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Abstract 
 
Understanding of the global carbon cycle and its feedbacks on the climate system is an 

urgent scientific challenge, especially with the background of the ongoing climate change. 

High-precision measurements of atmospheric oxygen play an increasingly important role 

to improve our knowledge on carbon cycle processes. In combination with CO2 

measurements, they allow partitioning of global oceanic and terrestrial sinks of 

anthropogenic CO2. In addition, influences from biospheric processes and anthropogenic 

emissions on observed CO2 variations can be distinguished using simultaneously 

measured O2 mixing ratios, since these processes have different oxidative ratios (defined 

as OR = – ΔO2 /ΔCO2).  
 

The growing number of atmospheric monitoring stations in recent decades, especially on 

continents, has increased the scientific knowledge on carbon cycle processes. However, 

the proximity of continental stations to anthropogenic sources requires the 

characterization of these emission sources, their spatial and temporal variability and their 

influence on the atmospheric composition. This aspect is addressed in Chapter 2 of this 

thesis, investigating the possibility to use atmospheric simultaneous O2 and CO2 

measurements for identifying emission sources. This is possible as different combustion 

processes have different oxidative ratios, depending on fuel composition. For the purpose 

of this chapter, the COFFEE (CO2 release and Oxygen uptake from Fossil Fuel Emissions 

Estimate) dataset, a high-resolution inventory of anthropogenic CO2 emissions and the 

corresponding O2 uptake is created from emission inventories and fuel consumption data.  

Using model simulations with input from this dataset, it is investigated whether the 

influence of the local fuel mix can be detected in measured signals of atmospheric oxygen. 

Model simulations are compared to observational results from two monitoring stations, 

the Ochsenkopf tall tower in Germany and Hateruma Island in Japan. In addition, the 

influence of variable oxidative ratios on the partitioning of the land and ocean carbons 

sinks as derived from inverse transport modeling of CO2 and O2 combined (known as 

atmospheric potential oxygen (APO) inversions) is investigated by assessing which part 

of the fossil fuel signal is misinterpreted as oceanic signal when employing a constant 

oxidative ratio for fossil fuel burning. Results from synthetic data experiments with 
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different sets of monitoring stations show that systematic offsets in APO fluxes arise from 

this simplification as soon as observational input from more polluted stations is used. 
 

Another challenge for interpreting results from continental monitoring stations is the 

characterization of the spatial heterogeneity of atmospheric mixing ratios in between 

monitoring stations. Airborne measurements are best suited for this task, as they provide 

access to different temporal and spatial scales, but are also perfectly qualified for 

measuring three-dimensional distributions of atmospheric tracers or to follow air masses. 

Thus Chapter 3 and 4 focus on interpretation and improvement of airborne measurements 

for atmospheric oxygen. 
 

In Chapter 3, O2/CO2 ratios from flask samples taken during the BARCA (Balanço 

Atmosférico Regional de Carbono na Amazônia) aircraft campaign in the Brazilian 

Amazon basin are studied and the feasibility to use such ratios to separate different 

processes is investigated. The results show clear differences between background signals 

at higher altitudes and local influences (mainly biospheric processes) within the planetary 

boundary layer. Apart from biospheric processes, surface influences include contributions 

from biomass and fossil fuel combustion that could be identified with the help of the 

additional tracer CO. However, as robust detection of different signatures is limited by 

the low sampling density of flask samples, continuous measurement of CO2 and O2 are 

required to resolve more details.  
 

The need for in-situ measurements is addressed in Chapter 4 by presenting the 

development of a new instrument, based on vacuum ultraviolet (VUV) absorption 

technique. The design of the instruments targets the use aboard small research 

aircrafts, therefore being small, lightweight, robust, insensitive to vibrations and able 

to perform measurements fully automated. This is achieved by a two-cell design that 

allows simultaneous measurement of the sample and a reference gas and is based on 

creating equal pressure and temperature conditions in the two cells rather than 

controlling them. A prototype version of this instrument has been built and tested in 

the laboratory in the course of this thesis. 
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Zusammenfassung  
 

Die Erforschung des globalen Kohlenstoffkreislaufes und seiner Wechselwirkungen mit 

dem Klima ist eine der herausragenden wissenschaftliche Herausforderungen, besonders 

in Anbetracht des aktuellen Klimawandels. Hochpräzise Messungen des atmosphärischen 

Sauerstoffgehalts tragen wesentlich zum Verständnis des globalen Kohlenstoffkreislaufes 

bei. Da der biogeochemische Sauerstoffzyklus eng an den Kohlenstoffzyklus gekoppelt 

ist, können verschiedene Prozesse durch charakteristische stöchiometrische Faktoren 

charakterisiert werden. Diese Faktoren, die sich aus dem molaren Verhältnis von 

Sauerstoff (O2) zu Kohlendioxid (CO2) ergeben, werden als Oxidationsverhältnisse 

(oxidative ratios) bezeichnet und sind folgendermaßen definiert:  
 

OR = – ΔO2 [mol]/ΔCO2 [mol]                     (1)  
 

Messungen der atmosphärischen Sauerstoffkonzentration können daher gemeinsam mit 

CO2-Messungen zur Bestimmung der ozeanischen und terrestrischen Komponente der 

globalen Kohlenstoffsenken verwendet werden, sowie zur Identifizierung verschiedener 

Prozesse, welche die atmosphärische CO2-Konzentration beeinflussen.  

 

Die Herausforderung bei atmosphärischen Sauerstoffmessungen liegt darin, dass die 

relevanten Signale in der Größenordnung von einigen ppm (parts per million) liegen, die 

gegenüber dem atmosphärischen Hintergrund von 21% Sauerstoff aufgelöst werden 

müssen. Daher wird die gemessene Sauerstoffkonzentration auch durch Än-derungen in 

der Konzentration anderer Luftkomponenten, zum Beispiel Kohlendioxid oder 

Wasserdampf beinflusst, weswegen Änderungen des atmosphärischen Sauerstoffgehalts 

meist als Änderungen des Sauerstoff- zu Stickstoffverhältnissen (δO2/N2) angegeben 

werden, da Änderungen dieses Verhältnisses hauptsächlich durch Sauerstoffänderungen 

hervor-gerufen werden. Bei der geringen Größe der Messsignale werden zudem Artefakte 

durch sogenannte Fraktionierungseffekte signifikant. Als Fraktionierung bezeichnet man 

die diffusive Separation verschiedener Moleküle aufgrund von Temperatur-, Druck- und 

Feuchtegradienten, Adsorption an Oberflächen oder Permeation durch Membrane. 

Innerhalb der letzten 20 Jahre hat sich der wissenschaftliche Horizont im Bezug auf das 

Verständnis atmosphärischer Prozesse durch Weiterentwicklung von Messtechniken und 
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die Verdichtung des Netzwerks für atmosphärische Messungen wesentlich erweitert. Die 

steigende Anzahl von kontinentalen Beobachtungsstation erlaubt eine genauere Charak-

terisierung von Flüssen atmosphärischer Spurengase auf regionalen bis kontinentalen 

Skalen. Allerdings erschwert die Nähe der Kontinentalstationen zu lokalen (anthropo-

genen) Quellen und Senken die Interpretation der Messdaten.  

 

Diese Arbeit beschäftigt sich mit verschiedenen Aspekten, die zu einer verbesserten 

Interpretion dieser Daten beitragen können. Der erste Aspekt ist die Charakterisierung 

anthropogener Emissionsquellen, ihrer räumlichen und zeitlichen Variabilität sowie ihr 

Einfluss auf die Zusammensetzung der Atmosphäre. Dieser Gesichtspunkt wird in Kapitel 

2 dieser Arbeit behandelt. Hierbei wird untersucht, ob gleichzeitige Messungen von 

Kohlendioxid und Sauerstoff zur Identifizierung verschiedener Emissionsquellen 

verwendet werden können. Dies ist prinzipiell möglich, da sich verschiedene Ver-

brennungsvorgänge durch verschiedene Oxidationsverhältnisse auszeichnen, die durch 

die jeweilige Zusammensetzung des Brennstoffes bestimmt sind. Der Bereich der 

Oxidationsverhältnisse reicht dabei von 1 bis 1.95, der globale Mittelwert (gewichtet mit 

dem unterschiedlichen Verbrauch verschiedener Brennstoff liegt bei 1.4. 

 

Zu diesem Zweck wurde unter Verwendung von Emissionsdatenbanken und 

verschiedener Informationen zum Brennstoffverbrauch ein hochaufgelöster Datensatz 

kreiert. Der COFFEE-Datensatz (COFFEE steht hier für CO2 release and Oxygen uptake 

from Fossil Fuel Emissions Estimate) enthält anthropogene CO2-Emissionen und die 

entsprechende Sauerstoffaufnahme für die Jahre von 1995 bis 2008 mit einer zeitlichen 

Auflösung von 1h und einer räumlichen Auflösung von 1° x 1°.  Dieser Datensatz wurde 

in Kombination mit Simulationen von atmosphärischen Transportmodellen verwendet, 

um zu untersuchen, inwieweit der lokale Brennstoffmix messbare Signaturen in der 

Atmosphäre hinterlässt. Modellsimulation unter Verwendung eines globalen (TM3) und 

eines regionalen Modells (REMO) zeigen, dass die Einflüsse auf die atmosphärischen 

Signale, wie sie an den Beobachtungsstationen detektiert werden, in der Größenordnung 

von einigen ppm liegen. Damit sind die Effekte nur unwesentlich größer sind als die 

Messgenauigkeit für atmosphärische Sauerstoffmessungen. Ob sie daher tatsächlich 

messbar sind, wurde für zwei verschiedene Messstationen untersucht: Den Ochsenkopf-

Turm in Deutschland, der vom Max-Planck-Institut für Biogeochemie in Jena (MPI-BGC) 
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betrieben wird, und die Station Hateruma Island auf der japanischen Insel Hateruma, 

betrieben vom japanischen NIES-Institut (National Institute of Enviromental Studies). 

Die Auflösung verschiedener fossiler Signale ist im Fall der Ochsenkopf-Station nicht 

möglich, da die atmosphärische Zusammensetzung dort hauptsächlich von biosphärischen 

Einflüssen (mit einem Oxidationsverhältnis von etwa 1.1) bestimmt wird. Die fossile 

Komponente der  atmosphärischen O2- und CO2-Signale is zu klein und zu wenig variabel, 

um signifikante Einflüsse gegenüber dem starken Signal der Biosphäre zu hinterlassen. 

Für Hateruma Island sehen die Ergebnisse jedoch anders aus, da das atmosphärische 

Signal dort hauptsächlich durch fossile Einflüsse vom asiatischen Festland bestimmt wird 

und der Brennstoffmix der verschiedenen asiatischen Länder (China, Korea und Japan) 

sehr unterschiedlich ist. Somit können verschiedene „pollution events“ aufgrund ihres 

O2/CO2-Verhaeltnisses den verschiedenen Ländern zugeordnet werden und damit zur 

Analyse der Herkunft der Luftmassen herangezogen werden. 

 

Schlussendlich wird in Kapitel 2 noch der globale Aspekt variabler Oxidations-

verhältnisse betrachtet. Dabei wird untersucht, inwieweit sich die Variationen des fossilen 

Oxidationsverhältnisses auf die Bestimmung der ozeanischen und terrestrischen CO2-

Senken auswirkt. Eine Methode, die Austauschflüsse zwischen der Atmosphäre und dem 

Ozean bzw. der Biosphäre zu berechnen, sind sogenannte atmosphärische Inversionen. 

Für die Bestimmung der ozeanischer Prozesse wird üblicherweise die Messgröße APO 

(Atmospheric Potential Oxygen) verwendet. APO stellt eine gewichtete Summe der 

Änderungen in den atmosphärischen O2 und CO2-Verhältnissen dar und ist 

folgendermaßen definiert: 
 

ΔAPO = ΔO2 + 1.1 ΔCO2            (2) 
 

Der Gewichtungsfaktor 1.1 ist dabei so gewählt, dass APO unabhängig von Änderungen 

durch biosphärische Prozesse ist. Allerdings hängt das Signal immer noch leicht von 

Einflüssen durch fossile Verbrennung ab, die üblicherweise unter Verwendung von 

Emissionsdatenbank korrigiert werden. Dies geschieht allerdings unter Annahme eines 

konstanten Oxidationsverhältnisses von 1.4 für fossile Verbrennung. Diese Annahme ist 

gerechtfertigt, solange die atmosphärischen Signale nicht stark durch lokale 

Verbrennungseffekt mit OR≠1.4 beeinflusst sind. Die Inversionsmethode berechnet 

Austauschflüsse zwischen der Atmosphäre und dem Ozean bzw. der Biosphäre, in dem 
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die Diskrepanz zwischen der an den Stationen gemessenen Zusammensetzung der Luft 

und den Ergebnissen der Modellierung mit einem atmosphärischen Transportmodell 

minimiert wird. Bei der Verwendung von Stationen, deren atmosphärische Konzentration 

signifikant durch fossile Signal mit OR≠1.4 beeinflusst wird, wird ein Teil dieser fossilen 

Signale als Ozeansignale fehlinterpretiert. Inversionsszenarien unter Verwendung 

verschiedener Stationen zeigen, dass diese Fehlinterpretation in einigen Gegenden 

signifikante Änderungen des Langzeitmittelwerts der APO-Flüsse hervorruft, sobald 

Messdaten von Stationen wie Hateruma Island verwendet werden, deren Signale stärker 

durch fossile Verbrennung beeinflusst sind. Zukünftige Inversionen werden auch Daten 

neuerer Messstationen verwenden, die sich hauptsächlich in Europa und Nordamerika 

befinden. Ergebnisse der Inversionsszenarien zeigen, dass die Verwendung dieser 

Stationen zu einer signifikanten Verschiebung der Signale im Nordatlantik führt. Der hier 

entwickelte Datensatz zur Charakterisierung anthropogener Kohlendioxid-Emissionen 

und der entsprechenden Sauerstoffaufnahme ist daher äußerst nützlich, um solche 

Fehlinterpretationen zu vermeiden. 

 

Die Kapitel 3 und 4 dieser Arbeit befassen sich mit einem weiteren Aspekt, der wichtig 

für die Interpretation von Messdaten kontinentaler Stationen ist: Die Charakterisierung 

der räumlichen Variabilität zwischen den Messstationen. Dazu können flugzeuggestützte 

Messungen verwendet werden, die eine bessere räumliche und zeitliche Auflösung 

ermöglichen und bestens dazu geeignet sind, die horizontale und vertikale Verteilung von 

atmosphärischen Messgrößen zu charakterisieren. Außerdem können Flugzeuge für 

sogenannte Lagrange-Experimente verwendet werden, bei denen das Flugzeug einer 

bestimmten Luftmasse folgt, um ein besseres Verständnis atmosphärischer Transport-

prozesse zu erlangen. Trotz der technischen Fortschritte im Bezug auf atmosphärische 

Sauerstoffmessungen in den letzten 20 Jahren, sind flugzeuggestützte O2-Messungen 

noch selten und meist auf Luftprobennahmen in sogenannten Flasks beschränkt. Hierbei 

handelt es sich um Glasbehälter, die während des Fluges mit Luft gefüllt und später im 

Labor analysiert werden. Diese Methode ist zwar sehr zuverlässig, erlaubt aber nur 

geringe räumliche und zeitliche Auflösung. 

 

In Kapitel 3 dieser Arbeit wurden O2/CO2-Verhälnisse in solchen Luftproben analysiert, 

die während der im Rahmen dieser Arbeit durchgeführten BARCA (Balanço Atmosférico 
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Regional de Carbono na Amazônia) Flugkampagne im brasilianischen Amazonasbecken 

gesammelt wurden. Diese Flugkampagne hatte das Ziel, die CO2-Bilanz des 

Amazonasbecken zu charakterisieren, das unter klimatischen Aspekten eine der 

interessantesten Gegenden der Welt ist, da es mehr als die Hälfte des globalen 

Regenwaldes enthält. Dieser stellt eine enorme CO2-Senke dar, die einen Großteil der 

anthropogenen CO2-Emissionen neutralisiert. In den letzten Jahrzehnten haben jedoch 

Brandrodung der Regenwälder sowie die Nutzung ehemaliger Waldflächen für Ackerbau 

zu einer negativen CO2-Balance beigetragen. Erkenntnisse zur Gesamtbilanz für CO2 sind 

mit starken Unsicherheiten behaftet, es ist bisher noch nicht einmal eindeutig geklärt, ob 

das Amazonasbecken insgesamt eine Quelle oder eine Senke von CO2 darstellt. 

 

Im Rahmen dieser Doktorarbeit wurde untersucht, inwieweit Oxidationsverhältnisse in 

den gesammelten Luftproben zur Identifikation verschiedener Prozesse und damit zur 

besseren Interpretation der gemessenen CO2-Daten verwendet werden können. Die 

Oxidationsverhältnisse der Luftproben wurden durch lineare Regression der Sauerstoff- 

gegen die Kohlendioxidkonzentration bestimmt. Hierbei zeigen Luftproben aus höheren 

atmosphärischen Schichten (insbesondere der freien Troposphäre) signifikant höhere 

Werte als Luftproben, die innerhalb der planetaren Grenzschicht genommen worden. Dies 

ist auch zu erwarten, da die atmosphärische Zusammensetzung in größerer Höhe mehr ein 

Hintergrundsignal darstellt, dass durch einen größeren Einflussbereich charakterisiert ist, 

in dem auch Austauschprozesse zwischen Atmosphäre und Ozean (mit höherem 

Oxidationsverhältnis) eine Rolle spielen. In Bodennähe dagegen bestimmen eher lokale 

Einflüsse die gemessenen Signale. Das Oxidationsverhältnis für die Luftproben innerhalb 

der planetaren Grenzschicht entspricht mit 1.10 ± 0.03 dem Verhältnis für biosphärische 

Aktivität, was erwartungsgemäß der dominierende Prozess im Amazonasgebiet ist. 

Zusätzlich konnten allerdings auch lokale Einflüsse von fossiler und Biomassen-

verbrennung in einigen Proben detektiert werden. Dies geschah sowohl unter 

Verwendung des Oxidationsverhältnisses als auch der ebenfalls gemessenen Konzen-

tration von Kohlenmonoxid (CO) in den Luftproben, da hohe CO-Werte ein Indikator für 

Verbrennungsprozesse sind. Die robuste Identifizierung dieser Prozesse wurde durch 

zwei Faktoren erschwert: zum Einen durch die Tatsache, dass die atmosphärische Zu-

sammensetzung durch eine Mischung verschiedener Prozesse bestimmt ist (und damit 

auch die Luft in den verbrennungsbeeinflussten Proben eine starke biosphärische 
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Komponente enthält) und zum Anderen durch die begrenzte Probenmenge und -dichte. 

Die begrenzte Menge von Luftproben, die unter bestimmten Bedingungen genommen 

wurden, begrenzt die statistische Signifikanz der O2/CO2-Regressionen, während die 

geringe räumliche und zeitliche Auflösung der Messwerte die genaue Charakterisierung 

und die Analyse des zeitlichen Verlaufs verschiedener Prozesse erschwert. Für eine ro-

buste Identifikation verschiedener Einflussfaktoren und die genauere Charakterisierung 

von Prozessen sind also kontinuierliche Messungen – sowohl von CO2 als auch von O2 – 

unbedingt erforderlich. 

 

Kontinuierliche Messungen des atmosphärischen Sauerstoffgehalts an Bord von 

Flugzeugen sind zurzeit hauptsächlich durch den Mangel an geeigneten Messgeräten 

begrenzt. Die meisten Techniken, die Sauerstoff mit der erforderlichen Präzision messen 

können, erfordern schwere und unhandliche Geräte (zum Beispiel Massenspektrometer) 

oder sind durch ihre Bewegungsempfindlichkeit ungeeignet für die flugzeuggestütze 

Nutzung. Im Rahmen dieser Arbeit wurde daher ein Messgerät für kontinuierliche 

flugzeuggestützte Sauerstoffmessungen entwickelt, das in Kapitel 4 beschrieben wird. 

Das ICON-Gerät (ICON steht für  In-situ Capability for O2/N2) wurde insbesondere für 

die Nutzung an Bord kleinerer Forschungsflugzeuge entwickelt. Dies erfordert neben 

Robustheit, niedrigem Gewicht und kompaktem Design auch eine komplette Automati-

sierung und eine schnelle Reaktionszeit des Geräts. Das zugrunde liegende Messprinzip 

ist  UV-Absorption im sogenannten Vakuum-Ultraviolett-Bereich (VUV), da Licht in 

diesem Wellenlängenbereich besonders stark vom Luftsauerstoff absorbiert wird. Die 

VUV-Methode erlaubt eine schnelle Reaktionszeit und ist relativ unempfindlich 

gegenüber Vibrationen und anderen Bewegungen, die an Bord eines Flugzeuges auftreten. 

Zudem wurde sie bereits erfolgreich für flugzeuggestützte O2-Messungen verwendet. Da 

für diese Methode keine kommerziellen Geräte verfügbar sind, mussten die benötigten 

Komponenten einzeln ausgesucht bzw. entwickelt und individuell angefertigt werden.  

 

Zum kompakten Design des Geräts trägt die Tatsache bei, dass es über zwei Probenzellen 

verfügt, was die simultane Messung von  Probenluft und einem Referenzgas ermöglicht. 

Zudem kann dadurch die Regelung des Probendrucks differentiell erfolgen, d.h. es wird 

nur der Druckunterschied zwischen den beiden Messzellen geregelt, anstatt den 

Absolutdruck aufwendig auf ppm-Level konstant zu halten. Damit wird ein platz- und 
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gewichtsintensives Druckregelungssystem vermieden. Zusätzlich erfordern die niedrige 

Flussraten, die das Gerät benötigt, nur einen geringen Bedarf an Referenzgas, wodurch 

für die Kalibrierung während des Fluges kleine 1l-Aluminium-Druckdosen statt schwerer 

Gaszylinder verwenden werden können. Für das zwei Zellen-Design wird das Licht einer 

147nm-UV-Lampe durch einen Strahlteiler so aufgeteilt, dass beide Zellen den gleichen 

Ausschnitt der Lampe sehen und die optischen Wege gleich lang sind. Das Herzstück des 

Geräts, welches Lampe, Strahlteiler, Probenzellen, Detektoren zur Erfassung des Signal 

und die zugehörige Verstärkerelektronik beherbergt, wurde so konstruiert, dass sowohl 

hohes Gewicht als auch lange optische Wege vermieden werden, und in der Werkstatt des 

MPI-BGC angefertigt. Das individuell angefertigte 23Bit-System zur Signalerfassung und  

-aufzeichnung des Geräts ist in der Lage, Variationen im ppm-Bereich zu detektieren und 

äußerst rauscharm aufzuzeichnen. Nach ausführlicher Untersuchung der Einzel-

komponenten wurde der gesamte Aufbau in ein 19-Zoll-Standardgehäuse integriert. Mit 

einer Größe von 44 cm x 36 cm x 23 cm und einem Gewicht von 12kg, kann das ICON-

Gerät ohne Probleme an Bord kleinerer Forschungs-flugzeuge untergebracht werden. 

 

Im Rahmen dieser Doktorarbeit konnte gezeigt werden, dass die angestrebte Mess-

genauigkeit des Geräts im Bezug auf die Leistungsfähigkeit der einzelnen Komponenten 

erreicht werden kann. Vor dem endgültigen Einsatz des Geräts an Bord von Forschungs-

flugzeugen sind allerdings noch weitere Laboruntersuchungen des zusammengebauten 

Messystems erforderlich. Schlussendlich muss der Einsatz bei Testflügen zeigen, wie sich 

die einzelnen Komponenten unter echten Flugbedingungen verhalten.  

 

Vor dem Hintergrund der Entwicklung des ICON-Geräts wurden zudem Labor-

experimente zur Charakterisierung möglicher Fraktionierung am Ansaugrohr des 

Flugzeugs (Inlet) durchgeführt. Für flugzeuggestützte Messungen können diese Effekte 

problematisch sein, da sich die Umgebungsbedingungen (Druck, Temperatur und 

Flugzeuggeschwindigkeit) mit der Flughöhe ändern. Die entstehenden Gradienten und die 

Änderung des Strömungsverhaltens können die Zusammensetzung der Probenluft 

beeinflussen und damit die Messungen verfälschen. Bei Flaskmessungen können diese 

Effekte durch gleichzeitige Messung des Argon-Stickstoff-Verhältnisses (Ar/N2) in den 

gesammelten Luftproben entdeckt und korrigiert werden. Dies ist möglich, da die meisten 

Fraktionierungseffekte für O2/N2 auch für Ar/N2 auftreten, hier jedoch größer und damit 
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leichter zu entdecken sind. Diese Kontrollmöglichkeit gibt es jedoch nicht bei in-situ 

Messungen, wie sie mit dem ICON-Gerät gemacht werden. Zudem ICON vermutlich 

besonders anfällig für Fraktionierungseffekte, da die niedrigen Flussraten des Geräts zu 

hohen Unterschieden zwischen Flugzeug- und Einlaßgeschwindigkeit führen. 

 

In Laborexperimenten zur Charakterisierung dieses Effekts wurde Luft in ein 

miniaturisiertes Inlet (eine Kapillare mit 0.5 mm Durchmesser) gesaugt, dass sich einem 

verkleinerten Windkanal mit laminarer Strömung befand. Diese Experimente zeigen 

einen signifikanten Fraktionierungseffekt, der mit zunehmender „Flugzeug-

geschwindigkeit“, d.h. höheren Strömungsgeschwindigkeiten im Windkanal  zunimmt. 

