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1 Introduction

Symmetries are one of the essential concepts of modern theoretical physics. The basic

laws and principles of nature are represented by symmetries [1]. A theory describing

nature must hence be compatible with these symmetries. Quantum field theory unifies

the principles of quantum mechanics with the laws of special relativity. These laws are

represented by the relativistic space-time symmetries (Poincaré symmetry). Thus the

Poincaré symmetry is the basic symmetry of quantum field theory. In order to respect

the laws of relativity it cannot be reduced, but only extended by other symmetries.

The symmetries can be found in the experimental results. For example, certain scat-

tering processes do not occur since they violate a symmetry. Based on the observations

of the experiments one can hence find out the symmetries and construct a theoretical

description. In this way the basis of the current quantum field theoretical description

of nature, the standard model, was found. Despite its great success, it is, however, in

some respects an unsatisfactory and incomplete description. One reason can be found

in the Higgs sector of the model. The mass of the Higgs particle must be much lighter

than the next physical scale (Planck mass or GUT scale). This introduces large quantum

corrections that shift this mass towards the larger scale unless they are cancelled by the

parameters of the model. This cancellation can only be achieved by an “unnatural” fine-

tuning of these parameters [2]. The explanation of the astronomical data of the cosmic

microwave background is another problem of the standard model [3, 4]. In fact, these

data are a strong indication for the existence of dark matter that cannot be described by

the standard model. A different motivation for the extension of the standard model is

that it does not involve a description of the gravitational force.

There were many attempts to extend the standard model and its symmetries. However,

it turned out that not all extensions of the space-time symmetries are allowed. Too

many symmetry requirements will restrict the scattering amplitudes of an experiment too

much to allow a realistic result. The very profound analysis of this fact is given by the

Coleman-Manula theorem [5]. According to this theorem only an extension of the space-

time symmetries by an internal symmetry, which does not change the spin or the mass of

the particle, is possible. The only exception not covered by this theorem is a symmetry

that connects fermionic and bosonic fields, a supersymmetry [6]. A first field theoretical

realisation of such a symmetry was found in terms of the Wess-Zumino model [7].

Supersymmetric extensions can help to resolve the problems of the standard model.

The cancellation of fermionic and bosonic divergences resolves the problem of the light

Higgs mass. The new particles implied by the extensions are candidates for the dark

matter. In addition, supergravity, as constructed from a local version of supersymmetry,

is capable for a description of the gravitational force [8, 9]. Furthermore, supersymmetry

plays an important role in string theory, and its investigation is also attractive from

1



1.0 2

the mathematical point of view. However, since supersymmetry is not visible in the

experimental results, it must be broken at the scale of our present investigations.

Although quantum field theory provides a very attractive description of the nature,

many relevant quantities cannot be calculated exactly. In some cases supersymmetry

allows the exact calculation of quantities that are not accessible in other theories. The

most prominent example is the low energy effective action in N = 2 super Yang-Mills

theory [10, 11]. In the general situation one has to rely on approximation methods. The

well-known method of perturbation theory does not allow for a complete analysis of the

theory. It is, e. g., not possible to investigate spontaneous supersymmetry breaking with

this kind of approximation. A very successful method that provides an insight into the

non-perturbative sector are the numerical lattice simulations.

Therefore, it is not only important to know that certain symmetries are compatible

with the general physical principles in quantum field theory. The symmetry must also

be respected by the approximation methods. The investigation of supersymmetry in the

context of certain approximation methods is the topic of the present thesis. The main

emphasis lies on the compatibility of lattice calculations with supersymmetry. A review of

other investigations in the context of supersymmetric lattice calculations can be found in

[12, 13, 14, 15]. It is very important to have this non-perturbative tool at hand for many

investigations of supersymmetric theories. On the other hand, the symmetry is generically

broken in the discretisation of the continuum theory. Therefore, a detailed analysis is

necessary to find out, how supersymmetry can still be respected in these calculations.

Furthermore, also alternative methods are considered here that can be used to study

non-perturbative effects like supersymmetry breaking.

Although the main concern of the thesis is supersymmetry, some of the results apply to

an arbitrary linear global symmetry. It turns out that supersymmetry is in some respects

more difficult to handle in the approximations than other symmetries. One reason for this

is that supersymmetry acts nontrivially on the space-time symmetries. It hence comprises

properties of the space-time and the internal symmetries.

This thesis is organised as follows. In chapter 2 the symmetries are first analysed

from the classical point of view. Some classical theories are introduced to illustrate the

discussion. The general properties, exact relations, and symmetries of the quantum ef-

fective action are considered in section 2.2. This effective action contains all properties

of the quantum theory. Only in very simple cases it can be calculated exactly. Some

approximation methods commonly used to calculate quantum observables are introduced

in section 2.3. Chapter 3 is devoted to general aspects of the construction of a discretised

supersymmetric action. The problem is analysed in a classical way and in the context of

lattice perturbation theory. In chapter 4 a number of different lattice realisations are con-

structed from the supersymmetric examples introduced in section 2.1.4 according to the
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results of this analysis. The results of numerical lattice simulations with these realisations

can also be found in this chapter. Only these can confirm the results of chapter 3. To

get a theoretical prediction that does not rely on a perturbative analysis, the approach

of Ginsparg-Wilson is generalised and applied to lattice supersymmetry in chapter 5. Al-

ternative methods are discussed in chapter 6 and 7. The first one contains an application

of an alternative approach to the loop expansion in supersymmetric theories, whereas in

the latter the method of the functional renormalisation group flow is used.



2 Classical and quantum symmetries

In this chapter the concept of symmetries is introduced first in a classical field theory.

The group of space-time symmetries is based on the principles of special relativity. To

deduce the representation of the symmetries in the theory from these principles one has

to take into account that eventually a quantisation of the classical theory is considered.

This allows the introduction of fermionic fields. From this point of view supersymmetry,

which connects fermions and bosons, is a further generalisation and extension of the clas-

sical concepts of relativity. The basic (global) classical symmetries of a four-dimensional

quantum field theory, with the main emphasis on supersymmetry, are briefly reviewed in

this chapter. Then examples of some classical theories and their corresponding symme-

tries are given. The main focus are supersymmetric models in one and two dimensions as

toy models for the fourdimensional theory. The general aspects that can be found in this

work are illustrated by these models.

After these considerations basic concepts of the quantum field theory are introduced

and the implications of the classical symmetries are given. This presentation contains

already some derivations and discussions that plays a role in the follwing chapters. At

the end of this discussion some methods for approximative calculations of quantum field

theory are introduced.

2.1 Symmetries of the classical action

Classical symmetries are transformations that leave the action – that means the physical

laws – of a considered model invariant. According to the theorem of Coleman and Mandula

the continuous symmetries of quantum field theory are restricted. They consist of space-

time symmetries, internal symmetries and supersymmetry.1 The action in quantum field

theory is a functional of spacetime dependent fields, so the symmetry is represented on a

multiplet of these fields.

2.1.1 Space-time and internal symmetries

A foundation of all physical descriptions is the equivalence principle. It states that in

all inertial frames the same physical laws apply. The corresponding symmetry group,

which transforms the inertial frames into each other, is the Poincaré group, the group of

spacetime symmetries. An invariance of the action under this symmetry group is crucial

for every physical theory. It is defined as the composition of the translation in spacetime

and Lorentz transformations, that leaves the metric of the spacetime invariant. This

symmetry must be respected so it can only be extended if more general symmetries of a

physical theory should be considered. The simplest extension is the inclusion of an internal

1For massless models the space-time symmetries are enlarged by the so called conformal group. This
is not considered here.

4



5 2 Classical and quantum symmetries

symmetry, that does not interfere with the spacetime symmetries. Hence this symmetry

transforms fields that are in the same representation of the Lorentz group into each other.

These are continuous symmetries; additional possible discrete symmetry transformations

are C (charge conjugation), P (parity inversion) and T (time reversal).

The generators of the symmetries correspond to observables, measurable quantities,

that characterise the state of the system like the momentum or the angular momentum. In

a quantum theory these observables are represented by hermitian operators on a Hilbert

space. An exponentiation of these hermitian operators leads to unitary operators that

define the symmetry transformations. This representation of the classical symmetries

by unitary operators in a quantum theory does not cover all the differences that appear

in the translation from a classical to a quantised system. In the quantum theory the

equivalence principle means that the observers of two systems that are connected by a

symmetry transformation should measure the same probability for a certain state. The

identification of all the states that lead to the same probability yield a projective space. A

representation of a group on this space is called a projective representation. Fortunately,

according to the theorems of Wigner and Bargmann all projective representations of a

Lie group can be identified with unitary representations of its universal covering group

with a central extension [16, 17]. Hence instead of considerations of the projective rep-

resentations one can retain the above discussion of unitary representations allowing an

extended symmetry group. The universal covering group of the Lorentz group has the

same generators but allows also representations of half integer spin. This is the reason

why these representations are possible in quantum physics and not in the macroscopic

world. The corresponding fields are called spinor or fermionic fields. According to the

spin statistics theorem the spinor quantum field operators must obey anticommutation

instead of commutation rules. In the path integral description of the quantum theory a

classical action is used to calculate quantum observables. This action must, however, take

account of the fermionic operators. For this reason the introduction of anticommuting

fields (of Grassmann numbers) into the classical action is necessary.

2.1.2 Supersymmetry

The new concept of fermionic, i. e. anticommuting, operators and fields is in that sense

introduced by the quantum nature of the theory. This extension of concepts demands also

a revision of the above considerations about possible symmetries of a physical theory. If

we introduce fermionic objects as field operators, these objects should in principle also be

allowed as symmetry generators. This symmetry is called supersymmetry. It translates

fermionic into bosonic fields and acts hence nontrivially on the Lorentz group. According

to the theorem of Coleman and Mandula this is not allowed for any other symmetry.

Some basic facts of supersymmetry can be illustrated with some relations from the



2.1 Symmetries of the classical action 6

fourdimensional supersymmetry algebra:

{

Qi , Q̄j

}

= 2(δijγ
µPµ + iImZij + iγ5ReZij) (2.1)

[

Qi , Pµ

]

= 0 ;
[

Qi , Mµν

]

=
1

2
ΣµνQi ;

[

Qi , R
]

∝ (r)ijQj . (2.2)

The fermionic operators Q are fourcomponent spinors in a Majorana representation and

have hence a nontrivial commutation relation with the generators of the Lorentz transfor-

mationsM . The commutator of two supercharges is, apart from possible central charges Z,

an infinitesimal translation P . In addition internal symmetry generators R (R-symmetry)

can act on the supercharges.

The supercharges are represented on a multiplet of bosonic and fermionic fields. In

some cases a superspace representation can be used. The space is then extended by

fermionic coordinates and instead of the multiplet one has a superfield that depends on

the coordinates of this extended space. The supercharges are linear combinations of space-

time derivatives multiplied by Grassmann coordinates and derivatives with respect to the

fermionic coordinates.

2.1.3 Supersymmetric actions

If all supersymmetry variations of a Lagrangian, δL, are zero it must be constant. This

follows from the fact that the commutator of two supercharges represents a derivative

operator. A nontrivial invariant action is hence only possible for δL = ∂µKµ. It can

be obtained from a polynomial of superfields on which some operators commuting with

the supercharges are applied. An integration over the fermionic coordinates generates a

Lagrangian that transforms, as required, into a total derivative. This is a consequence of

the basic rules of the Grassmann integration that acts in the same way as a derivative

and squares to zero. So only the space-time derivative part of the supercharge remains.

Such a Lagrangian corresponds to the highest component of a multiplet, which is also

transformed into a total derivative.

The supersymmetry transformations are so far represented by linear operators. On

the other hand most of the nontrivial interaction terms for fermionic and bosonic fields

have a different form. They can only be related by nonlinear transformations. The reason

for the linear representation is that the considered supersymmetric actions contain auxil-

iary fields. If these fields are replaced according to their classical equation of motion the

transformations become nonlinear and the action obtains a more common form. So the

auxiliary field can be seen as a linearisation method for the supersymmetry transforma-

tions.
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2.1.4 Examples

The main subject of this work is the investigation of supersymmetric quantum field the-

ories. As an illustration and for further investigations low dimensional models are used.

In addition several aspects of general global symmetries in quantum field theories are

covered. Especially with respect to the lattice calculations chiral symmetry provides a

good nontrivial example and is introduced here in its classical form.

Chiral symmetry

In the classical, or tree, approximation the chiral symmetry is a simple example of an in-

ternal symmetry. A massless fermionic action term in four dimensions can be constructed

according to

S[ψ̄, ψ] =

∫

d4x ψ̄(x) /Dψ(x) . (2.3)

The /D may contain also the dependence on a backround gauge field, Aµ. In this case

Dµ = ∂µ + Aµ and the usual gauge field term with the field strength Fµν is added

S =

∫

d4x

(

ψ̄(x) /Dψ(x) +
1

2g2
trF µνFµν

)

. (2.4)

It is easy to prove that the action is invariant under the transformations generated by γ5

(with ψ → ψ′ = e−iǫγ5ψ and ψ̄ → ψ̄′ = ψ̄e−iǫγ5) since this matrix anticommutes with the

gamma matrices. The invariance follows from2

S[ψ̄′, ψ′] =

∫

d4xψ̄(x)e−iǫγ5 /De−iǫγ5ψ(x) = S[ψ̄, ψ] . (2.5)

The symmetry is broken when a mass term ψ̄mψ is added to the Lagrangian.

A one-dimensional supersymmetric action

The one-dimensional equivalent of the Poincaré algebra contains only the translation into

the time direction. A supersymmetry algebra in one dimension is

{

Q , Q̄
}

= 2P
[

P , Q
]

=
[

P , Q̄
]

= 0 (2.6)

The one-dimensional (bosonic) superfield has the following expansion in the Grassmann

coordinates θ θ̄

Φ(t, θ, θ̄) = ϕ+ θ̄ψ + ψ̄θ + θ̄θF . (2.7)

2In Minkowski space this is in accordance with ψ̄ = ψ†A with A = γ0. In Euclidian space one treats
the ψ and ψ̄ as independent instead of using A ∝ 1l or A ∝ γ5.
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It contains the real bosonic field ϕ, the fermions ψ and ψ̄ as well as the auxiliary field F .

The algebra is represented on the superfields by

Q = i∂θ̄ + θ∂t , Q̄ = i∂θ + θ̄∂t , P = i∂t , (2.8)

which means that the components of the multiplet are transformed under the supersym-

metry transformations according to

δϕ = iε̄ψ − iψ̄ε , δψ = (∂tϕ− iF )ε , δψ̄ = ε̄(∂tϕ+ iF ) , δF = −ε̄∂tψ − ∂tψ̄ε . (2.9)

As explained a Lagrangian that transforms into a total derivative corresponds to the

highest component of a superfield. A multiplication of superfields or an application of

operators commuting with Q and Q̄ on them yields again a superfield. In particular Q

and Q̄ anticommute with the covariant derivatives

D = i∂θ̄ − θ∂t , D̄ = i∂θ − θ̄∂t . (2.10)

Obviously, these operators fulfil

{

D , D̄
}

= −2i∂t . (2.11)

The projection onto the highest component corresponds to an integration over all Graß-

mann coordinates. The action is hence obtained from an integration over the whole

superspace. In the present case we consider

S =

∫

dθdθ̄dt

[

1

2
Φ(t, θ, θ̄)KΦ(t, θ, θ̄) + iW (Φ(t, θ, θ̄))

]

(2.12)

=

∫

dt

(

1

2
(∂tϕ)2 − iψ̄∂tψ +

1

2
F 2 + iFW ′(ϕ)− iψ̄W ′′(ϕ)ψ

)

, (2.13)

where W (Φ) is a polynomial in Φ and K = 1
2
(DD̄− D̄D). Since the auxiliary field F has

only an algebraic equation of motion it can be replaced with the solution F = −iW ′ to

get the so-called on-shell action

Son =

∫

dt

(

1

2
(∂tϕ)2 − iψ̄∂tψ +

1

2
W ′(ϕ)2 − iψ̄W ′′(ϕ)ψ

)

. (2.14)

In this form one recognises easily the kinetic terms and the bosonic potential 1
2
W ′(ϕ)2

together with an additional Yukawa interaction between fermions and bosons. This re-
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placement changes the transformation into a nonlinear form:

δϕ = iε̄ψ − iψ̄ε , δψ = (∂tϕ−W ′(ϕ))ε , δψ̄ = ε̄(∂tϕ+W ′(ϕ)) . (2.15)

Note that without the i in iFW ′ one would need a term −1
2
F 2 to arrive at the same on-

shell action. With a real F such a term in an Euclidean action is unbounded from below

and the solution of the equations of motion corresponds to a maximum of the potential.

This situation is quite generic for an Euclidean off-shell action in a supersymmetric the-

ory. In the present work the introduction of the auxiliary field is, however, treated as a

linearisation method for the transformations and the physical situation is described by the

on-shell action. Consequently the (unphysical) auxiliary field can be complex. Whenever

a term like −F 2 or −|F |2 = −FF̄ appears in the action F and F̄ are supposed to be

replaced with iF and iF̄ and the field equations then correspond to a minimum of the

potential. In a path integral the transition from the off-shell to the on-shell action is done

by an integration of the auxiliary field. This integration is exact since the field appears

only quadratically in the action.

For an explanation of further conventions used in later chapters note the factor −i
in front of the fermionic contribution can be neglected. It introduces just an irrelevant

constant factor in the path intergal. Thus the action

Son =

∫

dtLon =

∫

dt

(

1

2
(∂tϕ)2 + ψ̄∂tψ +

1

2
W ′(ϕ)2 + ψ̄W ′′(ϕ)ψ

)

, (2.16)

with the supersymmetry transformations

δϕ = ε̄ψ + ψ̄ε , δψ = (∂tϕ−W ′(ϕ))ε , δψ̄ = −ε̄(∂tϕ+W ′(ϕ)) , (2.17)

describes the same physical situation. The Hamiltonian of this model can be easily derived

by a Legendre transformation of Lon, (2.16). It is

H =
1

2
π2 +

1

2
W ′(ϕ)2 + ψ̄ψW ′′(ϕ) . (2.18)

π is the conjugated momentum to ϕ.

