of the local homogeneous-medium disper-

sivities and changes induced by medium heterogeneity. The heterogeneity-induced
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dispersivities are functions of the heterogeneity variance and correlation length.

The mean displacement could still be taken from the expression derived for the

homogeneous medium, with the effective instead of the local dispersivity. The het-

erogeneous medium stability number was not explicitly expressed in terms of a

Rayleigh number because according to Nield (1994), the definition of such numbers

for heterogeneous media is problematic.

By designating a simulation at certain parameters as reference, the individual medium

heterogeneity effects: the variance, medium anisotropy and the correlation length

could be studied. The expected stabilisation by medium heterogeneity was captured

in the change to two fingers at a density contrast that returned three fingers in a

homogeneous medium. Physically the stabilisation is due to mixing, which reduces

the quantity of perturbations with long enough wavelengths (energy) to persist into

fingers.

The destabilising effect of the correlation length was also shown in the transition

from two to three fingers. That provided the answer to the question of when medium

heterogeneities could destabilise. It was concluded that the range of correlation

length up to a critical, which is a few multiples of the critical wavelength are stable.

Simulations at bigger correlation lengths caused channeling effects that led to loss

of symmetry of the concentration front (see e.g. Fig. 5.9c on page 95).

With medium heterogeneities included, we obtained an increase in the density con-

trast at which the third finger formed. The appearance of the third finger at higher

densities (smaller stability numbers) is an indication of stabilisation by medium

heterogeneity. It provided another answer to one of the key objectives of this work.

For the homogeneous medium, the critical wavelength was approximated from a

sinus function used to perturb the in-flowing salt. The perturbed boundary condition

was not necessary in heterogeneous media because the heterogeneities provide the

local perturbations in the salt. The use of a constant boundary condition however

led the quantity of salt to exceeded that in the homogeneous case. The discrepancies

in the salt quantity and the method of initiating instabilities meant that the results
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might not have been exactly comparable.

Anisotropy was not included in the stability number, therefore its effects on stability

could not be quantified. It was however shown to stabilise in the macrodispersion

coefficients and numerical simulations. The stabilisation could also be accounted for

physically.

The large-scale equation from homogenization theory was used to formulate the

macrodispersion tensor. The tensor was symmetric with zero off-diagonal elements.

The diagonal elements exhibited scale-dependency: for passive tracers, the longitu-

dinal coefficient approached an asymptote and decreased with medium anisotropy

while the transverse coefficient diminished after long times and responded marginally

to changes in medium anisotropy. This behaviour was in agreement with the results

in literature e.g. Dagan (1988).

For favourable density contrasts the longitudinal coefficient approached an asymp-

tote but in general decreased with system stabilisation. The transverse coefficient

on the other hand increased with system stabilisation. The respective increase and

reduction in the longitudinal and transverse coefficients could be obtained from

variables that destabilise: correlation length and density. Reverse behaviour was

obtained from the heterogeneity variance and anisotropy which stabilise.

For unfavourable densities, the longitudinal coefficient increased with system desta-

bilisation while the transverse coefficient reduced. That behaviour was consistent

with physical considerations. The longitudinal coefficient remained asymptotic for a

range of unfavourable density contrasts but eventually grew indefinitely with time.

Therefore by carefully controlling the density contrast, the range of unfavourable

density contrasts that exhibited asymptotic behaviour could be obtained. Welty

and Gelhar (1991) reported infinitely large longitudinal coefficients for the whole

range of unfavourable density contrasts.

By giving a window of unfavourable densities for which the coefficient remained

asymptotic, this work provided a method of estimating the range of density contrasts

that could be stabilised by heterogeneities.
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The stabilising effects of the dispersivities could not be included in the computation

of the macrodispersion coefficients. This was a result of constraints from computing

infrastructure to allow the relaxation of the infinite Péclet number assumption.

Related to the computing restrictions was the evaluation of the macrodispersion

coefficients for the problem in chapter 3 defined by Schincariol.