Mithilfe von CFD (Computational Fluid Dynamics) Simulationen konnten die 

Zentrifugalkräfte, die die Luftmoleküle auf dem Weg ins Inlet erfahren, als Ursache der 

Fraktionierung identifiziert werden. Derselbe Fraktionierungsmechanismus kann auch 

verwendet werden, um höhenabhängige Variation in Ar/N2 zu erklären, die während der 

Flugzeugkampagnen BARCA (siehe oben) und COBRA (CO2 Budget and Rectification 

Airborne study) beobachtet wurden. Weitere CFD-Simulationen sind noötig, um den 

Fraktionierungseffekt als allgemeine Funktion der Inletgeometrie, der Flugzeugge-

schwindigkeit und der Umgebungsbedingungen (Druck und Temperatur)  zu beschreiben. 

 

Insgesamt trägt diese Arbeit einige nützliche Erkenntnisse zum aktuellen Wissensstand 

im Bezug auf atmosphärische Sauerstoffmessungen bei, besonders unter dem Aspekt der 

Interpretation von Messdaten kontinentaler Beobachtungsstationen, die durch die Nähe zu 

variablen Quellen und Senken beeinflusst sind. In Kapitel 2 und 3 wurden zwei Beispiele 

gezeigt, wie die Kombination von atmosphärischen CO2 und O2-Messungen zur 

Identifikation verschiedener Prozesse genutzt werden kann. Dabei wurde diskutiert, unter 

welchen Bedingungen die Trennung verschiedener Prozesse aufgrund gemessener 

Oxidationsverhältnisse möglich ist, und was die limitierenden Faktoren bei dieser 

Methode sind. Zudem wurden im Verlauf dieser Arbeit zwei nützliche Werkzeuge 

entwickelt: Der COFFEE-Datensatz als Hilfsmittel für die Interpretation atmosphärischer 

O2 und CO2-Messungen und das ICON-Messgerät als experimentelles Werkzeug, um die 

Messungen selbst zu verbessern. 
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Chapter 1                                  
Introduction  
 
The Earth’s climate is determined by several complex physical, biological, and 

chemical processes that involve interactions among the atmosphere, the ocean, and 

the land. Understanding these – often non-linear – processes and their feedbacks on 

the climate system is an urgent scientific challenge, especially since it has become 

increasingly apparent that recent human activities are causing unprecedented changes 

to this system that might even be irreversible.  
 

Direct observations of atmospheric and oceanic temperature show that the global 

mean temperature has increased 0.74°C ± 0.18°C over the last century (estimate for 

the period 1906–2005, CRU/Hadley Centre Dataset CRUTEM3, (Brohan et al. 2006)) 

with an increasing growth rate over the recent decades. Besides, there is evidence for 

changes in other climate aspects: changing patterns in precipitation, rise of sea level, 

decreasing extent of ice and snow cover and glacier retreat as well as a growing 

frequency of extreme weather events (Trenberth et al. 2007). In the last decades it has 

become increasingly evident that the observed climate changes are mostly 

anthropogenic, as a result of the enhanced atmospheric greenhouse gas concentrations 

caused by fossil fuel burning (e.g. Barnett et al. 2001; Levitus et al. 2001; Stott et al. 

2001; Stone et al. 2007).  
 

Major greenhouse gases include natural abundant species such as water vapor (H2O), 

carbon dioxide (CO2), methane (CH4), tropospheric ozone (O3) and nitrous oxide 

(N2O) and predominantly man-made compounds such as chlorofluorocarbons (CFCs). 

Contained in the atmosphere, these greenhouse gases are transparent to the incoming 

short-wave solar radiation, but absorb long-wave (infrared) radiation, emitted by the 

Earth's surface, thus trapping heat within the atmosphere. This ‘greenhouse effect’ 

was discovered in 1824 by Joseph Fourier (1824) and quantified in 1896 by Svante 

Arrhenius, who also identified CO2 as a major source of this effect (Arrhenius 1896).   

Natural abundances of greenhouse gases are responsible for a warming of the Earth 

surface on the order of 33°C.  
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Arrhenius already predicted that anthropogenic emissions of CO2 would be strong 

enough to lead to additional global warming, since the amount of heating depends on 

the concentration of greenhouse gases in the atmosphere. He estimated that the Earth 

temperature would increase by 5 to 6 degrees in case of doubling CO2 
concentration, 

not that different from recent estimates that range from 2 to 4.5 °C (Hegerl 2007). 

 

To characterize how anthropogenic and natural forces influence the global climate, 

changes are expressed in terms of ‘radiative forcing’, i.e the radiative imbalance (in 

W/m²) in the climate system caused by these influences. The largest individual 

contribution (about 63 %, (Hofmann et al. 2006)) to the anthropogenic increase in 

radiative forcing comes from CO2. The atmospheric CO2 concentration has risen from 

275-285 ppm (parts per million, 1ppm = 1μmole/mole) in pre-industrial times (years 

1000-1750, (Etheridge et al., 1996)) to 379 ppm in 2005 (IPCC 2007) with growth 

rates progressively higher each decade (Tans 2010). That increase is mainly due to 

anthropogenic CO2 emissions from fossil fuel combustion (including minor 

contributions from cement production and gas flaring), but also due to land use 

changes such as deforestation (Houghton 2003) and biomass burning (Andreae and 

Merlet 2001). Present fossil fuel emissions amount to 8.5 Pg C/yr, while emissions 

due to land use change are about 1.5 Pg C/yr (Canadell et al. 2007; Le Quéré et al. 

2009) 
 

1.1 The global carbon cycle  
 

The atmospheric CO2 concentration is regulated by the biogeochemical carbon cycle 

(Figure 1.1). CO2 in the atmosphere constitutes only a small fraction of the carbon 

stored in other reservoirs: About 80% of the total carbon is contained in sedimentary 

rocks in the form of organic compounds and carbonate. Dissolved inorganic carbon 

(DIC) in the ocean is the largest near-surface pool, containing 56 times more carbon 

than the atmosphere. On land, most of the carbon is contained in soils. The carbon 

cycle involves the continuous exchange of carbon among the different carbon pools, 

i.e. the interaction of the carbon in the atmosphere with the terrestrial biosphere, the 

ocean and the marine biosphere, as well as on longer time scales interactions with 
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sediments and the lithosphere. For example, CO2 is removed from the atmosphere and 

converted into organic matter by plants via photosynthesis, while carbon returns to the 

atmosphere via decomposition. The CO2 fluxes between the land biosphere, the 

atmosphere, and the ocean have maintained an approximately constant level of 

atmospheric CO2 for the past 10000 years until the onset of the Industrial Revolution.  
 

 

 
 
Figure 1.1 Global  carbon cycle, taken from (IPCC 2007). Carbon fluxes are given in GtC/yr 
with natural fluxes depicted as black arrows and anthropogenic fluxes as red arrows. 
 

 

Although anthropogenic CO2 
emissions (represented by red arrows in Figure 1.1) are 

small compared to the natural fluxes, they are still strong enough to cause significant 

perturbation of the equilibrium in the carbon cycle, leading to an accumulation of CO2 

in the atmosphere and the above-mentioned enhancement of the natural greenhouse 

effect.  

1.2 The airborne fraction of CO2 
 

Comparison of the atmospheric CO2 growth rate with the estimated emissions from 

fossil fuel burning and land use (Marland et al. 2007) shows that only about 45% of 
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the total anthropogenic CO2 emitted stays in the in the atmosphere (the ‘airborne 

fraction’, see figure 1.2); the remainder is taken up by dissolution in the ocean and 

increased photosynthesis in terrestrial ecosystems. Estimates using different methods 

show that over the last decades the anthropogenic CO2 
has been taken up by the land 

biosphere and ocean in comparable proportions (Rayner et al. 1999; Battle et al. 2000; 

Manning and Keeling 2006; Canadell et al. 2007). There is some evidence indicating 

that the airborne fraction might be increasing over the recent decades due to saturation 

of sinks (Le Quéré et al. 2007; Le Quéré et al. 2009), however analysis of longer time 

periods seems to show otherwise (Knorr 2009)  

 

 

 
Figure 1.2: Airborne fraction of CO2, taken from the Global Carbon Project homepage 
(http://www.globalcarbonproject.org/), data from NOAA/CDIAC, (Le Quéré et al. 2009) 
 

 

The partitioning of the ocean and the terrestrial biosphere CO2 uptake is important 

because the fate of carbon stored in these two reservoirs is substantially different. 

Carbon stored in the land biosphere is sensitive to climate and human intervention and 

can therefore rapidly return to the atmosphere as CO2, for example by biomass 

burning or deforestation. In contrast, for CO2 
taken up by the oceans, most of the 
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carbon is not likely to re-enter the atmosphere quickly due to the slow mixing time of 

the oceans. Thus on longer time scales the ocean uptake may be more important for 

counteracting the effect of anthropogenic emissions. Therefore, in order to predict 

future atmospheric CO2 concentrations it is crucial to determine the relative 

contributions of the two carbon sinks and to identify the underlying processes 

(Friedlingstein et al. 2006).  

 

1.3 Atmospheric O2 as tracer for carbon cycle processes 
 

Direct measurements of carbon inventory changes in the ocean and the terrestrial 

biosphere are difficult. Furthermore, spatial and temporal inhomogeneities in the 

biosphere and the ocean complicate estimates of the strength of carbon sources and 

sinks. Therefore, we have to rely on indirect methods for determining the partitioning 

of anthropogenic CO2 between the ocean and the terrestrial biosphere.  

 

One of these is the combination of atmospheric measurements with inverse modeling 

techniques: The atmosphere acts as an integrator of carbon fluxes and is therefore an 

unbribable witness of the entire flux history. To derive information on surface sources 

and sinks from atmospheric measurements of CO2 and other tracers, spatial and 

temporal variations in the atmospheric tracer concentration at the measurement 

locations are simulated using a transport model. By minimizing the differences 

between observed and modeled concentrations, the contributing surface fluxes are 

estimated using inverse techniques. This method is called ‘atmospheric transport 

inversion’ and has become a well-established tool during the past two decades  (Tans 

et al. 1990; Rayner et al. 1999; Gurney et al. 2002; Gerbig et al. 2003; Rödenbeck et 

al. 2003; Zeng et al. 2005). 

 

However, information on carbon sources and sinks can not be derived from 

measurement of CO2 alone. One way to obtain additional information consists in 

measuring atmospheric oxygen (O2) in addition to CO2 (see e.g.Keeling and Shertz 

1992; Keeling et al. 1996; Battle et al. 2000). 
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The biogeochemical cycle of oxygen is closely coupled to the carbon cycle through 

photosynthesis, respiration, fossil fuel combustion and biomass burning. Changes in 

the atmospheric concentration of O2 and CO2 are usually anti-correlated: For example, 

photosynthesis produces oxygen and consumes CO2 whereas fossil fuel combustion 

consumes O2 and produces CO2.  

 

Ocean-related processes, however, lead to dissimilar patterns in the atmospheric O2 

and CO2 signals. One reason for this is the difference in air-sea exchange on 

subannual time scales: O2, like most other gases, equilibrates within a few weeks; 

therefore changes in oceanic O2 (caused by marine photosynthesis and respiration) are 

quickly transferred into the atmosphere. CO2 exchanges are much slower (on the 

order of one year) because most oceanic CO2 exists in the form of bicarbonate and 

carbonate ions, and only 1% is in the gaseous form that can be exchanged across the 

air-sea interface. A consequence of this is a difference in the seasonal cycles of O2 and 

CO2. Another difference results from the dissimilar solubility of O2 and CO2 in 

seawater: Since oxygen is relatively insoluble in seawater, 99% of the oxygen in the 

ocean-atmosphere system is located in the atmosphere, whereas only 2% of the total 

carbon is airborne (Bender and Battle 1999).  

 

Therefore rising levels of atmospheric CO2 easily disturb the atmosphere-ocean 

system and induce a CO2 flux from the atmosphere into the oceans that is not mirrored 

by an O2 flux from the oceans to the atmosphere. These differences allow us to use 

measurements of the atmospheric oxygen concentration to separate the CO2 uptake 

into land and ocean processes. Additional information can be gained from the fact that 

the different land processes have different ‘oxidative ratios’, i.e. molar O2/CO2 

exchange ratios. 

 

Table 1.1 gives a simplified summary of the relevant biosphere and ocean processes 

and the expected O2/CO2 ratios (following Keeling et al. (1995), numbers updated). 
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Process Description  O2/CO2  Comment 

 

terrestrial 

photosynthesis  

and respiration  

 

 

6CO2+ 6H2O ↔ 

         C6H12O6 + 6O2 

 

     

- 1.1 

 
The deviation from 1.0 is 
caused by the influence of 
other elements than carbon 
(e.g. nitrogen). The ratio given 
here is a global average, 
determined by elemental 
abundance analyses and soil 
chamber measurements 
(Severinghaus 1995)  
 

 

fossil 

fuel 

combustion 

 

 

CHy + (1+ y/4) O2  

       ↔ y/2 H2O + CO2 

     

 

 

- 1.4 

 
Global average for 1990-
2000(Manning and Keeling 
2006), determined from fossil 
fuel production data (Marland 
et al. 2002) and O2/CO2 ratio 
for different fuel types 
(Keeling et al. 1998b) 
 

 

Oceanic uptake  

of excess CO2 

 

 

H2O+CO2 +CO3
-
  

                        ↔ 2HCO3
- 

 

 

0 

 

 

 

Ocean 

photosynthesis 

and respiration 

 

 

 

106CO2 + 16 NO3
-  

+ H2PO4
- + 17 H+ ↔     

              C106H263O110N16P 

                           +138 O2 

 

 

 

- 2  to  -8 

 
The ratio for oceanic 
photosynthesis and respiration 
as determined by the 
composition of marine plant 
matter is ~1.3 (Redfield et al. 
1963), the actual air-sea fluxes 
however vary depending on 
the different efficiencies of 
gas exchange for O2 and CO2 
and vary for different 
timescales (Keeling and 
Severinghaus 2000) 
 

 
 
Table 1.1 Summary of processes influencing the atmospheric O2 and CO2 concentrations and 
the stoichiometric values for O2/CO2 exchange 
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1.3.1 The global budgets of atmospheric CO2 and O2 
 

The global budgets of atmospheric CO2 and O2 can therefore be expressed as 
 

ΔCO2 =   F – B – O                     (1.1) 

ΔO2 =  – αF F + αBB + Z                                                           (1.2) 
 

ΔCO2 and ΔO2 represent the changes in the atmospheric CO2 and O2 concentration, 

respectively. F denotes the fossil fuel source of atmospheric CO2, B the sink due to 

biospheric processes and O the ocean uptake of CO2.  

 

The greater part of the oxygen budget can be conveyed in terms of CO2 sources and 

sinks, since biopheric and fossil fuel exchanges of O2 and CO2 occur at relatively 

fixed stoichiometric ratios. Therefore the biopheric oxygen source is BO2 = - αBB, 

with αB = 1.1 the average O2/CO2 ratio for terrestrial photosynthesis and respiration 

(Severinghaus 1995), whereas the oxygen sink due to fossil fuel combustion is given 

as FO2 = –αF F, with an oxidative ratio αF =1.4 (Keeling 1988). These ratios are global 

averages and may vary on smaller spatial and temporal scales (see Chapter 2). Not 

coupled to CO2 sources and sinks is Z, the net exchange of atmospheric oxygen with 

the oceans, which is considered to be small compared to the other contributions. 

 

The separation of the CO2 uptake into ocean and biosphere can be performed using 

the equations above (see e.g. Keeling et al. 1996; Bender et al. 1998; Rayner et al. 

1999; Battle et al. 2000; Bender et al. 2005; Manning and Keeling 2006). A graphical 

solution for the separation is shown in figure 1.3 on the following page. 
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Figure 1.3:Partitioning of fossil fuel CO2 uptake using O2 measurements, taken from Prentice 
et al (2001). The graph shows the relationship between changes in CO2 (horizontal axis) and 
O2 (vertical axis). Data points are annual averages of observed O2 and CO2, with different 
symbols indicating different sources of data.O2 data are from (Keeling et al. 1996; Battle et al. 
2000; Manning 2001), CO2 data from (Conway et al. 1994). The slopes of the arrows for 
fossil fuel burning, land and ocean uptake are defined by the above mentioned O2/CO2 
stoichiometric ratios of the these processes. The arrow labeled ‘outgassing’ denotes O2 
changes from oceanic outgassing (Levitus et al. 2001) 
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1.3.2 Atmospheric Potential Oxygen 
 

Starting from this decoupling, it is possible to combine O2 and CO2 to a new 

(artificial) tracer, called atmospheric potential oxygen (APO) which is used to study 

ocean processes (Stephens et al. 1998).  APO is defined as a weighted sum of CO2 

and O2:  
 

ΔAPO = ΔO2 + αB ΔCO2 =  (−αF + αB)F + (Z − αBO)                                        (1.3) 

 

Here the weighting factor is chosen so that APO is conservative with respect to land 

biosphere processes. It consists only of an ocean part and a reduced contribution from 

fossil fuel that is usually negligible at the remote stations used to measure 

atmospheric CO2 and O2 concentration. 

 

1.4 Oxygen measurements 
 

Measuring variations in atmospheric O2 concentration is very challenging because of 

the high atmospheric oxygen concentration of about 21%. Relevant changes in the O2 

concentration have about the same amplitude as changes in CO2 (on the order of parts 

per million = ppm) and therefore require the same absolute measurement precision, 

but need to be detected against a much higher background signal. 

 

For example, a plant that removes one CO2 molecule per million air molecules by 

photosynthesis and releases an equivalent number of O2 molecules to the atmosphere 

will leave a 1/380 or 0.26% signal in the background CO2 mixing ratio, but only a 

1/210000 or 0.00048% signal in the oxygen concentration. Therefore the relative 

precision required for O2 measurements exceeds the requirements for CO2 and other 

trace gas measurements by a factor of more than 500. At this precision level technical 

aspects such as gas handling and measurement artifacts also become much more 

critical. 
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1.4.1 Measurement techniques 
 

The first successful method for measuring oxygen with the required precision was 

developed by Keeling (1988). Based on interferometry, this method detects changes 

in the O2 mole fraction by measuring changes in the relative refractivity of air. Later, 

Bender et al. (1994) succeeded in measuring the O2/N2 ratio of air with similar 

precision on an isotope ratio mass spectrometer. In the last 20 years, more high- 

precision techniques have been developed using paramagnetic (Manning et al. 1999; 

Manning 2001), vacuum ultraviolet adsorption (Stephens 1999; Stephens et al. 2003), 

gas chromatographic (Tohjima et al. 2003), and electrochemical methods (Stephens et 

al. 2001; Stephens 2007).  

 

Presently, it is not possible to determine the absolute mole fraction of O2 to the ppm 

level with any of these methods; only the detection of relative changes in O2 at this 

level is feasible. The precision for relative measurements achievable with the different 

methods is not only determined by the precision of the O2 sensor itself, but also by the 

whole surrounding setup, including the gas handling of the sample on the way to the 

sensor as well as the ability to relate the measurements to international reference 

scales.   
 

1.4.2 The O2/N2 ratio 
 
The oxygen mole fraction in an air parcel, XO2, is defined as the number of oxygen 

molecules, MO2, divided by the total number of molecules in that air parcel: 
 

XO2 [mole/mole] = MO2/Mair   with Mair= MO2 + MN2 + MCO2 + MAr + Mother trace gases 

 

It can be seen that the O2 mole fraction is also sensitive to variations in other air 

components. These dilution effects are not negligible: For example, a change of 1ppm 

in the number of CO2 molecules already causes a change of 0.21ppm in the O2 mole 

fraction. Hence O2 variations are usually expressed as changes in the O2/N2 ratio 

(=MO2/MN2) that can only vary due to changes in the number of oxygen or nitrogen 

molecules. In most cases changes in the O2/N2 ratio can be considered as being caused 
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only by changes in the oxygen mole number. This is because the atmospheric nitrogen 

variations are much smaller than oxygen variations (Keeling and Shertz 1992). In 

addition, the effect of nitrogen changes on the O2/N2 ratio is four times smaller than 

the effect of oxygen changes of the same magnitude, since nitrogen is four times more 

abundant in the atmosphere. 

 

The O2/N2 ratio is commonly reported in units of ‘per meg’, i.e. as relative deviations 

from an arbitrary standard and multiplied by 106 (Keeling and Shertz 1992): 
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Adding or removing 1 μmole of O2 to a mole of dry air therefore causes a change of 4.8 

per meg in the O2/N2 ratio.  
 

Of the different instruments mentioned above, mass spectrometers measure the O2/N2 

ratio directly, while the other methods measure changes related to the oxygen mole 

fraction. When converting to O2/N2, dilution effects need to be taken into account. 

Most of these effects are caused by changes in CO2 or water vapor. Therefore, it is 

necessary to simultaneously measure – and correct for – variations in CO2 (Keeling et 

al. 1998b) and to dry the sample air to avoid water dilution effects. Changes in 

measured oxygen mole fractions can be converted to O2/N2 ratios using the following 

formula (Keeling et al. 1998a; Stephens et al. 2003): 
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Here  δXO2, δXCO2  and δ(O2/N2) denote the changes in the O2 and CO2 concentrations 

(in ppm) and in the O2/N2 ratio (in per meg) and XO2 = 0.20946 (Machta and Hughes 

1970) the standard mole fraction of oxygen in the air. Changes in XCO2 are hereby 

expressed as deviations from 363.29 ppm, which is the average CO2 concentration of 

the reference cylinders defining zero on the international O2/N2 per meg scale, defined 
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by the Scripps Institution of Oceanography (SIO). This equation is valid under the 

condition that the relative abundances of other air constituents (e.g. N2, Ar, H2O) are 

constant. 

1.4.3 Gas handling issues and fractionation effects 
 

The development of oxygen sensors of adequate precision is only one part of the 

experimental challenge of measuring the small oxygen changes in the atmosphere. 

Also important are methods for gas handling, i.e for collecting and drying air samples, 

for the gas flow inside the measurement system or for storing reference gases that do 

not significantly alter the oxygen content of the air. Various effects can influence the 

oxygen concentration inside the measurement instrument or even at the sample intake: 

pressure and temperature-induced changes, chemical reactions, adsorption and 

desorption on internal surfaces of tubing and diffusion through some materials. 

Several authors already studied these effects, proposed strategies to minimize them 

and gave advice on gas handling procedures and the storage of reference cylinders 

(Keeling et al. 1998a; Manning 2001; Langenfelds et al. 2005; Sturm et al. 2005c).  
 

Most measurement artifacts are caused by fractionation effects. The term fractionation 

originates from isotope measurements and denotes the separation of different 

components of an initially homogenous mixture. In the case of O2/N2 measurements 

the term fractionation refers to the separation of oxygen with respect to nitrogen. One 

type of fractionation is the diffusive separation of oxygen and nitrogen by gradients in 

temperature, pressure and humidity. Oxygen, being the heavier molecule, tends to 

accumulate in regions with lower temperature, higher pressure and higher absolute 

humidity (Grew and Ibbs 1952; Chapman and Cowling 1970; Severinghaus et al. 

1996).  

 

For small temperature, pressure and humidity gradients, the magnitude of the 

fractionation effects can be calculated linearized equations (Keeling et al. 1998a), 

described in the following. 
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Thermal fractionation: 6
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with ΔT being the temperature difference, T the absolute gas temperate and α= 0.018 

the thermal diffusion coefficient for O2 and N2 (Grew and Ibbs 1952). The effect of a 

1°C difference in temperature is thus already on the order of -60 per meg. Thermal 

fractionation is also attributed to be the cause for fractionation at T-junctions where 

an incoming air stream divides into two outlet air streams (Manning 2001). The 

reason for this is that, unless the temperature is somehow controlled, the gas 

transported to the outlets never has exactly the same temperature on both sides. 

Manning (2001) reported that these fractionation effects occurred in the range of ± 30 

per meg and seemed to increase with increasing flow difference of the two outlet 

streams. The same effect has also been observed at air inlets (which can also be 

considered as a special kind of T-junction) (Sturm et al. 2005c).  
 

Besides this, temperature gradients can occur between the top and bottom of 

pressurized cylinders used for storing reference gases. If for example the outlet part of 

the tank is always slightly colder than the bottom, O2 is more likely to enter the outlet 

than N2. Since the remaining air is then enriched in N2, the resulting thermal 

fractionation leads to a drift in the O2/N2 signal from this tank. To minimize these 

effects, long-term tests performed by Keeling et al. (2007) suggest the horizontal 

storage of reference cylinders as well as the use of ‘dip-tubes’ to take the air from the 

(presumably more well mixed) center of the tank instead of taking if from the upper 

part directly. 

Pressure induced fractionation:  622
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Here Δp is the pressure gradient, p the absolute gas pressure and mO2=32, mN2= 28 

and mair~29 are the molecular masses of oxygen, nitrogen and air, respectively. This 

type of fractionation occurs for both hydrostatic pressure differences induced by 

gravity and flow-related pressure gradients. The fractionation effect for a 1‰ gradient 

in pressure, e.g. 1 mbar difference for 1 bar, is thus 138 per meg. Whereas flow-

related pressure gradients are usually more important within a measurement system, 
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gravimetric fractionation is observed in air captured in snow or ice (Craig et al. 1988), 

but also plays a role in the storage of high-pressure cylinders. As estimated by 

Keeling et al. (1998a), at barometric equilibrium the O2/N2 ratio at the top of a gas 

cylinder with a height of 1 m, positioned vertically, would be lower than the ratio at 

the bottom. As mentioned above, cylinders containing reference gas should therefore 

be stored horizontally to minimize any fractionation effects.  