N = 2 Wess-Zumino model in two Euclidean dimensions

For the two-dimensional N = 2 Wess-Zumino model two different formulations are used

in the present work. The first one is a complex formulation with the spinors in a Weyl-

representation (γ0 = σ1, γ1 = −σ2, γ∗ = iγ0γ1 = σ3). With these matrices one can
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introduce derivatives in complex space

1

2
/∂ =

(

0 1
2
(∂0 + i∂1)

1
2
(∂0 − i∂1) 0

)

:=

(

0 ∂̄

∂ 0

)

(2.19)

The complex two-component spinor fields of this model can be decomposed according to

ψ = (ψ1, ψ2)
T and ψ̄ = (ψ̄1, ψ̄2). The bosonic field φ and the auxiliary field F are both

complex and the off-shell supersymmetry transformations are

δφ = ψ̄1ε1 + ε̄1ψ
1, δψ̄1 = −1

2
F ε̄1 − ∂φε̄2, δψ1 = −1

2
Fε1 + ∂̄φε2, (2.20)

δφ̄ = ψ̄2ε2 + ε̄2ψ
2, δψ̄2 = −∂̄φ̄ε̄1 −

1

2
F̄ ε̄2, δψ2 = ∂φ̄ε1 −

1

2
F̄ ε2. (2.21)

with the invariant action

S =

∫

d2x

(

1

2
∂µφ ∂

µφ̄− 1

2
|F |2 +

1

2
F W ′ +

1

2
F̄ W̄ ′

+ψ̄(/∂ +W ′′P+ + W̄ ′′P−)ψ
)

, (2.22)

with the chiral projectors P± = 1
2
(1 ± γ∗) and a holomorphic superpotential W (φ). The

corresponding on-shell theory has the action

S =

∫

d2x

(

1

2
∂µφ ∂

µφ̄+
1

2
|W ′|2 + ψ̄(/∂ +W ′′P+ + W̄ ′′P−)ψ

)

. (2.23)

and the transformations are

δφ = ψ̄1ε1 + ε̄1ψ
1, δψ̄1 = −1

2
W̄ ′ε̄1 − ∂φε̄2, δψ1 = −1

2
W̄ ′ε1 + ∂̄φε2, (2.24)

δφ̄ = ψ̄2ε2 + ε̄2ψ
2, δψ̄2 = −∂̄φ̄ε̄1 −

1

2
W ′ε̄2, δψ2 = ∂φ̄ε1 −

1

2
W ′ε2. (2.25)

For this work the W ′ is chosen to be mφ + gφ2. A shift of the bosonic field makes

the additional symmetries of the model more explicit: W ′(φ) = W ′(φ̃ − m
2g

) = gφ̃2 −
m2

4g
. Thus at m = 0 the bosonic potential 1

2
|W ′(φ̃ − m

2g
)|2 has a U(1) (φ̃ → eiαφ̃) and

a ZP
2 (φ̃ → ¯̃φ) symmetry that is broken down to ZR

2 × ZP
2 (ZR

2 : φ̃ → −φ̃) if m is

nonzero. In the fermionic part the chiral rotation (ψ → eiγ∗α/2ψ; ψ̄ → ψ̄eiγ∗α/2) or,

respectively, the discrete transformation (ψ → iγ∗ψ; ψ̄ → ψ̄iγ∗) compensates the U(1)

or ZR
2 .3 To compensate the ZP

2 transformation in the fermionic part the fermions are

changed according to ψ → γ0ψ and ψ̄ → ψ̄γ0. In addition a parity inversion (x1 → −x1)

has to be applied.4 The whole action is hence invariant under the combination of these

3Note that in these transformations ψ and ψ̄ were treated as independent fields.
4The ZP

2 transformation is a parity inversion where the imaginary part of φ is an axial field.
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bosonic and fermionic transformations.

The complex formulation is in particular useful for analytic calculations. For the

lattice simulations a real formulation is much easier to handle. The physical properties

are the same as in the above complex case. For the matrices the Majorana representation

(γ0 = σ3, γ1 = σ1, γ∗ = −σ2) is chosen and the complex field is decomposed into two real

fields (φ = ϕ1 + iϕ2). The action becomes in this formulation

S =

∫

d2x

(

1

2
(∂µϕ1 ∂

µϕ1 + ∂µϕ2 ∂
µϕ2) +

1

2
V (ϕ1, ϕ2)

+ ψ̄(/∂ + 2gϕ11l + 2giγ∗ϕ2)ψ

)

(2.26)

with the bosonic potential,

V (ϕ1, ϕ2) =
(

m2 + 2mgϕ1 + g2(ϕ2
1 + ϕ2

2)
)

(ϕ2
1 + ϕ2

2) , (2.27)

that has two minima, (ϕ1, ϕ2) = (0, 0) and (ϕ1, ϕ2) = (−m
g
, 0), and is invariant under

ϕ1 → −ϕ1 − m
g

(ZR
2 ) and ϕ2 → −ϕ2 (ZP

2 ). The corresponding fermionic transformations

are the same as mentioned above, apart from the different representation of the gamma

matrices.

2.2 Symmetries of the effective action

So far the symmetries of the classical actions in quantum field theory were discussed. The

physical situation is characterised by expectation values of certain operators (observables).

The classical action determines the dynamic of the classical fields. The dynamic of the

quantum observables is determined by the Hamiltonian. In a quantum field theory the

considered observables are combinations of field operators and are related to the n-point

functions. The generating functional of all connected one particle irreducible n-point

functions is the effective action. The effective action contains the information of the

quantum system. In this chapter I derive some basic quantities and relations for the

description of the quantised system.

For convenience I have to explain some conventions: The fields ϕ, φ, φs used in this

chapter represent multiplets containing bosonic or fermionic fields. The sources j are also

assumed to be composed of sources for each of the multiplet components. In a product

the summation over all indices (if doubly encountered or unspecified) and an integration

over unspecified spatial components is assumed, e. g. jϕ = jiϕi =
∑

i

∫

dDy ji(y)ϕi(y). A

prime at a functional denotes the functional differentiation with respect to the argument

(S ′[ϕ]i(x) = S ′[ϕi(x)] = δS[ϕ]
δϕi(x)

). For fermionic fields the functional derivative are first
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applied from the left then from the right and so on5.

2.2.1 Observables, the effective action, and the path integral

Schwinger functional and the path integral

In quantum field theory the important observables are correlation functions. They are

connected, for example, with the correlations of in and out states in a scattering process.

Under certain assumptions a Wick rotation from the Minkowski space to a Euclidian

theory is possible, where the correlation functions can be derived from the path integral

using the (Euclidian) classical action S (T is the usual time ordering operator):

〈ϕi1(t1, y1)ϕ
i2(t2, y2) . . .〉 := 〈0|T ϕ̂i1(t1, y1)ϕ̂

i2(t2, y2) . . . |0〉E

=
1

Z[0]

∫

Dϕϕi1(t1, y1)ϕ
i2(t2, y2) . . . e

−S[ϕ], where Z[j] =

∫

Dϕ e−S[ϕ]+jϕ . (2.28)

Z[j] is the generating functional of these correlation functions. In the same way W [j], the

so-called Schwinger functional, is the generating functional of the connected part of these

functions. It is defined as the logarithm of Z[j]:

W [j] = log

∫

Dϕ e−S[ϕ]+jϕ = logZ[j] . (2.29)

The effective action

The Legendre transform of the Schwinger functional is the effective action, Γ. For a

functional this transformation is done according to

Γ[φ] = sup
j

(jφ−W [j]) = j[φ]φ−W [j[φ]] , (2.30)

where the supremum of the expression is formally obtained with j[φ] from the inversion

of

φ[j] =
δW [j]

δj
= 〈ϕ〉j . (2.31)

Since W [j] is convex the Legendre transformation can be inverted.

A functional derivative of the generating functional with respect to the field φ yields

the quantum equations of motion

δΓ

δφ(x)
= −

∫

dDy
δW [j]

δj[φ(y)]

δj[φ(y)]

δφ(x)
+

∫

dDy φ(y)
δj[φ(y)]

δφ(x)
+ j[φ(x)] = j[φ(x)] (2.32)

The extremum of the effective action is hence a solution of j[φ(x)] = 0 and because of

5e. g. S′′[ϕ]ij(x, y) = δ2S[ϕ]
δϕi(x)δϕi(y) :=

−−−→
δ

δϕi(x)S[ϕ]
←−−−

δ
δϕi(y)
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equation (2.31) φ is at this point equal to 〈ϕ〉.
The second derivative of the effective action can be calculated from equation (2.31)

and (2.32) to be

δ2W

δji(x1)δjj(x2)

∣

∣

∣

j=j[φ]
=
δφi[j](x1)

δjj(x2)
=

(

δ2Γ

δφiδφj

)−1

(x1, x2) . (2.33)

This expression shows that, if φ = 〈ϕ〉 (j = 0), the second derivative of Γ is the con-

nected two-point function. More generally the effective action serves also as a generating

functional. Higher derivatives at the point φ = 〈ϕ〉 (the minimum of Γ) generate the

(connected) one particle irreducible (1PI) correlation functions.

From the path integral definition of the Schwinger functional one can derive a path

integral form of the effective action6

e−Γ[φ] = eW [j[φ]]−j[φ]φ =

∫

Dϕ e−S[ϕ]+j[φ](ϕ−φ) =

∫

Dϕ e−S[ϕ+φ]+Γ′[φ]ϕ . (2.34)

This is, however, a complicated equation that contains a functional differentiation and

integration.

Now I derive an expression for the differences between the quantum effective action

and the classical action. Similar expressions were found in [18, 19]. To that end we reorder

the terms in equation (2.34) and obtain

e−(Γ[φ]−S[ϕs]−S′[ϕs](φ−ϕs)) =

∫

Dϕ e−(S[ϕ+ϕs]−S[ϕs]−S′[ϕs]ϕ)+(Γ′[φ]−S′[ϕs])(ϕ+ϕs−φ) (2.35)

This equation can be reformulated in terms of a new effective action Γϕs defined by

Γϕs [φ− ϕs] := Γ[φ]− S[ϕs]− S ′[ϕs](φ− ϕs):

e−Γϕs [φ−ϕs] =

∫

Dϕ e−Sϕs [ϕ]+Γ′
ϕs

[φ−ϕs](ϕ+ϕs−φ) . (2.36)

Hence Γϕs is the effective action for the following classical action Sϕs (derivative action7),

Sϕs[ϕ] := S[ϕ+ ϕs]− S[ϕs]− S ′[ϕs]ϕ . (2.37)

This action represents a Taylor expansion of S[ϕ] around ϕ = ϕs without the first and

second contribution. If ϕs is constant it roughly resembles the original action with mod-

ified coupling constants depending on ϕs. , For ϕs = φ the definition of Γϕs simplifies

6In the path integral the invariance under a shift ϕ→ ϕ+ ϕs is assumed.
7This notion corresponds to the derivative Lagrangian defined in [20].
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to

Γ[φ] = S[φ] + Γφ[0] . (2.38)

This formula states that the difference between the classical and the effective action can

be derived from a modified theory with field dependent coupling constants. This theory

is evaluated at a stationary point (S ′
ϕs

[0] = 0). This point is a classical minimum if

S ′′
ϕs

[0] = S ′′[ϕs] ≥ 0. When also Γϕs[φ] has its minimum at φ = 0 equation (2.38) means

that the difference between classical and effective action are the (1PI) vacuum correlation

functions of Sφ.

The renormalisation group flow for the effective action

In the path integral all possible fluctuations contribute. The idea of the renormalisation

group flow is a successive integration of the fluctuations. In that way an interpolation

between the classical and the effective action can be obtained. To that end we include

an additional contribution, the regulator part Sk, in the path integral. It depends on a

parameter k. Subtracting the classical effects of this contribution we define the following

effective action

Γk[φ] = sup
j

(jφ−W [k, j])− Sk[φ] = Γ[k, φ]− Sk[φ] ,

with W [k, j] = log

∫

Dϕ e−S[ϕ]−Sk[ϕ]+jϕ . (2.39)

Γ[k, φ] is the effective action of the regularised theory (regularised effective action). It is

calculated with a regularised version of the classical action SR := S + Sk. In contrast to

the regularised effective action, Γk[φ] is no longer convex. With these definitions at hand,

we derive from equation (2.34)

e−Γk[φ] =

∫

Dϕ e−S[ϕ+φ]+ δΓ[k,φ]
δφ

ϕ−Sk[ϕ+φ]+Sk[φ]

=

∫

Dϕ e−S[ϕ+φ]+
δΓk
δφ

ϕe−(Sk [ϕ+φ]−S′

k[φ]ϕ−Sk[φ]) . (2.40)

Sk should fulfil the following conditions:

(1) If k approaches a cutoff Λ the factor e−(Sk [ϕ+φ]−S′

k[φ]ϕ−Sk[φ]) should resemble δ[ϕ] in

function space. This means that limk→Λ Γk[φ] = S[φ]. Hence the classical action is

obtained at k = Λ. Λ is assumed to be large, Λ→∞.

(2) When k approaches zero Sk should vanish. Consequently we get the effective action

in this limit, limk→0 Γk[φ] = Γ[φ].

In this way Γk interpolates between the classical and the quantum effective action.
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Differentiating Wk with respect to the parameter k yields

∂kW [k, j] = −
∫

Dϕ (∂kSk[ϕ])e−S[ϕ]−Sk[ϕ]+jϕ

Zk[j]
= −〈(∂kSk[ϕ])〉j . (2.41)

The right hand side can be expressed in terms of connected correlation functions. These

are functional derivatives ofWk. The result is hence an equation containing only functional

derivatives of Wk and derivatives with respect to k but no path integral. We want a similar

equation for the flow of the effective action. From (2.30) we immediately conclude that if

W and Γ depend on an additional parameter k the relation ∂kΓ[φ] = −∂kW [j[φ]] holds.

In the definition of Γk the part Sk of the classical contribution was subtracted. Therefore

we get

∂kΓk[φ] = ∂k〈Sk[ϕ]〉j[φ] − ∂kSk[φ] . (2.42)

The correlation functions on the right hand side can in this case be expressed in terms

of 1PI correlation functions. These are obtained in a functional differentiation of Γk+Sk. A

particularly simple case is if Sk is just a quadratic functional, Sk[ϕ] =
∫

dDpϕ(−p)Rk(p)ϕ(p).

One obtains

∂kΓk[φ] =

∫

dDp
(

∂kRk(p)〈ϕ(−p)ϕ(p)〉j[φ] − φ(−p)∂kRk(p)φ(p)
)

=

∫

dDp∂kRk(p)〈ϕ(−p)ϕ(p)〉j[φ],1PI =
1

2
Str
(

∂kRk(Γ
′′
k[φ] +Rk)

−1
)

(2.43)

(the Str includes also the integration of the momentum p). This equation for the flow of the

effective action is sometimes called Wetterich equation [21]. It defines a renormalisation

group flow for the effective action. A solution yields for a given classical action at k = Λ

the corresponding effective action at k = 0. As in equation (2.38) Γ[k, φ] can be derived

from the vacuum correlation functions of the derivative action derived from S[ϕ] + Sk[ϕ].

The expressions of (2.43) are nothing but a differentiation of these vacuum correlation

with respect to k:

∂kΓk[φ] = ∂k(Γ[k, φ]− Sk[φ]) = ∂k(S[φ] + Sk[φ] + Γφ[k, 0]− Sk[φ]) = ∂kΓφ[k, 0] . (2.44)

Expansions of the effective action for supersymmetric theories

The discussion of certain expansion schemes of the effective action of a supersymmetric

theory is necessary to find, later on, a suitable expansion scheme for the flow equations of

the effective action. The applicability of these different schemes is also discussed in the

context of the loop expansion.

The effective action is a functional of all fields and their derivatives. The concrete

form of this action is restricted by Lorentz invariance. Therefore not all combinations of
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the derivatives and the fields are allowed. An appropriate expansion of the effective action

is according to the order of the derivative operators (momentum). For a scalar bosonic

theory this leads to

Γ[φ, ∂φ, ∂2φ, . . .] =

∫

dDxU(φ(x)) +

∫

dDx(∂µφ
i)(∂µφj)Zij(φ) + . . . , (2.45)

and the fermionic case is similar with a /∂-term as the first order. The zeroth order

term U corresponds to the effective potential. It is defined in the limit of constant fields

(φ(x) = φ = const.) with an additional division by the volume Ω. This limit (and the

division) is denoted here for all quantities comparable to the effective potential by small

letters, like u = limφ(x)→φ U [φ(x)]/Ω. u plays an important role in the considerations of

symmetries.

In a superspace representation of a supersymmetric action superfields and their co-

variant derivatives appear. For the off-shell effective action the expansion in terms of

covariant derivatives is hence an alternative to the above expansion scheme. It leads to8

Γ[Φ, DΦ, D̄Φ, DD̄Φ . . .] = i

∫

dDzWeff(Φ(z)) +

∫

dDzDZ(Φ)D̄Z(Φ) + . . . . (2.46)

The zeroth order of this expansion is the effective superpotential Weff. For the classi-

cal action the separation into a part SS,k, quadratic in the covariant derivatives, and

the superpotential W , containing no covariant derivatives, is done according to such an

expansion. For a comparison with U , US is defined as Weff after the integration of the

Grassmann coordinates.9

The zeroth order of the expansion (2.45) contains arbitrary powers of the auxiliary

field. Hence it is invariant only under the zero-mode supersymmetry transformations,

obtained when the derivative terms in the transformations are neglected. The auxiliary

field is, itself, invariant under these transformations. In the expansion in terms of covariant

derivatives (2.46), on the other hand, each contribution is supersymmetric. In other words:

In an expansion of the effective action that is term by term supersymmetric the higher

orders in the auxiliary field should be treated on the same level as the derivatives of the

other fields.

Similarly, in the derivative expansion of the on-shell theory, each order is, itself, not

supersymmetric. The first term of the expansion (2.45) for the on-shell theory Uon is

invariant under the on-shell version of the zero-mode supersymmetry; but not under the

complete symmetry. To arrive at Uon for a given U , the equation δΓ
δF

= 0 must be solved

to eliminate the auxiliary field. (This is the same as setting jF = 0.) All orders in the

8z denotes the coordinates of the superspace. The i is inserted for a comparison with our conventions
in supersymmetric quantum mechanics.

9For supersymmetric quantum mechanics uS = iFW ′
eff

(ϕ).
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auxiliary field are relevant in this step. On the other hand, to arrive at the on-shell

counterpart of US , here called US,on, only a solution of linear equations of motion for the

auxiliary field is necessary. These are obtained when the classical part SS,k is added to

US. US,on is an approximation of the on-shell effective potential Uon, where higher orders

of the auxiliary field are neglected.

2.2.2 Symmetries and Ward identities

With the help of the Schwinger functional the results of a symmetry transformation on

the correlation functions can be investigated in a quite general context. The path integral

with a transformed field ϕ′ must be the same as the one with ϕ since it is a mere redef-

inition of the field. This holds true even if the two fields are connected by a continuous

transformation, ϕ′ = eεMϕ. For an infinitesimal symmetry transformation this means 10

Z[j] =

∫

Dϕ′ e−S[ϕ′]+jϕ′

=

∫

Dϕ Sdet
(

eεM
)

e−S[ϕ]−εδS[ϕ]+j(ϕ+εδϕ) ≈

≈ Z[j] + ε

∫

Dϕ (StrM− δS[ϕ] + jδϕ)e−S[ϕ]+jϕ . (2.47)

Because of this elementary identity the following expression must vanish

〈(StrM− δS[ϕ] + jδϕ)ejϕ〉 = 0 . (2.48)

Suppose the first term does not contribute and the action is invariant under the transfor-

mation. A functional differentiation with respect to j at j = 0 leads to a set of relations

between correlation functions called Ward-Takahashi identities, e. g.

〈δϕ〉 = 0 ; 〈ϕ(δϕ) + (δϕ)ϕ〉 = 0 . . . (2.49)

These relations are the consequences of the symmetry on the level of the correlations

functions, i. e. the observables. Form the above expression, (2.48), one can also derive the

consequences for the effective action setting j = j[φ] and using the quantum equations of

motion:11
δΓ

δφ
〈δϕ〉j[φ] =

δΓ

δφ
Mφ = 〈(StrM− δS[ϕ]〉j[φ] . (2.50)

This equation shows that, provided the right hand side of the equation vanishes, the

effective action and not only the classical action is invariant under the symmetry. It is

then called a Slavnov-Taylor identity [22].

10A definition of the superdeterminant, Sdet, and its relation to the supertrance, Str, can be found in
the appendix A.4.