6.2 Conclusion

The homogenization ideas developed in Held et al. (2005) were successfully extended

to derive a stability criterion for vertical flow in a heterogeneous medium. The

extension was done in steps: a homogeneous medium without dispersion, which was

extended to include dispersion and finally the inclusion of medium heterogeneity.

For the first case, the stability number was positive for stable systems while positive

numbers indicated the absence of convection in the latter two cases.

The stability criterion for heterogeneous media is the first known attempt to for-

mulate both fluid and porous medium properties and use them to predict the onset

of fingering. Even with the limitations of the underlying assumptions, the criterion

produced reasonable predictions that were collaborated with physical processes and

numerical simulations. Using the derived criterion, it is possible to estimate the

onset of the unstable-convective regime in density-driven systems.

Answers have been provided to the various questions and hypotheses set out at the

beginning. The effects of density, viscosity, flow velocity, dispersivities and medium

heterogeneity on flow stability have been quantified. The medium heterogeneity was

found to stabilise by increasing the density contrast at which fingering occurred. The

variance always stabilised while the system remained stable as long as the correlation

length was below a certain cutoff. In no instance did heterogeneities induce fingering

at a density contrast that was stable in the homogeneous medium.

The analytical expression to estimate the dispersion mixing zone in terms of phys-

ical variables is another salient feature of the work. We addressed the ambiguity
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previously related to making the choice (Buès and Aachib 1991, Schincariol et al.

1997).

Time-dependent macrodispersion coefficients for unfavourable density contrasts are

not widely documented. Using the coefficients, we provided a method of estimating

the range of unstable density contrasts stabilised by medium heterogeneities. The

computation of the coefficients required a copyrighted software and were very de-

manding computationally. The computational bottlenecks restricted the evaluation

of the coefficients to the simple vertical flow systems but not the more practical

groundwater-type horizontal systems.

It is hoped that the study shed more light on the factors that impact the stability of

density-driven flows. We also hope that seamless extensions can be made to bigger

real-life domain extents.

6.3 Outlook

This work had a number of underlying assumptions, some of which need to be relaxed

to better approximate real-life systems. We mention here the infinite Pèclet number,

linear state dependencies, linear perturbation theory (inclusion of higher expansion

terms), lack of dependency of the mixing zone on diffusion and consideration of more

practical horizontal flow systems.

Computing power allowing, it would be worthwhile to use a bigger, more realistic

domain. This would also allow the choice of bigger correlation lengths and dispersion

lengths.

Temperature effects were not included but are part of our ongoing investigations.
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Appendix A

Mathematical Derivations

In this chapter detailed derivations for the contributions of the small-scale mass frac-

tion and medium permeability heterogeneity to the mesoscale velocity fluctuations

as well as the elements of the macrodispersion tensor are presented.

A.1 Derivation of M(q)

As already mentioned in Section 3.1, we assume a divergence-free flow that results

into ∇ ·v = 0. Any divergence-free vector field v(X) can be written as the rotation

of a vector field A(X) i.e. v(X) = ∇×A(X). To completely define A, ∇ ·A = 0

is taken Held et al. (2005). Divergence free velocity is used for consistence with the

form used in homogenizing the transport equation.

This work concerns 2-dimensional flow. In the following we see the vectors in R2

as three dimensional vectors with a zero third component. The second component

remains the one corresponding to the gravitational direction. This allows us to use

the cross product ∇× v in (A.1.2) and makes a further extensions to 3-dimensions

problems straightforward.

To introduce the effects of density and viscosity on velocity, Held et al. (2005) used
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the modified groundwater velocity introduced in section 3.1:

v = −ρ(ω)k

µ(ω)
∇p+

kρ(ω)2

µ(ω)
g. (A.1.1)

Following Held et al. (2005) we split the vector

∇× v =


0

0

∂1v2 − ∂2v1

 (A.1.2)

into parts depending on the total velocity v and the gravitational velocity vg defined

as vg =
ρ(ω)2

µ(ω)
kg. We apply the product rule of differentiation on (A.1.1) and the

linear dependencies of density and viscosity on salt mass fraction (equations (2.15)

and (2.16)) to evaluate the right hand side of (A.1.2). This requires the Taylor

expansions for ∂1

(
ρ(ω)

µ(ω)

)
, ∂2

(
ρ(ω)

µ(ω)

)
, ∂1

(
ρ(ω)2

µ(ω)

)
and ∂2

(
ρ(ω)2

µ(ω)

)
, which with

further simplification yields

∇×v = (α−β)

(
ρ0µ(ω)

µ0ρ(ω)

)
∇ω×v+

[
(2α− β)

ρ2
0µ(ω)

µ0ρ(ω)2
− (α− β)

ρ0µ(ω)

µ0ρ(ω)

]
∇ω×vg.