 

Humidity induced fractionation: 6
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ΔXH2O denotes the gradient in water vapor mole fraction. DN2:H2O is the diffusivity of 

nitrogen to water vapor and DO2:H2O  the diffusivity of oxygen to water vapor, with 

DN2:H2O/ DO2:H2O= 0.965 (Severinghaus et al. 1996). Considering air at 20°C and 1 bar 

pressure and a difference between 100% and 50% relative humidity, the gradient in 

the absolute water content is 11.5 mmol/mol, what leads to a fractionation effect of 

about 400 per meg. 

 

The estimates above show that the potential fractionations are large compared to 

atmospheric variations in the O2/N2 ratio. However, these equations describe the effect 

for flow conditions under which molecular diffusion is the only gas transport. If 

macroscopic flow also contributes to gas transport, as is normally the case, the actual 

degree of fractionation will be smaller by a factor that equals the ratio of the timescale 

for diffusive transport divided by the timescale for turbulent mixing or replacement of 

the sample air by a macroscopic flow (Keeling et al. 1998a). Considering for example 

a flow velocity of 1m/s on a length scale of 1cm and a diffusivity of 0.2 cm²/s, the 

reduction factor is already (100cm/s ·1cm)/(0.2cm²/s) = 500.  

 

This suggests that appropriate gas handling strategies can reduce the fractionation to 

levels below 1 per meg or even less. However, care must be taken to work in the right 

flow regime and avoid larger gradients, since the potential for huge artifacts is always 

present.  
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Another potential fractionation mechanism is caused by gas effusion through small 

orifices, for example leaks. When the dimension of the orifice is smaller than the mean 

free path of the gas molecules, the dominant transport mechanism is Knudsen diffusion. 

In this flow regime, the molecular flow is proportional to the difference in partial pressure 

and to the molecular velocity, which varies inversely with the square root of the 

molecular weight (Dushman 1962). The O2/N2 ratio of the gas escaping from the leak is 

therefore smaller by a factor of (28/32)1/2= 0.946 than upstream of the leak. For example, 

a small leak, leading to a loss of only 0.1% of the sample, can potentially enrich the O2/N2 

ratio of the remaining sample by 54 per meg. 

 

Finally, fractionation can occur by adsorption or desorption of oxygen and nitrogen 

onto solid surfaces or by dissolution into permeable solids, e.g. elastomer seals. 

Normally, physical adsorption is reversible and depends on the gas pressure. That means 

that gases are adsorbed when the pressure increases and desorbed when it decreases, 

usually with different coefficients for different gases. Therefore changes in the O2/N2 

ratio with pressure are often observed when air is e.g. extracted from a high pressure 

cylinder. Adsorption can also be irreversible when chemical reactions of the gas (here 

oxygen) with the surface take place (chemisorption). For example, Keeling et al. (1998a) 

observed a long-term decrease in the O2/N2 ratios of glass flasks contaminated with 

grease. Sturm et al. (2004) studied the permeation of different gases through various 

polymeric O-ring seals used to close glass flasks filled with sample air. They found that 

the gas inside the flask can be significantly affected during storage, depending on the 

materials and geometry of the seal and the stopcock as well as on partial pressure 

differences between the sample and surrounding air. The permeation coefficient is 

specific for gas-solid combinations, with the permeability of O2 being higher than that of 

N2 for most elastomers. Similar permeation phenomena can also affect the air inside a 

measurement system, for example if tubing or valve seats made of polymeric materials 

are used.  In order to avoid these effects, care must be taken in choice of materials and 

equipment used within the whole measurement system, including high-pressure cylinders 

for reference gases and pressure regulators used to extract the air from them. 
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1.5 Platforms for CO2 and O2 measurements 
 

A dense observational network monitoring atmospheric greenhouse gases and related 

tracers is fundamental for improving our understanding of the climate system. 

Measurements of atmospheric constituents are mostly made from ground-based 

stations, but also from moving platforms such as ships and aircraft. Independent of the 

platform, one can distinguish between two types of measurements: in-situ and flask 

measurements. As the name implies, in-situ measurements are made directly at the 

chosen station, ship or aircraft. In the case of flask measurements, air samples are 

taken at the location of interest and sent to a laboratory for analysis. Usually, glass 

flasks with a volume of 0.5 to 2l are filled with a pressure of a few bar with sample air. 

The advantage of this method is that fewer expensive instruments or complex setups 

are required at each station, and the flasks can be measured for various species at 

different locations. Besides this, it allows intercomparison between laboratories or 

different methods since samples can be analyzed for the same species by different 

groups. On the other hand, in-situ measurements can be made continuously and 

therefore provide a higher temporal resolution. This is useful for capturing synoptic 

events and is especially important when the measurement platform is moving, i.e. an 

aircraft or a ship.  
 

1.5.1 Ground-based measurements  
 

A large number of globally distributed monitoring stations are measuring the 

atmospheric CO2 concentration, with the longest systematic record running since 

1958 (at Mauna Loa, Hawai  (Keeling et al. 1995; Keeling and Whorf 2005)). By now 

more than 100 stations are measuring CO2 and other greenhouse gases, providing long 

term observational records from all over the world (see e.g. (Conway et al. 1994; 

Keeling and Whorf 2005)). Measurements of atmospheric oxygen are still sparse 

compared to greenhouse gas measurements. Worldwide, O2 is measured regularly at 

around 25 stations by several groups (Bender et al. 1996; Langenfelds et al. 1999; 

Battle et al. 2000; Tohjima et al. 2003; Sturm et al. 2005b; Manning and Keeling 

2006), with 15 stations having an observational record of more than 15 years. These 
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observations are usually flask measurements, however in recent years continuous 

measurements have also been started at several stations (Manning 2001; Stephens 

2007; Popa et al. 2009; Thompson et al. 2009; Luijkx et al. 2010)  Figure 1.4 shows 

the location of all in-situ and flask measurement stations. 

 
Figure 1.4: Locations of ground-based stations measuring O2/N2. Station names are given as 
the official 3-letter codes. 
 
Traditionally, most of the measurement stations are located remotely. Signals 

measured in remote environments are more representative for the hemispheric or or 

global scale since they are not dominated by strong local sources. Continental stations 

were avoided in the beginning because of the higher risk of local disturbances by 

terrestrial and industrial sources and sinks. In recent years however, inverse modeling 

studies have identified the lack of continental stations as strong limitation in resolving 

the longitudinal distribution of sources and sinks (Fan et al. 1998; Gloor et al. 2000). 

To solve this problem, Tans (1991) proposed measurements of trace gases at different 

heights on tall towers. Close to the surface, the measured signals are highly variable 
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since they are dominated by local sources and sinks – they can be useful for inferring 

fluxes at local or regional level with high temporal resolution. However, at a 

sufficient height above the ground – ideally a few hundred meters – the signal is 

representative for a larger influence area (with a radius on the order of 500 to 

1000km). Continuous sampling from different heights therefore allows to separate 

local from regional signals (Gloor et al. 2000).  Following this strategy, several tall 

towers have been set up in the US  (NOAA/ESRL-GMD Tall Tower and Aircraft 

Network, see e.g.(Bakwin et al. 1998)), Japan (Inoue and Matsueda 2001), Siberia 

(Kozlova 2009) and Europe (CHIOTTO project, see (Vermeulen et al. 2007)). The Max 

Planck Institute for Biogeochemistry in Jena (MPI-BGC) is operating three of these tall 

towers, the one in Siberia and two in Europe – Ochsenkopf in Germany (Thompson et al. 

2009), and Bialystok in Eastern Poland (Popa et al. 2009). The latter two also perform 

continuous measurements of atmospheric oxygen from different levels from near-ground 

to the top of the tower. 

 

1.5.2 Airborne measurements  
 

Airborne measurements of greenhouse gases and related tracers are an important 

complement to the global network of surface sampling stations since they provide 

access to different spatial and temporal scales. Data from aircraft campaigns can be 

used for getting detailed information on regional budgets as well as for testing or 

evaluating atmospheric transport models (Gerbig et al. 2003; Dolman et al. 2006). 

Aircraft are uniquely suited to measure distributions of atmospheric tracers both in the 

vertical and the horizontal direction. Depending on aircraft type, they allow high-

density observations from ground level up to around 12 km in the upper troposphere 

and lower stratosphere and horizontal scales from a few kilometers to hundreds or 

thousands of kilometers. Apart from that, aircrafts can conduct ‘Lagrangian 

experiments’, i.e. follow a certain airmass. Comparing the tracer concentrations 

measured upstream and downstream of a location provides constraints on regional 

fluxes that can not be achieved easily with other methods. Airborne measurements of 

O2/N2 in the troposphere give information on the regional distribution of the different 

flux components that are associated with differing O2/CO2 ratios. In addition, profile 
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measurements of O2/N2 and CO2 in the stratosphere can provide information on 

transport processes, but have also been used to get information on past tropospheric 

O2/N2 ratios when transport times are known from e.g. profiles of CO2 (Ishidoya et al. 

2006).  

 

During the last 30 years, an increasing number of different airborne measurements 

using various types of airplanes has been carried out – aircraft campaigns (e.g. 

Stephens et al. 2000; Lin et al. 2006), regular profiling in the vicinity of surface 

stations or measurements on board commercial airliners (Marenco et al. 1998; 

Machida et al. 2008). In-situ measurements on board aircraft are challenging since 

instruments need to perform under extreme conditions of changing pressure and 

temperature and resist mechanical stress due to shock and vibrations. Besides, due to 

space and weight limitations, especially on board small research aircraft, instruments 

are required to be rather small and lightweight. High-accuracy analyzers for in-situ 

measurements of CO2 already exist for quite some time (Anderson et al. 1996; Daube 

Jr. et al. 2002), but for many other species flask sampling is still the standard method. 

Although very reliable, flask samples can only provide a limited temporal and spatial 

resolution. Continuous measurements are preferable to improve the understanding of 

atmospheric transport and mixing processes.  

 

The first airborne measurements of O2/N2 were made during the COBRA experiment 

(Stephens et al. 2000) using flask sampling, an approach that was also used by (Sturm 

et al. 2005a) for profile measurements. First continuous in-situ airborne measurements 

of O2/N2 were performed by Stephens during the IDEAS (http://www.eol.ucar.edu/raf 

/Projects/IDEAS/) and HIPPO campaign (Stephens 2009).   

 

1.6  Thesis objectives 
 

Over the past decade, the global network of stations monitoring the atmospheric CO2 

and O2 content has been growing continuously and has also become more 

representative due to the addition of continental stations. Data from these stations 
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allow fluxes from regional to continental scales to be better constrained, but due to the 

proximity of highly variable local (e.g. anthropogenic) sources and sinks additional 

effort is needed to interpret the measurements.   

 

This thesis deals with two aspects that are important for improving the utility of these 

data: First, the characterization of anthropogenic sources, their spatial and temporal 

variability and their influence on the atmospheric composition, and second, the use of 

airborne measurements to characterize the spatial variability of fluxes in between the 

ground-based monitoring stations.  

 

The first aspect is addressed in Chapter 2 of this thesis by investigating the global 

oxygen uptake caused by fossil fuel burning. The O2/CO2 exchange ratio for 

combustion processes depends on the type of fuel and varies from 1 to 2. However, 

for separating different processes, both on global and local scales, the global average 

of 1.4 is usually used. Here a high-resolution dataset for the global distribution of 

oxidative ratios related to fossil fuel burning is compiled using CO2 emission 

inventories together with fuel consumption data. Based on that dataset, it is 

investigated whether the influence of the local fuel mix can be detected in measured 

signals of atmospheric oxygen, and whether this information can be used to better 

interpret measured signals of atmospheric O2 and CO2. 

 

The subsequent chapters deal with airborne measurements of atmospheric oxygen, 

investigating oxidative ratios derived from flask data taken during an aircraft 

campaign in Chapter 3 and presenting the development of a new instrument for 

airborne in-situ measurements in Chapter 4. 

 

Chapter 3 presents results of O2/N2 and CO2 measurements from flasks taken during 

the BARCA (Balanço Atmosférico Regional de Carbono na Amazônia) aircraft 

campaign in the Amazon Basin (Brazil). The Amazon Basin is climatically a very 

interesting region, since it contains half of the world's undisturbed tropical forest and 

accounts for about 10% of global terrestrial net primary productivity (NPP). However, 

deforestation and agricultural development have led to huge CO2 sources in recent 
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decades. Therefore, estimates of CO2 fluxes over Amazonia are subject to large 

uncertainties that propagate into the global carbon budget. The BARCA aircraft 

campaign was addressing the ‘missing scale’ for measurements of atmospheric CO2, 

intermediate between local point measurements and global modeling efforts. In the 

thesis chapter it is examined how simultaneous measurements of atmospheric oxygen 

and the resulting O2/CO2 ratios can help to better interpret measured CO2 signals. 

 

As information from flask samples is limited due to their lower spatial and temporal 

resolution, Chapter 4 addresses the need for in-situ airborne measurements of O2/N2. 

The development of a new instrument, based on vacuum ultraviolet (VUV) absorption 

technique, is presented. The design of the instrument targets the use aboard small 

research aircrafts, therefore being small, lightweight, robust, insensitive to vibrations 

and able to perform measurements fully automated. This was achieved by a 2-cell 

design that allows simultaneous measurement of the sample and a reference gas and is 

based on creating equal pressure and temperature conditions in the two cells rather 

than controlling them. A prototype version of this instrument has been built and tested 

in the laboratory in the course of this thesis.  
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Chapter 2                                                 
O2/CO2 ratios from fossil fuel combustion 
 
Simultaneous measurements of atmospheric O2 and CO2 mole fractions allow the 

identification of local source/sink patterns since different processes have different 

oxidative ratios (OR = – ΔO2 [mole]/ΔCO2 [mole]). Therefore, atmospheric O2 

measurements can help to differentiate between industrial and terrestrial influences on 

observed CO2 variations. This chapter investigates whether measured oxidative ratios, 

together with information on spatial patterns of O2/CO2 emission ratios from 

combustion of different fuel types, can also be used for separating different 

anthropogenic emission sources and thus for better interpretation of regional CO2 

budgets. For this purpose, a global dataset of CO2 emissions and O2 uptake related to 

fossil fuel burning has been created using emission inventories and fuel consumption 

data. The potential influence of spatial patterns and temporal trends in the resulting 

O2/CO2 emission ratios on the atmospheric oxygen signal is investigated for different 

stations in the global measurement network, using model simulations. The simulated 

results are compared in detail to observations from two selected stations. Finally, the 

influence of varying oxidative ratios on partitioning of the land and ocean sinks of 

anthropogenic carbon is investigated. 
 

2.1 Oxidative ratios for fossil fuel combustion 
 
As described in Chapter 1, fossil fuel combustion of CO2 causes a decrease in 

atmospheric oxygen as for each mole of CO2 on average 1.4 moles of O2 are 

consumed (Keeling 1988). The exact oxidative ratio, i.e. the ratio of moles O2 

consumed per mole CO2, depends on the amount of carbon and other elements 

contained in a particular fuel. Following Keeling (1988), the oxidation process for 

fossil fuel burning can be described as 
 

342222 224
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Here CHwOxSyNz represents the composition of the fuel. However, in most cases the 

sulfur and nitrogen content of fuels is negligible compared to the carbon and 

hydrogen content, therefore often the following simplified formula is used. 

 

OHyxCOOyxHC yx 222 24
+→⎟

⎠
⎞

⎜
⎝
⎛ ++                    (2.2) 

 

The oxidative ratio of the process is therefore ORff = 1+ y/(4x). It can range from 1 to 

2, with the ratio being 1 for pure carbon and 2 for methane. Usually, the following 

oxidative ratios are used for the three main types of fossil fuel: 1.17 for coal (or solid 

fuels in general), 1.44 for oil and other liquid fuels, and 1.95 for gaseous fuels 

(Keeling 1988). Cement production, accounting for 7% of total anthropogenic CO2 

emissions, does not consume oxygen and thus has an oxidative ratio of 0.  

 

For the partitioning of global carbon sinks, a weighted average oxidative ratio is used. 

This ratio has been determined as 1.4  (Keeling 1988) and updated by (Manning and 

Keeling 2006) to 1.39 ± 0.04 for the 1990s. This average is also usually used for 

distinguishing ecosystem and industrial processes when interpreting atmospheric O2 

and CO2 signals measured at monitoring stations. However, in some cases deviations 

from this average caused by the local fuel mix have been observed: In the Netherlands, 

a region with high usage of natural gas, oxidative ratios as high as 1.5 have been 

measured (Sirignano et al. 2008; van der Laan-Luijkx et al. 2010). At Hateruma 

Island close to Japan, pollution events have shown oxidative ratios ranging from 1.05 

to 1.4, correlated with the origin of the air (from China (ORff ~1.11),  Korea 

(ORff~1.31) or Japan (ORff~1.37)) (C. Minejima, personal communication). 

2.2 The COFFEE dataset  

2.2.1 Data and Methodology 
 
To estimate spatial and temporal patterns in O2/CO2 emission ratios, high-resolution 

CO2 emissions were combined with oxidative ratios at country level, calculated using 

fuel consumption statistics. 
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CO2 emissions are taken from the Emission Database for Global Atmospheric 

Research (EDGAR,(Olivier and Berdowski 2001)). A version of EDGAR 3.2 with 

CO2 emissions split into different categories is used (provided by S. Houweling, 

SRON, Utrecht). This version provides annual emissions on a 1° x 1° grid for the 

years 1991 to 2001 and 16 categories (e.g. power generation, transport). For 

comparison with recent atmospheric observations (see Chapter 2.4 and 4.3.2), the 

dataset was extended until the year 2008 by keeping the spatial distribution and 

relative contributions of the different categories of the year 2001 and extrapolating the 

amount of emissions using fuel consumption data at national level (assembled by BP, 

available at http://www.bp.com/statisticalreview). 

  

Fuel-mix specific oxidative ratios for each country, year and category were 

determined using worldwide energy statistics compiled by the United Nations 

Statistics Division (available at http://data.un.org/). Data in these statistics, currently 

available for the years 1990 to 2006, are derived primarily from annual questionnaires 

distributed by the UN Statistical Office and supplemented by official national 

statistical publications. The dataset contains data on fuel production, import, export, 

consumption and conversion for 44 fuel types and over 200 countries. Fuel types 

include different sorts of coal, liquid and gaseous fuels as well as biofuels (e.g. 

fuelwood, biodiesel and various waste types). The reason for choosing this dataset 

was that the information on fuel consumption and conversion is not only given as 

national totals, but also split into different categories. These categories were merged 

to match the EDGAR categories; therefore the combination of the two datasets 

provides a resolution higher than country level.  

 

To calculate the fuel-mix specific oxidative ratios from this consumption data, CO2 

emissions and oxygen uptake are at first derived for each fuel, country, category and 

year separately. CO2 emissions are estimated from the carbon content of the 

consumed fuels, following the procedure and using the fuel-specific conversion 

factors from the 2007 statistics report by the International Energy agency (IEA 2007): 

Fuel consumption is first converted to a common energy unit (terajoules) and then 

multiplied with carbon emission factors (CEF, given in tons of carbon per terajoule). 
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Full combustion of fuels is assumed, therefore the resulting carbon emissions are not 

corrected for unoxidized carbon, which is also consistent with the EDGAR 

methodology. Instead of applying a general correction (in terms of a percentage) for 

carbon stored in non-energy products, only the categories that actually produce CO2 

emissions were chosen. To express the results in terms of CO2 emissions rather than 

carbon emissions, they were multiplied with the molar weight ratio of CO2 to C 

(44/12).  

 
For calculating the corresponding O2 uptake, CO2 emissions for each entry in the 

dataset were multiplied with their specific oxidative ratio. Different oxidative ratios 

were given for the four main fuel types: coal, oil, gas and biofuels. For coal, oil and 

gas the ratios from Section 2.1 are used, for biofuels a weighted average of 1.07 was 

taken. That average was derived by calculating the oxidative ratios of the biofuels 

present in the dataset from Equation 2.1 and taking into account their relative 

contribution. It would be possible to further distinguish oxidative ratios e.g. for 

different types of coal, but the variations within the fuel types are rather small 

compared to the differences between the four fuel groups – for example the ratio for 

coal ranges from 1.09 for anthracite to 1.18 for bitumen (Keeling 1988). 

 
CO2 emissions and O2 uptake for the different fuel types were added up for each 

country, category and year. The total O2 uptake divided by the total CO2 emissions 

gives the specific oxidative ratio for this set. Unlike EDGAR, the UN dataset has no 

information on CO2 emissions from cement production. However, this is not 

problematic since cement production does not consume oxygen, therefore ORff for the 

category cement production is always 0.0. After the calculation of the oxidative ratios, 

the dataset was checked for missing values that were then replaced by ‘best estimate’ 

oxidative ratios: If the information on the fuel mix was just missing for one year in a 

certain category and country, the mean oxidative ratio for the surrounding years was 

used. If there was no information for the whole category in a certain country, either 

the mean oxidative ratio for the category or for the country was used, depending on 

the category. Since the fuel consumption data for the early 1990s seemed not very 

reliable (showing unrealistically large variations and many missing values), only data 
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from 1995 onward was used. In order to extend the dataset for the two years after 

2006, the fuel mix per category and country was kept the same as in 2006. 

 

To derive the O2 uptake on gridcell level, the EDGAR CO2 emissions for each 

category and year were multiplied with the obtained oxidative ratios for the country to 

which the respective gridcell belongs. Temporal factors for seasonal, weekly and 

daily cycles for the different categories were applied to the resulting annual values of 

CO2 emission and O2 uptake. These temporal factors are based on a set of factors 

provided in the EDGAR database, but were slightly modified to provide a better 

global representation: Seasonal cycles in fuel use were reversed for Northern and 

Southern Hemisphere and suppressed in the lower latitudes for those categories where 

it seemed reasonable. In addition, the original step functions for monthly cycles were 

smoothed to avoid discontinuities in the final timeseries. Finally, the sum of emissions 

and uptake over all categories was taken for each gridcell. The resulting dataset 

consists of hourly fluxes of CO2 emissions and O2 uptake for the years 1995 to 2008. 

In the following, it will be referred to as the COFFEE dataset, with COFFEE standing 

for ‘CO2 release and Oxygen uptake from Fossil Fuel Emissions Estimate’. 

 

2.2.2 Spatial distribution of fossil fuel related oxidative ratios 
 

Figure 2.1 shows global maps of the annual fossil fuel related CO2 emissions and the 

corresponding oxygen uptake for the year 2006. It can be seen that the patterns in 

oxygen uptake mostly follow the patterns of the CO2 emissions. As expected, high 

CO2 emissions occur mainly in the US, Europe and some parts of Asia while they are 

rather low in South America and Africa. The lines in between the continents represent 

ship tracks. Figure 2.2 shows the oxidative ratios, i.e. the O2 uptake divided by CO2 

emissions, determined from the COFFEE dataset, also annual averages for the year 

2006. The ratios cover the whole range from ~1 to 1.95 (a few gridcells with ORff <1 

from significant cement production have been omitted from the plot for better 

visibility), with the colors being representative for the different fuel types: green for 

biofuels, black for coal, brown for oil and blue for gas.  
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Figure 2.1 Global maps of fossil fuel related CO2 emissions and oxygen uptake for the year 
2006 as calculated from the COFFEE dataset. 
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Figure 2.2: Global map of fuel related oxidative ratio for the year 2006, calculated from the 
COFFEE dataset. See text in Section 2.2.2  for explanation of the color scheme. 
 

 
Figure 2.3: Change in the fossil fuel related oxidative ratio over the decade 1996 to 2006. 
The map shows ORff (2006) - ORff (1996), therefore red colors indicate an increase and blue 
colors a decrease in ORff.  
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In the US and most of Europe, the OR is close to the global average, representing an 

oil-coal mix. Emissions caused by international shipping are expectedly dominated by 

oil. On the other hand, fossil fuel combustion in Africa, China and India are 

dominated by coal and biofuels (e.g. fuelwood and animal manure), leading to a low 

oxidative ratio in these countries. Cement production also plays an important role in 

China and contributes to a further decrease in the ratio. A high contribution of gas can 

be seen in the oxidative ratios from e.g. Russia, Argentina and Canada. The blue and 

grey colors show oxidative ratios above 1.8, where gas is the main source of fossil 

fuel burning, while the orange colors (representing ratios higher than 1.6) are a sign of 

significant contribution of gas to the fuel mix. 
 

2.2.3 Temporal variations in fossil fuel related oxidative ratios 
 

Apart from spatial variations, it is also interesting to check whether and where 

temporal changes in the O2/CO2 emission ratios have occurred. Figure 2.3 shows 

changes during the decade from 1996 to 2006, with red colors indicating an increase 

and blue colors a decrease. It can be seen that there seems to be no general positive or 

negative trend, but rather tendencies occurring in both directions for different regions.  
 

 
 
Figure 2.4: Global average oxidative ratio from fossil fuel burning, derived from different 
fossil fuel inventories. The grey lines show the mean value and uncertainty for αF used by 
Manning and Keeling for the most recent calculation of global carbon sinks (see text for 
details). 
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This is confirmed in the timeseries of the global average ORff (in the following 

referred to as αF for consistency with the terminology in Chapter 1), shown in Figure 

2.4 above. The global average obtained from the COFFEE dataset, represented by the 

black line, is close to the value of 1.4 that is normally used for αF.  The mean αF over 

the whole timeseries shown here is 1.402 ± 0.003 with maximal deviations of ±1% 

from 1.4. Again, no general trend in one direction is visible.  