11Note that the first equality applies for linear symmetries only.
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2.2.3 Symmetries in the renormalisation group flow

In the Slavnov-Taylor-identities, (2.50), one gets an additional contribution if the term Sk

in the flow equations (2.43) is not invariant under the symmetry,

δΓ

δφ
〈δφ〉j[φ] =

δΓ

δφ
Mφ =

δΓk
δφ
Mφ+

δSk[φ]

δφ
Mφ = 〈−δSk[ϕ]− δS[ϕ] + StrM〉j[φ] . (2.51)

The symmetry of initial and endpoint of flow, i. e. the classical and effective action, is

not affected. Instead of the explicit breaking by a non-invariant action or path integral

measure the term 〈δSk[ϕ]〉j[φ] represents a mild breaking of the symmetries. It is called a

modified Slavnov-Taylor identity and has been studied, e. g., in [23, 24, 25]. This applies

for the exact solution of the renormalisation group flow.

2.2.4 Symmetries, divergences and regulators: anomalies

The path integral as defined above is not in all cases a well-defined expression. The inte-

gration involves field configurations with large fluctuations and high momentum modes.

These configurations can lead to divergent terms. This is not a mere problem of the path

integral formulation. It also appears in the operator formalism. There divergences are

introduced in terms of singular expressions (δ distributions) in the (anti)commutation

relations of the field operators after the canonical quantisation. A term 〈StrM〉 =

〈
∫

dnx strMδ(x−x)〉, (2.47), is in the same sense not well defined. In most cases the trace

over the field indices of the matrixM vanishes but an additional divergent factor appears.

To evaluate this expression it has to be regulated. This time the regulator is not merely

a tool for the successive integration of the configurations in the path integral. Eventually

the result should not depend on the choice of regulator. The dependence is absorbed into

some parameters of the theory in a renormalisation procedure. These parameters must be

fixed by some physical input. Hence the predictive power of the theory is lost in favour

of the cancellation of the divergences.

Although the dependence on the regulator is eventually removed it has still conse-

quences for the symmetries. For the removal of the divergences the regulator has to be

chosen according to the symmetry and invariance of the theory. The regulator can, how-

ever, not always be chosen in accordance with all the desired properties of the theory. One

example is a chiral symmetric theory that should at the same time be gauge invariant.

For example with the gauge invariant regulator /D
2
/m2 (m→∞) one has, cf. [26],

〈StrM〉 → lim
m→∞

〈
∫

d4p

(2π)4
γ5e

− /D
2
(p)/m2〉 = 〈 −1

16π2

∫

d4xtrF̃ µν(x)Fµν(x)〉

= 〈n+ − n−〉 . (2.52)
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The last expression contains the index, the number of fermionic zero modes with positive

(n+) or negative (n−) chirality for a given gauge backround. This anomaly appears also

for other regulators that respect the gauge invariance [27].

2.3 Methods of quantum field theory

The above derivations are all exact relations for the effective action and the quantum

observables. Unfortunately a direct evaluation of these quantities is in most cases not

possible. One has to rely on certain approximative calculations. I sketch in the following

basic aspects of different approaches for such calculations.

2.3.1 Feynman diagrams

A well-known method for the calculation of correlation functions are Feynman diagrams.

The action is separated into a dominant part S0 and a perturbation, λSλ with a small

parameter λ, usually the coupling constant. The approach is basically a formal expansion

in the coupling constant. The generating functional Z[j] is represented in the following

way

Z[j] =

∫

Dϕ e−S0[ϕ]−λSλ[ϕ]+jϕ = e−λSλ[ δ
δj

]

∫

Dϕ e−S0[ϕ]+jϕ := e−λSλ[ δ
δj

]Z0[j]

≈
(

1− λSλ
[

δ

δj

]

+
λ2

2
(Sλ

[

δ

δj

]

)2 + . . .

)

Z0[j] (2.53)

In the weak coupling expansion the dominant part is the quadratic free theory. Z0 is

therefore given as

Z0[j] =

∫

Dϕ e− 1
2

R

dDx ϕ(x)Kϕ(x)+jϕ = SdetK e 1
2

R

dDx1dDx2 j(x1)G0(x1−x2)j(x2)

with (KG0)(x1 − x2) = δ(x1 − x2) . (2.54)

The Feyman rules are a well-known graphical representation of this weak coupling expan-

sion. The application of S
[

δ
δj

]

is represented by vertices. The lines represent propagators

of free particles generated by the differentiation of Z0[j]. In this representation a 1PI

correlation function is a diagram that cannot be decomposed into two separate parts by

cutting a single line. Hence an approximation of the 1PI correlation functions is derived

in the weak coupling expansion. An approximation for the effective mass, the pole of the

propagator in momentum space, is deduced from the (connected) 1PI two-point function
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Σ(p) and the free propagator G0 since

G(p) =
G0(p)

+
G0(p)Σ(p)G0(p)

+
G0(p)Σ(p)G0(p)Σ(p)G0(p)

+ · · ·

= G0(p)
∞
∑

n=0

(Σ(p)G0(p))
n = (K(p)− Σ(p))−1 . (2.55)

The effective action is the generating functional of the 1PI correlation functions, and an

approximation of it can be reconstructed from this result. In fact, a common expansion

of the effective action is (cf. [28])

Γ[φ] =

∞
∑

n=0

1

n!

∫

dDx1 . . . d
DxnΓ

(n)(x1, . . . , xn)
(

φ(x1)− 〈ϕ(x1)〉
)

· · ·

· · ·
(

φ(xn)− 〈ϕ(xn)〉
)

. (2.56)

Each of these contributions can be calculated from the 1PI correlation functions: Γ(1) = 0,

Γ(2) = K + Σ, etc. The whole derivation of the Feynman rules can also be done in

superspace (for details cf. [29]).

2.3.2 The loop expansion

The loop expansion is a saddle point expansion of the path integral around the classical

solutions of the field equations [28]. Such a solution minimises the classical action so it has

a larger contribution to the path integral than other field configurations. The exponent

of the path integral has a factor of 1/~ in front of the action and the source term. In

natural units this factor is one, but a domination of the classical contribution can still be

understood as the formal limit ~→ 0. ~ is the expansion parameter of the loop expansion.

Effectively, the loop expansion corresponds to a re-summation of Feynman graphs up to

a certain loop level with an arbitrary number of vertices.

With the help of (2.38) one derives another representation of the loop expansion. It

is the diagrammatic expansion of the vacuum diagrams defined by Sφ. The first (~)

contribution of this expansion is the logarithm of SdetKφ with the quadratic part Kφ

of Sφ, see (2.54). The ~
n contribution is a summation of 1PI vacuum diagrams with n

loops. Note that for the representation in terms of vacuum graphs, it is necessary to have

the minimum of Γφ[φ̃] at φ̃ = 0. This is the reason why the loop expansion fails in a

nonconvex region of the classical potential [18]. A physical interpretaion of this fact can

be found in [30].

In the loop expansion the field φ is usually constant, so one derives an approximation

of the effective potential. The approach can be applied in a more general situation,

but the calculation of the vacuum diagrams is then more difficult. For constant φ the
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φ dependent contributions of Sφ[ϕ] amounts to a (field dependent) modification of the

coupling constants and masses.

Using the expansion in λ of the last section one can determine the effective action

up to a certain order of the expansion 2.56 from the (1PI) diagrams. In this case the

diagrams are calculated only up to a certain order of the coupling constant. In contrast,

the loop calculation yields an approximation of the effective action that contains arbitrary

orders of the fields. However, the (1PI) vertices of the diagrammatic calculations contain

the full momentum dependence; not only the effective potential as obtained in the loop

expansion.

2.3.3 Lattice calculations

The lattice calculation is an approximative evaluation of the path integral that is not based

on a formal expansion. Instead of the continuous D-dimensional space-time a hypercubic

lattice is considered. The lattice sites (xn =
∑

µ nµaµeµ; n ∈ ΛD ⊂ Z
D; nµ the component

of n in µ direction) are separated in µ direction by the distance aµ. In this direction the

number of these sites is Nµ. In the path integral the integration variables ϕn are fields on

the sites.12 They can be seen as continuum fields evaluated at these points. The action

is discretised and becomes a function of ϕn configurations. In this way one arrives at the

lattice action SL. Derivative operators are replaced by discretised approximations of the

continuum derivatives. The examples considered here are13

symmetric derivative (∇(s)
µ ϕ)n = 1

2aµ
(ϕn+eµ − ϕn−eµ)

forward derivative (∇(+)
µ ϕ)n = 1

aµ
(ϕn+eµ − ϕn)

backward derivative (∇(−)
µ ϕ)n = 1

aµ
(ϕn − ϕn−eµ)

SLAC derivative (∇SLAC
µ ϕ)n =

∑Nµ−1
mµ=0(−1)nµ−mµ π/(aµNµ)

sin(π(nµ−mµ)/Nµ)
ϕn+eµmµ

(2.57)

The SLAC derivative14, [32, 33, 34], is derived from a discretisation of the Fourier space

representation of the continuum derivative operator, ∇µ(p) = pµ. After the discretisation

in momentum space a lattice Fourier transformation yields ∇SLAC
µ . (For the conventions

of the Fourier transformation on the lattice see A.3. The lattice momentum of one field

is restriced to the first Brillouin zone (BZ) because of the discretisation.)

The classical continuum limit is determined by a → 0 in the classical action. In this

12The (common) conventions (cf. [31]) for the lattice operators are explained in A.2. Throughout this
work the number of lattice points Nµ is, for convenience, assumed to be odd in all directions µ. eµ is the
unit vector in µ direction. If not further specified, the sum of

∑

n runs always over the whole lattice and
contains a factor of the lattice spacing

∏

µ aµ.
13(∇µϕ)n means

∑

m(∇µ)nmϕm =
∏D−1

µ=0 aµ

∑Nµ−1
nµ=0 (∇µ)nmϕm.

14This derivative is also-called DWY derivative (Drell, Weinstein, and Yankielowicz).
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limit the discretised derivative operators reproduce the continuum derivative (∇µϕ)
a→0−→

(∂µϕ)(xn). By construction, the lattice action turns into the continuum action in the

classical continuum limit. Some basic properties of the action, like hermiticity, should be

already realised at a finite lattice spacing. Therefore, the left and right derivative are only

used in the hermitian combination ∇(+)∇(−).

Flinally, the path integral is approximated15 by a large number of ordinary integrals

in the lattice theory,

〈O(ϕ)〉 =
1

Z[0]

∫

DϕO(ϕ)e−S[ϕ] = lim
N→∞

a→0

〈O(ϕ)〉L ,

with 〈O(ϕ)〉L =
1

ZL[0]

∫ N
∏

n

dϕnO(ϕn)e
−SL[ϕn] , (2.58)

and ZL[j] =
∫
∏N

n dϕne
−SL[ϕn]+

P

n jnϕn . In general the N -dimensional integral cannot be

performed analytically or by the numerical integration techniques like Simpson’s method.

Only Monte-Carlo simulations allow a numerical computation of it. These simulations

generate successively, in a Markov chain, a large number Nfc of field configurations. With

a certain update algorithm a new configuration is calculated from the previous one. If

the conditions of detailed balance and ergodicity are fullfilled by the update algorithm,

the configurations are eventually distributed according to the measure e−SL[ϕn]

ZL[0]
[35, 36].

Expectation values for observables can hence be calculated in terms of

〈O(ϕ)〉L = lim
Nfc→∞

1

Nfc

Nfc
∑

n

O(ϕn) . (2.59)

It must be stressed that in the definition of the lattice path integral, (2.58), the lattice

action was constructed with a correct classical continuum limit. Due to the divergences in

the quantum theory the classical continuum limit does, however, not guarantee the correct

continuum limit for the observables. More precisely the transition from the continuum to

the lattice theory consists of two steps. In the first one a finite volume, a hypercube with

length Lµ = aNµ in µ direction, is considered instead of the infinite continuum.16 The

next step introduces the finite lattice spacing. This situation corresponds to a renormali-

sation group flow: the finite volume introduces infrared regulator for the modes; the finite

lattice spacing an ultraviolet cutoff.17 In the lattice theory the observables are measured.

Eventually the regulator is removed: an extrapolation towards the limit of infinite volume

15As detailed later on the
16In this thesis periodic boundary conditions are applied for this volume, in accordance with supersym-

metry.
17A precise definition for the renormalisation group step from the continuum to the lattice is given in

chapter 5.
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(thermodynamic limit) and vanishing lattice spacing (continuum limit) is performed. For

this extrapolation a smooth behaviour with respect to this limit is needed.

Note that the complete configuration space is sampled only if Nfc tends to infinity.

The finiteness of Nfc, like for a regulator or an additional term in the action, restricts

the considered configurations in the path integral. Ideally the statistical error induced by

this effect is of the order
√
Nfc

−1
and hence very small. It can, however, be that certain

domains of the configuration space with a low action and consequently a large contribution

to the path integral are widely separated from each other. Then all of these contributions

are sampled only for a very large Nfc (when a tunnelling between them occurs).

Symmetries are an essential property of quantum field theories. If possible, the sym-

metries should also be present in the lattice theory. In some cases the symmetries can

not be realised in the same way as in the continuum. From the classical point of view,

there are a number of possible representations of the symmetry on the lattice. All of

these representations differ from each other by operators that vanish for a→ 0. However,

not all of these lattice representations of the symmetry ensure also a symmetric quantum

theory in the continuum limit. The classical continuum limit is altered by the divergent

contributions of the quantum theory.

Another important property of the continuum field theory is its locality. Clearly the

lattice action involves the interaction of fields separated by the lattice spacing and is not

local in the continuum sense. The continuum locality must be recovered in the continuum

limit. In the context of a lattice theory “local” refers to properties that ensure such a local

continuum limit.

The strongest possible requirement to ensure the continuum locality is “ultralocality”.

That means that the interaction of fields maximally separated by a fixed number of lattice

spacing occurs in the lattice action. This is in some cases a too strict requirement. For

the usual condition of locality on the lattice the interaction strength has to decay at least

exponentially with the separation of the lattice fields. The width of this exponential decay

has to scale with the inverse lattice spacing. For a lattice operator this condition means

analyticity and periodicity in momentum space.

From the classically point of view the locality is always ensured as the lattice ac-

tion approaches the local continuum action in the classical continuum limit. This local

classical continuum limit is only spoilt by the divergent quantum contributions. What

kind of divergent contributions appear depends on the considered theory. For some of

these theories even less restrictive requirements than the above mentioned lattice locality

and ultralocality can ensure a local continuum limit. The mentioned lattice derivative

operators (2.57) are all ultralocal except for the non-local SLAC derivative.
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2.3.4 Flow equations for a truncated effective action

A different approach is based on the renormalisation group flow of the effective action,

(2.43). Although this equation contains no path integral it can, in most cases, not be

solved exactly. In addition, all possible operators can be included in the effective action.

Thus it is difficult to find a proper representation or expansion of it. Sometimes the

physical properties of the theory suggest a certain expansion of the effective action. As

explained above, a derivative (or covariant derivative) expansion is a common represen-

tation, another one is shown in (2.56). To get an approximation of the renormalisation

group flow, a certain expansion of the effective action is considered. The flow for the set of

operators that appear in the truncation is calculated. This means that the contribution

of every operator generated on the right hand side of (2.43) and not contained in the

truncation is neglected. One generically arrives in this way at a set of coupled nonlinear

(partial) differential equations. These can be solved with numerical methods.

The best way to respect the symmetries of the quantum field theory in these calcula-

tions is the application of a symmetric regulator. If in addition the truncation respects

the symmetry, all necessary conditions for a symmetric result are fulfilled. When a sym-

metric regulator cannot be chosen, the modified Slavnov-Taylor identities (2.51) should

be respected. These ensure a symmetric endpoint of the flow.



3 The lattice formulation of supersymmetry

This chapter is devoted to the formulation of a supersymmetric theory on the lattice. It is

the first step towards the numerical calculation of quantum field theoretical observables.

As we have seen the symmetries should, if possible, be realised on the lattice as well

as in the continuum theory. Thus I first try to find a realisation of supersymmetric

lattice theory. The first step for the formulation of the lattice theory, the restriction

to a finite volume, can be easily done (except for spontaneously broken supersymmetry

with massless Goldstone modes). Supersymmetry is respected as long as the periodic

boundary conditions ensure the irrelevance of a total derivative term. The discretisation,

the introduction of a UV-cutoff, is a more severe problem in a supersymmetric theory.

The most obvious reason is the violation of the Leibniz rule. There a second, less severe,

problem is associated with the so-called fermion doubling. To solve these problems, the

nonlocal operator, like the SLAC derivative, are found to be useful. I investigate such

nonlocal realisations afterwards in lattice perturbation theory. A correct local continuum

limit is found for the models considered later on in the simulations.

3.1 The failure of the Leibniz rule and supersymmetry breaking

on the lattice

The main source of supersymmetry breaking on the lattice is failure of the Leibniz rule

for any discretised derivative operator. I discuss possible solutions of this problem in this

section. The results of [37, 38, 39, 40] are generalised and compared with the requirements

of the lattice simulations that are the subject of the next chapter. The discretisation of

the supersymmetry transformation is done straight forwardly in this section: the same

lattice derivative operator replaces the continuum derivative in the fermionic and bosonic

kinetic part of the action as well as in the supersymmetry transformations. This deriva-

tive operator is assumed to be antisymmetric and translational invariant. The doubling

problem of such an operator is discussed separately in section 3.2.

3.1.1 Locality and the Leibniz rule

A generic supersymmetric action is invariant up to a total derivative term. Such a term

vanishes if the correct boundary conditions are fulfilled. This is true in the continuum,

where one can use partial integration and the Leibniz rule. For periodic boundary con-

ditions on the lattice the former can be applied1 , whereas the latter is violated by any

lattice derivative operator. Thus the basic source of the supersymmetry breaking on the

lattice is the violation of the Leibniz rule. This violation appears when the product of

continuum fields ϕ(1)(x)ϕ(2)(x) is replaced by a product of fields at the same lattice point

1The lattice counterpart of
∫

dDx(ϕ(1)∂µϕ(2)− (∂µϕ(1))ϕ(2)) = 0 still holds true for an antisymmetric
operator as explained below.

25
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ϕ
(1)
n ϕ

(2)
n .

In considering the supersymmetric examples mentioned in section 2.1.4 the transfor-

mation of the action leads to terms of the form

δS ∝
∫

dDxεα [(∂µψα)W
′(ϕ) + ψαW

′′(ϕ)∂µϕ] . (3.1)

More generally, one arrives in a supersymmetric theory at

δS ∝
∫

dDxεα
[

(∂µψα)ϕ
(1) · · ·ϕ(nf) + ψα(∂µϕ

(1)) · · ·ϕ(nf) + . . .+ ψαϕ
(1) · · · (∂µϕ(nf))

]

. (3.2)

This can be understood from the superspace representation of the supercharges, which

contain Graßmann and space-time derivatives (Q ∝ ∂θ + Θµ∂µ with Θµ depending on the

Graßmann coordinates θ). The action can be represented without loss of generality by a

product of nf fields integrated over superspace. The supercharges generate a change of

this action. It is

δS ∝
∫

∏

α

dθαd
Dx
[

(εQΦ(1))Φ(2) · · ·Φ(nf) + Φ(1)(εQΦ(2)) · · ·Φ(nf) + . . .
]

, (3.3)

and for periodic boundary conditions it is identically zero if the Leibniz rule is fulfilled.