(A.1.3)

The left hand side of equation (A.1.3) can be written as ∇×∇×A and the potential

A as a series expansion in ε: A = A0 + εÃ, where a linear perturbation analysis

has been performed with A0, Ã being the large scale and fluctuating potentials

respectively. We then have ∇×∇× (A0 + εÃ), which we expand in 2 scales using

∇ = (∇x + 1
ε
∇y)/L. The 2-scale expansion of A is justified by its dependence on the

2-scale velocity. The expansion in (2.19) is applied on the ω in the right hand side of

(A.1.3), products of perturbations neglected and the vector products evaluated using

the approach developed by Lunati et al. (2002) to give the respective expressions

defining the large-scale potential as:

∇x
2A0 = L(α− β)∇xω0 ×∇x ×A0 + Lα∇xω0 × vg0 (A.1.4)

where vg0 is the mean macroscale gravity-driven velocity. The fluctuating potential

114



is similarly given as:

∇y
2Ã = L(α− β)∇xω0 × ṽ + L(α− β)∇yω1 × v0 + Lα∇yω1 × vg0

+ Lα∇xω0 × ṽg , (A.1.5)

where v0 is the macroscale mean drift and ṽ, ṽg the respective fluctuations in the

velocities. In (A.1.5), for consistency with the homogenization theory in Held et al.

(2005), we have neglected terms of orders greater than O(ε0). If for similar reasons

we further neglect terms with O(ω1) and higher arising from ṽ and ṽg we obtain:

∇y
2Ã = −∂2

yÃ

= L(α− β)∇yω1 × v0 + Lα∇yω1 × vg0 . (A.1.6)

The solution for Ã follows by transforming (A.1.6) into Fourier space, in which case

we obtain

Ã(q) = L
(α− β)iq× v0 + αiq× vg0

‖q‖2
ω1(q) . (A.1.7)

Finally, the fluctuating velocity is obtained from the rotation of Ã(q):

ṽ(q) =
1

L
iq× Ã(q)

=
(α− β)iq× iq× v0 + αiq× iq× vg0

‖q‖2
ω1(q) (A.1.8)

≡ M(q)ω1(q) .

From equation (A.1.8), the velocity fluctuations caused by changes in mass fraction

are given by (A.1.9):

M(q) =
(α− β)iq× iq× v0 + αiq× iq× vg0

‖q‖2
. (A.1.9)

To enhance the applicability of our findings, we give now explicitly the formula of

M(q) for the two dimensional cases. Suppose the vectors have the components:
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v0 =

 v1

v2

, vg0 =

 vg1

vg2

 and q =

 q1

q2

. Then M(q) evaluates to:

M(q) =
1

(q2
1 + q2

2)

 (α− β)(q2
2v1 − q1q2v2) + α(q2

2v
g
1 − q1q2v

g
2)

(α− β)(q2
1v2 − q1q2v1) + α(q2

1v
g
2 − q1q2v

g
1)

 . (A.1.10)

A.2 Derivation of L(q)

In the following we present the derivation of the contribution from the heterogeneous

permeability field to mesoscale velocity fluctuations. The derivation follows similar

steps to those used for M(q) in section A.1. We start from the modified groundwater

velocity

v = −kρ(ω)

µ(ω)
∇p+

kρ(ω)2

µ(ω)
g ,

where k = kI2. The rotation of the velocity then becomes

∇× v =

evaluated previously for M(q)︷ ︸︸ ︷
∂1
ρ(ω)

µ(ω)
[−k∇p]2 − ∂2

ρ(ω)