 

In this diagram, the results from COFFEE are also compared with the results derived 

from two other datasets. The blue line shows αF obtained from fuel consumption data 

from BP (that was also used for deriving CO2 emission trends in COFFEE after 2001).  

The BP dataset contains continental and national level consumption data of coal, oil 

and natural gas, but no information on biofuels and cement production. The third 

dataset (represented by the green line) is the CDIAC dataset (Boden et al. 2009) that –

like the oxidative ratios in COFFEE – is primarily based on the UN energy statistics, 

but also uses additional sources to complete the information. This inventory provides 

country level CO2 emissions from the consumption of coal, oil and gas as well from 

gas flaring and production of cement. The global oxidative ratios from those two 

datasets are calculated by dividing the total oxygen uptake by the total CO2 emissions. 

The oxygen uptake O2 total was determined by O2 total  = Σ (1.17 · CO2 (coal) +1.44 · 

CO2 (oil) + 1.95 · CO2 (gas)+ 1.98 · CO2 (gas flaring)), with CO2(fuel) being the CO2 

emissions of that fuel type.  

 

It can be seen in Figure 2.4 that αF shows similar patterns in all three datasets; 

however the temporal variations are small against the offset between the different 

inventories (up to 4%). This is mainly due to the fact that the different datasets 

include different fuel types: CDIAC does not have any biofuels, BP only has biodiesel 

and fuel ethanol (there being counted as oil), no cement production and gas flaring, 

and gas consumption is limited to natural gas. When calculating αF from the common 

part of all dataset (coal, oil and natural gas), the maximal offset in the results 

decreases below 1%.  
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The question now arises whether these variations in the global average are significant 

for the partitioning of global carbon sinks. The most recent sink estimate for the 

period 1990 to 2006 has given a result of 1.9 ± 0.6 and 1.2 ± 0.8 Pg C/year 

(uncertainties given here as 1σ standard deviations) for the total oceanic and land 

biotic sink, respectively (Manning and Keeling 2006). The uncertainty in αF, assumed 

by Manning and Keeling as ±0.04, results in a significant contribution of ± 0.2 

PgC/year to the uncertainty of both sinks. However, Figure 2.4 shows that the 

temporal variations of αF in any of the datasets are about a factor 6 smaller the 

uncertainty value of ±0.04, thus resulting in maximum uncertainties of ±0.035 PgC/yr. 

Nevertheless, Manning and Keeling (2006) already stated that temporal variations, in 

their case derived from CDIAC data for the 1990s, are not the major source of 

uncertainty in αF. Their uncertainty is rather determined by the uncertainty in the 

absolute value, since interannual changes in fuel production or consumption are 

resolvable to a finer degree than the total production in any given year. This 

uncertainty can not be quantified in the COFFEE dataset; only the offset between the 

different inventories could be used as an estimate for this uncertainty. However, this 

only works if they are based on independent sources. This is unfortunately not the 

case, since both the COFFEE and the CDIAC dataset are based on the UN statistics, 

and BP uses ‘governmental sources’ for its inventory that might also overlap with the 

UN statistics. 

2.3 Influence of fuel mix on atmospheric O2 concentration 
 

The spatial and temporal variations in ORff shown above leave a signature in 

atmospheric oxygen that can potentially be seen in the network of oxygen 

measurements. For investigating this influence, CO2 and O2 signals from the COFFEE 

dataset were used as input for atmospheric transport models to simulate the fossil-fuel 

related changes in the atmospheric CO2 and O2 mixing ratios (hereinafter called CO2ff 

and O2ff) for a number of monitoring stations. Two different transport models were 

used: the global model TM3 (Heimann and Körner 2003) and the regional model 

REMO (Langmann 2000; Chevillard et al. 2002). The regional model has the 

advantage of a higher temporal and spatial resolution: It gives hourly output compared 
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to 6-hourly output in the global model; the resolution is 0.5° x 0.5° (approximately 55 

x 55 km), whereas the highest resolution in the global model is 1.8° x 1.8°. Thus 

synoptic variations in fossil fuel use are better captured in the regional model. The 

global model, on the other hand, provides worldwide coverage and therefore can give 

a global overview of fossil fuel related effects. Figure 2.5 shows the locations of the 

stations for which the atmospheric signals were calculated, with red circles indicating 

the stations with output from the global model, and blue diamonds those where 

regional model output was available. 

 

 
Figure 2.5: Location of oxygen monitoring stations for which fossil fuel related signals were 
simulated. Red circles show stations for which atmospheric mixing ratios were simulated 
using the global transport model TM3, blue diamonds show output locations of the regional 
model.  
 

Comparison of the results for CO2ff and O2ff from the global and the regional model 

for stations that are within both domains shows similar patterns in both models. An 

example is given in Figure 2.6 which contains simulations of the station Ochsenkopf 

in Germany for the year 2006, showing in black the results from the global model and 

in blue those from the regional model. Simulated CO2ff and O2ff signals are shown in 
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the plot on the left side, given in ppm and expressed as deviations from the value of 

January 1, 2006, 0h.  

 

 
Figure 2.6: Comparison of results from the global model TM3 (black) and the regional model 
REMO (blue) for the station Ochsenkopf (Germany). Left: fossil fuel related changes in the 
atmospheric mixing ratios of CO2 (upper plot) and O2 (lower plot). Right: fossil fuel related 
oxidative ratio ORff, determined from a running regression of O2ff  vs CO2ff. 
 

As expected, the signals from the regional model show higher variability, resulting in 

sharper peaks with higher increases in CO2 and higher decrease in O2. Although the 

input from the COFFEE dataset has a seasonal cycle (for example, more fuel is used 

for heating in the winter), seasonal and other periodic variations appear negligible in 

the model result that is rather dominated by synoptic scale pollution events. The plot 

on the right presents the effective oxidative ratio ORff = – Δ O2ff/ΔCO2ff at the station 

location. The ratio shown here was derived from a running regression of O2ff versus 

CO2ff. A timeframe of 5 days was used for the regression, to get a signal 

representative of synoptic scale variations, while suppressing seasonal variations. The 

resulting values for ORff from the two models do not show significant systematic 

differences. Since the results for the other stations look similar, the results from the 

regional model are used where available, since they presumably capture the fossil fuel 

related variations better. Since both models show similar results for oxidative ratios 

on the synoptic timescale, both models can be used for the respective set of stations, 

depending on their availability.  
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Figure 2.7: Model output for selected stations. Stations from top to bottom are Alert 
(Canada), Ochsenkopf (Germany), Lutjewad (Netherlands) and Hateruma Island (Japan). 
The three columns show results for fossil fuel related CO2 and O2 mixing ratios (CO2 and 
O2ff), oxidative ratios (ORff) and the effect of the variable OR on the atmospheric oxygen 
concentration (ΔO2ff).  
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Figure 2.7 shows the model output for four selected stations: Alert (ALT) in 

Greenland, Ochsenkopf (OXK) in Germany, Lutjewad (LUT) in the Netherlands and 

Hateruma Island (HAT) close to Japan. The exact locations of the stations can be seen 

in Figure 2.5.  Only Hateruma is outside the domain of the regional model. Thus 

results for this station are from TM3 simulations, while the results for the other three 

stations are from REMO. The three plots for each station show the following: The left 

and middle column show the CO2ff and O2ff signals and the synoptic-scale oxidative 

ratio ORff as in Figure 2.6. In the right column, the difference ΔO2ff = O2ff (ORCOFFEE) 

– O2ff (OR=const) is shown, i.e. the difference in the fossil fuel related O2 signal 

caused by the use of the variable oxidative ratios from COFFEE in comparison to the 

use of a constant ratio of 1.4. As expected, ΔO2ff increases with both higher fossil fuel 

signals and higher deviations of the local fuel mix from the global average. Compared 

to the measurement precision of ~1ppm for measurements of atmospheric oxygen, 

these deviations are, however, rather small. 

 

Comparison of the results for the different stations shows that the influence of fuel 

mix depends to a large degree on their location:  

 
 

• For Alert, a remote coastal station, fossil fuel contributions to the atmospheric 

signals are small in general. No significant ΔO2ff signal is caused although 

ORff has a mean of about 1.5 (thus somewhat higher than the global average) 

and exhibits variations up to ±0.2 
 

• The Ochsenkopf tower, a continental station located in the middle of Europe 

(see also Chapter 2.4.1), experiences more fossil fuel events, causing increases 

in CO2 and decreases in O2 up to 40 ppm. With ORff being slightly higher than 

1.4, differences up to -3 ppm in the fossil fuel related O2 signal can be 

observed.  
 

• At Lutjewad, located on the Northern Coast of the Netherlands, the pollution 

events are larger (up to 60 ppm) and more frequent; combined with an 

oxidative ratio up to 1.65, they cause ΔO2ff to be as big as -7 ppm.  
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• Hateruma Island (see also Chapter 2.4.2) is a small island next to Japan, and is 

exposed to airmass influence from the adjacent Asian countries. As it can be 

seen from Figure 2.2, ORff in these countries is in general lower than the 

global average, leading to a mean ORff of 1.3 for the station. ΔO2ff peaks at     

+ 4 ppm. In comparison to the results from the other stations, it needs to be 

taken into account that the results for Hateruma are calculated using the global 

model, thus the peaks in ΔO2ff are significantly underestimated compared to 

simulations from a regional model (see also Figure 2.6). 
 

Following the detailed results of these representative stations, Figure 2.8 gives an 

overview of the fossil fuel related oxidative ratios for all monitoring stations. Again, 

only data from the year 2006 is used and ORff is determined in the same way as for 

figures 2.6 and 2.7 (i.e. using a 5-day running regression of O2ff versus CO2ff). In 

Figure 2.8, blue lines showing results from REMO and black lines results from TM3. 

Represented in this diagram are minimum, maximum, and quartile scores of ORff for 

the different stations in the form of a box-and-whisker plot. Here the box covers the 

50% of the data values between the 25th (bottom line of the box) and the 75th 

percentile (top line of the box). The bold line close to the middle of the box represents 

the median (i.e. the 50th percentile), while the ‘whiskers’ (dashed lines) extend to the 

minimum and maximum of the distribution. 

 
Figure 2.8 shows that the median of ORff for most of the classical remote stations 

(marked by green labels) is close to the global average and the range of the 

distribution is rather small, whereas the ORff of continental stations or stations with 

dominant continental influence (marked with black labels), show large variations and 

a median significantly different from 1.4. Nevertheless this is not always the case, for 

example the ORff of the remote station Alert exhibit large variations. However, the 

results from Figure 2.7 have shown that large variations in the oxidative ratios do not 

necessarily lead to detectable changes in the atmospheric signal at the station. This 

can also be seen from the example of Alert: despite the variable ORff, no significant 

difference in O2ff is caused by using these variable oxidative ratios compared to the 

use of a constant ORff, since the fossil fuel related CO2 and O2 fluxes are very small.  
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Figure 2.8: Fossil fuel related oxidative ratios from TM3 and REMO model simulations for 
all available monitoring stations. Labels denote the official station code, as given in Figure 
2.5 where the station locations are shown. To facilitate the recognition of continental and 
remote stations in this plot, labels of remote stations are green, whereas labels of stations on 
the continent or on islands mainly influenced by continental air masses are black 
 

2.4 Comparison with observations 
 
When interpreting fossil fuel related oxidative ratios, as shown in Figure 2.8, one 

needs to keep in mind that the total oxidative ratio observable at a monitoring station 

is not only determined by fossil fuel related signals, but also contributions from 

biospheric and oceanic processes. Whether a specific fuel signature can be seen in 

measured oxidative ratios at a given station depends on the size of fossil fuel related 

signals compared to the atmospheric signals caused by other processes. This section 

examines oxidative ratios derived from CO2 and O2 observations at the two stations 

Ochsenkopf and Hateruma and investigates whether it is possible to detect specific 

fuel signatures in these observations.  

2.4.1 Ochsenkopf 

 
The Ochsenkopf monitoring station is a tall tower (163m height), located on the 

summit of the Ochsenkopf mountain (1020m above sea level) in the Fichtelgebirge in 

Northern Bavaria, Germany. The area around the tower is mainly covered with 
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conifer forest and has a relatively low population density. Air measured at this station 

originates primarily from Western and Central Europe. The synoptic scale variability 

of atmospheric CO2 and O2 signals experiences contributions from both biospheric 

and anthropogenic fluxes. Due to the elevation of station, signals from the well-mixed 

planetary boundary layer (PBL) can be captured. Air is sampled alternately at three 

heights on the tower (163, 90 and 23m above ground level) and is analyzed in-situ in 

a temperature-controlled container laboratory at the foot of the tower. A detailed 

description of the tower site and the instrumentation can be found in Thompson et al 

(2009).  

 

Figure 2.9a shows hourly averages of O2 and CO2 measurements for the year 2006 

with the different colors representing data from the three different measurement levels 

as explained in the legend. Gaps in the data are due to instrumental problems. In 

Figure 2.9b the simulated CO2ff and O2ff values for the 163m level from the REMO 

model are presented for the same time frame. For better comparison, the y-scales have 

been adjusted to have the same range for model and observations. Figure2.9c 

comprises oxidative ratios derived from both observations and model, with the colors 

corresponding to those in Figure 2.9a and 2.9b. Oxidative ratios have been derived 

from running regression as described before. Shaded areas indicate the error of the 

calculated slopes (only the error of the linear fit itself, not taking into account 

additional errors due to measurement uncertainty for the observations). Poorly defined 

slopes, classified as those with an error > 0.05, have been omitted from the plot. To 

simplify the comparison between model and observations, model results are not 

shown for times in which no oxidative ratios derived from the observations exist 

(either due to missing observational data or bad fit results).  

 
 

For better interpretation of the resulting oxidative ratios, the dashed horizontal lines in 

Figure 2.9c show the values of the global average oxidative ratios for fossil fuel 

combustion (αF, grey line) and biospheric exchange (αB, green line). The (purely 

fossil fuel related) oxidative ratio from the REMO model, as already shown in Figure 

2.6 and 2.7, does not show any seasonal variations and is on average slightly higher 

than αF.   
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Figure 2.9: CO2 and O2 observations from the Ochsenkopf station (a), compared to CO2ff and 
O2ff simulations from the REMO model (b) and oxidative ratios derived from observation and 
model results (c). For comparison, the dashed grey and green lines indicate values of αF and 
αB, the global average oxidative ratios for fossil fuel combustion and biospheric exchange, 
respectively. 
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Oxidative ratios derived from the observations are expected to vary between 1.1 and 

1.4 depending on the relative contributions of biospheric and anthropogenic sources 

and sinks. The influence of ocean processes can be neglected at this location and the 

timescales regarded here. Biospheric contributions are expected to be strongest in 

summer and rather negligible in winter, therefore the influence of the non-constant 

ORff is most likely be seen in winter. The data show indeed a clear seasonal cycle 

with higher OR values in winter and lower values in summer. The reason for some 

OR values being even lower than 1.1, is due to the fact that αB is not a fixed value as 

well, but also depends on the local plant types and different processes. For a thorough 

discussion of this issue, see (Popa 2008).  However, even in the winter months the 

observed OR are smaller than 1.4, suggesting that there is still some non-negligible 

contribution of the biosphere.  

 

To get an estimate of the biospheric influence, simulations of atmospheric CO2 

variations caused by interactions with the biosphere were performed with the STILT-

VPRM model (Matross et al. 2006). This model combines the particle dispersion 

model STILT (Gerbig et al. 2003; Lin et al. 2003) with the diagnostic biosphere 

model VPRM (Mahadevan et al. 2008) as well as a fossil fuel emission inventory at 

high spatial resolution (10 x 10 km2), provided by IER Stuttgart (http://www.ier.uni-

stuttgart.de/).  

 
Figure 2.10: Biospheric and fossil fuel related contributions to the atmospheric CO2 
concentration at the Ochsenkopf station (a) and the corresponding O2 concentrations (b), 
calculated as O2(bio)= -1.1·CO2(bio) and O2(ff)= ORff (REMO)·O2(ff). 
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Figure 2.10a above shows the biosphere and fossil fuel related CO2 signals, 

demonstrating that the biospheric signal is not completely negligible during winter. In 

order to interpret this information in terms of oxidative ratios, the corresponding 

oxygen signals are calculated by multiplying the biospheric CO2 signals with αB and 

the fossil fuel signals with ORff derived from REMO. The resulting O2 concentrations 

are shown in Figure 2.10b. 

 

In Figure 2.11, the oxidative ratios calculated from that combined fossil fuel and 

biosphere signal are compared to the oxidative ratios derived from the observations. It 

can be seen that the model captures the seasonal patterns in the observations quite 

well. However, the question remains whether the contribution of variable oxidative 

ratios from fossil fuel combustion has a significant impact on this agreement.  

 
 

 
Figure 2.11: Oxidative ratios from observations at different levels of the Ochsenkopf station 
(equivalent to those in Figure 2.9), compared to oxidative ratios derived from the STILT 
model results (Figure 2.10). Shaded areas indicate error bars. Calculated oxidative ratios are 
not shown if the error of the linear fit (either that of the model or of the observations) is 
higher than 0.05. 
 

This question is answered in Figure 2.12 which depicts two kinds of oxidative ratios 

of the calculation with the STILT model. The violet line represents the model results 

with a variable ORff  as described above whereas the brown line represents the fossil 
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fuel signal which is calculated using a constant ORff of 1.4. For better visibility, 

results from the observations are kept in grey for all levels in this plot. 

 

 
Figure 2.12: Oxidative ratios derived from the STILT model, using constant (brown) and 
variable (violet) ORff. Observational results from all measurement levels are shown in grey in 
this plot. 
 

Figure 2.12 shows that the influence of variable ORff seems not to have a significant 

effect at this station. The differences compared to the signal calculated using a 

constant ORff are rather small and do not significantly improve the agreement between 

model and observations. This can be explained by two facts: With a mean value of 

1.44, ORff for the Ochsenkopf station is not that different from the global average. 

Besides, the fossil fuel influence is not the predominant contribution to the total 

O2/CO2 ratio seen at this location because of the strong signals caused by biospheric 

processes. 

 

2.4.2 Hateruma Island 
 

The Hateruma monitoring station is situated on the eastern edge of Hateruma Island, 

the southernmost inhabited island of Japan with an area of 13 km2. Air masses 

arriving at Hateruma are mostly influenced by the Asian continent during winter time 

and from the Pacific Ocean in summer (Tohjima 2000). The elevation of the station is 
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only 10m above sea level; the air is sampled from the top of a small observation tower 

at a height of 36 m above ground and analyzed in a laboratory below. In-situ 

measurements of O2/N2 have started at Hateruma in October 2006, before only flask 

data existed. Here observations from the period October to December 2006 are used, 

provided by the National Institute of Environmental Studies (NIES), Japan. Hateruma 

is a rather polluted station: Model simulations show that the mean fossil fuel 

contribution to the atmospheric CO2 signal on synoptic scales is about 76 % for the 

period investigated here (C. Minejima, personal communication). 

 

Figure 2.13 is the analogue of Figure 2.9 for the Hateruma station, with the CO2 and 

O2 observations for October to December 2006 in Figure 2.13a, the corresponding 

fossil fuel signals from TM3 in Figure 2.13b and the oxidative ratios from the 

observations and the model in Figure 2.13c. Unfortunately, the measurement period 

here is quite short and several calculated oxidative ratios need to be removed from the 

plot because of large uncertainties in the slope of the measured O2 versus CO2 (the 

same filter as for the results in Figure 2.9 was used here).  

 

Nevertheless, the results indicate even with only the fossil fuel component of the 

coarse global model a significant part of the observed variations in the oxidative ratios 

can be captured. This shows that the influence of variable ORff is definitely not 

negligible at this station. Regional modeling efforts with high spatial resolution using 

the STILT and FLEXPART model (Stohl et al. 1998; Stohl et al. 2005) in 

combination with the COFFEE dataset as input are currently ongoing at NIES and 

MPI-BGC to see whether it is possible to fully capture the variability in the 

observations and to investigate the possibility of using variations in the oxidative 

ratios for detecting the origin of air masses arriving at Hateruma (Minejima et al. in 

preparation) 
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Figure 2.13: CO2 and O2 observations from Hateruma Island (a), compared to CO2ff and O2ff 
simulations from the TM3 model (b) and oxidative ratios derived from observation and model 
results (c). For further explanations see text and caption of Figure 2.9. 
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2.5 Impact on separation of ocean and land carbon sinks 
 
Spatial and temporal variations in ORff are likely to influence the partitioning of land 

and ocean carbon sinks derived from atmospheric measurements. In Section 2.2.3 the 

effect of variations and uncertainties in the global average ORff on long-term global 

carbon budgets was already discussed. This section takes now a closer look at the 

spatial distribution of fossil-fuel related fluxes and investigates where the assumption 

of a constant ORff leads to misinterpretations of these fluxes and thus affects the land-

ocean-partitioning. As introduced in Chapter 1.3.2, usually the tracer APO = O2 + 

1.1 CO2 is used to isolate the oceanic component from measured oxygen signals. 

Whereas APO is by definition not changed by biospheric processes with an ORb of 

1.1, the influence from fossil fuel burning is reduced, but still present in the signal. 

This is usually accounted for by using fossil fuel statistics to calculate a fuel-corrected 

APO signal (assuming a constant value for ORff). One method to interpret measured 

APO signals in terms of surface fluxes is the atmospheric transport inversion. As 

described in Chapter 1.3, this method uses inverse techniques to derive surface fluxes 

that minimize the mismatch between measured and model-derived atmospheric 

concentrations.  

 

In the following it is investigated whether it is necessary to include variable ORff in 

these APO inversions to avoid mistaking fossil fuel related variations for signals 

caused by ocean processes. As a setup for the APO inversion, the standard 

configuration from (Rödenbeck et al. 2008) was used with the TM3 transport model. 

Atmospheric CO2 and O2 data from 16 monitoring stations (in the following referred 

to as ‘inversion stations’, for their locations see Figure 2.15b) are used as 

observational input. APO fluxes are calculated for the period 1995 to 2006, with the 

first year considered as spin-up time of the model and hence removed from the results. 

For testing the effects of variable oxidative ratios, a synthetic dataset was created, 

containing the simulated difference ΔAPOff = APOff (ORCOFFEE) – APOff (OR=const) 

at the monitoring stations level. These differences were inverted, resulting in a set of 

fluxes ΔFAPOff. Since the inversion can only adjust the ocean fluxes, the differences 

caused by non-constant oxidative ratios are interpreted as oceanic signals.  
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Figure 2.14 Timeseries of APO fluxes for different latitudinal bands (NH - Northern 
Hemisphere, ranging from +20° to+90°, SH – Southern Hemisphere, ranging from -20° to -
90°, and Tropical Ocean, ranging from -20° to+20°) . Green fluxes (right y-axis) show the 
total APO fluxes, as derived from the normal atmospheric inversion with real observational 
input, black fluxes (left y-axis with smaller range) show the part of fossil fuel related fluxes 
that is misinterpreted as ocean fluxes. 
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Figure 2.14 shows timeseries of the resulting ΔFAPOff, integrated over three latitudinal 

bands and over the total ocean. Together with these fluxes, represented by black lines 

with the scale on the left y-axis, the APO ocean fluxes FAPO – as derived from actual 

observations – are shown in green and refer to the right y-axis.  

 

In terms of the seasonal amplitudes, the fossil fuel fluxes misinterpreted as ocean 

fluxes account for about 4% of the total fluxes, with slightly a higher contribution in 

the tropical ocean (6.5%) and the Northern Hemisphere Ocean (4.7%) and a low 

contribution in the Southern Hemisphere Ocean (0.5%). The low ΔFAPOff in the 

Southern Hemisphere is most likely due to the lower fossil fuel emissions in the SH 

and the oxidative ratios of the remote stations that do not differ much from the global 

average (see Figure 2.8). Significant contribution to the variations in the Northern 

Hemispheric and Tropical Ocean might come from the Hateruma station that has been 

shown to be a rather polluted station with a lower ORff (see Chapter 2.3 and 2.4.2). 

However, these differences are small against the uncertainties in the seasonal cycles 

of the inversion that are in the range of 25 – 35 % for the different regions 

(uncertainties determined by the range of the plausible inversion parameters in 

(Rödenbeck et al. 2008)). 

 

Apart from the seasonal variations, a small systematic offset in the long-term mean of 

the ocean fluxes is caused, amounting to values of –10.8,  – 4 .1 and  +9Tmoles for 

Northern Hemisphere, Southern Hemisphere and Tropical Oceans and – 5.6 Tmoles 

for the total ocean. However, with the respective uncertainty ranges for the long-term 

mean ranging from 18 – 27 Tmoles, this small shift is not significant.  

 

Nevertheless, possible significant effects on local or regional levels might be hidden 

in these hemispherically integrated results. To check whether such effects exist, to 

identify critical regions and to resolve the influence of different stations, gridded 

output of ΔFAPOff is shown in the following figures.  

 

To first get an idea about the temporal variability on the gridcell level, Figure 2.15a 

shows the standard deviation of for ΔFAPOff  over the time period 1996-2006. As 
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already seen in the regional results in Figure 2.14, effects of variable oxidative ratios 

occur mainly in the Northern Hemisphere and the tropics. Highest variations occur in 

the Pacific area close to the Asian Coast (and close to the Hateruma Island station) 

and in the Northern Atlantic. However, in general these variations are rather small 

compared to the temporal variations in FAPO, shown in Figure 2.15b. With a factor of 

14 difference in the maximum standard deviation of ΔFAPOff and FAPO, the influence of 

temporal variations in ΔFAPOff seems negligible, even on local scales. 