The above expression (3.2) is a component respresentation of this term.

The Leibniz rule is, however, violated by a generic lattice derivative operator. When

the continuum derivative is replaced by a discrete derivative operator the Leibniz rule

becomes

(∇µ(ϕ(1)ϕ(2)))m = ϕ(1)
m (∇µϕ(2))m + (∇µϕ(1))mϕ

(2)
m . (3.4)

This relation does not hold for any lattice derivative operator, but in the zero momentum

sector, i. e. after the summation of m, it is still valid.2 The right hand side of (3.4) is

zero after the summation. The left hand side then corresponds to the lattice analog of

a partial integration, which ensures the supersymmetric invariance of a quadratic lattice

action.

In the higher than quadratic case the expression (3.2) is not zero on the lattice since for

a product of three ore more fields the analog of (3.4) is violated even after the summation.

To show this in detail, let us consider such a product of fields in momentum space. The

2If one splits the antisymmetric matrix ∇ according to (A.11) one can find the modified Leibniz

rule for each of the component:
∑

n∇
(r)
mn(ϕ

(1)
n+rϕ

(2)
n ) = (

∑

n∇
(r)
mnϕ

(1)
n+r)ϕ

(2)
m+r + ϕ

(1)
m (
∑

n∇
(r)
mnϕ

(2)
n ) (in

one dimension). Thus the Leibniz rule is fulfilled up to translations, which are not relevant under the
summation.
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repeated application of (3.4) results in3

(∇µ(ϕ(1) · · ·ϕ(nf)))(ps) =
∑

k1...kn
f

δ(pk1 + . . .+ pkn
f
− ps)(∇µ(pk1) + . . .+∇µ(pkn

f
))ϕ(1) · · ·ϕ(nf) . (3.5)

Supersymmetric invariance implies that this equation must hold for ps = 0 and all fields

ϕ(i). This is equivalent to 4

δ(pk1 + . . .+ pknf
)(∇µ(pk1) + . . .+∇µ(pknf

)) =

nf−1
∑

i=1

∇µ(pki
)−∇µ(

nf−1
∑

i=1

pki
) = 0 . (3.6)

The locality of the action is analysed in the thermodynamic limit, where the discrete

momentum becomes continuous, pki
→ pi. Then locality is corresponds to the analyticity

and periodicity in momentum space (cf. appendix A.3). For convenience the modulus of
∑nf−1

i=1 pµi is first assumed to be smaller than the lattice cutoff Λµ
L = π

aµ
for all directions

µ. Later on I relax this condition. For now these assumptions fix the solution of equation

(3.6) to5

∇µ(p) = c1p
µ . (3.7)

The only possible solution is hence nonlocal. It is (apart from irrelevant constants) the

SLAC-derivative.

One can try to avoid this nonlocality of the lattice action with the introduction of a

modified interaction term. For example, the product of three fields is represented on the

lattice according to

∫

dDxϕ(1)(x)ϕ(2)(x)ϕ(3)(x)
on the lattice−→

∑

m1,m2,m3

C̃m1,m2,m3ϕ
(1)
m1
ϕ(2)
m2
ϕ(3)
m3
. (3.8)

In Fourier space this ansatz brings equation (3.6) into the form (cf. (A.13))

C̃(p1, p2, p3)(∇µ(p1) +∇µ(p2) +∇µ(p3)) = 0 , (3.9)

which is solved by

C̃(p1, p2, p3) = δ(∇µ(p1) +∇µ(p2) +∇µ(p3)) . (3.10)

For the symmetric derivative such a solution was proposed in [37]. However, with a

3Cf. appendix A.3 for the transformation to momentum space.
4The dispersion relation of ∇µ

mn is periodically continued for momenta larger than the lattice cutoff
(c.f. section A.3).

5c1 = 1 in the continuum limit; additional constant contributions are zero because∇µ is antisymmetric.



3.1 The failure of the Leibniz rule and supersymmetry breaking on the lattice 28

derivative different from (3.7) the solution breaks the translational invariance on the

lattice. A possible solution is to accept a modification of this invariance [39]. Here this

property is, however, considered to be even more important than locality. A translational

invariant choice is C̃n1,n2,n3 = C(n1−n2),(n1−n3). The product of three fields in (3.8) is then

represented by (cf. (A.16))

∑

m1,m2,m3

Cm3−m1,m3−m2

[

(∇µϕ(3))m3ϕ
(1)
m1
ϕ(2)
m2

+ ϕ(3)
m3

(∇µϕ(1))m1ϕ
(2)
m2

+ ϕ(3)
m3
ϕ(1)
m1

(∇µϕ(2))m2

]

=

∫

p1,p2,p3

ϕ(3)(−p1 − p2)C(p1, p2)(∇(p1) +∇(p2)−∇(p1 + p2))ϕ
(1)(p1)ϕ

(2)(p2) .

Obviously, this approach can be generalised to the situation of nf fields, and the condition

for supersymmetric invariance, cf. (3.6), becomes6

C(p1, . . . , pnf−1)

[

nf−1
∑

i=1

∇(pi)−∇(

nf−1
∑

i=1

pi)

]

= 0 . (3.11)

This corresponds to the Leibniz rule for nf − 1 fields with the modified lattice product

(ϕ(1) ∗ ϕ(2) ∗ · · · ∗ ϕ(nf−1))l :=
∑

m1,...,mn
f
−1

Cl−m1,...,l−mnf−1ϕ
(1)
n1
· · ·ϕ(nf−1)

mn
f
−1
. (3.12)

The advantage of the modified lattice product is that C(p1, . . . , pnf
) can vanish instead

of the terms in the square bracket can vanish in (3.11). However, if C is local it must

be analytic for all of the momenta and can hence be zero only on isolated points. The

exclusion of these isolated points does not allow for local solutions of (3.6), and the

generalisation does not allow for a local invariant action. Either we get a nonlocal product

or a nonlocal derivative operator. In case of three fields this is the key observation of [38].

To investigate further requirements for a lattice fromulation with such a generalised

action, I go back to a finite lattice and discrete momentum modes. This reveals another

problem of the suggestion in [37], i. e. (3.10) with the symmetric derivative. It then

corresponds to a projection onto the trivial solutions, pk1 = 0, pk2 = 0, or pk3 = 0.

Consequently, the nonlocal interaction term allows for every finite lattice only a trivial

interaction with at least one field at zero momentum, i. e.

∫

dDxϕ(1)(x)ϕ(2)(x)ϕ(3)(x)
on the lattice−→

∑

k

[

ϕ(1)(0)ϕ(2)(−pk)ϕ(3)(pk)

+ϕ(1)(−pk)ϕ(2)(0)ϕ(3)(pk) + ϕ(1)(−pk)ϕ(2)(pk)ϕ
(3)(0)

]

. (3.13)

6The lattice operator C is symmetric under an exchange of its arguments.
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Although for a continuous momentum the correct classical continuum limit is shown

in [37], such a solution is not useful for the lattice simulations. There should be an

increasing number of combinations of pk1 and pk2 that are included in the interaction, i. e.

C̃(pk1 , pk2,−pk2 −pk3) 6= 0. A correct continuum limit demands that these pk1 and pk2 are

in a region near zero in momentum space.

This leads us to an additional condition for the lattice formulations with a generalised

product in the interaction term. For the correct continuum limit there must be a region

around zero in momentum space with C(pk1, . . . , pkn
f
−1) 6= 0, when the pk1 . . . pkn

f
−1 are

chosen from this region. This region has to increase as a becomes smaller. At least in this

region the derivative operator must hence have the dispersion relation of a SLAC-type

derivative, (3.7). In the thermodynamic limit ∇µ(p) is hence either nonanalytic7 inside

the first BZ or it is similar to the SLAC derivative. If ∇ is not the SLAC derivative then

C has to project onto the region where ∇ has the dispersion relation (3.7). In both cases

∇ is nonlocal.

As a last step I remove the restriction
∣

∣

∑nf−1
i=1 pµki

∣

∣ < Λµ
L. In this case even a SLAC-type

derivative violates the Leibniz rule, cf. (3.6), because ∇µ(p) is periodically continued (in

case of the SLAC derivative with a discontinuity at pµ = Λµ cf. (B.2)). The violation is

for (2lµ − 1)Λµ
L <

∑nf−1
i=1 pµki

< (2lµ + 1)Λµ
L (∀µ; lµ ∈ Z) given by

nf−1
∑

i=1

pki
−

nf−1
∑

i=1

∇(pki
) = 2ΛL

∑

µ

lµ . (3.14)

Contrary to [38] and in accordance with the suggestion for a supersymmetric lattice action

in [41] even for a SLAC-type derivative one needs a nonlocal C to ensure the Leibniz rule.

This C has to vanish when the sum of the momenta is larger than the lattice cutoff.

I conclude with a stronger No-Go statement than found in [38]: In order to get an

interacting supersymmetric lattice theory one needs a nonlocal derivative operator and a

nonlocal interaction term. The dispersion relation of the derivative operator has to agree

with a SLAC-type derivative for an increasing number of momentum modes. When the

SLAC derivative is used the nonlocal interaction term restricts the sum of the momenta

to the first BZ.

As a sidemark I note that the introduction of a cutoff in the theory is in conflict with

a nonlinear symmetry, such as the on-shell representation of supersymmetry. When we

start with some field with momenta restriced below a certain cutoff a generic nonlinear

transformation rule like

δϕ(i)(x) =
∑

jk

M ijkϕ(j)(x)ϕ(k)(x) (3.15)

7Note that either ∇(p) = c1p only on isolated points or everywhere for an analytic function.
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is represented in Fourier space as

δϕ(i)(p) =
∑

jk

M ijk

∫

dDq1d
Dq2

(2π)2D
δ(p− q1 − q2)ϕ(j)(q1)ϕ

(k)(q2) . (3.16)

Thus the right hand side of this equation generates higher momentum modes than the

cutoff in the variations. The lattice Fourier transformation leads to a periodic delta

function and consequently maps the higher momentum modes onto the first Brillouin

zone. So the cutoff is not violated. As a result the modes δϕ(p) cover twice the first BZ,

when the momentum of the considered ϕ(p) cover it once. After the introduction of the

auxiliary field the same problem appears in the equations of motion for this field. The

nonlocal interaction term introduced above to get a supersymmetric lattice action with

the SLAC-derivative changes this situation: In the on-shell transformation it restricts the

right hand side of (3.16) to a momentum below the cutoff.

An explicit realisation

With theses results I proceed a further step towards real lattice simulations. In this way I

put some “flesh on the bones” of the so far rather abstract statements. The supersymmetric

action is composed of a quadratic part and the interacting terms containing higher powers

of the fields. To make contact with the above findings the lattice theory is first considered

in an off-shell representation. Since anyway a nonlocal lattice derivative is needed one can,

for convenience, choose the SLAC derivative in the lattice action and the transformations.

The translation of a product of continuum fields into a nonlocal lattice term, cf. (3.8), can

be done for each term of the action separately. A quadratic term needs hence no further

modification. According to the power nf of the fields (no matter if they are bosonic,

fermionic, or auxiliary) that appear in the interaction the appropriate C must be chosen.

The Cs are decomposed into a product of their one-dimensional counterparts (here called

C1),

C(pk1, pk2, . . . , pkn
f
−1) =

∏

µ

C1(p
µ
k1
, pµ2 , . . . , p

µ
knf−1

) . (3.17)

With the SLAC derivative this ansatz solves (3.11) for

C1(p
µ
k1
, pµk2 , . . . , p

µ
kn

f
−1

) :=







0 if |∑nf−1
i=1 pki

| > Λµ
L

1 otherwise
. (3.18)

One can define a nonperiodic delta as done in [41],

δΛ(pk1, pk2, . . . , pknf
) := δ(pk1 + . . .+ pknf

)C(pk1, pk2, . . . , pknf−1) . (3.19)
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For the purpose of the lattice simulation, an appropriate representation of this nonperiodic

delta function is needed. Since C can in higher dimension be represented as a product of

its one-dimensional counterpart, it is enough to look for a one-dimensional nonperiodic

delta function.

Consider a lattice with the (nf − 1)-fold number of lattice points compared to the

original lattice. The lattice spacing of this finer lattice should be a/(nf − 1). Hence the

periodicity of a Fourier space delta of this lattice (δnf−1) is (nf−1)ΛL. The boundary of the

first BZ of this finer lattice cannot be reached with the sum of the momenta pk1 . . . pknf−1 .

They are hence never folded back and the δnf−1(pk1 + . . .+ pkn
f
) is equal to one only when

∑nf−1
i=1 pki

exactly matches pnf
, and otherwise zero. Thus it represents a nonperiodic delta.

This shows that a one-dimensional interaction term with a product of nf fields is

represented on the lattice in the following way

∫

dxϕ(1)(x) · · ·ϕ(nf)(x)
on the lattice→

∑

k1,...,knf

δnf−1(pk1 + . . .+ pkn
f
)ϕ(1)(pk1) · · ·ϕ(nf)(pkn

f
)

=
∑

k1,...,kn
f

a

nf − 1

(nf−1)N−1
∑

m=0

e
−i a

n
f
−1
m(pk1

+...+pkn
f
)
ϕ(1)(pk1) · · ·ϕ(nf)(pknf

) . (3.20)

Going back from Fourier space to a real space representation one arrives at8

∫

dxϕ(1)(x) · · ·ϕ(nf)(x)
on the lattice→

a

nf − 1

(nf−1)N−1
∑

n=0

ϕ̃(1)
n · · · ϕ̃(nf)

n with ϕ̃(i)
n =

∑

n

Fnmϕ(i)
m . (3.21)

The
(

(nf−1)N
)

×N matrix Fnm translates all of the fields into fields on the finer lattice.

It comprises a Fourier transformation on the lattice with N lattice points and an inverse

Fourier transformation on the larger lattice with (nf − 1)N lattice points. The matrix

elements read explicitly

Fnm =
sin(π(m− n/(nf − 1))

aN sin( π
N

(m− n/(nf − 1)))
for m 6= n/(nf − 1) and 1 otherwise. (3.22)

This is easily generalised to the higher-dimensional case. In this way one obtains for

each term in the action a lattice counterpart. Combining the terms one obtains a (fully)

supersymmetric off-shell lattice action. As in the continuum theory the auxiliary field can

be integrated out. The on-shell counterpart of this action defines also a supersymmetric

lattice theory. As presented here, I have successfully reformulated the suggestion of [41]

8The ordinary definition of the Fourier representation of the fields ϕ
(i)
n is employed.
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in a way that can be used in the simulations. The results of simulations with such a

supersymmetric lattice action can be found in the next chapter.

3.1.2 Partial realisation of the supersymmetry

As we have seen it is not possible to find a local lattice theory invariant under the full

supersymmetry. In theories with extended supersymmetry one has more than one inde-

pendent supercharge. Since it is not possible to get the full supersymmetry, one may then

try to implement a part of the symmetry. The basic assumption of this approach is that

the realised part of the supersymmetry ensures the restoration of the broken part in the

continuum limit. In other words, the partial realisation reduces the fine tuning problem.

One possible way to implement the partial realisation of supersymmetry is due to the

Nicolai map [42, 43]. This maps the path integral of a supersymmetric theory onto the

one with a Gaussian measure. The basic (formal) idea of this approach is a cancellation

of the bosonic Jacobi determinant obtained in the transformation of the bosonic part by

the fermion determinant (cf. appendix C). Only in some cases a local representation of

this map has been found. Concrete examples are discussed in the next chapter.9

There are also other ways to implement a partial realisation of the supersymmetry

that cannot be discussed here. These approaches use orbifolding techniques, [47, 48], or

Dirac-Kähler fermions , [49, 50]. For a review cf. [51].

3.1.3 Modifications of the lattice symmetry transformation

Instead of an adjustment of the action also the symmetry transformations can be modified

such that a given lattice action is invariant. These modified transformations approach the

continuum supersymmetry transformations in the continuum limit. From the classical

point of view it is easy to find such transformations for a given lattice action since this

lattice action is equal to the supersymmetric continuum action in the classical continuum

limit. Hence these modified supersymmetry transformations can be found at least in terms

of a series. One can start, e. g., with an action separated into a quadratic part S0[ϕ] and

interaction terms λS1[ϕ]. The one defines the modified symmetry transformations as

δmodifiedϕ := δ0ϕ + λδ1ϕ + λ2δ1ϕ + . . .. δ0 is the supersymmetry transformation we have

used above, with the same antisymmetric lattice derivative as it appears in the action.

Consequently, the quadratic term is invariant under these transformations. Due to the

violation of the Leibniz rule the interaction term is not invariant under δ0. The next

order δ1ϕ is chosen in such a way as to compensate this violation, namely S ′
0[ϕ]δ1ϕ =

S ′
1[ϕ]δ0ϕ. Iterating this procedure, one obtains order by order the series representation of

9Note that despite their local form these implementations typically violate reflection positivity of the
lattice action. This property of the continuum theory is usually esteemed to be crucial for a lattice theory
[44, 45, 46]. Form this point of view it is not enough to recover it in the continuum limit; it should be
respected by the lattice action. For lattice supersymmetry it may, nevertheless, be necessary to relax
these restrictions.
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the modified transformations. Each order compensates the violation of the previous one.

In the classical continuum limit this series tends (order by order) towards the continuum

supersymmetry transformations. It can, however, not be assumed that the symmetry is

also recovered in the continuum limit of the quantum theory. This is achieved when all

the Ward identities (2.49) of the modified symmetry approach the Ward identities of the

continuum supersymmetry. In a two-dimensional example this has been checked with

perturbative methods (to all orders of perturbation theory) in [52]. A non-perturbative

approach to find a modified lattice supersymmetry can be found in chapter 5.

3.2 The fermion doubling and supersymmetry breaking on the

lattice

So far we have assumed an antisymmetric lattice derivative operator such as the symmetric

derivative. For the realisation of dynamic fermions on the lattice an additional discussion

of the doubling problem is necessary. It is well-known that a naive discretisation, i. e.

with ∇(s), introduces a doubling of the fermion species in the continuum limit. All local

representations with an antisymmetric derivative operator share this problem.10 The only

way out can be a symmetric term (m(W )(−p) = m(W )(p)). Such a term can be interpreted

as a momentum dependent mass. To remove the doubling problem, this mass diverges at

the additional zero modes (doublers) in the continuum limit. The doublers have then no

dynamic contribution to the action and are “freezed out”. The most prominent example

of such a term is the Wilson mass. It is

m(W ) =
ar

2

∑

µ

∇(−)
µ ∇(+)

µ (3.23)

The lattice analogue of (2.3) ( /̂D = /∇+m(W ))

S[ψ, ψ̄] =
∑

n,m

ψ̄n /̂Dnmψm , (3.24)

is with the additional mass term no longer invariant under the chiral symmetry. More

generally, one cannot find a local11 chirally symmetric lattice Dirac operator /̂D that has

no doubling modes in the continuum limit. This fact is known as the Nielson-Ninomiya

theorem [53, 54]. An approach to circumvent this problem is discussed in chapter 5.