µ(ω)
[−k∇p]1 + ∂1

ρ(ω)2

µ(ω)
[kg]2 − ∂2

ρ(ω)2

µ(ω)
[kg]1

+ ∂1k

[
−ρ(ω)

µ(ω)
(∇p− ρ(ω)g)

]
2

− ∂2k

[
−ρ(ω)

µ(ω)
(∇p− ρ(ω)g)

]
1

.(A.2.1)

From here onwards, only the second row of (A.2.1) is considered. From (A.2.1),

denoting the velocity contributed by the permeability field as vk one can write

∇× vk =
∇k × v

k
. (A.2.2)

Next the permeability and velocity are split into the mean and fluctuating parts:

k = k̄ + k̃, v = v0 + ṽ; the 2-scale spatial derivatives are also used ∇ = ∇x + 1
ε
∇y

(see section 2.3.1 on page 28) to obtain

∇× vk =
1

k̄

(
1− k̃

k̄

)(
∇xk̄ × v0 + ∇xk̄ × ṽ + ∇xk̃ × v0 + ∇xk̃ × ṽ

)
+

1

εk̄

(
1− k̃

k̄

)(
∇yk̃ × (v0 + ṽ)

)
, (A.2.3)
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in which
1

(k̄ + k̃)
has been approximated by a Taylor expansion up to the linear term.

Following Held et al. (2005), the velocity is written as a rotation of a vector A, which

when expanded in 2 scales gives the left hand side of (A.2.3) as ∇×∇×(A0k+εÃk)

with the k subscript denoting the permeability field. Expanding the∇ into large and

small scales allows the contribution to be grouped into those respective scales. For

the small-scale contribution, the products of fluctuations are neglected in conformity

with the linear perturbation theory and only terms of order O(ε0) considered (Held

et al. 2005).

The surviving terms from (A.2.3) yield ∇y ×∇y × Ãk = −∂2
yÃk =

∇yk̃ × v0

k̄
. In

Fourier space one gets

Ãk(q) =
iq× v0

k̄‖q‖2
k̃(q) . (A.2.4)

The velocity fluctuations contributed by the permeability heterogeneity are obtained

by taking the rotation of (A.2.4):

ṽk(q) =
iq× iq× v0

k̄‖q‖2
k̃(q) . (A.2.5)

The velocity fluctuations are given by

ṽ(q, τ) = M(q)ω1(q, τ) + L(q)k̃(q) .

If the contribution from the permeability heterogeneity is compared with (A.2.5),

one obtains

L(q) =
iq× iq× v0

k̄‖q‖2
. (A.2.6)

Assuming the 2-dimensional vectors to have components

v0 =

 v1

v2

 and q =

 q1

q2

, one further obtains

L(q) =

 L1(q)

L2(q)

 =
1

k̄

(
1

q2
1 + q2

2

) q2
2v1 − q1q2v2

q2
1v2 − q1q2v1

 . (A.2.7)
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A.3 Derivation of the Macrodispersion Tensor El-

ements

The derivations of the individual elements in the macrodispersion tensor are pre-

sented here. The diagonal elements are derived first and the off-diagonal elements

are presented at the end of the section. The general expression for the macrodisper-

sion tensor was given as

Deff = D? − ṽ ⊗ χω ,

and the individual elements evaluated to

Deff =

 ρ(ω)− L

D‖
ṽ1χω1 − L

D‖
ṽ1χω2

− L

D‖
ṽ2χω1 ρ(ω)

D⊥
D‖
− L

D‖
ṽ2χω2

 .

We proceed by using the velocity fluctuations

ṽ(q, τ) = M(q)ω1(q, τ) + L(q)k̃(q)

and the solution to the cell problem

χωn(q, τ) = −κ
∫ τ

0

dτ
′
Ln(q)k̃(q) exp

(
−
(
i

L

ρ(ω)D‖
v · q +

D?q · q
ρ(ω)

+
Λ

ρ(ω)

)
τ
′
)

in the expression above for the elements of the macrodispersion tensor.