 

This is, however, not the case for the offset caused by neglecting the variable ORff: 

Figure 2.16a shows the long-term mean of ΔFAPOff over the whole time period. The 

range of the long-term mean of ΔFAPOff due to spatial variability (-0.1 to +0.3 

Tmol/yr/gridcell) is only a four times smaller than the corresponding range of the 

long-term mean fluxes FAPO, shown in Figure 2.16b. Significant bias occurs mainly in 

the same regions that already showed higher temporal variations. A dominant feature 

is the large positive ΔFAPOff signal around the Hateruma station, locally causing a bias 

on the order of 50 -100 % of the FAPO signal.  

 

To better quantify the effect of the other stations, Hateruma was removed from the 

inversion setup. The results for the long-term mean and standard deviation of ΔFAPOff 

derived from the inversion without Hateruma are shown in Figure 2.17. It can be seen 

that the patterns in the long-term mean change significantly and the range decreases 

by a factor of 6. The patterns in the standard deviation change mainly locally around 

Hateruma, but the maximum range of temporal variations decreases by a factor of 2. 

Although it is surprising that the removal of just one station has such a large influence, 

however, it seems reasonable considering that Hateruma differs significantly from the 

other inversion stations in terms of its low oxidative ratio and proximity to pollution 

sources (see results of Chapters 2.3 and 2.4.2). 

 
At the moment no continental – and therefore possibly polluted – monitoring stations 

are included in the stationset for the inversion. It has already been mentioned that the 

lack of those stations is a strong limitation for resolving sources and sinks.  
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Since atmospheric measurements at several continental stations have become 

available in the recent decade, future inversions will probably include data from these 

stations. The question is therefore whether the effects of these stations are as 

significant as the effects caused by the Hateruma station.  

 

This issue is tested in a further synthetic experiment; here a new set of synthetic data 

is created for all monitoring stations that currently measure O2/N2 and CO2. For those 

stations where no data existed in the MPI-BGC database, weekly sampling was 

assumed over the whole time period.  

 

Figure 2.18a and b show the long-term mean and standard deviation of ΔFAPOff for 

this setup together with the locations of the stations included in the calculation. The 

addition of those stations does not change the global picture completely, but mainly 

causes more negative ΔFAPOff signals in the Northern Atlantic and the Mediterranean 

and North Sea that account for  ~50% of the FAPO signals in this region. This is in 

accordance with expectations as most of the additional stations are located in Europe 

or North America, and have an ORff slightly higher than 1.4.  In addition, temporal 

variations in the North Atlantic are slightly lower compared to the inversion with the 

classical inversion stations, while they are slightly higher around Hateruma. This is 

due to the fact that contrary to the inversion with the classical stationset, fluxes in the 

North Atlantic are now better constrained and the inversion algorithm has less degrees 

of freedom to distribute the excess fluxes globally. 

. 
Summarizing the results of this chapter, it can be stated that neglecting the influence 

of variable oxidative ratios when running an atmospheric APO inversion is not 

problematic if only the observational input from remote stations is used. When more 

polluted stations are included, the effects on the global level and integrated over larger 

oceanic regions are still small compared to other uncertainties. However, on local and 

regional scales, these influences are not negligible. Depending on the application, it is 

thus recommended to use spatially variable oxidative ratios such as those provided by 

the COFFEE dataset for the calculation. 
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Figure 2.15: Global maps of (temporal) standard deviation of ΔFAPOff (a) and FAPO (b) for the 
period 1996 to 2006. The size of the gridcells here and in the following figures is 5 x 3.82 
degrees (longitude x latitude). 
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Figure 2.16: Global maps of long-term mean of ΔFAPOff (a) and FAPO (b) for the period 1996 – 
2006. 
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Figure 2.17: Global maps of long-term mean (a) and standard deviation (b) of ΔFAPOff for 
inversion without Hateruma. The color scales correspond to those in Figure 2.15. 
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Figure 2.18: Global maps of long-term mean (a) and standard deviation (b) of ΔFAPOff for 
inversion with synthetic data input from all atmospheric monitoring stations currently 
measuring atmospheric oxygen. The color scales correspond to those in Figure 2.15  
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2.6 Conclusion 
 

In this chapter, the influence of variable oxidative ratios from fossil fuel combustion 

has been investigated. For this purpose, the COFFEE dataset, containing hourly 

resolved anthropogenic CO2 emissions and the corresponding O2 uptake for the years 

1995 to 2008 on a 1° x 1° grid, has been created from emission inventories and fuel 

consumption data. Global maps derived from this dataset show that spatial variations 

of oxidative ratios cover the whole range from around 1 to 1.95. Temporal changes 

during the decade from 1996 to 2006, show a spatial range of  –0.24 to 0.45 and no 

predominant positive or negative trend.  

 

The value for the global average oxidative ratio for fossil fuel burning, usually 

assumed to be αF = 1.4, is 1.402 ± 0.003 when calculated from the COFFEE dataset. 

Comparison with the global average derived from two other fossil fuel inventories 

shows similar patterns for the temporal variations and an offset of up to 4% between 

the datasets that could mainly be attributed to differences in the fuels included in the 

different inventories. The deviations from αF due to temporal variations in the 

COFFEE fuel mix relate to a maximum change of ±0.035 PgC/y in the global oceanic 

and land carbon sink, which corresponds to around 10% of the total uncertainty in the 

sink calculation. However, the uncertainty in the absolute value of the global average 

due to uncertainties in fuel production numbers is probably a factor of 6 higher than 

the range of temporal variations. 

 

The potential influence of variable oxidative ratios on the atmospheric oxygen signal 

measured at ground-based monitoring stations has been investigated using simulations 

from regional and global transport models. Although for many of the stations, 

especially the ones located on the continent, the specific oxidative ratios show large 

variations and deviations from αF, this does not always lead to detectable signals. 

Also depending on the magnitude of fossil fuel related CO2 fluxes at the measurement 

location, the influence of the local fuel mix usually changes the atmospheric O2 

concentration by a few ppm, with maximum deviations ranging from -7 ppm to 

+4ppm.  
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Whether these effects can be detected in atmospheric CO2 and O2 observations has 

been examined for two cases. For the Ochsenkopf tall tower, a continental station in 

Germany, the influence of variable fossil fuel related oxidative ratios has been shown 

negligible, since the atmospheric signal at this station is mainly dominated by 

biospheric processes and the fuel mix does not differ significantly enough from the 

global average. However, for the Hateruma station in Japan, which is more influenced 

by fossil fuel emissions with a relatively low and variable oxidative ratio, it is crucial 

to take into account the local fuel mix when interpreting observations.  

 

Finally, the influence of varying oxidative ratios on the partitioning of the land and 

ocean carbons sinks was examined using APO inversions. It was calculated which 

part of the fossil fuel signal is misinterpreted as oceanic signal when employing a 

constant oxidative ratio for fossil fuel burning. The difference in the seasonal 

variations caused by this simplifying assumption accounts for only 5-10% of the real 

oceanic APO fluxes and is therefore rather small compared to other uncertainties in 

the inversion, that are in the range of 25 – 35 %. However, depending on the set of 

stations used for the inversion, systematic offsets in the fluxes are caused in certain 

areas. Whereas this offset is negligible when using only remote stations, it becomes 

more significant as soon as observations from more polluted stations are included. An 

extreme example is the Hateruma station that causes a regional bias on the order of 

50–100% of the oceanic APO fluxes. Adding observations from more of the existing 

continental stations, mainly in Europe and North America, leads to a significant 

additional negative bias in the Northern Atlantic region.  

 

To summarize, the COFFEE dataset has proven to be a useful tool for quantifying the 

effects of variable oxidative ratios from fuel combustion. This chapter has shown that 

while for observations from the classical remote stations and many global 

implementations the use of a constant global average is sufficient, there are 

applications where more precise information on fossil-fuel related oxidative ratios is 

needed. In two cases, the COFFEE dataset has already been used successfully for 

interpreting atmospheric oxygen measurements at monitoring stations: in the first case 

for the separation of the fossil fuel part from APO signals measured at the Lutjewad 
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station in the Netherlands (van der Laan-Luijkx et al. 2010), and in the second case 

for using oxidative ratios of pollution events to determine the origin of  air masses 

arriving at the Hateruma station in Japan (Minejima et al. in preparation) 
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Chapter 3                                                 
O2/CO2 ratios derived from airborne flask 
sampling in Amazonia 
 
In this chapter, results of O2/N2 and CO2 measurements from flasks taken during the 

BARCA (Balanço Atmosférico Regional de Carbono na Amazônia) aircraft campaign 

in the Brazilian Amazon Basin are presented. This campaign was aiming to quantify 

the carbon budget of the Amazon Region by addressing the ‘missing scale’ between 

local measurements and modeling studies on global scales. In the following, it is 

investigated how far simultaneous measurements of atmospheric oxygen and the 

resulting O2/CO2 ratios can contribute to the interpretation of measured CO2 signals. 

3.1 The BARCA mission 

3.1.1 Motivation 
 

The Amazon Basin plays a key role in the carbon cycle, since it accounts for ~10% of 

global terrestrial net primary productivity (Melillo et al. 1993) and contains one half 

of the world's undisturbed tropical forest (FAO 1993). With around 120 Pg, the 

amount of carbon stored in Amazonian trees is equivalent to 1.5 decades of current 

worldwide anthropogenic carbon emissions to the atmosphere (Soares et al. 2006). 

However, deforestation and agricultural development have reduced the forested areas 

with rates of up to 25000km²/year in the 1990s (Achard et al. 2002), representing a 

large source of CO2 to the atmosphere. By 2007, the deforestation rates have 

decreased by a factor of 2 (Malhi et al. 2008), due to a combination of economic 

factors and active intervention by the Brazilian government (Nepstad et al. 2006).  
 

The overall magnitude and even the sign of the net carbon balance of the Amazon 

Basin is thus subject to large uncertainties that propagate into the global carbon 

budget (Prentice et al. 2001). Over the last decades, a number of studies have been 

conducted in the Amazon region, mainly based on eddy flux measurements. Several 

studies indicate that Amazônia is a large net CO2 sink (Grace et al. 1995; Malhi and 
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Grace 2000), while analysis based on remote sensing data rather suggests that carbon 

sinks and sources balance to a net effect close to zero (Houghton et al. 2000).  
 

Since scaling up from local measurements to the whole Amazon basin is difficult, the 

idea of the BARCA project was to address the ‘missing scale’ – in between the local 

point measurements and global models. This was done by aircraft measurements of 

CO2 and several other tracers in combination with an integrative modeling framework. 

Aircraft measurements are uniquely suited to quantify Basin-scale fluxes of CO2 (and 

other tracers), since they allow observing three-dimensional tracer distributions in the 

atmosphere at high-resolution and can thus be used to determine spatially resolved 

sources and sinks of trace gases.  

The BARCA mission was conducted as a cooperation of the MPI-BGC, the MPI for 

Chemistry (Mainz, Germany), Harvard University (Boston, USA), the INPE (Instituto 

Nacional de Pesquisas Espaciais, São Paulo, Brazil), the University of São Paulo, 

NOAA/ESRL (Earth System Research Laboratory of the National Oceanic and 

Atmospheric Administration, Boulder, USA), and the University of Utrecht (the 

Netherlands). 

3.1.2 Aircraft campaigns 
 

Within the BARCA mission, two aircraft campaigns (hereinafter called BARCA-A 

and BARCA-B) were conducted at the transition from dry to wet seasons in 

November/December 2008 and at the end of the wet season in May 2009. Since this 

chapter deals with the results of the O2/N2 measurements, it will focus on BARCA-A 

for which O2/N2 data are already available. 
 

The aircraft, an EMB 110 Bandeirante belonging to INPE, was based in Manaus 

(60°1’34”W, 3°6’26”S), the capital of the Brazilian state Amazonas, from which most 

of the research flights started. Figure 3.1 shows the flight pattern of the 15 flights 

conducted during BARCA-A, with the colors representing the different flights. 

Limited by the fuel supply of the aircraft, the duration of the single flights was usually 
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3-4 hours, covering a spatial scale of up to 800 km. Profile measurements, as shown 

in Figure 3.2  were conducted to acquire optimal vertical coverage.  
 

 
 

Figure 3.1: Flighttracks of BARCA-A campaign. Colors represent different flight days. 
 
 
 
 

 
 

Figure 3.2: Typical cross section of a flight during BARCA-A, here a local-area flight around 
Manaus. The squares indicate times when flask samples where taken.  
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3.1.3 Measurements during BARCA 
 
Onboard the aircraft in-situ measurements of CO2, CO, O3, CH4 (only phase B), 

aerosols and meteorological parameters (pressure, temperature, water vapor) were 

performed. In addition, flask samples were taken that were analyzed at MPI-BGC for 

O2/N2, Ar/N2, CH4, CO2, N2O, H2, CO and SF6 as well as for carbon and for a small 

subset of the collected flask samples, methane isotopes. This chapter deals with the 

analysis and interpretation of the O2/N2 results.  

 

3.2 O2/N2 ratios from flask samples 
 

3.2.1 Flask sampling and analysis 
 
Flask samples were taken manually during the flight using a custom built flask 

sampler. As shown in the simplified flow diagram in Figure 3.3, the air is drawn into 

the sampler by a small vacuum pump upstream of the flask, using no pressure control 

at the intake (therefore the flask filling time varies with height due to changes in the 

outside pressure). Prior to entering the flasks, the air is dried with a chemical dryer 

(magnesium perchlorate). Each flask is flushed with a flow of ~5 l/min for at least 5 

minutes first, then filled to a pressure of ~1bar above ambient.  

 

 
Figure 3.3: Simplified flow diagram of the flask sampler used during the BARCA campaign. 
 



 O2/N2 ratios from flask samples    71 

    

The transition from flushing to filling is performed manually by switching the 

downstream valve V1. The operator writes down the flask code, the sampling time 

(start of flushing and start of filling = time of switching the downstream valve) as well 

as the current height of the aircraft on a flask sheet that is kept with the samples. Since 

these values might be not always accurate, additionally the pressure in the flask is 

recorded at a frequency of 0.5Hz with the pressure sensor P to allow exact 

synchronization with the in-situ measurements. 

 

After the campaign flask samples were analyzed at MPI-BGC for the above 

mentioned species, using mass spectrometric analysis (Brand 2003) for O2/N2 and 

Ar/N2 and a gas chromatograph (Jordan and Brand 2003) for measurement of CO2 

and the other species.  

 

3.2.2 Merging flask and in-situ data 
 
To obtain information on the location, height and meteorological parameters for flask 

sampling times, but also to correlate the flask results with gas species measured in-

situ, the flask data was merged to the in-situ data. For this, a weighted average of the 

in-situ data was calculated, using a weighting function based on the recorded flask 

pressure p.   

 

The relative contribution W of air entering the flask at a certain time t within the 

flushing or filling process of the flask is derived in Appendix 1 as  
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Figure 3.4 illustrates the temporal distribution of the weighting function, together with 

the corresponding time series of the flask pressure.       
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Figure 3.4: Weighting function (blue) to calculate averaged in-situ data corresponding to the 
times of flask measurements, together with timeseries of flask pressure during flushing and 
filling of a flask (black) 
 

Before applying the weighting function to the measured data, the exact sampling 

times were derived from the recorded flask pressure by detecting an increase in 

pressure (start of filling = t1), followed by a sudden decrease (removal of the flask at 

the end of filling = t2). These times are compared to the sampling times written down 

by the operator to assign a flask code to each sampling time. A constant flushing time 

of 5 minutes was assumed for all flasks. Although the actual flushing times are 

sometimes much longer, this does not effect the averaging significantly due to the 

exponential decrease in the flushing part of the weighting function. 

 

To finally merge the flask data to the weighted in-situ data, the time lag between the 

aircraft’s inlet on the flask sampler (or the respective in-situ instrument) needs to be 

taken into account. Thus the time t in Equation 3.1 needs to be replaced by the time 't  

of the air entering the inlet. Since the intake flow of the sampler is not controlled, the 

time lag varies with the outside pressure: 
 

 ( ) lsa tptptt ⋅−= )('                     (3.2) 
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Here, tl is the time lag at surface level, pa the ambient pressure at the time t and 

ps~1013mbar the ambient pressure at the surface. The time lag at the surface level is 

calculated relative to that of the in-situ measurement, using the best correlation 

between in-situ and flask measurements for those species measured both in-situ and in 

the flask samples (CO2 and CO).  

3.2.3 Fractionation correction for O2/N2  
 

Fractionation artifacts in the O2/N2 ratio of the sampled air are likely to be caused 

both at the aircraft’s intake and during the filling process of the flasks. Fractionation 

effects during flask filling could either be caused by pressure or temperature gradients 

or by adsorption on surfaces such as o-rings. However, adsorption effects are largely 

avoided by the flushing of the flasks. In addition, any pressure or temperature gradient 

inside the flask system is unlikely to cause significant fractionation as molecules 

would need to diffuse backward against the intake flow that runs with ~3 l /min. Thus 

fractionation occurring at the aircraft’s intake is more likely the dominant effect. 

 

To check and correct for fractionation artifacts, the measured Ar/N2 results were used. 

This is possible since most fractionation mechanisms affecting the O2/N2 ratio also 

have an effect on Ar/N2. For diffusive fractionation effects (see Chapter 1.4.3), the 

effect on Ar/N2 is a factor 2-4 larger than for O2/N2 (Keeling et al. 2004; Langenfelds 

et al. 2005) and therefore easier to detect. In addition, atmospheric variations in the 

Ar/N2 ratio are rather small, as they are only caused by air-sea gas exchange due to 

changes in the ocean temperature (Battle et al. 2003; Keeling et al. 2004; Cassar et al. 

2008). Taking into account the spatial and temporal scales covered by the BARCA 

flask samples, measured variations in the Ar/N2 ratio can be considered to be mostly 

due to fractionation artifacts. This is confirmed by looking at Figures 3.5 and 3.6: 

Although the range of variations in the measured Ar/N2 is quite large, varying from 

around 40 to 170 per meg, no dominant spatial patterns are seen (Figure 3.5) 
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Figure 3.5: Spatial variations in measured Ar/N2 ratios of flask samples. 
 

. 

 

Figure 3.6: Ar/N2 variation with altitude. 
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On the other hand, Ar/N2 decreases significantly with increasing altitude (Figure 3.6), 

with a difference of ~30 per meg between ground level and 4000m. The rate of 

decrease is constant up to high altitudes, indicating that it is caused by pressure or 

temperature related fractionation artifacts related to sample intake or flask filling 

rather than ‘natural’ (thermal or gravimetric) fractionation of the ambient air. (The 

‘natural’ fractionation effect is sometimes observed within stable surface layers, 

capped by a strong inversion, but does not extend into the free troposphere, since 

there it is overwhelmed by turbulent mixing (Keeling et al. 2004)) 

 
To translate the fractionation artifacts in Ar/N2 to effects in the O2/N2 signal, one 

needs to make an assumption about their dominant nature, as the ratio of O2/N2 

fractionation to Ar/N2 fractionation depends on this mechanism. The scaling factor f = 

δ(Ar/N2)/ δ(O2/N2) is fE = 2.5 for effusion through leaks or other small orifices, fT = 

3.9 for thermal fractionation and fp = 2.9 for pressure-related fractionation 

(Langenfelds et al. 2005). 

 

Since ambient pressure and temperature both vary with height, both parameters could 

influence the measured Ar/N2 signals. Their correlation with Ar/N2 is shown in Figure 

3.7.  

 
Figure 3.7: Variation of measured Ar/N2 signals with ambient pressure and temperature 
(slopes determined by orthogonal distance regression) 
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It can be seen that Ar/N2 increases with both increasing pressure and temperature. 

With values of 0.36 and 0.37, the coefficients of determination (R2) of the two 

regressions are comparable, related to the fact that temperature and pressure are 

strongly correlated. 

 

The dominant fractionation mechanism observed in laboratory experiments on inlet 

fractionation (detailed presentation in Chapter 4) has shown to be related to pressure-

induced fractionation. Thus the observed fractionation for Ar/N2 can be scaled to 

O2/N2 fractionation using the factor fP for pressure-related fractionation. Measured 

O2/N2 ratios are therefore corrected using the following formula: 
 

( ) ( ) ( ) ( )[ ]measmeasmeascorr NArmeanNArNONO 222222 //9.2// −⋅−=                    (3.3) 

 

Figure 3.8 shows the raw data and corrected values (left plot) and the values of the 

correction term (right plot), ranging mainly from -15 to +10 per meg. Comparing that 

to the measurement precision of 2 per meg for flask measurements (Brand 2003) 

shows that fractionation artifacts can significantly alter the sample composition. 

 
 

 
Figure 3.8: Measured O2/N2 profiles, corrected for fractionation artifacts using the measured 
Ar/N2 variations. The left plot shows both raw data (black) and corrected results (green), the 
plot on the right the differences between corrected and uncorrected signals. 
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3.3 O2/CO2 results  
 

The scope of this chapter is to investigate whether O2/N2 results can be used together 

with the CO2 measurements to separate the processes that influence the atmospheric 

CO2 concentration. For this purpose, oxidative ratios (OR= –ΔO2[mol]/ΔCO2[mol])  

are examined, as they are characteristic of different processes (see Chapters 1.3 and 2).   
 

Processes expected to influence O2/CO2 ratios of the BARCA flask samples are 

• Biospheric processes  OR ~ 1.1 (Severinghaus 1995) 

• Biomass burning  OR ~ 1.11 (Lueker and Keeling 2001) 

• Fossil fuel combustion  OR ~ 1.4  ((Keeling 1988), see Chapter 2) 

• Ocean-atmosphere exchanges  OR = 2 – 8 (Keeling and Severinghaus 2000) 

 

In a first step, a total oxidative ratio for all flasks measured was derived to get an idea 

about the dominant processes. Figure 3.9 shows a plot of O2 versus CO2 mole fraction 

(O2/N2 results are converted to O2 mole fractions by dividing them by 4.8).  

 

 
Figure 3.9: Orthogonal distance regression of O2 versus CO2 for all flasks. The absolute 
value of the slope corresponds to the oxidative ratio. 
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O2 and CO2 show a clear linear correlation, with the absolute value of the slope, 

determined by orthogonal distance regression, corresponding to the oxidative ratio. As 

expected, the resulting oxidative ratio of 1.15 ± 0.02 shows that the corresponding 

atmospheric signals are dominated by biospheric influence, but there are also smaller 

contributions from other processes with a higher oxidative ratio (fossil fuel 

combustion or oceanic processes).  

 

3.3.1 Background signals versus local influences 
 
Figure 3.10 shows the variation of measured CO2 and O2 mole fractions with altitude. 

A similar structure can be seen for both species: The variability is higher close to the 

ground and decreases with altitude, with most of the variation occurring below 2000m. 

This can be explained by the fact that the signal at low altitudes is dominated by 

influences from sources and sinks at the surface, i.e. biospheric or anthropogenic 

activity. 

 
 
Figure 3.10:  Altitude distribution of measured CO2 and O2 mole fractions (black dots). The 
blue lines indicate the mean and standard deviation for different altitude bins (each 1000m) 
 
In addition to spatial variability in the source/sink patterns, CO2 and O2 also exhibit a 

diurnal cycle that is driven by the varying activity of the biosphere and by dynamics 

of the planetary boundary layer (PBL).  
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The PBL is defined as the lower part of the troposphere that is directly influenced by 

its contact with the earth’s surface, responding to changes in surface forcings with a 

timescale of one hour or less. 

 

As illustrated in Figure 3.11, the PBL height is changing in the course of the day: 

Whereas it is stable and shallow at night (stable boundary layer, SBL), it starts 

growing shortly after sunrise due to solar heating of the surface and the corresponding 

convective mixing. PBL growth continues until late afternoon, attaining a maximum 

height of typically 1-2km. In the evening, radiative cooling from the surface causes 

the mixing to decrease and the PBL to shrink again. Biospheric activity also exhibits a 

diurnal cycle with photosynthetic uptake of CO2 and corresponding release of O2 

dominating during daytime and opposite effects caused by respiration during the night.  

 

 
Figure 3.11: Diurnal variation in PBL height (figure from Stull (1988)) 
 

The combination of biospheric and PBL dynamics causes the observed variability. For 

example, when respiration causes CO2 to build up during nighttime, the CO2 is 

trapped within the SBL close to ground, but when the PBL starts rising in the morning, 

high CO2 values are also observed at higher altitudes.  

 

In contrast to those variations close to the ground, mixing ratios at higher altitudes, 

especially in the free atmosphere (see Figure 3.11), are expected to be more 
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representative for ‘background signals’ that include well-mixed air from a larger 

influence area. 

 

This also has consequences for the oxidative ratio: Figure 3.12 shows O2 versus CO2 

for different altitude ranges and the corresponding oxidative ratios. The oxidative 

ratio increases with increasing altitude and becomes significantly different from the 

biospheric value for altitudes above 2000m. This is in agreement with expectations: 

whereas the local signals are most likely dominated by biospheric processes, the 

background signal measured at higher altitudes contains also oceanic influence and is 

thus likely to have a higher oxidative ratio. 

 
 

 
 

Figure 3.12: Altitude dependence of O2/CO2 ratio. Slopes are determined for the different 
altitude bins shown in Figure 3.10. 
 