In the case of supersymmetry the doubling modes also lead to so far unconsidered

10In fact if /∇(p) = − /∇(−p) is periodic and analytic (or continuous) it must have at least one additional
zero apart from p = 0 in the BZ. This zero leads to a doubling mode in the continuum limit. This is
also true if instead of the strict antisymmetry only a sign change appears at p = 0 as necessary for the
continuum limit /∇(p) = γµp

µ.
11Here locality can be understood in an even more general sense: continuous and periodic is enough.
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problems. According to the standard lattice formulation they appear only in the fermionic

sector. Consequently, there are no longer the same number of degrees of freedom in the

bosonic and fermionic sector, and supersymmetry is broken. Form the classical point of

view this problem is resolved when a Wilson-type mass removes the doublers. Neverthe-

less, a lattice supersymmetry similar to the one of section 3.1.1 is violated even in the free

theory.

Furthermore, in perturbative calculations of the supersymmetric continuum theory

some bosonic and fermionic divergences cancel each other. The reason for these cancel-

lations is the relation between the bosonic and fermionic vertices and propagators. If

the same kind of cancellations should appear in the lattice perturbation theory, the same

relation has to be valid on the lattice. In the standard formulation the Wilson mass has

no bosonic counterpart. Even more, the cancellation of the fermionic and bosonic contri-

butions in perturbation theory cannot always be recovered in the continuum limit. The

Wilson mass becomes irrelevant for a→ 0 only at the centre of the BZ and diverges at the

doublers. To find out the relevance of certain contributions in lattice perturbation theory,

one can use the lattice degree of divergence defined by Reisz [55].12 A typical one loop

diagram in lattice perturbation theory is represented as an integral of the loop momentum

p constrained to the first BZ. When the lattice degree of divergence is negative, the con-

tinuum limit can be obtained in a naive way: The integrand in the limit of a→ 0 and an

unconstrained momentum integration yields the corresponding continuum expression. In

such a naive continuum limit the contribution of the Wilson mass disappears (the essential

part for this limit comes from the vicinity of p = 0). A typical one loop contribution of

the Wilson mass in the fermionic sector is

∫

dDp

(2π)D

m(W )(p)
∑

µ∇
(s)
µ (p)∇(s)

µ (p) + (m+m(W )(p))2
. (3.25)

Its lattice degree of divergence is D − 1. This leads already in one dimension to a finite

nonvanishing contribution in the continuum limit, although in the continuum fermion

loops are cancelled by boson loops. In one dimension this effect is investigated in detail

in [56] and is also discussed in chapter 4.

Different from this standard formulation in section 3.1 the same derivative operator is

used for fermions and bosons. This introduces doublers, which can only be removed with

Wilson-type mass terms, in both sectors. Similar lattice formulations were investigated,

e. g., in [57, 52]. The Wilson mass is then just a modification of the usual mass term in

the superpotential.

The SLAC derivative opens another possibility to circumvent this problem. This

12As usual for lattice perturbation theory the calculation is carried out in the thermodynamic limit.
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nonlocal derivative has no doublers. Consequently, a Wilson mass term is not needed.

Note that the described adjustment of the fermionic and bosonic mass terms alone

does not in general imply a supersymmetric continuum limit. This has been shown in the

perturbation theory of the fourdimensional Wess-Zumino model [41]. Although the masses

and derivatives are the same for fermions and bosons non-supersymmetric counterterms

are needed in this case to get a supersymmetric continuum limit.

3.3 Perturbative investigations of Wess-Zumino models with the

SLAC derivative

The above investigations have shown that the SLAC derivative has features that are

appropriate for the realisation of a supersymmetric theory on the lattice. On the other

hand, this derivative is nonlocal. The interaction strength between two lattice points

decays only polynomial and not exponentially with their distance. In [58] it has been found

that the renormalisation of lattice QED with SLAC fermions needs (in the continuum

sense) nonlocal and not Lorentz covariant counterterms in the continuum limit. A (in

the lattice sense) nonlocal lattice representation is can hence be problematic. In [59] a

different conclusion was drawn that was criticised in [60]. I cannot go into the details of

this general discussion. The problem arises especially in gauge theories. It seems that

behind it stands the general contradiction between chiral symmetry and a local gauge

invariant regulator.

In the present work supersymmetric Wess-Zumino models are considered. Since gauge

symmetries are absent, it is much easier to handle. I consider here the perturbation theory

of the models containing the SLAC derivative with a local and nonlocal interaction terms.

According to [59] in the first case no nonlocal or Lorentz violating counterterms appear

in any dimension. There is, however, still an ongoing debate about this result. With

reference to the one loop perturbation theory the applicability of the SLAC derivative in

a lattice theory is often questioned. Therefore, I show the renormalisability and correct

continuum limit of the one loop lattice perturbation theory of a twodimensional Wess-

Zumino model.

For such a superrenormalisable theories no additional problems are expected at any

higher loop level. In addition, the continuum degree of divergence of all the diagrams

in this less than one. In the BPHZ renormalisation scheme [61] the counterterms are

identified with the divergent parts of a power series of the diagram in terms of the external

momentum. If the degree of divergence is less than one, the counterterms follow just from

the first term of this series, the limit of zero external momentum.

On the lattice a similar renormalisation procedure was introduced in [62]. This can,

however, not be applied for the SLAC derivative. Not even the well-known lattice power

counting theorem of Reisz is valid here since it applies only for integrands that are smooth
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periodic functions of the loop momentum.13 The argumentation is, nevertheless, closely

related to the renormalisation procedure of Reisz. The subtraction of the divergences is

also done in a similar way as in the BPHZ scheme.

Note that in both of the considered lattice representations with the SLAC derivative

the usual cancellation of fermionic and bosonic divergences appear also in lattice per-

turbation theory. Thus the N = 2 Wess-Zumino model contains no divergent terms.

The discussion applies, however, also for the N = 1 Wess-Zumino model and similar

two-dimensional theories with bosonic and fermionic fields.

3.3.1 Renormalisability of a two-dimensional Wess-Zumino model with a lo-

cal interaction term

An explicit consideration of all the one-loop contributions that appear in a model with

scalar bosons and fermions realised with the SLAC derivative can be found in appendix B.

Here I only review some basic arguments concerning the renormalisability. There are two

ways to realise the perturbation theory with the SLAC derivative. In the first case the

vertices contain, as in the continuum, a momentum conservation. Then the propagators in

lattic perturbation theory with the SLAC derivative are the same as in the continuum for

all momenta below the lattice cutoff. Due to the momentum conservation at the vertices,

however, a momentum greater than allowed by the cutoff can appear. The momentum

space representation of the SLAC derivative is then periodically continued in terms of a

saw-tooth function.

In the other realisation a periodic momentum conservation appears at each vertex.

Then the propagators are the same as in the continuum and no periodic continuation is

needed. The integration of loop momenta is in both cases resticed to the BZ. This is in

conflict with the Euclidian rotation symmetry that demands, e. g., a restriction of only

the modulus of the momentum.

In either of the representations there appear additional contributions when the sum of

the momenta that flows into a vertex is larger than the cutoff. Apart from the noncovariant

cutoff these contributions are the difference between the lattice perturbation theory and

its continuum counterpart. In the twodimensional Wess-Zumino model it turns out that

these contributions are not relevant in the continuum limit. In addition the difference

between the covariant and the lattice regularisation does not introduce counterterms that

do not appear in the continuum perturbation theory. Thus the considered Wess-Zumino

models (and more general models of this type without supersymmetry) are renormalisable

when the SLAC derivative is applied.

13As usual the calculations of lattice perturbation theory are carried out in the thermodynamic limit
where the number of lattice points tends to infinity and the lattice momentum becomes continuous.
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3.3.2 The case with a nonlocal interaction term

The nonlocal interaction term introduces an effective cutoff at each vertex. Instead of

the momentum conservation with a periodic delta the “nonperiodic delta” (3.19) appears.

Consequently, along each line the momentum is constraint to the first BZ (−π
a
≤ pµ ≤ π

a

∀µ). Apart from this constraint the perturbative expansion on the lattice is the same as in

the continuum since the SLAC derivative has the ordinary continuum dispersion relation

for momenta below the cutoff. In this way one arrives at a cutoff regularised perturbation

theory. When the cutoff is removed in the continuum limit, the continuum perturbation

theory is approached by all nondivergent integrals. This cutoff is, however, not introduced

in a covariant way since it restricts the momentum to the BZ and instead of restricting

only the modulus of the momentum in accordance with the Euclidian rotation symmetry.

For the integrals that diverge at ΛL →∞ one still has to prove that none of them needs

a non covariant or nonlocal counterterm. A lattice version of the BPHZ scheme can be

applied since the integrals are smooth functions for all momenta below the cutoff. It is

hence enough to subtract the parts of a power series in the momentum that diverges in the

continuum limit. In the one loop lattice perturbation theory of two dimensions only the

zero momentum part is, as in the continuum, divergent. Thus the subtracted counterterm

contains no momentum dependence and is of the same form as in the continuum. At least

in the lowdimensional case no difficulties can be expected from this lattice realisation.

In higher dimensions the counterterms involve also higher terms of the expansion and

hence a nontrivial momentum dependence. Nevertheless, it was found in [63] that also the

perturbation theory of the fourdimensional Wess-Zumino model with the nonlocal lattice

realisation can be consistently renormalised.



4 Lattice simulations in low dimensional super-

symmetric theories

So far I have discussed general aspects of supersymmetry on the lattice. The investigations

were based on the discretisation of the classical action and lattice perturbation theory.

Although it was possible to make statements about the applicability of certain lattice

formulations, for complete analysis also the nonperturbative sector of the theory must be

considered. At the end only a real lattice simulation can show wether or not these formu-

lations of supersymmetric theories can be used and give reliable results. According to the

last chapter nonlocal formulations of the lattice theory are in some respects favourable

for the simulation of supersymmetry. Thus these formulations should be included in the

investigations. In addition, supersymmetric lattice simulations must contain dynamical

fermions. These two conditions demand a large numerical effort in the simulations. Nev-

ertheless, the investigations should not be restricted to certain lattice actions because of

the accessible computer power. This can, at least for some of the lattice formulations,

only be achieved in lowdimensional theories. Therefore, the main subject of this chapter

are the lattice simulations of one- and two-dimensional supersymmetric theories.

4.1 Supersymmetric quantum mechanics

The quantisation of the one-dimensional supersymmetric model introduced in 2.1.4 has

been the subject of many intresting investigations [64]. Its main feature is a bosonic

and a fermionic subspace with degenerate spectra. It is important in the investigation

of spontaneous supersymmetry breaking [65, 66]. In this thesis only the case without a

spontaneously broken supersymmetry is considered, since the main task is the analysis

of the breaking due to the lattice regularisation. The considered classical action is found

in (2.16) with the superpotential W (ϕ) = m
2
ϕ2 + g

3
ϕ3. A discussion of supersymmetric

quantum mechanics in the operator formalism is shown in appendix D. As explained there,

the standard numerical methods of quantum mechanics can be applied to determine the

mass gap and the effective potential with a high precision. These are, therefore, further

on called the exact results. A part of the presented results was published in [67].

4.1.1 Different lattice formulations

The model of supersymmetric quantum mechanics is used to compare a number of different

lattice formulations. As we have already seen in chapter 3 the discretised version of the

continuum action (2.16),

SL =
1

2

∑

n

(

(∇ϕ)2
n +W ′

L(ϕ)2
n

)

+
∑

n,m

ψ̄n
(

∇nm +W ′′
L(ϕ)nm

)

ψm , (4.1)

38
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breaks (for a local W ′
L(ϕ)) the supersymmetry due to the violation of the Leibniz rule.1

According to section 3.1.1 the discrete supersymmetry transformations have the following

form (for later convenience they are separated into two parts):

δ(1)ϕn = ε̄ψn ; δ(1)ψn = 0 ; δ(1)ψ̄n = −ε̄(∇ϕ+W ′
L(ϕ))n

δ(2)ϕn = ψ̄nε ; δ(2)ψn = (∇ϕ−W ′
L(ϕ))nε ; δ(1)ψ̄n = 0 . (4.2)

The variation of this action under the symmetry transformation is (cf. equation (3.2))

δ(1)SL = −ε̄
∑

n,m

(ψnW
′′
L(ϕ)nm(∇ϕ)m +∇mnψnW

′
L(ϕ)m)

and δ(2)SL = −ε
∑

n

(

ψ̄nW
′′
L(ϕ)n(∇ϕ)n − ψ̄n∇nmW

′
L(ϕ)m

)

. (4.3)

This is nonzero because of the violation of the Leibniz rule, except for the free theory. In

addition the doubling problem for the antisymmetric derivative ∇ must be solved. In the

simulations the superpotential is W (ϕ) = m
2
ϕ2 + g

4
ϕ4 with a positive mass parameter m

and coupling strength g.

A naive discretisation (naive Wilson model)

The usual way to discretise a lattice theory uses a left derivative for the bosonic fields

and a Wilson-derivative for the fermionic ones. This resolves the doubling problem of SL.

The corresponding lattice action is

Snaiv =
1

2

∑

n

(

(∇(−)ϕ)2
n +W ′(ϕn)

2
)

+
∑

n,m

ψ̄n
(

∇(s)
nm +m(W )

nm +W ′′(ϕ)nδnm
)

ψm . (4.4)

Obviously, a discretised version of the continuum supersymmetry (with ∇(+) or ∇(s)) is

broken. In the free theory a degeneracy between fermion and boson mass can only be

found in the continuum limit but not at any finite lattice spacing. Moreover the continuum

cancellations between fermionic and bosonic loops do not appear in the lattice theory, as

found in section 3.2. Investigations of such a model can also be found in [56].

The Wilson mass inside the superpotential (unimproved Wilson model)

According to section 3.2 the Wilson mass should better be included into the superpotential

and the same derivative operators should be used for fermions and bosons. This leads

to a mass degeneracy between fermions and bosons in the free theory at a finite lattice

1∇ is an arbitrary antisymmetric lattice derivative operator. As we have done in section 3.1.1 the same
derivative operator is applied for fermions and bosons and in the supersymmetry transformations. If not
further specified by the considered model W ′

L is the continuum superpotential (WL(ϕ)n = W ′(ϕn)) and,
consequently, W ′′

L(ϕ)nm = W ′′(ϕn)δnm. The fermionic part can always be written as
∑

n,m ψ̄n(Kf )nmψm

with the fermion matrix Kf(ϕ).
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spacing. For the present model the resulting lattice formulation is

SWS =
1

2

∑

n

(

(∇(s)ϕ)2
n + ((m(W )ϕ)n +W ′(ϕn))

2
)

+
∑

n,m

ψ̄n
(

∇(s)
nm +m(W )

nm +W ′′(ϕn)δnm
)

ψm . (4.5)

From this formulation one can infer that in the discretised version of the supersymmetry

transformations∇(s) should be used as derivative operator and (m(W )ϕ)n+W
′(ϕn) replaces

the continuum superpotential W ′(ϕ(xn)):

W ′
L(ϕ) = (m(W )ϕ)n +W ′(ϕn); W ′′

L(ϕ)nm = m(W )
nm +W ′′(ϕn)δnm . (4.6)

Now the free theory is invariant under the transformations; but the interacting theory is

not even invariant under a part of the supersymmetry. The model has also been considered

in [57].

A lattice action with the SLAC derivative (unimproved SLAC model)

To resolve the fermion doubling problem without a Wilson-type mass term or the intro-

duction of additional fermionic degrees of freedom the application of a nonlocal derivative

operator is needed. One example of such a nonlocal operator is the SLAC derivative. A

lattice formulation with the SLAC derivative is

SSLAC =
1

2

∑

n

(

(∇SLACϕ)2
n +W ′(ϕn)

2
)

+
∑

n,m

ψ̄n
(

∇SLAC
nm +W ′′(ϕn)δnm

)

ψm . (4.7)

One gets a mass degeneracy in the free theory without a modification of the superpotential.

An additional advantage of this formulation is that O(a) contributions due to the Wilson

mass are not present. Thus lattice artifacts are, consequently, expected to be much smaller

than for SWS.

Nicolai-improved lattice actions (improved Wilson and improved SLAC model)

In the models considered so far not even a part of the supersymmetry is present on

the lattice. One can, however, find a formulation in which half of the supersymmetry

is present. This is, as explained in section 3.1.2, a feature of models with extended

supersymmetry. The Nicolai map can be used to construct such an action, cf. appendix

C. It is

SNI1 =
1

2

∑

n

(∇ϕ+W ′
L(ϕ))2

n +
∑

n,m

ψ̄m(∇+W ′′
L(ϕ))nmψm , (4.8)
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and invariant under the symmetry transformations δ(1), (4.2). The second supersymmetry

transformation (4.2) leads to

δ(2)SNI1 = 2δ(2)SL . (4.9)

Thus the action is invariant under one supersymmetry. The violation of the second super-

symmetry is, however, twice as big compared to the one of SL. The operators that appear

in the second variation are of the same form in both formulations. One may, however,

hope that due to the one preserved supersymmetry the violation of the Ward identities of

δ(2) is now smaller. That means the corresponding expectation value 〈O(ϕ, ψ̄, ψ)δS〉 for

some operator O is supposed to be smaller for SNI1 than for SL.

The difference between SL and SNI1 are terms that are surface terms in the continuum

limit,

SNI1 − SL =
∑

n

W ′
L(ϕ)n(∇ϕ)n →

∫

dtW ′(ϕ)∂tϕ =

∫

dt∂tW (ϕ) , (4.10)

and vanish due to the periodic boundary conditions. From the variations of this term

under the supersymmetry transformations, δ(SNI1 − SL) = δ(2)SL − δ(1)SL, one easily

observes that the action SNI2 = SL − SNI1 + SL is invariant under the second symmetry,

δ(2).2

With the SLAC derivative and W ′
L(ϕ) = W ′(ϕ) (W ′′

L(ϕ) = W ′(ϕ)δnm) SNI1 defines

the action of the improved SLAC model:

SNISLAC =
1

2

∑

n

(∇SLACϕ+W ′(ϕ))2
n +

∑

n,m

ψ̄m(∇SLAC
nm +W ′′(ϕ)δnm)ψm . (4.11)

The symmetric derivative as ∇ and a superpotential that removes the doublers W ′
L(ϕn) =

(m(W )ϕ)n+W ′(ϕn) (W ′′
L(ϕn)nm = m

(W )
nm +W ′′(ϕn)δnm) leads to the action of the improved

Wilson model,

SNIW =
1

2

∑

n

(∇(s)ϕ+m(W )ϕ+W ′
L(ϕ))2

n+
∑

n,m

ψ̄m(∇(s)
nm+m(W )

nm +W ′′(ϕ)δnm)ψm . (4.12)

Fermion determinants and the Stratonovich discretisation (Stratonovich model)

An other important problem of the Wilson derivative is the inaccurate reproduction of

the fermionic determinant in the continuum limit. With the help of standard methods

the fermionic determinant can be calculated in the continuum, [68, 69]. A (divergent)

2For convenience only SNI1 is considered here.
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prefactor can be absorbed in the free determinant and one obtains

det

(

∂τ +W ′′(φ(τ))

∂τ +m

)

=
sinh

(

1
2

∫ β

0
dτ W ′′(φ(τ))

)

sinh(β
2
m)

. (4.13)

For the superpotential considered here this expression is positive for all field configurations.

On the other hand, if W (and hence also W ′′) is odd, the determinant takes both signs.3

With the Wilson derivative one gets, instead,

det

(

∇(s)
nm +m

(W )
nm +W (ϕn)1

∇(s)
nm +m

(W )
nm +m1 )

=

∏
(

1 + aW ′′(φn)
)

− 1

(1 + am)N − 1

N=β/a→∞−→ e
R β
0 dτ W ′′(φ(τ)) dτ/2

eβm/2
det

(

∂τ +W ′′(φ(τ))

∂τ +m

)

. (4.14)

Hence the continuum determinant is not correctly reproduced on the lattice.