The individual elements can generally be written as

Deff
nj = Dnj + κ

∫ τ

0

dτ
′
∫
ddqLn(q)Lj(q)k̃(q)k̃(q′)

× exp

(
−
(
iκv · q +

D?q · q
ρ(ω)

+
Λp

ρ(ω)

)
τ
′
)

+ κ

∫ τ

0

dτ
′
∫
ddqLn(q)Mj(q)ω1(q, τ)k̃(q)

× exp

(
−
(
iκv · q +

D?q · q
ρ(ω)

+
Λp

ρ(ω)

)
τ
′
)

. (A.3.1)
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For the vertical flow systems under consideration we assume the 1 principal direction

to be in the direction of gravity such that v1 = v0 and the transverse component

v2 = 0. The contribution of the medium heterogeneity to velocity fluctuations

evaluates to

L(q) =
1

k̄

(
1

q2
1 + q2

2

) q2
2v0

−q1q2v0

 .

Appropriate components have to be used for the various elements according to the

values taken by the indices in (A.3.1). Additionally, the relations

ω1(q, τ) = χω(q, τ) ·G ,

for the mesoscopic mass fraction and

k̃(q)k̃(q′) = wf (q)

for the auto-correlation function, have to be substituted. After re-applying the equa-

tion for the solution to the cell problem, using the equation for the auto-correlation

function again and the relation

M1(q)G1 = Λp

for the stability number, (A.3.1) simplifies to

Deff
nj = Dnj + κ

∫ τ

0

dτ
′
∫
ddqLn(q)Lj(q)wf (q)

× exp

(
−
(
iκv · q +

D?q · q
ρ(ω)

+
Λp

ρ(ω)

)
τ
′
)

− Λpκ

∫ τ

0

dτ
′′
∫ τ

0

dτ
′
∫
ddqLn(q)Lj(q)wf (q)

× exp

(
−
(
iκv · q +

D?q · q
ρ(ω)

+
Λp

ρ(ω)

)
τ
′
)

× exp

(
−
(
iκv · q +

D?q · q
ρ(ω)

+
Λp

ρ(ω)

)
τ
′′
)

. (A.3.2)
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A.3.1 The Longitudinal Coefficient Deff
11 .

The indices in (A.3.2) are set to n = j = 1 and the expression for L1(q) from (5.15)

used to obtain

Deff
11 = D11 + κ

∫ τ

0

dτ
′
∫ ∞
−∞

∫ ∞
−∞

(
v0q

2
2

k̄(q2
1 + q2

2)

)2

wf (q)

× exp

(
−
(
iκv · q +

D?q · q
ρ(ω)

+
Λp

ρ(ω)

)
τ
′
)
dq1dq2

− Λpκ

∫ τ

0

dτ
′′
∫ τ

0

dτ
′
∫ ∞
−∞

∫ ∞
−∞

(
v0q

2
2

k̄(q2
1 + q2

2)

)2

wf (q)

× exp

(
−
(
iκv · q +

D?q · q
ρ(ω)

+
Λp

ρ(ω)

)
τ
′
)

× exp

(
−
(
iκv · q +

D?q · q
ρ(ω)

+
Λp

ρ(ω)

)
τ
′′
)
dq1dq2 . (A.3.3)

The coefficient is written as a sum of integrals: Deff
11 = D11 + I1 + I2 and a detailed

derivation of the part I1 is shown in the following. It is worthwhile to note the simi-

larity of the integrands in I1 and I2 and all the other integrals making up the various

coefficients. The only differences arise from the product Ln(q)Lj(q), depending on

the values taken by the indices n and j. Since the technique is applicable to all the

other integrals, the details are given for I1 only.

The following are the steps in the evaluation of I1: the integrands containing q−4,

exp(−D?q · qτ ′) and wf (q) are expressed in form of Gaussian integrals as follows:

(
1

q2
1 + q2

2

)2

=

∫ ∞
0

exp(−r(q2
1 + q2

2))dr

∫ ∞
0

exp(−s(q2
1 + q2

2))ds ,

exp

(
−D?q · qτ ′

ρ(ω)

)
= exp

(
−q

2
1D

?
11τ

′

ρ(ω)

)
exp

(
−q

2
2D

?
22τ

′

ρ(ω)

)
,

wf (q) = 4πσ2
fεvεh exp(−ε2

vq
2
1) exp(−ε2

hq
2
2) .