To see whether differences in oxidative ratios can also be detected for samples taken 

within the PBL and above it, the PBL height was derived from the in-situ profiles of 

potential temperature, using the parcel method (Seibert et al. 2000).  
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The potential temperature Θ  was calculated from measured temperature T as   
 

Pc
R

p
p

T ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=Θ 0                    (3.4) 

 

with p the ambient and p0 the surface pressure, R= 8.31 Jmol-1K-1 the gas constant and 

cp = 29.07 mol-1K-1 the specific heat capacity at constant pressure.  

 
 

 
Figure 3.13: Determination of PBL height from profiles of measured potential temperature. 
 

As illustrated in Figure 3.13 above, the boundary layer height is determined as the 

height where the potential temperature Θ  equals the mean potential temperature of 

the mixed layer TML plus an excess temperature δT:  
 

Θ  = mean (TML) + δT                                        (3.5) 

 



O2/CO2 ratios derived from airborne flask sampling in Amazonia   82 

Here, the mixed layer is defined the altitude range with an ambient pressure between 

930 and 950 mbar, and δT is chosen as 2K. The resulting boundary layer heights for 

profiles with flask sampling range from 720 to 1760 m, with a mean value of 1200m.  

 
Figure 3.14 shows the distribution of CO2 and O2 values within and above the 

boundary layer. As expected, the variability is much higher within the PBL than in the 

free troposphere. 

 
Figure 3.14: Variability of CO2 and O2 within and above PBL. In the box-and-whisker plots, 
the box covers the middle 50% of the data values, with the bottom and top representing the 
25th and 75th percentile and the bold line the median. The whiskers extend to 1.5 times the 
interquartile range; the remaining extreme values are marked by crosses. 
 

Comparison of the oxidative ratios derived from flasks taken within and above the 

boundary layer (Figure 3.15) shows they also differ: With 1.31 ± 0.06, the oxidative 

ratio is in the free troposphere is significantly higher than that within the boundary 

layer (1.10 ± 0.03). The latter matches exactly the oxidative ratio for biospheric 

processes, showing that this is indeed the dominant influence in the Amazon Basin. 

However, in the following it is investigated whether other, more localized processes 

can also be detected in the data. 
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Figure 3.15 Oxidative ratios derived for samples taken within and above the boundary layer 
 

3.3.2 Fossil fuel  
  

Fossil fuel emissions in Brazil are for the most part caused by transportation 

(primarily using ethanol as fuel) and industry. As it can be seen in Figure 3.16a, high 

CO2 emissions in the region covered by the BARCA flights occur mostly in the area 

around Manaus. 

 

Figure 3.16b shows the spatial distribution of the oxidative ratio ORff from fossil fuel 

burning, derived from the COFFEE dataset (see Chapter 2). Within the BARCA 

region, ORff does not show much variation and has a value of 1.35 –1.4. The fossil 

fuel signature in the atmospheric O2/CO2 is thus significantly different from that of 

the biosphere. To investigate whether this can be detected in the measured signals, it 

was checked if the O2/CO2 ratio derived from flasks taken in the Manaus area – which 

is expected to be influenced by fossil fuel combustion – differs from the other flasks.  
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Figure 3.16 CO2 emissions (a) and oxidative ratios (b) from fossil burning, with CO2 
emissions (0.1°x0.1° resolution) from EDGAR 4 (EC-JRC/PBL 2009) and oxidative ratios 
(1°x1° resolution) from the COFFEE dataset (see Chapter 2). Green crosses indicate 
locations of flask sampling. 
 

As the aircraft was based in Manaus, almost all flights started and ended there, 

allowing for a larger number of samples. For the following analysis, only samples 

taken within the PBL are used, as a local fossil fuel influence is not likely to extend 

into the free troposphere. This limits the sample size to 9 flasks, most of them taken 

either in the early morning (start of the flight) or in the evening (end of the flight)..  

 

Figure 3.17: Locations of flasks taken in the Manaus area (a) and O2 vs CO2 regressions for 
selected flasks (b). 
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Figure 3.17a shows their sampling locations and Figure 3.17b the regression of O2 

versus CO2. The slope of the fit gives an oxidative ratio of ORM = 1.04 ± 0.04 for the 

flasks in the Manaus area, while the OR for all other flasks sampled within in the PBL 

is 1.15 ± 0.04. Contrary to expectation, ORM is closer to 1 than the rest of the samples 

However, not all flasks taken in the Manaus area are necessary polluted. The high 

CO2 values of samples taken in morning hours in particular might as well be caused 

by nighttime respiration (see Section 3.3.1). A useful tracer for detecting fossil fuel 

influence in the samples is CO, since any combustion process also causes CO 

emissions.  For fossil fuel burning in the Manaus region, EDGAR 3.2 emission data 

(Olivier and Berdowski 2001) gives a ratio of CO/CO2 = 5.2%, thus a CO 

enhancement of 52ppb corresponds to a 1ppm enhancement of CO2.  

 

 
 

 
Figure 3.18: fossil fuel part of CO2 concentrations in the Manaus flasks and its influence on 
oxidative ratio: Plot (a) shows the CO2 fossil fuel signal, derived from the CO concentration 
of the flasks, with CO2ff [ppm] =(CO[ppb]-CObg[ppb])/52ppb, while plot (b) shows CO2ff as a 
percentage of the total CO2 enhancement CO2 –CO2 bg. Background values CObg and CO2bg 
were defined as the minimum of the Manaus flasks, being 81 ppb for CO and 377.6 ppm for 
CO2. 
 

This fact is used in Figure 3.18 to calculate the fossil fuel part of the CO2 signal: 

Figure 3.18a shows the CO2 fossil fuel signal derived from the CO enhancement in 

the Manaus flasks, ranging from 1 to 4.5 ppm. As seen Figure 3.18b, this corresponds 
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to 7 – 58 % of the total CO2 enhancement, thus maximal oxidative ratios of 1.4·0.58 + 

1.1·(1-0.58) = 1.28 can be expected from these samples. Figure 3.18 a and b also 

illustrate that the highest CO2 values do not necessarily correspond to the highest 

fossil fuel signals. In Figure 3.18c, O2 is fitted against CO2 for different levels of 

fossil fuel content in the signal of the Manaus samples. The resulting oxidative ratios 

show indeed a tendency to get closer to 1.4 for higher levels of fossil fuel influence. 

However these differences are not significant as with the decreasing number of flasks 

used for the fit the error of the slope increases also. A definite detection of fossil fuel 

influence is thus not possible under these conditions. 

3.3.3 Biomass burning 
 
CO is not only a tracer for fossil fuel combustion, but also for biomass burning. To 

identify samples whose composition might be affected by biomass burning, the CO 

in-situ data (shown in Figure 3.19) was used. Due to the higher spatial resolution, it 

gives a better indication of areas affected by biomass burning than the flask samples 

alone. Figure 3.19 shows the flight tracks for BARCA-A, colored by the in-situ CO 

concentration. The grey patterns indicate CO emissions from biomass burning 

integrated for the BARCA-A period. These are based on fire locations from satellite 

based inventories (MODIS (http://modis-fire.umd.edu), GOES WF ABBA 

(http://cimss.ssec.wisc.edu/ goes/burn/wfabba.html), and CO emission size calculated 

based the amount of biomass burnt as well as vegetation-specific emission and 

combustion factors (Freitas et al. 2005; Longo et al. 2007). Red arrows indicate 

locations of flask sampling in biomass burning areas (identified by the CO emission 

map or by the log file of the operator onboard the aircraft).  

 

A subset of 17 flask samples was selected for further analysis. A sample was chosen 

as presumably influenced by biomass burning if it was taken in the biomass burning 

areas specified above and the corresponding in-situ CO concentrations was higher 

than 200ppb. These selected flasks are marked as blue dots in Figure 3.20, whereas 

black crosses indicate the remaining flasks for comparison. Figure 3.20a shows 

sampling locations of the flasks and Figure 3.20b the altitude distribution of their CO 

concentrations.  
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Figure 3.19: Spatial distribution of measured CO concentrations. The colored points show 
the in-situ data, black crosses indicate locations where flask samples are taken. The red 
errors mark areas presumably influenced by biomass burning. 
 
 

 
Figure 3.20: Locations (a), altitude and CO distribution (b) for flasks presumably influenced 
by biomass burning (blue dots). For comparison, black crosses indicate values for the 
remaining flasks. 
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It can be seen that most of the higher CO values in the samples are caused from 

biomass burning. The remaining high CO values at lower altitudes result from fossil 

fuel burning in the Manaus area (see Figure 3.19) Figure 3.20b shows a higher CO 

variability at lower altitudes, but the difference between low and high altitudes is not 

as strong as for CO2 and O2 (see Figure 3.10 or comparison). One reason for this is 

that signals from biomass burning are not limited to the PBL; instead plumes can rise 

up to ~3km in altitude (Crutzen and Andreae 1990). The other reason is related to 

atmospheric transport: During the dry season, convection in Central Amazonia is 

more likely to occur in the afternoon (Angelis and McGregor 2004). Therefore, 

nocturnal signals do not get lifted into the upper atmosphere. As described in Section 

3.3.1, nighttime respiration causes high CO2 and low O2 signals inside the boundary 

layer that are thus not transported to the free troposphere. As such nighttime 

accumulation does not exist for CO, the altitude gradients are significantly smaller. 

 

 
Figure 3.21: O2 versus CO2 regression of flasks influenced by biomass burning.  
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The oxidative ratio for the selected flasks is derived in Figure 3.21 above. With 1.14 ± 

0.03, the result is consistent with the commonly used ratio for biomass burning (1.11) 

and thus not distinguishable from that for biospheric processes.  

 

The ratio of 1.11 corresponds to the typical biomass burning process where CO 

emissions account for ~10% of CO2 emissions (Crutzen and Andreae 1990). However, 

depending on the type of fire, the combustion process might be less complete and the 

CO/CO2 emission ratio might go up to ~30%. For these cases, oxidative ratios up to 

1.41 have been observed (Lueker and Keeling 2001). Figure 3.22a shows the 

distribution of CO/CO2 enhancement. Again, enhancement is defined as the difference 

to a background value for CO or CO2. Since the sampling locations of the flasks show 

a larger spatial variation, no constant background value as in Section 3.3.2 was used. 

Instead, separate background values were derived for each profile from the CO and 

CO2 in-situ data at an altitude level of around 4000m.  

 

Finding correlations of changes in the oxidative ratio with CO/CO2 ratios is difficult 

for the small number of samples; hence only two separate regressions were performed 

(Figure 3.22b).   

 

 
Figure 3.22: Histogram of CO/CO2 ratios of flasks influenced by biomass burning (a) and O2 
vs CO2 regressions for the upper and lower half of the distribution (b). The grey line in plot (a) 
indicates the median of the distribution. 
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For the lower half of the distribution (i.e. the samples whose CO/CO2 ratios are 

smaller than the median CO/CO2 ratio, see dotted vertical line in Figure 3.22a) an OR 

of 1.13 ± 0.05 was derived, thus being close to the typical biomass burning OR. For 

the upper half of the distribution (i.e. CO/CO2 ratios higher than their median), the 

OR is expected to be higher. Indeed, the regression results in an OR of 1.39 ± 0.11. 

Although the oxidative ratios for high and low CO/CO2 ratios are significantly 

different, one needs to take care in interpreting this result because the CO2 

enhancement is usually not only caused by biomass burning, but also strongly 

influenced by biospheric activity. Section 3.3.2 already showed that high CO2 signals 

are not necessarily related to combustion processes. Another issue is related to the 

details of vertical transport: the CO/CO2 correlation in CO and CO2 enhancements 

near the emission are not necessarily preserved when convectively lifted to higher 

altitudes, so the detection as differences between the measured (fire-influenced) 

signals and a background might be problematic. For a more robust analysis of the 

impact from the type of burning process on the oxidative ratio, it would be best to 

look at in-situ data for each fire event separately and to compare the CO/CO2 ratios 

with oxidative ratios for this event. However, this would imply separate regressions 

(both for CO/CO2 and O2/CO2) for each event. This is only possible with a higher 

sampling density, thus requiring continuous measurements of all tracers. 

3.4 Conclusion 
 
In this chapter, oxidative ratios from flask samples taken during the BARCA aircraft 

campaign in the Brazilian Amazon basin were studied and the feasibility of using 

such ratios to separate different processes was investigated. 

 

Oxidative ratios were determined from orthogonal distance regression of the O2 

versus CO2 mole fraction of the flask samples. With a value of 1.15 ± 0.02, the 

oxidative ratio derived from all samples is dominated by biospheric signals, but 

indicates also influence from other processes with higher oxidative ratios. These 

contributions have been identified as being mainly related to atmosphere-ocean-

exchange, influencing the composition of samples taken in higher altitudes. 
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Determination of oxidative ratios for different altitude levels showed significantly 

higher values at higher altitude, as well as significant difference of OR derived from 

samples taken within the planetary boundary layer (PBL) and above. Apart from the 

lower oxidative ratio, CO2 and O2 mole fractions of flasks sampled within the PBL 

also show a larger variability, corresponding to the strong influence of surface sources 

and sinks. With an oxidative ratio of 1.10 ± 0.03 for the samples within the PBL, 

these influences are mainly biospheric. However, it was further investigated whether 

other types of local influence, i.e. fossil fuel combustion or biomass burning could be 

identified locally.  

 

Emission maps for the flight area show that significant fossil fuel emissions are 

mostly likely to be observed in the Manaus region. The Brazilian oxidative ratio for 

fossil fuel combustion is ~1.4 and thus significantly different from the biospheric ratio 

of 1.1. However, samples in the Manaus area do not show enhanced oxidative ratios. 

This can be explained by the fact that the fossil fuel part of the measured CO2 signals, 

as derived from the corresponding CO concentrations, is only in the range of 7 to 58% 

of the total CO2 enhancement. Oxidative ratios of these samples are thus expected to 

increase to maximum values of 1.28. Comparing the oxidative ratios of samples with 

lower and higher fossil fuel contribution shows increases in the mean oxidative ratio 

for higher fossil fuel contribution, up to a maximum value of 1.20 ± 0.16 for a fossil 

fuel contribution >30 %. However, differences between the oxidative ratios of these 

subsamples are not significant due to larger uncertainties in the slope of the regression 

associated with the small number of samples. 

  

Flask samples influenced by biomass burning are identified by their locations close to 

fire locations from biomass burning inventories, together with high CO concentration 

of the corresponding in-situ data. With a value of 1.14 ± 0.03, their oxidative ratio 

corresponds to typical ratios for biomass burning, but can not be distinguished from 

that of biospheric processes. However, oxidative ratios for biomass burning events 

vary depending on the type of combustion process; thus events with higher CO/CO2 

ratios are expected to also show higher oxidative ratios. This relation was investigated 

by comparing the oxidative ratios of samples with low and high CO/CO2. Indeed, the 
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samples with high CO/CO2 ratios show a significantly higher OR (1.39 ± 0.11) than 

those with lower CO/CO2 ratios (1.13 ± 0.05). However, it is not completely evident 

whether this difference is really caused by the dissimilar combustion processes, since 

the measured CO2 signatures can also be influenced by other effects (biospheric 

activity, atmospheric transport). A definite correlation between fire types and 

oxidative ratios could only be derived on an event-based analysis with continuous 

measurements of all tracers.  

 

To summarize, O2/CO2 ratios from the BARCA flask samples could indeed be used to 

some extent for the separation of different processes. However, whereas it worked 

quite well to separate background signals from local influences, the significant 

detection of contributions from different surface processes was limited by the low 

sampling density. To identify these signatures robustly, continuous measurements of 

both O2 and CO2 are inevitably required. The example of biomass burning detection 

clearly showed that CO2 and CO in-situ data provide much better constraints than the 

flask data alone due to their higher spatial and temporal resolution. 
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Chapter 4                                         
Development of an instrument for airborne       
in-situ measurements of atmospheric O2/N2 
 
Chapter 3 has stated the need for in-situ measurements onboard aircraft that are 

currently limited by the availability of suitable instruments. In this chapter, the 

development of an in-situ instrument for airborne measurements of atmospheric 

oxygen is described. The ICON (In-situ Capability for O2/N2 measurements) is 

intended for use onboard small research aircraft, with small dimensions, low weight, 

robustness in operation, and full automation of the measurement. 

4.1 Motivation 
 
Airborne measurements have been introduced in the previous chapters as an important 

complement to the network of surface stations. Despite the advances in measurement 

techniques during the last decades, airborne O2/N2 measurements are still mostly 

limited to flask sampling. As shown in Chapter 3 for the case of the BARCA 

campaign, the low temporal and spatial resolution of flask data makes it difficult to 

use it for separating different processes. Continuous measurements of O2/N2 in 

combination with other trace gases have the potential to provide much better 

constraints on atmospheric transport and mixing processes that act on the different 

source and sink components.  

 

The possibility for in-situ measurements of oxygen onboard aircraft is mainly 

restricted by the availability of suitable instruments: Unlike for CO2 measurements, 

no commercially available instruments exist that can be used ‘off the shelf’ to 

measure atmospheric O2 with the required precision. As described in Section 1.4.1, 

over the last two decades several techniques for O2 measurements have been 

developed, most of them based on modifications of commercial instruments. However, 

the majority of these instruments is not suitable for airborne measurements, especially 

onboard small research aircraft: Mass spectrometers, gas chromatographs and 

interferometers are too large and heavy for use in the field, the electrochemical 
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method suffers from a slow response (see Section 4.5.1) and paramagnetic analyzers 

are highly motion sensitive. The VUV (vacuum ultraviolet) absorption technique, on 

the other hand, has already been used onboard aircraft (Stephens 2009), showing 

measurement precision of  ± 2 per meg for 5s intervals.  

 

Thus the obvious choice was to use VUV absorption for the development of a new 

airborne instrument. For this technique no commercial instruments exist, so all 

components have to be designed and custom built. Although the basic idea and the 

choice of several key components are based on the instrument of B. Stephens 

(Stephens 1999; Stephens et al. 2003), the instrument developed here has a 

completely different design, especially adapted for the requirements onboard small 

research aircraft.  

4.2 Measurement principle 
 
Vacuum ultraviolet (VUV) radiation denotes the range of the ultraviolet spectra that is 

absorbed by the oxygen in the air and thus can only be observed in a vacuum, ranging 

from roughly 5 to 190 nm. For the ICON instrument, the absorption of VUV radiation 

passing through a flowing air stream is measured and used to calculate the oxygen 

content of the sample air. As a light source, a commercially available xenon lamp 

(Opthos) is used, powered by a 15W/180MHz radio frequency (RF) oscillator (LCF 

Enterprises). This light source has its main emission line at 147 nm and a weaker line 

at 129.5nm. The emission spectrum is shown in Figure 4.1, together with the 

absorption cross-section for O2 for the Schumann-Runge continuum. 

 

For the 147nm line, O2 is the primary atmospheric absorber. Thus variations in 

absorption of this line are related to the O2 mole fraction XO2 via the Beer-Lambert 

law 
 

}exp{0 ODII −=                 (4.1) 
 

with I being the transmitted (=measured) light intensity, I0 the intensity emitted by the 

lamp and OD the optical density, determined as  
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20 OXTTplkOD ⋅⋅⋅⋅=                (4.2) 
 

with k the absorption coefficient of O2 at a pressure of 1013mbar, l the path length, p 

the air pressure, T the air temperature and T0 = 273.15 K. Equation 4.1 can also be 

expressed in differential form as 
 

2

2

XO
XOOD

I
I Δ

−=
Δ

                 (4.3) 

 

To achieve the desired instrument sensitivity, it is necessary to work with optically 

thick conditions. Nevertheless one needs to optimize between high sensitivity 

(resulting in lower detector currents) and the size of the signal. Measured currents for 

this application are in the range of ~100nA, requiring detection of levels ~100 fA for 

ppm precision. Shot noise, due to statistical uncertainty associated with counting a 

limited number of electrons, and Johnson noise, resulting from random thermal 

motion in the resistor used for signal amplification (see 4.3.2), can both be significant 

at these levels (Jenkins 1987).  
 

 

               
 
Figure 4.1: Xenon emission lines (left, from (Okabe 1964)) and absorption cross section for 
O2 (right, from (Watanabe et al. 1953)). In the emission spectrum, only the solid lines 
represent Xe lines, the dashed lines represent water impurities in the lamp. In the right plot, 
the solid curve indicate measurements from (Watanabe et al. 1953), while the dashed lines 
represent earlier results from (Ladenburg and Van Voorhis 1933). 
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The optimum of optical density is determined by the optimal signal to noise ratio SN. 

As derived in Appendix 2,   

 
}2/exp{ ODODSN −⋅−∝                    (4.4) 

 

has a maximum for OD=2, corresponding to absorption of 86% of the emitted light 

intensity. Following Equation 4.3, a change of 1 ppm in the O2 mole fraction thus 

causes a 2ppm change in the measured light intensity. Equation 4.3 also indicates that 

the response of the instrument to small changes in XO2 will be linear. For O2 

absorption at 147 nm, deviations from linearity over the natural range of variability 

are expected to be less than 0.1 per meg and thus negligible. However, there might be 

influence from the second emission line at 129.5nm. 

 

As it can be seen in Figure 4.1, the intensity of the 129.5nm line is much smaller than 

that of the 147nm line. Okabe (1964) gives its intensity as ~2% of the 147nm line. 

However, since the absorption coefficient at 129.5nm is much lower than at 147nm 

(k129.5 ~20atm-1cm-1, k147=320atm-1cm-1), the use of both emission lines leads to a 

lower signal to noise ratio and lower sensitivity. This is illustrated in Figure 4.2, using 

the formulas derived in Appendix 2 for the signal to noise ratio and the effective 

optical density. 

 

 
Figure 4.2: Effective optical density (a) and signal to noise ratio (b) for both emission lines 
(blue) and 147nm line only (black) 
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The maximum signal to noise ratio for both lines is ~6% lower than that for the 

147nm line alone. Another problem that due to the low absorption of the 129.5nm line, 

more light arrives at the detector. Since the phototubes used here have critical currents 

around 1μA, the intensity needs to be limited anyway when using both lines. Hence it 

seems reasonable to remove the second line using suitable filters or windows. 
 

Another problem can arise from potential interference effects due to absorption by 

CO2 or water vapor in VUV region (see Figure 4.3).  
 

   

   
 
Figure 4.3 Absorption coefficients of CO2 (left, figure from(Inn et al. 1953) ) and H2O (right, 
figure from (Watanabe and Zelikoff 1953)) in the VUV range 
 

H2O interference is avoided by drying the sample air (which needs to be done anyway 

to avoid dilution and fractionation effects). CO2 interference needs to be taken into 

account, since the CO2 absorption coefficient at 147 nm is ~5% of the O2 absorption 

coefficient ((Inn et al. 1953; Watanabe et al. 1953), see Figures 4.1 and 4.3). However, 

any technique measuring oxygen mole fractions (instead of O2/N2 ratios), requires 

simultaneous CO2 measurements to correct for CO2 dilution effects (see Chapter 

1.4.2). Hence the measured CO2 values can also be used to correct for interference.  

 

Altogether, O2/N2 ratios are derived from the measured O2 mole fraction as (Chapter 

1.4.2, Stephens (1999)) 
 

 

 
)X - (1 X 

0.05) - (X  363.29)  - (X  X
   )/N(O

O2O2

O2CO2O2
22

+
=

δ
δ             (4.5) 
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4.3 Instrument design 
 
As seen from Equations 4.1 to 4.3, the measured VUV signal strongly depends on the 

pressure of the measured gas stream. In order to detect ppm-level variations in the 

atmospheric oxygen concentration, the gas pressure needs to be recorded or controlled 

to ppm-level. Especially with changing intake pressures onboard aircraft, stabilizing 

the pressure in the sample cell to that level is quite challenging. Usually, this requires 

several steps of pressure controls. In order to avoid complicated gas handling that 

could easily exceed space and weight limitations for small research aircraft, the ICON 

is designed with two measurement cells, allowing for simultaneous measurement of 

sample and reference gas. Directly connected cell outlets and a pressure regulation 

based on matching the two cell pressures instead of stabilizing the absolute pressure 

assure that any change occurring in the sample cell also affects the reference cell. 

 

4.3.1 Optical system 
 

Figure 4.4 shows the schematics of optical pathways in the ICON instrument: VUV 

light emitted by the xenon lamp is split up by a beamsplitter (Laseroptik GmbH), 

located in a nitrogen-flushed housing to avoid absorption on the way to the sample 

cells. The beamsplitter and cells are aligned in such a way that both detectors see the 

same part of the lamp, and that the length of the optical path is identical for both cells.  

 
 
Figure 4.4: Optical design of the ICON   
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The length of the absorption path in the sample cells is 5mm, thus a pressure of 

65mbar is required to achieve the optimal optical density. The cells are separated from 

the beamsplitter housing by BaF2 windows. With a cutoff wavelength close to 130nm, 

these windows block the intensity for the 129.5nm emission line while still letting 

about 85% of the intensity of the 147nm line pass. Solar-blind phototube detectors 

(R1187, Hamamatsu Photonics) for measuring the transmitted light intensity are 

directly attached to the opposite side of the cells, without another window in between.   

4.3.2 Signal detection and amplification 
 
The solar-blind phototube detectors are only sensitive to wavelength between 110 and 

220nm. At the operating cell pressure, phototube currents are in the range of 100nA. 