Let us now turn to a lattice action that correctly reproduces the continuum determi-

nant. In the fermionic part of the action the superpotential is also included in the off

diagonal elements according to

SFS =
∑

n,m

ψ̄x

(

∇(s)
nm +m(W )

nm +
1

2
W ′′(σn) (δnm + δn−1,m)

)

ψm , (4.15)

where σn = 1
2
(ϕn+ϕn+1). Instead of equation (4.14) one now finds the correct continuum

result,

det

(

∇(s)
nm +m

(W )
nm + 1

2
W ′′(σn) (δnm + δn−1,m)

∇(s)
nm +m

(W )
nm +m (δnm + δn−1,m)

)

=

∏

(1 + a
2
W ′′(σn))−

∏

(1− a
2
W ′′(σn))

∏

(1 + a
2
m)−∏(1− a

2
m)

N=β/a→∞−→ det

(

∂τ +W ′′(φ(τ))

∂τ +m

)

. (4.16)

This suggests W ′′
L(ϕ)nm = m

(W )
nm +W ′′(σn)(δnm + δn−1,m) in this model. This is obtained

from the derivative W ′
L(ϕ)n = (m(W )ϕ)n + W ′(σn) with respect to ϕm. The Nicolai

improved bosonic part that follows from the fermionic matrix is

SBS =
1

2

∑

n

(

(∇(s)ϕ)n + (m(W )ϕ)n +W ′(σn)
)2
. (4.17)

The corresponding action,

SStrat = SBS + SFS , (4.18)

3This is important since the Witten-index of the theory is known to be zero which can only be achieved
with a sign change of the determinant.
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then defines the so-called Stratonovich model.

Note that in one dimension one has (∇(+)ϕ)n = (∇(s)ϕ)n + (m(W )ϕ)n. Hence the

difference between the bosonic part of SNIW and the bosonic part of Snaiv is the surface

term
1

2

∑

n,m

W ′(ϕn
)(

ϕn − ϕn−1

)

. (4.19)

It is formulated in the Ito prescription. In the current formulation we obtain, instead, the

term

1

2

∑

n

W ′(σn)((∇(s) +m(W ))ϕ)n =
1

2

∑

n

W ′(1

2
(ϕn + ϕn−1)

)(

ϕn − ϕn−1

)

. (4.20)

This corresponds to the formulation of the surface term according to the Stratonovich

prescription [70].

With the above W ′
L the supersymmetry δ(1) is realised on the lattice because the action

is constructed in the improved formulation. The second supersymmetry (δ(2)) is, however,

violated even in the free theory. To define a supersymmetry that is broken only in the

interacting theory I use W ′
L(ϕ)n = (m(W )ϕ)n + W ′(ϕn + ϕn+1) in the second symmetry

transformation for this special model.

A model preserving all the continuum supersymmetries on the lattice (full

supersymmetric model)

According to section 3.1.1 there is also a way to realise not only a part but the full super-

symmetry of the continuum theory on the lattice. Besides the nonlocal SLAC derivative

also a nonlocal interaction term is needed. The easiest way to obtain this model is to

start with the superpotential W (Φ), in our case m
2
Φ2 + g

4
Φ4. To construct the off-shell

action, the superpotential is integrated over the whole superspace. The basic idea of this

approach is to replace the space-time integration of the term λΦnf in the superpotential

with the nonlocal product

∫

dtλ(Φ(t, θ, θ̄))nf → λ
∑

m1,...,mnf

Cm1...mnf
Φm1(θ, θ̄) · · ·Φmnf

(θ, θ̄)

=
λa

nf − 1

(nf−1)N−1
∑

n=0

(Φ̃n(θ, θ̄))
nf , (4.21)



4.1 Supersymmetric quantum mechanics 44

where Φ̃n =
∑

nFnmΦm with Fnm given in (3.22). After the integration of Grassmann

coordinates one obtains
∑

n FnW̃
′(ϕ)n

4 with

W̃ ′(ϕ)n =
aλnf
nf − 1

(nf−1)N−1
∑

m=0

Fmn(ϕ̃m)nf−1 (4.22)

The superpotential is a sum of terms of the form λ(Φ)nf . The above translation is done

for every term, except the quadratic part.5 Thus in case of the full supersymmetric model

we arrive at the following lattice version of the superpotential

W ′
L(ϕ)n = mϕn +

ag

3

3N−1
∑

m=0

Fmn(ϕ̃m)3 . (4.23)

From this kind of potential we deduce for the fermion matrix

W ′′
L(ϕ)nm = mδnm +

ag

3

3N−1
∑

m1=0

Fm1nFm1m(ϕ̃m1)
2 . (4.24)

When the SLAC derivative is used the improvement term, just as expected, vanishes.

Hence the Nicolai improved version of this model and the unimproved version are identical.

The action is

SSUSY =
1

2

∑

n

(

(∇SLACϕ)2
n +W ′

L(ϕ)2
n

)

+
∑

n,m

ψ̄n
(

∇SLAC
nm +W ′′

L(ϕ)nm
)

ψm . (4.25)

4.1.2 Simulation details

Supersymmetry demands for the simulation of dynamical fermions. The quenched ap-

proximation severely breaks the symmetry, and fermionic contributions is fluctuate too

strongly to allow for an efficient reweighting of the fermion determinant. Therefore, the

full contribution of the fermions to the path integral must be included. Since the fermion

determinant is in the present case always positive the fermionic fields can be integrated

out without a sign problem. The resulting determinant can be included into the action

Seff(ϕ) = SB(ϕ)− log detKf(ϕ) (4.26)

(SB is the bosonic action of a given model). Even if we start with ultralocal lattice action,

the resulting Seff involves the interaction of all lattice points. Therefore, local update

algorithms are inefficient in this case. For that reason the HMC algorithm [71] is applied

4Fn is the auxiliary field on the lattice.
5There the matrix F would just disappear according to eqn. (A.19).
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to the dynamical fermion simulations. The update algorithm follows a molecular dynamics

trajectory determined by

ϕ̇n =
∂H
∂πn

, π̇n = − ∂H
∂ϕn

, (4.27)

and the Hamiltonian

H =
1

2

N−1
∑

n=0

πn + S(ϕ) . (4.28)

The phase space is obtained by introducing a conjugate momentum πn for every field ϕn.

The numerical solutions of the differential equations (4.27) are computed with a standard

leap frog algorithm. The fermionic contribution ∂Seff(ϕ)/∂ϕn is calculated from

∂

∂ϕn
(log detKf) =

∂

∂ϕn
(tr logKf ) = tr

((

∂Kf

∂ϕn

)

K−1
f

)

, (4.29)

where
∂Kf

∂ϕn
=
∂W ′′

L(ϕ)nm
∂ϕn

. (4.30)

For all models, except the Stratonovich and the full supersymmetric model, the trace

collapses since W ′′
L is diagonal.

Note that because of the nonlocal interaction term the computational cost of the

full supersymmetric model is much higher than for all the other models. In the present

formulation it is, however, possible to use this formulation at least in one dimension. If we

would try to perform the sum over all the entries of C it would be too expensive. Instead,

I first calculate the fields on the finer lattice, ϕ̃, and obtain W ′
L and W ′′

L from these fields.

This reduces the numerical cost of the nonlocal interaction term.

4.1.3 The effective mass on the lattice

An important indication of an intact supersymmetry is the equivalence of bosonic and

fermionic masses, as it is predicted by the supersymmetry algebra. Therefore, the com-

parison of these masses is a first verification of the supersymmetry in the continuum

limit. They are depicted as a function of the lattice spacing in figure 4.1 with a linear

extrapolation to the continuum limit.

The effective masses of the theory are determined, in the usual manner, from the decay

of the correlation functions,

G(b)
n = 〈ϕnϕ0〉 and G(f)

n = 〈ψ0ψ̄n〉 = 〈(Kf(ϕ))−1
0n 〉 , (4.31)

at large distances. The asymptotic behaviour of the two-point functions is determined

by
∑

i cie
−(Ei−E0)xn (Ei the energy eigenvalues of the system, ci constants). At large xn

the main contribution comes from the mass gap meff = E1−E0. The fermionic two-point
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function in a logarithmic representation is, as expected, approximately linear for large xn.

Thus a linear fit in the logarithmic representation can be used to determine the fermionic

mass.

For the bosonic two-point functions the periodic boundary conditions induce a slight

modification of the general form. At a large enough distance of xn from zero and L it

gets an additional contribution to become the symmetric function cosh(meff(xn− aN/2)).

At distances that are well enough separated from zero and aN/2 (or aN/2 and L) this

additional contribution is small and the cosh function can be approximated by e−meffxn

as in the fermionic case. Thus in this region the bosonic mass can be determined, as the

fermionic one, by a linear fit in the logarithmic representation.

The lattice sizes were in a range between N = 15 and N = 243. The size of the lattice

was kept fix L = 10m−1 = Na. The number of independent configurations used for the

measurements was between 2.5×105 and 4×105. For the full supersymmetric model, due

to the more expensive calculations, only a number of 5× 104 independent configurations

was available.

The formulations with the SLAC derivative demand some further remarks. Already

in the free theory the fermionic and bosonic propagator of the SLAC derivative shows

a superposition of the exponential decay by small oscillations. For example, the free

fermionic propagator of the SLAC derivative in momentum space is 1
ip+m

. Because of the

lattice cutoff the real space propagator is changed from the expected exponential decay,

but the original form is reobtained in the continuum limit,

G(f)
n =

∑

k

eipkxn

ipk +m

N→∞−→
∫ π/a

−π/a

dp

2π

eipxn

ip +m
=

i

2π
(Ei((m− iπ

a
)xn)− Ei((m+ i

π

a
)xn))e

−mxn

a→0−→
∫

dp

2π

eipx

ip +m
= e−mx , (4.32)

(for positive values of x). The additional contribution (Ei(x) = −
∫∞
−x dt

e−t

t
) leads to

the observed oscillatory behaviour. Thus the basic reason for the deviation from the

continuum propagator is a truncation in momentum space. This effect is known as the

Gibbs phenomenon: the truncation in momentum space representation of a periodic and

continuous function leads to an error in real space that is exponentially suppressed with

the number of contributing Fourier modes n. If the function is non-periodic or has a

discontinuity, the error is proportional to n−δ, for some positive δ at the regions away from

the discontinuities. There are many well-known filtering techniques that can increase δ.

The optimal filtering technique that was proposed in [72] even leads to an exponential
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suppression of the error and was applied to the fermionic two-point function. An example

for a filtered fermionic two-point function is shown in figure 4.1 (a). The filtered two-point

function is much closer to the exponential decay. Thus the mass can be obtained in the

usual way after the application of the filter. For the bosonic two-point function similar

oscillations can appear but they are less pronounced and can be neglected.

In figure 4.1(c) shows the effect that was already found in section 3.2: The Wilson mass

generates additional contributions in the correlation functions of Snaiv that are unbalanced

by bosonic counterparts. Therefore, already in this simple model the bosonic and fermionic

masses are different even in the continuum limit. Supersymmetry is broken on the lattice

and not restored in the continuum limit. This effect has been identified with the one

loop contributions of the Wilson mass in [56]. The unimproved SLAC model (SSLAC)

circumvents this problem via the introduction of a nonlocal operator that needs no Wilson

mass to remove the doublers.

An other way of a sufficient realisation to achieve a mass degeneracy on the lattice

is shown in figure 4.1 (d) in terms of the unimproved Wilson model (SWS). Here the

Wilson mass is included in the superpotential and a balance between fermionic and bosonic

contributions is achieved. However, due to the O(a) contributions of the Wilson mass,

the lattice results are rather far away from the continuum values compared to the SLAC

models.

With respect to the bosonic and fermionic masses there is no large difference between

the improved realisations with one supersymmetry and the unimproved ones. This is

shown for the Wilson models in figure 4.1 (e). The model that realises both supersymme-

tries (SSUSY ) is, according to the masses, similar to the unimproved and improved SLAC

model, cf. figure 4.1 (b). Note that due to the low statistic the error is much larger, but

especially for the fermionic masses a good agreement with the improved SLAC model can

be observed.

For the Stratonovich model the O(a) contribution is, with respect to the Wilson model,

reduced. The masses are much closer to the continuum (figure 4.1(f)).

Except for the naive Wilson model all mass extrapolations agree very well with the

mass gap (E0 −E1) determined with the numerical methods of quantum mechanics.
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(c) A comparison of the masses of the unimproved SLAC model and the
naive Wilson model (m = 10, g = 100)
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(d) A comparison of the masses of the improved SLAC model and the
improved Wilson model (m = 10, g = 100)
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(e) A comparison of the masses of the improved Wilson model and the
unimproved Wilson model (m = 10, g = 100)
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(f) A comparison of the masses of the improved Wilson model and the
Stratonovich model (m = 10, g = 100)

unfiltered twopointfunction

filtered twopointfunction
i

2π (Ei((m− iπ
a )x)− Ei((m+ iπ

a )x))e−mx

e−mx

full susy. fermions
full susy. bosons

imp. SLAC fermions
imp. SLAC bosons

naive Wilson fermions
naive Wilson bosons

unimp. SLAC fermions
unimp. SLAC bosons

imp. Wilson fermions
imp. Wilson bosons

imp. SLAC fermions
imp. SLAC bosons

imp. Wilson fermions
imp. Wilson bosons

unimp. Wilson fermions
imp. Wilson bosons

imp. Wilson fermions
imp. Wilson bosons

Stratonovich fermions
Stratonovich bosons

model mbos mferm model mbos mferm

Slac impr. 16.84± 0.03 16.81± 0.01 Slac unimpr. 16.92± 0.07 16.97± 0.03

Wilson impr. 16.86± 0.07 16.64± 0.03 Wilson unimpr. 16.68± 0.05 16.73± 0.04

Wilson naive 12.23± 0.08 18.04± 0.05 Stratonovich 16.78± 0.04 16.77± 0.02

full susy. 16.58± 0.16 16.69± 0.07 exact 16.865 16.865

Figure 4.1: (a) shows an example of the Gibbs-phenomenon for the free fermionic two-
point functions of the SLAC models (N = 21 and in the thermodynamic limit (cf. eqn.
(4.32))). The filtered two-point functions are (for large enough N) a good approximation
of the continuum function e−mx. (b)-(f) compare the masses obtained from a linear fit in
a logarithmic representation. For the SLAC models the filtered fermionic functions were
used. The table below lists the result of the linear extrapolation to the continuum limit
(omitting the first two points) together with the error of the linear fit.

48



49 4 Lattice simulations in low dimensional supersymmetric theories

4.1.4 Lattice measurements of the Ward identities

After the masses are considered, now a more precise sign of the supersymmetry is inves-

tigated. As shown in section 2.2.2 the symmetries are reflected in the Ward identities of

the observables. For the lattice simulations I consider Ward identities that are accessible

with a good precision. These are the Ward identities that involve the two-point function

and are obtained from the observables

R(1)
n−m = 〈ϕn δ(1)ψ̄m〉+ 〈ψ̄nδ(1)ϕm〉 = 〈ψnψ̄m〉 − 〈ϕn(∂ϕ)m〉 − 〈ϕnW ′

L(ϕ)m〉 (4.33)

R(2)
n−m = 〈ϕn δ(2)ψm〉+ 〈ψnδ(2)ϕm〉 = 〈ϕn (∂ϕ)m〉 − 〈ϕnW ′

L(ϕ)m〉 − 〈ψ̄xψy〉 . (4.34)

According to the supersymmetry these observables must be identically zero. Equation

(2.48) shows that for a broken symmetry one instead obtains R(1)
n−m = 〈ϕnψ̄m δ(1)S〉 and

R(2)
n−m = 〈ϕnψm δ(2)S〉. Since the naive model shows a supersymmetry breaking already

in terms of the masses it is not considered in these more precise measurements. For all

other models the Ward identities become smaller for a decreasing a or a decreasing g.

Within the errors they hence vanish in the continuum limit. This is a strong indication of

a restoration of supersymmetry. Already at a finite lattice spacing they are rather small.

This is why in the similar measurements in [57] the accuracy was not high enough to

discriminate the violation at a finite lattice spacing. Thus one could not tell whether or

not there is at all a breaking at a finite lattice spacing.

A careful measurement is necessary to obtain reliable information of these small quan-

tities. To pronounce the effect a rather small lattice was chosen (N = 21 and N = 15) and

a high coupling strength (g/m2 = 8). A high statistic was needed (4 independent runs

with 106 independent configurations except for the improved and unimproved SLAC model

(10 indep. runs of 106 config.) and the N = 15 lattice with improved and unimproved

SLAC as well as the full supersymmetric model (8 indep. runs of 105 config.)). To estimate

the zero singal the free Ward identities were measured with the same statistic. They are

identically zero for the considered models since the breaking occurs only in the interacting

case. Only if in the interacting case a larger deviation than indicated by the free Ward

identities occurs, one can recognise it as an indication of a broken supersymmetry on the

lattice.

In figure 4.2 the result of these measurements is depicted. For the unimproved Wilson

and SLAC model both Ward identities are violated at a finite lattice spacing. They are

only restored in the continuum limit. The supersymmetry breaking on the lattice is also

visible in terms of the observables. In the improved Wilson and SLAC models one super-

symmetry is, as expected, visible also at a finite lattice spacing since R(1)
n is identically

zero. However, the one realised supersymmetry does not lead to an improvement of the

second one. On the contrary the violation of the second supersymmetry, as indicated by
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the deviation of R(2)
n from zero, is larger for the improved models. This can be seen as an

indication that partial realisation of supersymmetry on the lattice improves the realised

supersymmetries in favour of the remaining part of the transformations.

Most importantly, for the full supersymmetric model the realisation of the symmetry is

visible also in terms of the Ward identities. Within the small statistical errors both Ward

identities are fullfilled, whereas there is a clear signal for the supersymmetry breaking for

the improved and unimproved SLAC models with the same parameters. This is the first

measurement of a full supersymmetric theory on the lattice.
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Figure 4.2: The Ward-identities of the different lattice models. To estimate the fluctu-
ations of a fullfilled Ward-identity they were first measured for each model in the free
(g = 0) case. The free Ward-identities should vanish in all of the considered models and
their deviation from zero is indicated as a gray line in the graphs. For the Wilson and
the Stratonovich discretisation on the lattice the measurements were performed with 4
independent runs of 106 independent configurations. For the SLAC lattice models with
10 independent runs and of 106 indep. configurations. All of these were done on a lattice
of N = 21 and in the interacting case with g/m2 = 8. For the full supersymmetric model
the lattice size was N = 15 and 8 independent runs with 105 indep. configurations were
used and for comparison also the first Ward-identity of the SLAC-models with the same
parameters is shown.

51



4.2 Two-dimensional N = 2 Wess-Zumino model 52

4.2 Two-dimensional N = 2 Wess-Zumino model

The classical two-dimensional N = 2 Wess-Zumino model was presented in section 2.1.4.

Now the quantum features of this model are investigated with certain approximation

methods. This low dimensional model shares already an important feature with other,

more complicated, supersymmetric models: Due to the cancellation of the bosonic and

fermionic loop corrections, the effective superpotential remains unchanged by the quantum

effects. This is called the nonrenormalisation theorem [73, 74, 75]. In the two-dimensional

case these cancellations even render the model finite. Whereas, when only the bosonic part

of the theory was considered, the logarithmic divergences would need to be renormalised

by the introduction of appropriate counterterms in the Lagrangian. For this model only

the determination of the masses on the lattice and, for comparison, in the weak coupling

expansion can be discussed here. An earlier numerical analysis of a similar model in two

dimensions with local derivative operators can be found in [76, 77]. The investigation

presented here are partly published in [78].