In the expression for the auto-covariance function the subscripts v, h represent the

vertical and horizontal directions and the integral scale εn = λn/
√

2 where λn is the

correlation length in direction n (Dentz 2000), n = v, h.

The various variables are next written in the hatted dimensionless forms:
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q̂1 = q1εv; q̂2 = q2εh; εvξ = εh; τ̂
′
= v0τ

′
/εv; εvdq1 = dq̂1; εvdq2 = dq̂2; v0dτ

′
= εvdτ̂

′

where ξ is the anisotropy ratio also called the anis in Simmons et al. (2001) and

defined here as εh/εv. Substituting the Gaussian forms and the dimensionless quan-

tities into the expression for I1 yields

I1 = Θ

∫ ∞
0

dr

∫ ∞
0

ds

∫ τ

0

e−Λpτ̂
′

dτ̂
′

×
∫ ∞
−∞

exp

(
−iκq̂1τ̂

′ − q̂2
1(1 +

τ̂
′

ρ(ω)Pe
+ r + s)

)
dq̂1

×
∫ ∞
−∞
q̂4

2 exp

(
−q̂2

2(ξ2 +
τ̂
′

ρ(ω)Pe
+ r + s)

)
dq̂2 .

The pre-factor Θ =
4πκεvξv0σ

2
f

k̄2
has been introduced to shorten the notation. Con-

sidering very large Péclet numbers,
τ̂
′

ρ(ω)Pe
≈ 0 and the diffusion D11 can also be

neglected (see also Dagan (1988), Fetter (1999), Dentz et al. (2003)). The substitu-

tion η = r + s further reduces I1 to

I1 = Θ

∫ ∞
s

dη

∫ ∞
0

ds

∫ τ

0

e−Λpτ̂
′

dτ̂
′
∫ ∞
−∞

exp
(
−iκq̂1τ̂

′ − q̂2
1(1 + η)

)
dq̂1

×
∫ ∞
−∞

q̂4
2 exp

(
−q̂2

2(ξ2 + η)
)
dq̂2 .

The integrations with respect to space and time were performed analytically with

the software MAPLE R© to yield:

I1 = Θ

∫ ∞
s

∫ ∞
0

3

4

π
3
2 exp

(
Λ2
p(1+η)

κ2

)
κ(ξ2 + η)5/2

×
[
erf

(
κ2τ + 2Λp + 2Λpη

2
√

1 + η

)
− erf

(
Λp

√
1 + η

κ

)]
dsdη .

The remaining two integrals have to be evaluated numerically. As mentioned earlier,

the technique outlined above is applicable to the space and time integrals in I2 and
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all the other elements of the tensor. Following similar steps, I2 can be written as

I2 = Θ

∫ ∞
s

dη

∫ ∞
0

ds

∫ τ

0

e−Λpτ̂
′′

dτ̂
′′
∫ τ

0

e−Λpτ̂
′

dτ̂
′
∫ ∞
−∞

exp
(
−iκq̂1(τ̂

′
+ τ̂

′′
)− q̂2

1(1 + η)
)
dq̂1

×
∫ ∞
−∞

q̂4
2 exp

(
−q̂2

2(ξ2 + η)
)
dq̂2 .

The space and time integrals can again be evaluated analytically with MAPLE R©.

The complete expression for the longitudinal dispersion coefficient then reads:

Deff
11 = Θ

∫ ∞
s

dη

∫ ∞
0

ds
3π

4κ3(ξ2 + η)5/2

×
[
A

(
2Λ2

p(1 + η)
(
2erf(C)− erf(B)− erf(D)

)
+ κ2

(
2Λpτ

(
erf(C)− erf(D)

)
+ erf(C)− erf(B)

))
−2Λpκ

√
(1 + η)(1− 2F +G)

]
. (A.3.4)

Where

A =
√
π exp

(
Λ2
p(1 + η)

κ2

)
, B =

Λp

√
1 + η

κ
, Θ =

4πκε1ξv0σ
2
f

k̄2
,

C =

(
(τκ2 + 2Λp + 2Λpη)

2κ
√

(1 + η)

)
, D =

Λpη + τκ2 + Λp

κ
√

1 + η
, κ =

LGn

D‖ρ(ω)
,

F = exp

(
−τ(τκ2 + 4Λp + 4Λpη)

4(1 + η)

)
and G = exp

(
−τ(τκ2 + 2Λp + 2Λpη)

1 + η

)
.