These currents are converted to measurable signals on the order of a few Volts, using 

a low-noise amplifying circuit as described in (Stephens 1999), that includes a 

temperature insensitive 125MΩ resistor (Caddocks) and a low-noise op-amp (AD549, 

Farnell). As the phototube signal is very sensitive to any external disturbance, e.g. 

caused by the radio frequency powering the lamp, the diode output is directly 

connected to the amplifying circuit and both parts are enclosed in a brass housing. 

Passively regulated voltage from batteries is used as power supply for diodes and op-

amps in the amplifying circuit as any other power source has been shown to create 

significant noise on the measured signals. 

4.3.3 Data acquisition  
 
Not only detectors and amplifying circuit, but also the data acquisition system 

measuring and recording the resulting voltage signals needs to operate at high 

resolution and low noise levels. Thus a customized 23bit detection system is used, 

consisting of a CAN-module (Microcontrol), connected to a CR1000 datalogger 

(Campbell Scientific). This system records signals from both detectors at a frequency 

of 5Hz and a resolution of 2μV.  

 

In addition, the datalogger is used to record housekeeping data like pressure and 

temperature at different locations in the instrument. In combination with an external 
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relay board (SDM-CD16AC, Campbell Scientific), it also controls valves and power 

switches. After loading a software program in the internal programming language 

CRBasic prior to a flight, operation of the system is fully automated and data are 

recorded to the internal storage of the logger. Data can be either retrieved after the 

flight or visualized onboard with a laptop computer, when required. 

 

4.3.4 Gas handling  
 
The two-cell design of the ICON allows for simplified gas handling, as illustrated in 

the schematics in Figure 4.5.  

 
Figure 4.5: Gas handling scheme of the ICON 
 
 

Instead of several pressure controls to ensure the stability of the pressure at ppm-level, 

only the pressure difference between the two cells is actively regulated. The absolute 

cell pressures and flowrates are passively controlled using capillaries. Capillary C1 or 

C2 sets the flowrate for the reference gas that is supplied from one of two calibration 

tanks. The intake flow in the sample line is regulated to match this reference flow, 

using the only active control in the system, the proportional valve V1. This valve is 

controlled by a customized PID flow control module, driven by the pressure 

difference between the two cells. To allow for pressure matching on ppm-level, the 

flow controller is referenced to a 1-mbar full scale differential pressure sensor (MKS 

Instruments, dP in Figure 4.5). Furthermore, the measured pressure difference dP is 

larger than the actual pressure difference of the cells by a factor of about 10; this 



Instrument design     103 

    

amplification is achieved using tubing between the differential pressure sensor and 

cells with a length of about 10 times the length of the tubing downstream of the cells 

(between the cell outlets and the point where both flows join). Sample and reference 

gas are periodically switched between the two cells, using the cross-over-valve V2. 

The absolute pressure in the cells, recorded by a 1-bar absolute pressure gauge at the 

connected cell outlets, is passively set by the capillary C3 that is located upstream of 

the vacuum pump. The pressure control was tested for changing intake pressures 

ranging from 300-1000mbar and proved able to control them without problems. 

 

Due to the small volume of the sample cells (0.7 cm3) and compact instrument design 

that avoids dead volumes or long tubing, the system can run with low flowrates on the 

order of 10 sccm/min (sccm =standard cubic centimeters, referring to a flow of 

10ccm/min at standard pressure (p0=1013mbar) and temperature (T0=273 K) 

conditions). The low flowrate has the advantage that only small tanks are needed for 

the reference gases. In addition, not too much gas is lost by continuously purging the 

non-used reference gas to the vacuum pump with the same flowrate as the one 

entering the measurement cell. This purging avoids fractionation effects due to 

pressure changes and adsorption at the pressure regulator surface of the tank that can 

arise when stopping and restarting the gas flow. Nitrogen flushing of the beamsplitter 

housing is performed at similarly low flowrates, set by another capillary. To keep the 

initial flushing time for the beamsplitter housing short, it is kept at low pressure and 

thus directly connected to the instrument’s vacuum pump.   

 

4.3.5 Packaging 
 
The core part of the ICON, containing sample cells, beamsplitter, phototube detectors 

and amplifying electronics and the xenon lamp and its RF power supply, is shown in 

Figure 4.6.  To reduce both weight and length of optical pathways, the whole package 

is designed to be as small and compact as possible.  

 

All connections between the separate parts are sealed by Viton o-rings, in addition 

windows and phototubes are glued with a UV-resistant epoxy to the beamsplitter 
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housing and their brass housing, respectively. Measurement cells are soldered to the 

in- and outlet tubing, the connection of the two outlets is soldered as well.  As 

mentioned before, phototubes and their amplifying circuits are enclosed in separate 

brass housings to protect them from any electronic disturbance. The xenon lamp is 

mounted in a Teflon collar; inside a small piston provides adequate pressure to 

compress the o-ring between lamp and beamsplitter housing without damaging the 

sensitive MgF2 window of the lamp. In addition, the lamp is enclosed in a brass 

housing to protect it from damage and to keep disturbance from the RF radiation 

powering away from the detectors and other sensitive electronics. The RF power 

supply is directly, i.e. without a cable, connected to the lamp housing since measured 

signals proved to be sensitive to small movements of the cable.  
 

 
Figure 4.6: Design of ICON’s main part, including sample cells, beamsplitter, phototube 
detectors, amplifying electronics, xenon lamp and RF power supply  
 
Together with the components for gas handling and data acquisition, this core part is 

enclosed in a standard 19“/ 6HE rack housing (44 cm x 36 cm x 23 cm), with a total 

weight of 12kg. Figure 4.7 shows the final instrument (1) as well as the additional 

external parts needed for measurements onboard aircraft: A dry-ice cold trap for 

drying the sample air (2), a small vacuum pump (3, KNF Neuberger) and a 

temperature stabilized box containing the two calibration tanks and the nitrogen tank 

for flushing the housing of the beamsplitter (4). 
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Figure 4.7 The ICON instrument (1) and required external parts (2 – water trap, 3 – vacuum 
pump, 4 – temperature controlled box containing reference cylinders and nitrogen) 
 
The water trap is placed at the sample intake as shown in Figure 4.5. It consists of a 

commercial dewar, containing dry ice and a U-shaped ¼” tubing filled with glass 

beads. As wet sample air passes the tubing, the water vapor contained in the air 

freezes out at the surface of the glass beads. As mentioned before, the low flowrates 

of the ICON allow for the use of small reference cylinders. Here lightweight 1l 

cartouches (AirLiquide) filled to a pressure of 12 bar are combined with miniaturized 

regulators (Gloor) with an output pressure of 2bar. As these pressure regulators 

usually set the output pressure relative to the ambient pressure, the reference side of 

the regulator is connected to the vacuum pump to guarantee constant output pressure 

at all heights. The same type of cylinder and regulator is used for the nitrogen flushing.  

 

4.4 Instrument performance 
 

4.4.1 Signal resolution and short-term noise  
 

 

Measuring O2/N2 with the targeted precision of a few per meg requires not only 

shielding and low-noise amplification of the phototube currents, but also high 

resolution and low noise levels of the voltage measurement and data acquisition 

system. For 2 per meg resolution in the oxygen signal, a corresponding voltage 

resolution of ~ 25μV in a 10V signal is required. These levels are already close to the 

theoretical detection limits due to shot and Johnson noise. 
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 Shot noise is given by  
 

fIqRU RS Δ⋅⋅⋅= 2                     (4.6) 
 

 

with R=125MΩ the size of the resistor in the amplifying circuit, I the signal current, 

q= 1.6 · 10-19 C the elementary charge and Δf the measurement frequency. 

 

Johnson noise can be described as 
 

RfTkU RJ ⋅Δ⋅⋅⋅= 4                    (4.7) 
  

 

with Δf and R as above, T the ambient temperature and k = 1.38 ·10-23 J/K 

Boltzmann’s constant. For the 5Hz measurements performed here, Johnson noise 

gives a constant noise level of 3.2μV, while shot noise increase with the signal size, 

resulting in e.g.17μV for 1V of signal. 

 

The customized data acquisition system used for ICON already provided a resolution 

of 2μV, but initially showed noise levels with amplitudes around 100μV, even for the 

dark current of the detector. Modifications in the internal power supply and Teflon 

housing of the sensitive amplification circuit reduced this noise to levels near the 

theoretical limits.  

 

Figure 4.8 shows the resulting noise for the final configuration: Red and blue dots 

show the noise for the two detectors for different voltage levels, generated using of 

different sample pressures. Noise values are determined as the standard deviation of 

50 successive 5Hz-measurements. The dashed line shows the corresponding 

theoretical values for the sum of Johnson and shot noise.  

 



Instrument performance     107 

    

 
 

Figure 4.8:Short-term noise levels of the measured voltage signals, compared to theoretical 
noise levels due to Johnson and shot noise. 
 

4.4.2  In-flight calibration 
 
Reference tanks delivering reproducible O2/N2 ratios traceable to international scales 

are an essential component of a measurement system. Thus care must be taken in the 

choice of tanks and pressure regulators, especially in the choice of materials used. 

Mainly two effects can influence the O2/N2 ratio of air supplied by high-pressure 

cylinders: Adsorption and desorption at cylinders’ walls or regulator surfaces and 

selective permeation through membranes and o-rings contained in regulators 

(Langenfelds et al. 2005; Keeling et al. 2007). However, especially for pressure 

regulators information on exact materials and details on the interior are not always 

available. Tanks and regulators that haven proven to be suitable for oxygen 

measurements are usually large and heavy which conflicts with the size and weight 

requirements on board small research aircrafts. Due to low sample flows of 

~10sccm/min, the ICON only requires about 2-3 l of reference gas for a 3-4h flight.  
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Therefore the possibility to use lightweight air cartouches with miniaturized 

regulators was investigated. To assess the stability of the reference tanks independent 

from any effects caused by the ICON instrument, their O2/N2 ratio was determined by 

mass spectrometric analysis, using the MPI-BGC mass spectrometer (Brand 2003). 

For these tests, the tanks were filled with dried ambient air from a high-pressure 

‘mother tank’. The pressure regulator were connected to the cylinders and flushed for 

5 minutes. For the analysis, cylinders and regulators were placed in the thermostatic 

box (see Figure 4.7) whose temperature was controlled at 45°C. After the temperature 

in the box had stabilized, the outlet valve was opened and the O2/N2 ratio of the tank 

measured as it is drained empty.  As the mass spectrometer takes only flow rates of 

~1sccm/min, an open split design as shown in Figure 4.9 was used to realize the 

typical flow rates for the ICON instrument. As later in the flight setup, the reference 

side of the pressure regulator was evacuated. To avoid any effects by air remaining in 

the tubing to the spectrometer, the line between the spectrometer and the regulator 

was also evacuated prior to the measurement. 

 

 

 
 

Figure 4.9: Setup for stability tests for small reference tanks. 
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After some preliminary tests, 12 measurement series were conducted. The resulting 

timeseries of the measured O2/N2 ratio always follow the same pattern, as shown in 

the example in Figure 4.10:  For the first hour, a ‘run-in effect’ is observed, showing 

exponentially increasing O2/N2 ratios. Afterwards, O2/N2 exhibits a linear drift of a 

few per meg/h, until the tank pressures drops below 3 bar and O2/N2 starts to drop 

rapidly. 
 

 
Figure 4.10: Timeseries of O2/N2 ratio from small cylinders. The grey line referring to the 
axis at the right shows the corresponding cylinder pressure at the time of the measurement. 
 
Both exponential run-in effects and different behavior below a certain critical pressure 

have been already observed, for O2/N2 as well as for CO2 (Keeling et al. 1998a; 

Daube Jr. et al. 2002; Langenfelds et al. 2005; Keeling et al. 2007; Winderlich 2007). 

Whereas run-in effects are mostly regulator-related (e.g. selective permeation into o-

rings or membranes causing an initial O2 depletion), the changing behavior below the 

critical pressure is explained by adsorption of molecules to the cylinders walls that are 

suddenly released below a certain pressure. However, usually cylinders are filled to 

~200bar and reported critical pressures are in the range of 20 – 35 bar, thus it is not 

clear whether the same mechanism is valid here.   

 

In any case, as only the period of linear drift is suitable for the use as reference gas, 

the question is whether the drift is reproducible. Figure 4.11a shows time periods with 

linear drift for the different experiments and Figure 4.11b the respective slopes. For 
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unknown reasons, half of the experiments show a higher drift (4 – 5.5 per meg/h) than 

the others (1.5 – 3 per meg/h). Comparing the targeted measurement precision with 

the range of observed drift rates, the drift can not be considered reproducible, thus 

independent (e.g. mass spectrometric) analysis of the tanks both before and after each 

measurement flight is required.  

 

 
Figure 4.11: Linear drift of O2/N2 ratios from small tanks. Different colors and symbols 
represent the different experiments.  
 
Although this is not highly convenient in terms of logistics (requiring tanks to be 

filled in the laboratory prior to a campaign instead of directly at the airport, or do 

calibrate them in the field against a larger (more stable) tank), it is not critical in terms 

of gas usage, even if tanks need to be flushed for at least 1h before the start of the 

actual measurement: 4 hours of flight and 1h flushing time only require 3l of gas, 

leaving still 6l before the tank pressure drops below the critical 3 bar. With mass 

spectrometric analysis only requiring flows ~1scm/min, this is sufficient for an 

analysis before and after the flight. Nevertheless, the long flushing time is also not 

very convenient. Efforts to reduce the duration of the run-in effect have not been 

successful so far: The duration showed to be independent of the flowrates during the 

measurement for a range of 1 to 40 sccm/min. One experiment where the pressure 

regulator was flushed at a higher flowrate (1l/min) directly before measurement 
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showed only minor effects, but probably further tests with different flowrates and 

flushing times can help to solve this problem.  

 

Nevertheless, the results of the analysis show that although the small tanks are 

probably not the best solution, they can at least be used for short-term calibration 

during a measurement flight. 

4.4.3 Current instrument status  
 

After the individual components of the ICON (gas handling, signal detection system) 

have been tested and shown to suitable for high-precision oxygen measurements, they 

have been assembled to the airborne design presented in Section 4.3.4. However, 

since packaging the components into the 19” rack system, peaks on the order of a few 

hundred per meg are frequently occurring in the signals of both channels (see Figure 

4.12).  

 
Figure 4.12: Typical signal of the ICON instrument after repackaging. 
 

These disturbances occur about every 1-2 minutes, but also periods with more or less 

events have been observed. Although they seem to be correlated in the two channels, 

this fact could not be used for correction as the two signals are not perfectly correlated: 

Differences arise due to non-equal division of the light by the beamsplitter and due to 

the fact that the data acquisition system does not sample both signals at exactly the 

same time. 
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The reasons for the disturbances are still under investigation. Several possible sources 

have been considered: Electronic noise due to imperfect shielding of the RF power 

supply of the lamp or other power supplies inside the instrument or disturbance by 

other electronic sources in the laboratory environment, artifacts caused by the 

amplification circuit or the data acquisition system, variations in the lamp intensity or 

pressure changes caused by leaks or fluctuations in the pressure regulation. All these 

factors have been thoroughly tested and most of them could be excluded as the origin 

of the disturbances. The remaining favorite candidate is a very small leak somewhere 

in the core part, probably in one of the connections (e.g. between cells and the 

beamsplitter or at the connection of the cells). This would also explain why problems 

started after repackaging, as the separate parts had been taken apart several times at 

this time. Replacement of o-rings and polishing the surfaces of the cells and all other 

sealing surfaces already reduced the magnitude and frequency of the peak events. 

Further tests and probably a redesign of critical connections are required to identify 

and remove any remaining leaks and ensure that they were the only reasons for the 

observed disturbances. 

4.5 Investigation of possible inlet fractionation effects 
 

Airborne measurements are particularly susceptible to fractionation artifacts due to 

varying ambient pressure and temperature conditions. In the case of flask sampling, a 

potential workaround is to use measurements of Ar/N2 ratios in the same samples as 

an indicator for this effect (as done in Chapter 3). However, in the case of continuous 

measurements this information is usually not available. A critical point in each 

airborne system is the aircraft’s intake due to changes in the air velocity and flow 

patterns. The low sample flows used for ICON lead to large velocity differences 

between outside and inside of the sample intake (from vaircraft~100m/s to vsample< 

1cm/s); therefore these effects could be critical. Hence possible fractionation effects at 

the inlet are investigated here, using laboratory experiments with a miniaturized inlet 

inside of down-scaled wind tunnel, an idea developed by Mennecke (2006).  
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4.5.1 Experimental setup 
 
For characterizing the inlet fractionation effect, a series of down-scaled wind tunnel 

experiments was conducted. A fused silica capillary with an inner diameter of 0.5 mm 

served as aircraft inlet; a 1.5 mm inner diameter glass tube acted as the down-scaled 

wind tunnel. To guarantee undisturbed flow conditions at the intake, the inlet tip was 

sticking only 1-2 mm inside the wind tunnel (see Figure 4.13). 

           

 
Figure 4.13: Down-scaled inlet and wind tunnel for laboratory experiments. 
 

For an airborne sample intake, the inlet tube is usually mounted well outside the 

turbulent boundary layer of the aircraft, so the flow in the wind tunnel has to be 

laminar, too. This implies working at Reynolds numbers below 2300. The Reynolds 

number Re is defined as  

η
υρ d⋅⋅

=Re        (4.8) 

with d the diameter of the wind tunnel and ρ, υ and η the density, velocity and 

dynamic viscosity of air, respectively. Hence the laminar flow range determined by 

the wind tunnel parameters implies flow rates below 2500 sccm/min. 
  
Figure 4.14 shows the setup for the down-scaled wind tunnel experiments: Air flow in 

the wind-tunnel was created by gas effusing from a high-pressure cylinder; the flow 

rate was regulated using a set of needle valves which allowed for differential 

measurement at two different ‘aircraft velocities’. As any possible fractionation 
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effects arise from the changes in air velocity and flow regime, the effects are expected 

to be negligible for isokinetic intake of the sample air, i.e. vaircraft = vintake. 
 

 
Figure 4.14: Experimental setup for laboratory experiments on inlet fractionation. 

 

Thus the flow in the first line was always adjusted for isokinetic intake, whereas the 

flow in the second line was varied between consecutive experiments in order to study 

the flow dependence of the O2/N2 fractionation. The 3-way valve V1 was used to 

switch between the two lines. Downstream of the inlet, another 3-way valve (V2) was 

used to switch between two capillaries (C1 and C2) which were adjusted for 

compensation of the small pressure change at the tip of the inlet when changing the 

velocity in the wind tunnel. Additionally, a 9l-buffer volume was inserted upstream of 

the wind tunnel to decouple the inlet effect from possible fractionation related to 

pressure changes at the tank regulator when switching between the two velocities. 

After entering the inlet tube the sample air was compressed by a pump before passing 

another capillary (C4) to reduce the flow rate to a level suitable for the O2 

measurement (here 75 sccm/min). 
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As the ICON was not ready to perform oxygen measurements at the time of the 

experiments and mass-spectrometric analysis was not possible for logistical reasons, 

the oxygen concentration of the sample air was measured by a commercial Oxzilla 

Differential Oxygen Analyzer (Thompson 2005; Stephens 2007). Based on a 

comparison of electrical potential from two lead-oxygen fuel cells, this device 

differentially measures the partial pressure of O2 of two air flows. Therefore, the 

measured oxygen concentration difference is highly sensitive to changes in pressure 

and flow. The flow schematic described above largely avoids any changes in flow and 

pressure during the measurement. Additionally, the outlets of the two cells were 

connected directly downstream of the cells to prevent variations in ambient pressure 

to influence the signal of the two cells differently. No active pressure control was 

used; instead the pressure difference was monitored by a 1-Torr full-scale differential 

pressure sensor (MKS) directly upstream of the Oxzilla to make sure no relevant 

differences occur during the measurement. The flow rates in sample and reference 

lines were matched by the upstream capillaries (C3 and C4) as depicted in Figure 4.14.  

 

To compensate for dissimilar drifts of the two channels on different timescales, 

sample and reference gas were switched between the cells every 40s, using an 

upstream crossover valve (V3 in Figure 4.14). Since the diffusivity of the fuel-cell 

membranes leads to a slow response of the system, the first 30s of data after each 

switch were rejected. An example of a measured Oxzilla signal is displayed in Figure 

4.15a, with open circles indicating rejected values and filled circles data used for 

further analysis. Since the differential signal represents alternately reference - sample 

and sample - reference, the amplitude of the signal represents twice the difference in 

the O2 concentration of sample and reference gas. An additional correction was 

applied to the resulting 10s-mean-values by linearly interpolating between adjacent 

reference intervals as seen in Figure 4.15.  

 

With ri and si being respective time segments with reference and sample gas in one 

particular cell, the drift-compensated difference is given by  
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Figure 4.15: Example of the differential Oxzilla signal: (a) Oxzilla differential output (O2[cell 
1] - O2 [cell 2]). Vertical lines indicate switching times of the crossover valve, open circles 
show data ignored after switching.  (b) 10s-mean values. Circles and squares indicate times 
with reference and sample gas is in cell 1, respectively. As shown in Equation 4.9, the red 
lines represent twice the drift-corrected differential O2 signal dOx.. 
 

To determine the inlet fractionation effect independent from the long-term drift of the 

instrument as well, it was also switched periodically (every 12min, rejecting the first 

2min after switching) between the isokinetic and the non-isokinetic intake (using a 

fixed ‘aircraft velocity’). As discussed before, the simultaneous switching of valves 

V1 and V2 maintained a constant flow rate within the inlet.  

 

The same drift compensation used for the short-term drift was applied to the mean 

values of each cycle.  Five subsequent experiments were performed with different 

flow rates between 1000 and 2300 sccm/min for the non-isokinetic intake line, which 

corresponds to a range of ‘aircraft velocities’ from 19 – 43 m/s. The isokinetic intake 

flow of 340 sccm/min equals a velocity of 6.4 m/s which also corresponds to the 

intake velocity for the inlet for all experiments. 

 

4.5.2  Experimental results 
 
Figure 4.16 shows the measured O2/N2 differences between the non-isokinetic and 

isokinetic intake for the five different ‘aircraft velocities’, each averaged over several 
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hours. O2/N2 ratios were calculated from the measured O2 concentration using 

Equation 1.5 with constant CO2 concentration (as air from a cylinder was used, CO2 is 

expected to be stable, and fractionation effects are unlikely to have a significant 

influence on CO2). The results show a significant fractionation effect that increases 

proportional to aircraft velocity, with O2/N2 for the non-isokinetic case being higher 

than for the isokinetic case.  
 

 
Figure 4.16: Measured fractionation effect. Error bars show the error of the mean 
determined from averaging over the total measurement time. 
 

As already mentioned in Section 4.5.1, a buffer volume was inserted upstream of the 

inlet to avoid possible fractionation effects induced by the tank regulators being 

mistaken for inlet fractionation. The 9l-buffer allows separating these two effects 

temporally: While an inlet fractionation effect is expected to be seen immediately in 

the measured signal, an effect caused at the regulator would show up delayed and 

smoothed in time since the fractionated air needs some time to mix into and cross the 

buffer volume. To test this hypothesis, an experiment with longer switching cycles 

was performed. As the observed effect increases with the flow rate in the wind tunnel, 

in this experiment the highest laminar flowrate was used. The exchange time of the 

9l-buffer for this flow rate is 4 min at ambient pressure and 26 min for isokinetic 

intake. Thus 12 and 40 min were chosen as the length of the individual cycles at the 

respective flow rates. If any fractionation was occurring at the regulator, the values at 

the beginning and the end of the cycle would be expected to be different. However, 
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the results of this experiment show no significant trend in the data, hence the observed 

fractionation is in fact due to an effect occurring at the inlet.  

 

4.5.3 Theoretical considerations 
 
The question is now which mechanism is responsible for the observed fractionation. 

When the air is slowed down at the intake, adiabatic heating (ram-heating) causes the 

air inside the inlet to be higher than outside. However, thermal fractionation due to 

this temperature gradient would result in a negative fractionation effect (lower O2/N2 

ratios) instead of the enhancement observed here. In addition, reducing the velocity 

causes the air pressure to be slightly higher inside the inlet.  

 

Pressure-induced fractionation would cause enhanced O2/N2 ratios and an increasing 

effect with increasing difference between aircraft and intake velocity, as observed in 

the experiments. Estimating the pressure fractionation using Equation 1.7, however, is 

not straightforward in this case, as the pressure gradient responsible for fractionation 

is not the static pressure difference between the inside and outside of the inlet. 

Decisive here is rather the component of the pressure gradient that is perpendicular to 

the direction of the flow (i.e. to the stream lines).  

 

A fractionation mechanism related to this component of the pressure gradient is 

‘separation nozzle effect’, i.e. the mass separation by centrifugal forces as molecules 

enter the inlet on curved stream lines. This mechanism is a well-known method to 

separate heavier and lighter molecules in a gas mixture, that is mainly used for 

enrichment of uranium (Becker et al. 1967; Becker 1986). The Treaty on the Non-

Proliferation of Nuclear Weapons makes it difficult to find detailed characterization 

of the process in publicly available literature, however, some experimental results and 

relevant equations are given by Li et al. (2007). Following that paper, the diffusive 

flux characterizing the separation process can mainly be expressed as  
 

p
pJ ∇

⋅ρ~
r

                    (4.10)  

 



Investigation of possible inlet fractionation effects     119 

    

Here, ρ is the gas density, p the gas pressure and p∇  the pressure gradient. The 

separation process is driven by the component of the pressure gradient that is normal 

to the streamlines and can be expressed in terms of the centrifugal force:  
 

r
v

dr
dpp

2

==∇                    (4.11) 
 

with v being the velocity of the fluid and r the radius of curvature of the streamline.  