4.2.1 Different lattice formulations

A naive discretisation with an unbalanced Wilson mass term is not considered in this

model. This would induce nonvanishing tadpole contributions. In addition, the formu-

lation of a model that preserves all the supersymmetries according to section 3.1.1 is far

beyond reach because of the high numerical costs. I consider here four different lattice

discretisation of the action (2.26). Two of them allow for a partial realised supersym-

metry on the lattice. The symmetric derivative with a Wilson term and the nonlocal

SLAC derivative is used. Although in the simulations the formulation of the model in

terms of real quantities (2.26) is used, I discuss the discretisation, for convenience, in

terms of the complex fields. Indeed one can easily recover the real version of the model

by φn = (ϕ1)n + i(ϕ2)n and a transition from the Weyl to the Majorana representation of

the γ matrices. The superpotential has the form W (φ) = m
2
φ2 + g

3
φ3 with positive m and

g. According to the discretisation used in chapter 3 the lattice version of the continuum

action (2.23) is

SL =
∑

n

(

1

2
(∇µφ)n(∇µφ)n +

1

2
W ′
L(φ)nW̄

′
L(φ̄)n

)

+
∑

nm

ψ̄n(∇+W ′′
L(φ)P+ + W̄ ′′

L(φ̄)P−)nmψm . (4.35)

In this two-dimensional model the operators ∇ and ∇̄ should represent 1
2
(∇0 − i∇1)

and 1
2
(∇0 + i∇1), respectively, and no one-dimensional derivative. The supersymmetry
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transformations on the lattice are

δφn = ψ̄1
nε1 + ε̄1ψ

1
n, δψ̄1

n = −1

2
W̄ ′
L(φ)nε̄1 − (∇φ)nε̄2, δψ1

n = −1

2
W̄ ′
L(φ)nε1 + (∇̄φ)nε2,

δφ̄n = ψ̄2
nε2 + ε̄2ψ

2
n, δψ̄2

n = −(∇̄φ̄)nε̄1 −
1

2
W ′
L(φ)nε̄2, δψ2

n = (∇φ̄)nε1 −
1

2
W ′
L(φ)nε2.

A breaking of supersymmetry appears here again when the Leibniz rule is violated and no

non-local interaction is used. A different formulation that preserves the supersymmetries

with ε1 = ε2 = 0 and ε̄1 = ε̄2 = ε̄ is6

SNI =
∑

n

(

1

2
(∇µφ)n(∇µφ)n +

1

2
W ′
L(φ)nW̄

′
L(φ̄)n +W ′

L(φ)n(∇φ)n + W̄ ′
L(φ)n(∇̄φ̄)n

)

+
∑

nm

ψ̄n(∇+W ′′
L(φ)P+ +W ′′

L(φ̄)P−)nmψm . (4.36)

The difference between the improved and unimproved model is the improvement term

∆S = SNI − SL =
∑

n

(

W ′
L(φ)n(∇φ)n + W̄ ′

L(φ)n(∇̄φ̄)n
)

. (4.37)

The continuum counterpart of this term vanishes in the continuum for periodic boundary

conditions. In the cases considered here the improvement term on the lattice is in the real

formulation

∆S = g
∑

n

(

(

∇0ϕ1)n + (∇1ϕ2)n
)(

(ϕ1)
2
n + (ϕ2)

2
n

)

−
(

(∇0ϕ2)n − (∇1ϕ1)n
)

(ϕ1)n(ϕ2)n

)

.

(4.38)

Its contribution gets hence smaller the smaller g is.

The improved and unimproved Wilson model

In case of the unimproved Wilson model the action (4.35) is used with a symmetric deriva-

tive ∇µ = ∇(s)
µ and a superpotential that includes a Wilson mass term and consistently

removes the doublers. It is

W ′
L(φ)n = (m(W )φ)n +W ′(φ)δnm, W ′′

L(φ)n = m(W )
nm +W ′(φ)δnm, (4.39)

W̄ ′
L(φ̄)n = (m(W )φ̄)n + W̄ ′(φ̄)δnm, W ′′

L(φ̄)n = m(W )
nm + W̄ ′(φ̄)δnm . (4.40)

It is clear that the ZR
2 symmetry of the model is broken because of the nondiagonal

additional mass term. It can only be recovered in the continuum limit. The improved

Wilson model uses the general improved action (4.36) with the same specifications for the

derivative operator and the superpotential. This improved model was also considered in

6In the fermionic part a summation over the spinor indices is always understood:
∑

α,β ψ̄α(Kf )αβψβ .
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[76].

The improved and unimproved SLAC model

In the SLAC models the nonlocal SLAC derivative is used (∇µ = ∇SLAC
µ ). Since the

nonlocal derivative already removes the doublers, the continuum superpotential can be

used:

W ′
L(φ)n = W ′(φ)δnm, W ′′

L(φ)n = W ′(φ)δnm, (4.41)

W̄ ′
L(φ̄)n = W̄ ′(φ̄)δnm, W ′′

L(φ̄)n = W̄ ′(φ̄)δnm . (4.42)

Again the improved model is the general improved lattice action (4.36) with the same

specifications.

4.2.2 Some details of the simulation

As in the one-dimensional case the simulations do not yield proper results without full dy-

namical fermions so the standard HMC algorithm was applied. In this case, however, the

inversion of the fermion determinant for the fermionic contribution of the force (4.29) on

large lattices is too slow to achieve a high enough statistic within the accessible computer

time. To circumvent this restriction, a pseudo fermion algorithm was applied. In this

algorithm the fermionic determinant is rewritten in terms of bosonic fields. In the present

case real bosonic fields χ were introduced to arrive at
∑

nm χn(KfK
T
f )−1

nmχm = ηTη instead

of | det(Kf)|. For a further improvement of the simulation also higher order integrators

in the molecular dynamic and Fourier acceleration were applied. All these algorithmic

details were already discussed at length in the PhD thesis of T. Kästner [79]. The lowdi-

mensional supersymmetric models turned out to be a good playground for the simulations

of dynamical fermions with different algorithms.

The fermion determinant can in this model in principle have also a negative sign. Such

a sign change is neglected in the pseudo fermion algorithm. However, for a sign change

of the determinant at least one eigenvalue of the fermion matrix must change its sign.

If this happens in a continuous way, in the intermediate configurations very small (even

zero) eigenvalues are expected. Consequently, the contribution log detKf is very large so

the intermediate configurations are suppressed by a large (even divergent) Seff. In the real

simulations a relevant number of the sign changes occurs only for a rather large coupling,

g/m > 1.

4.2.3 Problems with the improved actions

The improvement term should become irrelevant in the continuum limit since its contin-

uum counterpart is zero for periodic boundary conditions. This is observed also in the

simulations at weak coupling (g/m small), where for the most of obtained configurations
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the ∆S is much smaller than SL. Consequently, also 〈∆S〉 is small. The smaller the

coupling and the lattice spacing the less important becomes ∆S for the overall value of

the action.

This good behaviour is, however, not observed for all values of the simulation param-

eters. At a larger value of g/m the improvement term can become the dominant part of

the improved action. In fact, a certain transition is observed during the simulations, as

shown in figure 4.3 (a). At first only configurations with a small ∆S are obtained. After

some time the picture changes: The improvement term dominates. In addition, a larger

value of the fermion determinant is observed. It is clear that the improvement term can

be that dominant only when the high momentum modes are enhanced. The domination

of high momentum modes and the improvement term should clearly be excluded since it

is unphysical.

To exclude unphysical contributions, one has to check that 〈∆S〉 remains small in the

simulation. More precisely, one has to look at the Monte-Carlo history for a transition to

configurations with the dominant improvement term. It is observed that this transition

appears the earlier the larger the dimensionless parameters g/m and am are. It can,

nevertheless, not be in general excluded for any parameter range and any of the improved

models. The discretised improvement term seems to allow for this additional phase and a

contribution of it is only avoided because of the finite length of the Monte-Carlo history.

4.2.4 Masses

The masses were determined from the two-point functions. Instead of the full bosonic

two-point functions (all correlators between ϕ1, ϕ2) the following observable is considered

G
(b)
t =

1

N0N
2
1

∑

(n1)0−(n2)0= t

N1−1
∑

(n1)1=0

N1−1
∑

(n2)1=0

〈(ϕ2)n1 (ϕ2)n2〉 . (4.43)

The averaging summation over the lattice points in space direction (n)1 is the same as

a projection onto zero spacial momentum. Because of the translational invariance, all

measured correlations with the same distance (n1)
0 − (n2)

0 should be the same. The

averaging over these correlations is hence done only to decrease the statistical error. In a

similar way one can define fermionic observables

G
(f)
t =

1

N0N
2
1

∑

(n1)0−(n2)0= t

N1−1
∑

(n1)1=0

N1−1
∑

(n2)1=0

2
∑

α=1

〈(ψα)n1 (ψ̄α)n2〉 . (4.44)

Again the fermionic correlators are calculated from the inverse of Kf . Both correlation

functions are proportional to cosh(meffa0(t − N0/2)). This can already be seen from

the calculation of these functions in perturbation theory. Quite analogous to the one
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dimensional case the masses are obtained from a fit of the two-point functions.

The model has a ZR
2 symmetry as shown in section 2.1.4. It is also known that this

symmetry is spontaneously broken in the quantum theory. On the lattice we can, however,

consider only a finite volume. For a finite volume spontaneous symmetry breaking does

not occur [36, 80]. Only at an infinite volume the tunnelling amplitude between the

two degenerate minima of the classical theory is suppressed enough. Then they can be

considered as two degenerate ground states. The transition to the spontaneously broken

phase is not visible at any finite lattice size but occurs only for infinite volume. Thus the

thermodynamic limit cannot be extrapolated from the lattice data in a straight forward

way. To circumvent this problem, the following prescription is applied: The classical

minima are at (ϕ1 = 0;ϕ2 = 0) and (ϕ1 = −m/g;ϕ2 = 0). We can separate, therefore,

the configurations in two classes assigned to either of the two minima. For the first class

the lattice average of ϕ1 is larger than −m/(2g). The second class has a average of ϕ1 that

is smaller than this value and belongs to the minima at (ϕ1 = −m/g;ϕ2 = 0). For this

second class the ZR
2 symmetry transformation is applied. In this way we get effectively

only the contribution of one of the vacua already at a finite volume.7 Similar strategies

were applied in [81]. However, one has to check the scaling of the observables in this limit

since they achieve an additional contribution. In case of the two-point function these finite

volume effects can be neglected for the weak couplings. This was checked explicitly in a

finite volume analysis of the observables. At a larger coupling the finite volume effects

must be treated more carefully.

For the determination of the masses from the two-point functions a fit with the cosh

function was applied in a region well enough separated from t = 0 and t = N − 1. This

procedure was applied in the Wilson case. For the SLAC models again oscillations were

visible. In the propagators of the free theory a certain averaging procedure over a number

of lattice points was observed to yield the best results for the masses; details can be found

in [78]. Since in the one-dimensional case and in the free theory the masses obtained from

the SLAC derivative proved to be very close to the continuum results, an extrapolation to

the continuum was not applied here. Instead, only one lattice size was investigated and

a “perfect” scaling of the SLAC derivative was assumed. The extrapolation of the Wilson

derivative is depicted in figure 4.3(b). As assumed the SLAC derivative agrees well with

the extrapolated Wilson result.

The masses obtained in the mentioned way are all in good agreement with the per-

turbative result (cf. appendix G), as shown in figure 4.3(c) and 4.3(d). This is quite

in contrast to the one-dimensional model where at the same value of the dimensionless

parameter in the weak coupling expansion (one dimension g/m2; two dimensions g/m) a

7Even for the Wilson models the strategy is applied although the symmetry is broken at a finite lattice
spacing.
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larger deviation is visible.

Further investigations show a splitting of the fermionic and bosonic masses at a high

coupling. Its origin is a finite size effect since it decreases for larger volumes. This indicates

that the above strategy, necessary to measure quantities in a spontaneously broken phase,

is in conflict with supersymmetry. Thus, appart from the usual breaking mechanisms

of supersymmetry on the lattice, one has to be careful with the additional techniques

applied in the simulations. In the present case the thermodynamic limit of the lattice

results indicates a restoration of the supersymmetry in terms of mass-degeneracy. In the

future this will be investigated more carefully, also in terms of the Ward identities.
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Figure 4.3: In the first picture, (a), the breakdown of the simulation of an improved model
is shown. After a certain number of configurations are generated with a rather small
improvement term the situation changes and the dominant contribution is generated by
this term. The second picture, (b), shows an extrapolation to the continuum limit. For
the Wilson models not only a linear extrapolation was used. Instead meff(a) = meff +Aa+
Ba3/2 was applied which was observed to be the best approximation for the extrapolation
to the continuum of the masses obtained from the free propagator. Figure (c) shows
the results of the extrapolation in comparison to the weak coupling approximation. In
figure (d) the SLAC results are shown in a larger range of the coupling strength. At large
coupling a small splitting of bosonic and fermionic masses is observed. This is, however,
due to finite volume effects.
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5 The generalisation of the Ginsparg-Wilson re-

lation and supersymmetry

Let us take a closer look at the problem of finding a supersymmetric realisation on the

lattice. In the previous chapters the discretisation of the theory is derived in a rather

classical way, without any reference to the quantum nature, expressed, e. g., in terms

of the path integral. The fields and operators of the action are just replaced by some

discretised counterparts. In the same classical way the symmetries are discretised. As

shown in chapter 3.1.1, a discretisation of the symmetry transformations with the same

operators as in the local action fails. A symmetry of the lattice action can, however, still

be found in terms of an expansion, cf. section 3.1.3. These discrete symmetries allow

for a classical supersymmetric continuum limit. In contrast, they do not guarantee the

symmetry in the continuum limit of the quantum theory. To find out the symmetry in

this limit, the discretised theory is analysed, afterwards, in lattice perturbation theory

and numerical simulations.

Here a different strategy is applied. The main goal is the derivation of certain rela-

tions for the discretised action, that ensure the correct quantum properties of the lattice

theory. For this reason not only the classical action must be dicretised. Instead, the whole

continuum path integral must be mapped onto a lattice path integral.

This approach was first applied by Ginsparg and Wilson for the chiral symmetry [82].

As discussed in section 3.2, there is no local chiral fermion action on the lattice without a

doubling of the species. The situation seems in that way much similar to supersymmetry,

where no local symmetric realisation can be found. The Ginsparg-Wilson relation provides

a controlled breaking of the symmetry on the lattice. It ensures the correct reproduction

of the chiral symmetry and its anomaly in the continuum limit. In that way it represents

the symmetry on the lattice. I derive here a generalisation of this approach that holds for

any linear global symmetry. Later on I specialise it to chiral symmetry to reproduce their

findings.

Note that the map from the continuum onto the lattice is a renormalisation group

step. The theory is mapped onto another one that contains a smaller number of degrees of

freedom. The Ginsparg-Wilson relation is in that sense a modified Slavnov-Tailor identity

as mentioned in section 2.2.3. Studies of a generalised Ginsparg-Wilson approach can also

be found in [83, 84, 85, 86]. These results include the first derivation of a generalised

Ginsparg-Wilson relation is that applies to arbitrary lattice actions and arbitrary global

symmetries (including supersymmetry). They were published in [87].

Throughout this chapter a summation (without an additional factor of the lattice spac-

ing) is understood, whenever lattice indices or multiplet indices are doubly encountered.

φn is the field on the lattice and ϕ(x) its continuum counterpart.

59



5.1 The Ginsparg-Wilson relation for a general global symmetry 60

5.1 The Ginsparg-Wilson relation for a general global symmetry

In order to integrate out certain degrees of freedom a regulator term is introduced in the

path integral. In the Ginsparg-Wilson approach it connects the lattice degrees of freedom

with the continuum fields. This regulator can break the symmetries of the continuum

theory. The symmetry is, however, broken only in a mild way that means it is restored

in the continuum limit (cf. section 2.2.3).

The regulator consists of two parts: in the first step an averaging of the continuum

field is introduced. This is necessary to reduce the number of degrees of freedom of the

theory to a finite number of lattice fields. The second step introduces a quadratic regulator

term, in which the lattice fields are connected with the averaged continuum fields via a

blocking kernel α. This quadratic term is used instead of a direct assignment (with a

“delta”) of the lattice fields to the averaged fields. As is shown in the quadratic solutions

the introduction of the blocking kernel ensures the locality of the lattice action.

5.1.1 Blocking procedure and the Wilsonian effective action

The averaging of the continuum fields is done with a function f that is peaked around

zero, where the main contribution to the averaging should come from.1 The averaged

fields φf resulting from this procedure are defined as

φif(xn) :=

∫

dDx f(xn − x)ϕi(x) . (5.1)

The index i labels the multiplet components of ϕ on which the symmetry operator acts

in a linear way.

With these averaged continuum fields, the blocked lattice action S[φ] is derived from

a given continuum action by2

e−Sw[φ] = N(α)

∫

Dϕe−S[ϕ]− 1
2
(φi

n−φi
f (xn))αij

nm(φj
m−φj

f (xm)) . (5.2)

The quadratic regulator term connects the lattice and the continuum fields.

In order to find out the meaning of these two steps, I derive the relation between the

lattice and continuum generating functional. As in the continuum, all lattice observables

can be derived from a differentiation of the lattice generating functional,

ZL[j] =

∫

∏

n

dφne
−Sw[φ]+jφ , (5.3)

1In addition f should have the dimension inverse to the D-dimensional integral, such that the original
and blocked fields have the same dimension.

2The normalisation is such that N(α)−1 = Sdet(α) =
∫
∏

n dφne
− 1

2
φi

nαij
nmφj

m , see section A.4. Later

on this factor is absorbed into D′ϕ. In addition α should fulfil φ̃iαijφ
j = φiαij φ̃

j for two multiplets φ

and φ̃.
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with respect to jn. Inserting (5.2) and preforming a Gaussian integration, one immediately

arrives at

ZL[j] = e
1
2
jα−1j

∫

Dϕe−S[ϕ]+jφf . (5.4)

This shows that with an action defined by (5.2) one measures on the lattice averaged

continuum observables, apart from an additional Gaussian contribution. There are many

properties of the theory that can be determined already from these averaged quantities.

Moreover, the continuum limit of such a lattice theory is a safe procedure: The averaging

function must get narrower and narrower. This just indicates that the resolution of our

measurements is increased with a smaller lattice spacing.3 In addition α−1 must vanish in

this limit, for quantities containing a contribution of this matrix. The blocked action Sw

(or Wilsonian effective action) obtained in this way is hence also-called a perfect lattice

action. Note that this action is similar to Γ[k, φ] in section 2.2.1.

5.1.2 A generalisation of the approach of Ginsparg and Wilson

In most cases the blocked action S[φ] cannot be directly calculated from the continuum

action according to equation (5.2) and the form of this action may also not be convenient

for the numerical computations. Hence one has to allow for more general actions. The

main properties of the continuum theory should, however, be correctly resembled by the

lattice counterpart. That means with respect to these properties there should be no

difference between the considered lattice action and the perfect action.