D11 has been neglected because of the large Pèclet number assumption. The term
q4

2

‖q‖4
in (A.3.3) can be written as 1 − 2q2

1

‖q‖2
+

q4
1

‖q‖4
yielding an expression similar

to equation (22) in Dagan (1988) derived via stochastic theory and the method of

moments for the longitudinal dispersion coefficient of passive tracers (Λp = 0) and

large Pèclet numbers.
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A.3.2 The Transverse Coefficient Deff
22 .

To evaluate the transverse coefficient, we started from (A.3.2) set n = j = 2 and

used the expression for L2(q) from (5.15) to obtain

Deff
22 = D22 + κ

∫ τ

0

dτ
′
∫ ∞
−∞

∫ ∞
−∞

(
v0q1q2

k̄(q2
1 + q2

2)

)2

wf (q)

× exp

(
−
(
iκv · q +

D?q · q
ρ(ω)

+
Λp

ρ(ω)

)
τ
′
)
dq1dq2

− Λpκ

∫ τ

0

dτ
′′
∫ τ

0

dτ
′
∫ ∞
−∞

∫ ∞
−∞

(
v0q1q2

k̄(q2
1 + q2

2)

)2

wf (q)

× exp

(
−
(
iκv · q +

D?q · q
ρ(ω)

+
Λp

ρ(ω)

)
τ
′′
)

× exp

(
−
(
iκv · q +

D?q · q
ρ(ω)

+
Λp

ρ(ω)

)
τ
′
)
dq1dq2 . (A.3.5)

Without the Λp term, (A.3.5) again resembles equation (35) in Dagan (1988), which

was for passive tracers. Following the steps for Deff
11 we used MAPLE R© to evaluate

the transverse coefficient as

Deff
22 = Θ

∫ ∞
s

dη

∫ ∞
0

ds
π

4κ5(ξ2 + η)3/2(1 + η)3/2

×
{
A? 2Λ2

p(η + 1)

[
2Λ2

p(η + 1)
(
erf(D)− 2erf(C) + erf(B)

)
+ κ2

(
(τΛp + 1)erf(D)− (2τΛp + 5)erf(C) + 3erf(B)

) ]
+ 2Λpκ(η + 1)

[
2Λ2

p(η + 1)(G− 2F + 1) + κ2(G− 3F + 2)
]

+ κ5τF

}
. (A.3.6)

Where A? = A
√

1 + η and B, C, D, F and G are as defined in (A.3.4).

A.3.3 The Off-diagonal Elements.

From (A.3.2), the off-diagonal elements are obtained by setting n = 1, j = 2 and

n = 2, j = 1, which result into the products L1(q)L2(q) and L2(q)L1(q) respectively.

From (5.15), the two products are equal implying a symmetric macrodispersion
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tensor. The respective space integrals in the off-diagonal elements read

∫ ∞
−∞

q̂1 exp
(
−iκq̂1τ̂

′ − q̂2
1(1 + η)

)
dq̂1

∫ ∞
−∞

q̂3
2 exp

(
−q̂2

2(ξ2 + η)
)
dq̂2

and∫ ∞
−∞

q̂1 exp
(
−iκq̂1(τ̂

′
+ τ̂

′′
)− q̂2

1(1 + η)
)
dq̂1

∫ ∞
−∞

q̂3
2 exp

(
−q̂2

2(ξ2 + η)
)
dq̂2 .

The respective products of q̂1 and q̂3
2 with the corresponding exponential functions

are odd, making their integrals over the entire space zero. The symmetric tensor

with zero off-diagonal elements was also obtained by Held et al. (2005).
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