 

The overall separation effect S can then be described as the integrated flux along the 

streamline: 
 

∫ ⋅
⋅ dt

rp
vS

2

~ ρ
                    (4.12) 

 

To see whether this mechanism can explain the observed fractionation effect, 

Computational Fluid Dynamics (CFD) simulations of particle trajectories in the wind 

tunnel were used. These simulations (provided by M. Hermann, Leibniz Institute for 

Tropospheric Research, Leipzig) were performed with the commercial CFD code 

FLUENT (Fluent Inc., Lebanon, www.fluent.com) for the highest and lowest ‘aircraft 

velocity’ used in the laboratory experiment.  

 

Figure 4.17 shows these trajectories for the two aircraft velocities, with the upper plot 

representing the lowest aircraft velocity (19 m/s) and the lower plot the highest 

aircraft velocity (43 m/s). In these plots, air is entering the inlet from the left side; the 

grey bars indicate the cross section of the tube walls. Only half of the inlet is shown, 

the dashed line at y = 0 designates the middle of the inlet. For each case, 50 

trajectories were calculated, mainly covering the range close to the borderline 

between trajectories that still enter the inlet and those that get diverted. Trajectories 

are colored by air velocity, corresponding to the color scale at the bottom of Figure 

4.17. 

 

The calculation of S was done by performing the integration from Equation 4.12 for 

each trajectory, until the point where the trajectories do not have the chance to be 

influenced by each other (indicated by the dashed lines in Figure 4.17).   
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Figure 4.17:Particle trajectories in air entering the inlet for aircraft velocities of 19m/s 
(upper plot) and 43m/s (lower plot). Trajectories are colored by air velocity, corresponding 
to the color below. Only trajectories close to inlet walls are shown. Air is entering the inlet 
from the left, the grey bar indicates the cross section of the inlet wall at the horizontal line at 
y=0 the middle of the inlet (only half cross section plotted here). Dashed lines indicate the 
points where inside and outside trajectories can not communicate with each other (endpoint 
for the integration from Equation 4.12) 
 
Results of the integration are shown in Figure 4.18; here the resulting separation 

effect is plotted against the trajectory number. Blue dots indicate the results for the 

lower aircraft velocity, red dots results for the higher aircraft velocity.  The vertical 
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lines in the respective color show the border between trajectories that enter the inlet 

(in the following called ‘inside trajectories’) and those that get deflected (in the 

following called ‘outside trajectories’). Trajectory numbering starts from the middle 

of the inlet, thus inside trajectories are located left of the separation line whereas 

outside trajectories are situated on the right side of the respective line. 

 

 Figure 4.18: Separation effect (integrated centrifugal force) for all trajectories and two 
different aircraft velocities. Vertical lines indicate separation between trajectories that enter 
the inlet and those who get deflected. 
 
It can be seen that all values are positive, thus molecules moving on all investigated 

trajectories are enriched in O2. However, the enrichment is significantly higher for the 

higher aircraft velocity, as it is in the experiment. In addition, a clear difference can be 

seen between inside and outside trajectories for velocity, with the integrated 

centrifugal force being higher for the outside trajectories. The effect is highest or the 

two boundary trajectories at the transition from inside to outside and decreases at both 

sides of the transition. The best measure for the separating effect for a given velocity 

is the value Sb at the outside boundary trajectory; this is to first order expected to be 

proportional to the measured fractionation effect (in per meg). The ratio rs = Sb(va = 

43m/s) / Sb(va = 19m/s) results in a value of rs = 3.09. This ratio is in agreement with 

the ratio of the measured fractionation effects (rm = δ( va = 43m/s)/ δ( va = 19m/s) = 

3.31 ± 1.38, indicating that the calculated effect (i.e. Equation 4.12) is indeed 

proportional to the observed fractionation effect.  
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4.5.4 Scaling to aircraft measurements 
 
The dependence of the observed fractionation effects on the aircraft velocity can thus 

be explained by the separation nozzle effect. However, the information from 

measurements and CFD simulations so far is not sufficient to upscale the effect to the 

real situation at an aircraft’s inlet. When working with Reynolds numbers similar to 

those in the laboratory experiment, the curvature of the streamlines is probably similar, 

with the fractionation being a function of the ratio of vaircraft/vintake. To derive the 

magnitude of the effect for other combinations of velocities and inlet diameters, and 

to see whether it exceeds the measurement precision significantly, further CFD 

simulations are required.  

 

Critical for airborne measurements is the fact that fractionation effects can also be 

altitude dependent rather than causing a constant offset. In higher altitudes, the air 

pressure is lower, which usually also leads to an increase in aircraft velocity. If no 

active pressure control is used, the intake velocity might also vary with altitude as 

constant performance of the intake pump corresponds to constant volume flow and 

hence lower mass flow at higher altitudes. This leads to higher differences between 

aircraft and intake velocities. Under these conditions, Equation 4.12 suggests higher 

O2 values at higher altitudes.  

 

As described in Chapter 3, analysis of flask samples for Ar/N2 in addition to O2/N2 

can be used as a diagnostic for fractionation in O2/N2. This is possible as most 

fractionation mechanisms affecting the O2/N2 ratio also have an effect on Ar/N2 that is 

usually larger than the effect on O2/N2. 

 

This is also true for the effect here: As it is a form of pressure fractionation, it scales 

with the mass difference between the two components (see Equation 1.7), the 

difference between Ar/N2 and O2/N2 fractionation is thus: (mAr-mN2)/(mO2-mN2) = 3, 

with mi between the molecular weight of the species i (mO2=32;  mN2=28; mAr=40).  
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The separation nozzle effect would thus also cause higher Ar/N2 ratios in higher 

altitudes. This is in agreement with observations by Graven et al (personal 

communication) who observed a small increase in Ar/N2 with altitude during the 

COBRA experiment (CO2 Budget and Rectification Airborne study, see (Stephens et 

al. 2000), resulting in a difference of 9 per meg over 8 km. However, the results from 

flask samples taken during the BARCA campaign, presented in Chapter 3, show the 

opposite effect. In addition, the difference of -30 per meg over 4 km is much larger 

than the one observed in COBRA. The main reason for that is that for BARCA a 

rearward-facing inlet was used for the sample intake, while in COBRA the inlet was 

forward-facing (and thus corresponding to the situation in the laboratory experiment). 

As streamlines look completely different for a rearward-facing inlet, the separation 

nozzle effect goes most likely in the opposite direction in this case. Therefore the 

observed altitude variation in the BARCA results could also be explained by the 

separation nozzle effect. The higher magnitude of the variation in the BARCA results 

could be due to the difference between rearward and forward-facing inlet, as 

streamlines are probably stronger curved for the rearward intake. Other reasons for 

the higher difference could be the smaller inlet diameter in BARCA (1/4” versus 3/8” 

in COBRA), the lower intake flow (~3 versus ~10 l/min) and the fact that, contrary to 

COBRA, no intake pressure or flow control was used in BARCA. Here again, further 

CFD simulations are required to fully understand and qualify the effect for rearward-

facing inlets. 

4.6 Conclusion and Outlook  
 

In this chapter, the development of an in-situ instrument for airborne measurements of 

atmospheric O2 is presented. ICON, the In-situ Capability for O2/N2 measurements, is 

designed for use onboard small research aircraft, targeting a fast instrument response, 

the ability for fully automated use as well small size, low weight and robustness. 
  
The instrument uses vacuum-ultraviolet (VUV) absorption to detect changes in the 

oxygen content of the sample air, as this method is best suited for the use onboard 

aircraft. As the need for ppm-level stability of the sample pressure calls for a 

complicated (and thus weight and space intensive) gas handling system, here a two-
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cell design is used instead: Simultaneous measurements of the sample air and a 

reference gas are performed. Directly connected cell outlets allow for a simplified 

pressure control based on matching the pressure difference between the cells rather 

than controlling the absolute pressure. The differential pressure control is able to 

control intake pressures ranging from 300–1000 mbar, covering more than the full 

range of ambient pressures usually experienced by small research aircraft. 
 

For detecting and recording changes in the VUV radiation, an electronic system 

consisting of phototube detectors, amplifying electronics and a 23bit data acquisition 

system was assembled and tested. In its final version, the system is able to perform at 

noise levels close to the theoretical limits for Johnson and shot noise. The whole setup 

was assembled into a standard 19” rack with a size of 44 cm x 36 cm x 23 cm and a 

weight of 12kg. 
 

In addition, the possibility to use lightweight air cartouches with miniaturized 

regulators as reference cylinders for the ICON was investigated. Mass-spectrometric 

measurements of O2/N2 ratios delivered from these small tanks showed that they can 

at least be used for short-term calibration during a measurement flight: After an 

exponential run-in effect of ~1h, the tanks exhibit a stable linear drift of 1.5 – 5.5 per 

meg/h. As the drift proved not to be reproducible for subsequent tanks in a 

measurement series, independent analysis of their content before and after the flight is 

required. 
 

The targeted precision of the device on the order of a few per meg has been shown 

achievable with respect to individual components’ performance, but the development 

of the instrument could not be fully completed in the course of this thesis. The main 

reason for this is a disturbance in the signal that started after repackaging the device to 

the airborne design, currently making any high-precision measurement impossible. 

Thorough investigation of possible sources for these disturbances indicates the 

presence of small leaks in the system, most likely at one of the connections between 

the core parts (lamp, beamsplitter, measurement cells and detectors). To some extent, 

leaks were already removed, resulting in a significant enhancement of the signal 
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quality. However, further tests and probably a redesign of critical connections are 

required before the instrument can perform with the targeted precision.  
 

In addition, there is still a significant amount of work required to get from the current 

status to a final prototype. Further laboratory tests are required to determine the 

timescales for temporal stability and calibration intervals for the system. It needs be 

investigated whether dissimilar drift of the two channels and the fact that the data 

acquisition system does not measure both signals at exactly the same time cause any 

problems for the measurement. Finally, the instrument needs to be thoroughly tested 

in the field. Although it is designed to be robust and insensitive to vibrations and to 

deal with a wide range of intake pressures, field experiments have to show how the 

different components perform under real flight conditions.  However, from the results 

so far, the ICON clearly shows potential to become a valuable instrument. With its 

fast response, compact design and easy handling it is not only well-suited for in-situ 

airborne measurements, but could also be used on ground- or ship based platforms.  
 

In the course of the development of ICON, possible influences of fractionation at the 

aircraft’s inlet have also been investigated. Airborne measurements are susceptible for 

these effects because of the changing ambient conditions. In addition, the effects 

could be especially critical for ICON as the low sample flows imply higher 

differences between aircraft and intake velocity. Laboratory experiments with a 

down-scaled inlet in a miniaturized wind tunnel have shown significant O2/N2 

fractionation effects up to 12 per meg. Measurements at constant intake flow at 

different ‘aircraft velocities’ show O2 enrichment of the sample air, increasing with 

increasing difference between aircraft and intake velocities.  The separation nozzle 

effect, i.e. the mass-dependent fractionation caused by centrifugal forces that the 

molecules experience on their way into the inlet, was identified as a possible reason 

for the observed fractionation. With the help of Computational Fluid Dynamics (CFD) 

simulations, it could be shown that this effect can explain the sign and velocity 

dependence of the observed fractionation. Further CFD simulations are required to 

quantify the absolute value of the effect and to predict it for other inlet diameters and 

velocity ranges.  
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The separation nozzle effect has also been shown to be the likely explanation for 

variations in Ar/N2 observed during the airborne campaign COBRA and BARCA. In 

both campaigns, Ar/N2 derived from flask samples showed a dependence of the 

sample altitude. Whereas Ar/N2 increased with height for COBRA (where a forward-

facing inlet was used), it decreased with height for BARCA (where the inlet was 

facing backward). The sign of the altitude dependence for forward and rearward inlet 

agrees with the expectations for fractionation due to the separation nozzle effect. 

Whether this effect can also explain the magnitude of the observed variations remains 

to be determined.  
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Chapter 5                                        
Summary and Conclusions  
 

High-precision measurements of atmospheric oxygen play an increasingly important 

role in our understanding of the global carbon cycle. As the biogeochemical cycles of 

O2 and CO2 are closely coupled, different processes have characteristic oxidative 

ratios (OR = – ΔO2 [mole]/ΔCO2 [mole]). Hence measurements of atmospheric O2, 

together with CO2, help partitioning the global oceanic and terrestrial carbon sinks 

and to identify different processes influencing the atmospheric CO2 concentration on 

local or regional scales. However, measurements of atmospheric O2 are quite 

challenging, as relevant variations occur on a parts-per-million (ppm) level against the 

high background value of ~21%. Measurement artifacts caused by fractionation, i.e. 

diffusive separation of molecules due to gradients in pressure, temperature and 

humidity or adsorption onto surfaces, become critical at these levels. 

 

Over the past two decades, advances in measurement techniques and the growing 

density of the global network of monitoring stations have increased the scientific 

knowledge on atmospheric oxygen and its use as a tracer for carbon cycle processes. 

Especially the increasing number of continental monitoring stations allows better 

constraining surface-atmosphere exchange fluxes from regional to continental scales. 

However, the proximity of these stations to highly variable (e.g. anthropogenic) 

sources and sinks complicates the interpretation of measurements.   

 

This thesis addresses two important aspects to improve the ability to utilize those data:  

First, the characterization of anthropogenic sources, their spatial and temporal 

variability and their influence on the atmospheric composition, and second, the use of 

airborne measurements to characterize the spatial heterogeneity of atmospheric mixing 

ratios in between the ground-based monitoring stations.  
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The first aspect is addressed in Chapter 2 by investigating whether simultaneous O2 

and CO2 measurements can be used to identify different fossil fuel sources as different 

combustion processes have different oxidative ratios, depending on fuel compositions 

For this purpose, a high-resolution dataset of anthropogenic CO2 emissions and the 

corresponding O2 uptake was created from emission inventories and fuel consumption 

data. The COFFEE (CO2 release and Oxygen uptake from Fossil Fuel Emissions 

Estimate) dataset contains hourly CO2 and O2 data for the years 1995 to 2008 on a 

1°x1° grid. Based on this dataset, it was investigated whether spatial and temporal 

variations in O2/CO2 emissions ratios leave a detectable signature in atmospheric 

oxygen. Model simulations from the (global) TM3 and (regional) REMO model show 

that the influence of the local fuel mix changes the atmospheric O2 concentration at 

the measurement stations in the atmospheric monitoring network by several ppm.  

 

Whether these effects can actually be detected in atmospheric CO2 and O2 

observations was examined for two cases: the Ochsenkopf tall tower, a continental 

station in Germany that is operated by MPI-BGC, and Hateruma Island in Japan, a 

rather polluted station operated by the Japanese National Institute of Enviromental 

Studies (NIES). For the first case, influences of variable fossil fuel related oxidative 

ratios could not be detected, as both fossil fuel signals and variations in the local fuel 

mix are rather small at the Ochsenkopf station, where atmospheric signals are mainly 

dominated by biospheric processes. However, for Hateruma Island subjected to air 

masses from different Asian countries with different oxidative ratios, a significant part 

of the observed variations in oxidative ratios could be captured using modeled fossil 

fuel variations. In addition, regional modeling results performed at NIES (using the 

COFFEE dataset as input) indicate the possibility to use measured variations in 

oxidative ratios for detecting of the origin of the air arriving at Hateruma. 

 

In addition, the global perspective of variable oxidative ratios was investigated, using 

atmospheric inversions of APO (atmospheric potential oxygen). The artificial tracer 

APO = O2 + 1.1 CO2 is used isolate the oceanic component from measured oxygen 

signals. For the calculation of APO fluxes, assumptions on global oxidative ratios for 

biospheric activity and fossil fuel combustion need to be made. As the inversion 
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method derives fluxes by minimizing the mismatch between measured and model-

derived atmospheric concentrations, this works as long as the atmospheric 

concentration at the monitoring stations is not significantly influenced by the local 

fuel mix. This is the cases for the classical remote monitoring stations, but the use of 

stations closer to anthropogenic sources leads to part of the fossil fuel signal being 

misinterpreted as oceanic signal. Synthetic data experiments with different sets of 

monitoring stations showed that the differences caused in the seasonal variations of 

APO fluxes are in any case negligible compared to other uncertainties in the inversion. 

However, the influence of the local fuel mix causes systematic offsets in certain areas, 

as soon as more polluted stations, for example Hateruma Island, are used. Future 

inversions will most likely also include observational input from existing continental 

stations, mainly in Europe and North America. Results of the synthetic data 

experiments indicate that the inclusion of these stations leads to a significant negative 

bias in the Northern Atlantic region when using the simplified assumption of constant 

oxidative ratios for fossil fuel combustion. Thus, a dataset as COFFEE that 

characterizes spatial and temporal variations of anthropogenic CO2 emissions and the 

related O2 uptake is indeed a useful tool for this purpose. 

 

Chapters 3 and 4 address the second important aspect for improving the interpretation 

of atmospheric measurements from continental stations. As atmospheric variations of 

tracers over continents are influenced by sources and sinks with strong temporal, but 

also spatial variability, it is important to characterize the impact on spatial tracer 

distribution in the atmosphere near monitoring stations. The best characterization can 

be done with airborne measurements. Aircraft can not only provide access to different 

temporal and spatial scales, but are also uniquely suited for measuring three-

dimensional distributions of atmospheric tracers or to follow air masses.  

 

In spite of the advances in measurement techniques for atmospheric oxygen, airborne 

measurements are still rare and mostly limited to flask sampling, providing limited 

information due to the lower temporal and spatial resolution. In Chapter 3 of this 

thesis, the feasibility of using oxidative ratios from airborne flask samples for the 

separation of different processes was investigated. This was done for the case of the 



Summary and Conclusions    131 

    

BARCA (Balanço Atmosférico Regional de Carbono na Amazônia) aircraft campaign 

in the Brazilian Amazon Basin. 

  

Oxidative ratios were determined from linear regression of the O2 versus CO2 mole 

fraction of the flask samples after correcting the O2 mole fraction for possible 

fractionation effects using measured Ar/N2 ratios in the flasks. With 1.15 ± 0.02, the 

overall oxidative ratio is close to 1.1, the oxidative ratio for biospheric activity. Apart 

from the dominating biospheric processes, also other contributions could be identified:  

Oxidative ratios in higher altitudes/above the planetary boundary layer showed 

significantly higher values, most likely related to atmosphere-ocean-exchange. Closer 

to the ground, influences from fossil fuel combustion (OR=1.4) and biomass burning 

(OR = 1.11-1.4) could be identified, using CO as an additional tracer for these 

processes.  However, the detection of these signals was complicated by the fact that 

the atmospheric composition is a mixture of signals from these combustion processes 

and the strong biospheric signals. Comparison with the CO data indicates that the 

contribution from fossil fuel or biomass burning is less than 60 % of the total CO2 

enhancement. When focusing on samples where the contribution from non-biospheric 

processes is high enough to cause considerable changes in oxidative ratio, the sample 

size quickly becomes too small to determine oxidative ratios robustly. Significant 

identification of different processes is thus limited by the low sampling density here. 

To identify signatures robustly and get a more detailed insight, e.g. identifying 

different kinds of biospheric activity, types of wildfires or emissions from different 

fossil fuel sources,  continuous measurements of both O2 and CO2 are inevitable.  

 

This need for continuous O2 measurements – that are currently limited by the 

availability of suitable instruments – is addressed in Chapter 4. Here the development 

of an in-situ instrument for airborne measurements of atmospheric O2 is presented. 

ICON, the In-situ Capability for O2/N2 measurements, is designed for the use onboard 

small research aircraft, targeting a fast instrument response, the ability for fully 

automated use as well small size, low weight and robustness. This target is achieved 

by using VUV absorption as measurement principle (allowing fast instrument 

response and low motion sensitivity), and a two-cell design for simultaneous 
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measurement of the sample air and a reference gas (allowing a simple differential 

pressure control instead of a complicated – and thus weight and space intensive – gas 

handling system. In addition, low sample flows reduce the required amount of 

reference gas and thus allow using light-weight 1l-cartouches instead. As no 

commercial VUV based instrument for O2 measurements exist, all components of the 

optical, gashandling, detection and data acquisition system had to be designed and 

custom built. The whole setup was assembled into a standard 19” housing with a size 

of 44 cm x 36 cm x 23 cm and a weight of 12kg. In the course of thesis, the targeted 

precision of the device in the order of few per meg was shown achievable with respect 

to individual components’ performance. The final instrument package has to be 

further tested in the laboratory and in the field, before it can be fully deployed 

onboard research aircraft. However, overall the ICON instrument development clearly 

shows the potential to become a valuable instrument, not only for airborne 

measurements.  

  

In the course of the development of ICON, also possible fractionation effects at the 

aircraft’s inlet have been investigated. These effects are critical in the case of airborne 

measurements because of the changing pressure and temperature conditions; and 

especially dangerous for ICON as the low sample flows imply higher differences 

between aircraft and intake velocity. In the case of airborne flask sampling, O2/N2 

fractionation can be corrected for using measured Ar/N2 ratios, as done in Chapter 3. 

However, this workaround is not possible for in-situ measurements as performed by 

the ICON. Laboratory experiments with a down-scaled inlet in a miniaturized wind 

tunnel show significant fractionation effects. With the help of Computational Fluid 

Dynamics (CFD) simulations, the observations could be explained by mass-dependent 

fractionation caused by centrifugal forces that the molecules experience on their way 

into the inlet. The same fractionation mechanism has also been shown to be the likely 

explanation of variations in Ar/N2 observed during the airborne campaign COBRA 

and BARCA. Further CFD simulations are required to describe the effect as a general 

function of inlet parameters, aircraft velocity and ambient pressure and temperature 

conditions. 
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Overall, the work of this thesis contributes to advancing the knowledge of the small 

scientific community dealing with measurements of atmospheric O2 especially over 

continents and in the vicinity of strong sources. Investigation of observed oxidative 

ratios in Chapter 2 and 3 has shown two examples how oxidative ratios can be used to 

separate different processes. It has been discussed under which conditions this 

separation is possible, and current limitations of this method have been pointed out. In 

addition, two useful tools have been developed in the course of this thesis – the 

COFFEE dataset as a modelling tool for improving the interpretation of measured O2 

signals and the ICON instrument as an experimental device for improving the 

measurements itself. 
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Appendix 1                                   
Derivation of flask weighting function 
 
Air contained in a flask sample is a mixture of the air that entered during the actual 

filling time and some air that entered during the flushing time before filling. 

Assuming the flushing starts at the time t0 and the filling starts at t1 and ends at t2, the 

weighting function can be derived as follows: For the flushing process, less air from 

the beginning of the flushing time will be contained in the final sample than from the 

end of the flushing time. Presuming perfect mixing of the air, the weight W of air 

entering the flask at a certain time t within the flushing period can be described by a 

decreasing exponential function of the form 
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with τ =V/f being the exchange time of the volume V of the flask at flowrate f.  

 

For the 1l flasks used here, τ can directly be expressed in terms of relative changes in 

the flask pressure p:  )()( 11 tpt
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During the filling process, the relative contribution of the air entering the flask at the 

time t is directly proportional to the flowrate and therefore to the changes in flask 

pressure:  )(
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In summary, the weighting function can thus be written as: 
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Appendix 2                                   
Derivation of optimal optical density 
 
The optimal optical density is defined as the optical density with the optimal signal to 

noise ratio. The relevant signal here is the intensity change that is caused by a certain 

change in oxygen. 

 

Case 1: only 147nm line 
 

Following Equations 4.1, the transmitted light intensity for the 147nm line is given as 

}exp{0 ODII −=                  (A2.1) 
 

Instead of depending on the O2 concentration, as written in Equation 4.2, OD can also 

be expressed in terms of the number n of O2 molecules:  

lnOD ⋅⋅= σ                    (A2.2) 

with l the path length as in Equation 4.2 and σ the absorption cross section. 
 

The change in signal when changing the number of O2 molecules in the sample is thus 
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dnODIODdI }exp{0 −⋅−=⇒                                    (A2.3) 

 

With constndn =≈ −610  for the ppm-level variations observed here, it follows for 

relative changes in signal: ODIdIIODdI −∝⇒⋅−∝                                       (A2.4) 
 

Assuming the noise to vary with I , the optimal signal to noise ratio (SN) is given 

for a maximum in IdI   

 }2/exp{
)2/exp{
}exp{ ODOD

ODconst
ODODconst

I

dI
SN −⋅∝

−⋅
−⋅⋅

==                                     (A2.5) 

 max}2/exp{
!

=−⋅ ODOD                             (A2.6) 

 [ ] { }2/exp2/1 ODODdOD
I

dId −−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛   OD = 2                                        (A2.7) 



Derivation of optimal optical density  136 

Case 2: both emission lines 
 

Taking into account the two emission lines at 147nm (index 1) and 129.5nm (index 2), 

the transmitted intensity is given as  

}exp{}exp{ 202101 ODIODII −+−=                                                                       (A2.8) 

 

Equation 4.2 gives  
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Changes in the signal can be determined in analogy to Case 1: 
 

The individual optical densities can be written as ODx = σx l n 
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Relative changes in the signal are thus given by  

 

 
2

2

21

2211

O

O

X
dX

II
IODIOD

I
dI

+
+

−=                     (A2.14) 

 

By comparing this equation with Equation 4.3, an effective optical density can be 

defined as  
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With r = I01/ I02, 
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The signal to noise ratio is again given by IdI  
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The optimum of this ratio is determined graphically (see Figure 4.2.) 
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