In our case the symmetry of the continuum theory is such a property. Therefore I

show how the continuum symmetry is represented at the level of the perfect action. The

result is a relation that contains the information of the continuum symmetry. This is

similar to the Ward identities that represent the symmetries at the level of the effective

action. The two steps (eq. (5.1) and (5.2)) in the blocking have a different implications

in the derivation of the relation. The starting point is a symmetry transformation in the

continuum

δϕi =Mijϕj . (5.5)

By definition, the continuum action is invariant under such a transformation and the

averaged fields are transformed as

δφif(xn) =

∫

dDxf(x− xn)Mijϕj . (5.6)

3Indeed with a detector that has a finite resolution in space-time one would measure such averaged
observables.
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Suppose now the following additional condition is fullfilled for the symmetry relations

δφif(xn) =

∫

dDxf(x− xn)Mijϕj
!
= M ij

nm

∫

dDxf(x− xm)ϕjm = M ij
nmφ

j
f (xm) . (5.7)

In the derivation of Ginsparg and Wilson only chiral symmetry was considered. In that

case it is rather trivial to fulfil this condition, as will be shown in more detail later on. It

defines a naive symmetry transformation,

δφin = M ij
nmφm , (5.8)

on the lattice.

Such a naive transformation of the lattice fields (φin → φin + δφin) is now performed.

In addition, the continuum fields are transformed with a continuum symmetry transfor-

mation (ϕin → ϕin + δϕin). The result is (up to linear order in the transformations)

M ij
nmφ

j
m

δ

δφin
e−Sw[φ] =

∫

D′
δϕ e

−S[ϕ] M ij
nm(φ− φf)jm

δ

δφin
e−

1
2
(φ−φf )α(φ−φf ) . (5.9)

It is assumed that the continuum action is invariant and the D′
δ indicates a possible ad-

ditional change of the measure, e. g., due to an anomaly. Such a change can be formally

represented in terms of the Jacobi determinant of the continuum symmetry transforma-

tion. Up to linear order it leads to the additional contribution 〈STrM〉 on the right

hand side.4 The averaged fields φif , depending explicitly on the continuum fields, can be

replaced by a derivative with respect to the lattice fields according to

(φ− φf)jm
δ

δφin
e−

1
2
(φ−φf )α(φ−φf ) =

−
(

(−1)|φ
i|δmnδ

ij + α−1jk
mr

δ

δφkr

δ

δφin

)

e−
1
2
(φ−φf )α(φ−φf ) . (5.10)

The (−1)|φ
i| is (−1) for every fermionic field φi and 1 otherwise. The derivatives with

respect to the lattice fields can be pulled in front of the path integral. In that way one

finally arrives at

M ij
nmφ

j
m

δSw

δφin
= (Mα−1)ijnm

(

δSw

δφjm

δSw

δφin
− δ2Sw

δφjmδφin

)

+ (StrM − 〈StrM〉) . (5.11)

This relation depends only on the lattice fields and the blocked lattice action. It has no

direct reference to the continuum any more. It is a remnant of the continuum symmetry

on the lattice.5 It is a property of any blocked (perfect) lattice action that is derived

4The expression 〈StrM〉 stands for
∫

Dϕ Str(M) e−S[ϕ]−1

2
(φ−φf )α(φ−φf )+Sw[φ] (cf. section 2.2.4).

5Or in more physical words: The way the symmetry is represented in the measurements of the men-
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from a symmetric continuum action. Thus, if a lattice theory fulfils this condition, it is

compatible with the continuum symmetry. To get a symmetric lattice theory, relation

(5.11) is solved for the lattice action Sw.

While the left hand side of the relation (5.11) is just the naive symmetry variation of

the action Sw, the right hand side constitutes some nontrivial modification of it. The last

term is the difference between the continuum anomaly and a lattice contribution to it.6

Apart from this terms the relation is reduced to the naive invariance

M ij
nmφ

j
m

δSw

δφin
= 0 , (5.12)

if a symmetric blocking matrix, α = αS, is chosen. Such a blocking matrix fulfils the

condition

Mα−1
S ± (Mα−1

S )T = 0 . (5.13)

The minus sign appears whenever fermionic fields are transformed into fermionic fields

by the naive symmetry transformation (5.8). Furthermore, if an additional matrix α−1
S is

added to α−1, the symmetry relation (5.11) remains unchanged. 7

5.2 General solutions for a quadratic action

The situation is much simplified for a quadratic action like

Sw =
1

2
φinK

ij
nmφ

j
m , (5.14)

with the kernel K comprising kinetic and mass terms. Although this is seemingly a simple

situation, it contains already the nontrivial result Ginsparg and Wilson [82] have found

for the chiral symmetry. There the gauge fields are treated as a background and a relation

for the remaining quadratic fermion part of the action is derived. K can also in our case

be dependent on some background fields.

In this case the relation (5.11) simplifies to

φMTKφ = φKT (Mα−1)TK φ− Tr (Mα−1)KT + (StrM − 〈StrM〉) . (5.15)

For the present discussion the last two terms are neglected. The remaining part is equiv-

tioned detector with a finite resultion.
6On the lattice there still remains an integration of a, with respect to the continuum, reduced number

of degrees of freedom. The related measure of this integration can carry a part of the continuum anomaly.
7Note that in the approach of [85] to a supersymmetric Ginsparg-Wilson relation a symmetric blocking

kernel is chosen and (5.7) is not considered. Thus the resulting relation did, in fact, not differ from the
classical considerations of the last chapters.
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alent to the matrix identity8

MTK ± (MTK)T = KT (Mα−1)TK ± (KT (Mα−1)TK)T . (5.16)

If this condition is solved for K, a lattice action compatible with the continuum symmetry

is derived. A further reformulation of the relation,

(K−1)TMT ±MK−1 = (α−1)TMT ±Mα−1 , (5.17)

shows that it resembles a compensation between the symmetry breaking of the action and

the symmetry breaking of the blocking kernel. This reformulation also indicates that the

general solution (5.11) for a quadratic action is

K−1 = α−1 − α−1
S . (5.18)

The K−1 is hence uniquely determined by α−1 up to symmetry-preserving terms α−1
S . To

identify the relation as a symmetry of the lattice action, I introduce the matrix

Mdef := M
(

1l− α−1K
)

. (5.19)

Equation (5.16) is then nothing but the invariance of the lattice action under the trans-

formation δφ = Mdefφ:

MT
defK ± (MT

defK)T = 0 . (5.20)

Hence the relation represents a lattice symmetry. The condition for the lattice action is the

invariance under this particular symmetry. The matrix α is, apart from some hermiticity

requirements, so far unspecified. One may chose an appropriate α for a given K.

However, the continuum action must emerge from the lattice action in the continuum

limit. Thus not all K and α may be chosen. Furthermore, a well behaved choice for K

should be local. With the solution (5.18) of the symmetry relation Mdef is

Mdef = −Mα−1
S K . (5.21)

The matrix α−1
S is constrained only by the requirement (5.13). Hence, even the solution

Mdef = 0 (K−1 = α−1) seems possible. A suitable lattice symmetry operator should carry

some information about the (local) continuum symmetry. One reason for this is that a

symmetry operator also defines an observable, that can be measured on the lattice to

get information about its continuum value. Hence there are in fact two conditions that

8The minus sign again applies whenever the naive symmetry transforms fermions into fermions.
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constain our choices of K and α: The action and the symmetry operator Mdef are required

to be local and approach their continuum counterparts in the continuum limit.

5.2.1 Chiral Symmetry

To illustrate the above general findings, the explicit example of chiral symmetry is consid-

ered. The result is the well known Ginsparg-Wilson relation. The corresponding symmetry

defined by Mdef was already found by Lüscher [88] as a reformulation of this relation.

Consider an action of a field multiplet with two fermionic fields: φ = (ψ, ψ̄T ). K is

given in terms of the Dirac operator /̂D,

K

ad
=







0 − /̂D
T

/̂D 0






, (5.22)

The lattice action (5.14) is thus a discretisation of (2.3). As we have seen in section 2.1.4,

the continuum action is invariant under the chiral symmetry transformations generated

by

Mϕ =







γ5 0

0 γT5













ψ

ψ̄T






, (5.23)

with γ†5 = γ5 . In the present case the additional requirement (5.7) is trivially fulfilled

since the generator acts only on the multiplet index. The naive transformation is hence

the same as the continuum transformation. The matrix α is chosen to be

α

ad
=







0 −αT1

α1 0






, (5.24)

with a general α1. In order to get a real lattice action both, D and α1, must be hermitian.

With this setup the general matrix relation (5.16) becomes

{ /̂D , γ5} = /̂D{γ5 , α
−1
1 } /̂D . (5.25)

As indicated in the general case (5.20) it can be rewritten in terms of a deformed symmetry

with Mdef given as

Mdef =







γ5,def 0

0 (γ̄5,def)
T






. (5.26)
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It is intresting to note that instead of a modification of γ5 inM the two different matices

γ5,def = γ5(1− α−1
1
/̂D) , and γ̄5,def = (1− /̂Dα−1

1 )γ5 (5.27)

appear in the deformed symmetry transformations. Note that for hermitian α−1
1 and /̂D

γ̄5,def = γ†5,def holds. With these matices the symmetry can be rewritten as

γ̄5,def /̂D + /̂Dγ5,def = 0 . (5.28)

This is the mentioned Ginsparg-Wilson-Lüscher symmetry. The simplest choice for α1 is

1/a, α1 = 1/a1l, where 1l is diagonal with respect to the lattice sites and the identity in

Dirac space. The well know result of this specification,

{ /̂D , γ5} = 2a /̂Dγ5 /̂D , (5.29)

is the Ginsparg-Wilson relation. For this choice of α the requirements of the locality and

continuum limit of the action and the deformed symmetry generator are fulfilled when /̂D

is local.

A more general solution for a general /̂D (cf. (5.18)) is

α−1
1 = /̂D

−1

+ α−1
1,S , (5.30)

where the symmetric part satisfies α−1
1,Sγ5+γ5α

−1
1,S = 0. /̂D is assumed to be local. Then the

locality condition of Mdef demands a local α1. This is in accordance with the assumptions

made in [89, 90]. Only the symmetric part of /̂D
−1

can be absorbed in α−1
S . Hence a

necessary condition for a Dirac operator on the lattice is that the non-symmetric part

1l 1
D
tr( /̂D

−1

) is local. This is not the case for the massless Wilson-Dirac operator.

Finally I will add a short note about the meaning of the φ independent part of equation

(5.15) for the chiral symmetry. It is in this case

Tr γ5α
−1
1
/̂D + (Trlattice γ5 − 〈Trcont γ5〉) = 0 . (5.31)

From the lattice trace we get no contribution Trlattice γ5 = 0. When the simple blocking

matrix α ∝ 1l is chosen, this expression becomes

2 Tr γ5 /̂D = (n+ − n−)lattice = 〈Trcont γ5〉 = (n+ − n−)continuum . (5.32)

When the blocking corresponds to a gauge-invariant regulator of the continuum trace as

in eqn. (2.52). The relation defines in this way a lattice index of a Dirac operator.
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5.2.2 Explicit solution for a quadratic action

For the quadratic continuum action, S[ϕ] = 1
2
ϕixK̃

ij
xyϕ

j
y, the path integral in equation

(5.2) can be calculated to obtain the blocked lattice action Sw[φ] = 1
2
φKφ. It is a simple

Gaussian integration. The result of this integration is called the fixed point operator [91]

and reads in momentum space

K(pk) =

(

∑

l∈Z f ∗(pk + l 2π
a

)f(pk + l 2π
a

)

K̃(pk + l 2π
a

)
+ α−1(pk)

)−1

. (5.33)

Note that such a solution of the Ginsparg-Wilson relation was already mentioned in [82].

In many cases f(x) is considered to be the averaging over one lattice spacing, e.g. in

one dimension

f(x) =











1/a if |x| < a/2

0 otherwise

, (5.34)

which means f(pk) = 2
La

sin(pka/2)
pk

. Such an averaging was applied in [92] to construct a free

supersymmetric (perfect) lattice theory. It must be stressed that, since the constraint (5.7)

was not considered there, the symmetry properties of the resulting Sw cannot be expressed

in terms of a lattice symmetry involving only lattice fields: equation (5.7) demands for

the derivative operator appearing in the supersymmetry transformations

∑

m

∇nmφ(am) =
1

a
(ϕ(an+ a/2)− ϕ(an− a/2)) (5.35)

and this cannot be fulfilled for any ∇nm since the transformation involves the continuum

fields.

To interpret the right hand side of equation (5.35) a new field was introduced in [92],

which is defined to be 1
a
ϕ(an + a/2) at the lattice point an. Then the lattice fields are

transformed into such fields under the supersymmetry transformations. They are rather a

continuum than a blocked lattice quantity. The correct supersymmetric continuum limit

is ensured in this approach because the lattice action is a direct solution of the blocking.

But this property is in this approach not expressed in terms of a lattice symmetry. A well

defined lattice symmetry is desirable as a guiding principle for the construction of a more

general lattice action.

Note, as a sidemark, that for vanishing α−1 the solution (5.33) becomes nonlocal as

found in [93]. A vanishing α−1 is in principle allowed since it emerges in the limit of

diverging eigenvalues of α. This corresponds to a
∏

ni δ(φ
i
n − φif(xn) in the path integral.

In such a δ-like blocking the averaged fields are directly associated with a corresponding

lattice field. The SLAC derivative is one of these nonlocal solutions. One gets this
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derivative operator from (5.33) when f(p) is one for all momenta below the lattice cutoff

and otherwise zero. In real space is corresponds to f(x) = 2
∑

n cos(pnx). Thus the

SLAC derivative is in that sense a perfect derivative operator. Only the nonlocality of

the emerging solutions rules out a zero α−1.

5.3 The additional constraint for a supersymmetric theory

As seen in section 5.2.1 it is rather trivial to fulfil the additional constraint (5.7) when the

symmetry acts, like chiral symmetry, only on the multiplet index. Facing the application of

the Ginsparg-Wilson approach in the case of supersymmetry, one has to consider derivative

operators in the continuum symmetry transformations. In this case it is a nontrivial task

to satisfy the additional constraint. For this problem it is enough to consider the one

dimensional case, since it can be easily generalised. The requirement is then that a lattice

derivative operator ∇ and an averaging function f exists such that

∇nm

∫

dx f(am− x)ϕ(x) =

∫

dx f(an− x) ∂xϕ(x) (5.36)

holds.9 A partial integration and a Fourier transformation leads to10

f(pq)
[

∇(pq)− i pq
]

= 0 ∀ q ∈ Z . (5.37)

That simply means the Fourier components of the averaging function must vanish at all

momenta, where the dispersion relation of ∇(p) deviates from the continuum dispersion

relation. Since ∇(p) is a periodic function they can have nonzero values only in the

first BZ. However, the momentum of the averaged fields is, according to equation (5.1),

restricted below the largest momentum of the averaging function. It is hence not desirable

to have an averaging function with vanishing Fourier components for all momenta above

a cutoff that is smaller than the lattice cutoff π
a
. For all momenta above such an artificial

cutoff the lattice fields will not be coupled to an averaged field and only a quadratic action
1
2
φαφ remains for these modes.

After all the only remaining way to realise the additional requirement for supersym-

metry is a derivative operator that agrees for all momenta below the lattice cutoff with

the continuum dispersion relation. Only in this case a sensible lattice theory results from

the blocking. The appearance of a nonlocal derivative operator might not be that surpris-

ing. In the additional requirement the blocking matrix α is not taken into account and

we already know that for a vanishing α also the solutions of the perfect action, equation

(5.33), become nonlocal. In the definition of the lattice symmetry operator (5.19) the

naive symmetry is supplemented by a dependence on the matrix α. To investigate the

9Since unimportant for the present considerations, the multiplet indices were neglected.
10Details can be found in appendix A.3.
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lattice symmetry and specify the matrix α a special supersymmetric example must be

chosen. For simplicity supersymmetric quantum mechanics is considered here.

5.4 Supersymmetric quantum mechanics

The example of supersymmetric quantum mechanics with a quadratic action might seem

rather trivial. However, the considerations of the chiral case show that already a quadratic

theory leads to nontrivial solutions. Thus the following investigations might be seen as

the supersymmetric version of the overlap solution for chiral symmetry.

5.4.1 The setup for a onedimensional supersymmetric theory

The basic setup for a onedimensional supersymmetric theory has already been discussed

in section 2.1.4. For convenience I use sightly different conventions for the formulation of

the Lagrangian and the symmetry in the following discussion. The field multiplet is

ϕx = (χ(t), F (t), ψ(t), ψ̄(t))T , (5.38)

where χ is a bosonic field, F the auxiliary field, and the complex ψ and ψ̄ define the

fermionic fields. The continuum action has the following form

S[ϕ] =

∫

dt
[1

2
(∂tχ)2 + ψ̄∂tψ −

1

2
F 2 + ψ̄

∂W

∂χ
ψ − FW (χ)

]

. (5.39)

In these conventions one has the following supersymmetry transformations

δχ = −ǭψ + ǫψ̄ , δF = −ǭ∂tψ − ǫ∂tψ̄ , δψ = −ǫ∂tχ− ǫF , δψ̄ = ǭ∂tχ− ǭF . (5.40)

These are respresented in matrix form by

δϕ = (ǫM+ ǭM̄)ϕ (5.41)

where

M =























0 0 0 1

0 0 0 −∂t

−∂t −1 0 0

0 0 0 0























M̄ =























0 0 −1 0

0 0 −∂t 0

0 0 0 0

∂t −1 0 0























, (5.42)

and the multiplet is arranged as a vector according to (5.38).

Each component of the continuum multiplet gets a lattice counterpart,

φn = (χn, Fn, ψn, ψ̄n)
T , (5.43)
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and according to the results of section 5.3 the naive transformations are the same as the

continuum transformations apart from a replacement of the derivative operator with the

SLAC derivative on the lattice. Hence the naive lattice transformations are

δφin = (ǫM ij
nm + ǭM̄ ij

nm)φjm , (5.44)

with M and M̄ defined as

M ij
nm =























0 0 0 1

0 0 0 −∇

−∇ −1 0 0

0 0 0 0























nm

M̄ ij
nm =























0 0 −1 0

0 0 −∇ 0

0 0 0 0

∇ −1 0 0























nm

. (5.45)

Finally, the relation (5.11) for the lattice action must be solved to find a symmetric lattice

action. Since the trace part does not contribute in the case of supersymmetry this is the

same problem as to solve (5.15) for K. Since the lattice action should be hermitian and

translational invariant I start with the following ansatz for the lattice action:

Sw[φ]

a
= −1

2
χ�χ + ψ̄(∇̂+mf )ψ −

1

2
F IF − Fmbχ , (5.46)

which implies

Kij
mn

a
=























−� −mb 0 0

−mb −I 0 0

0 0 0 ∇̂ −mf

0 0 ∇̂+mf 0























mn

. (5.47)

(�)mn, (mb)mn , and (mf)mn are so far undetermined symmetric (real) matrices. (∇̂)mn is

antisymmetric. All of theses matices are assumed to be circulant because of translational

invariance.11

The last thing that must be specified in order to find a solution of the symmetry

11Note that circulant matrices form a commutative algebra, which makes it much simpler to solve the
symmetry relation.
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relation is the blocking matrix α. Here it has the same form as K,

αijmn
a

=























−α� −αmb
0 0

−αmb
−αI 0 0

0 0 0 α∇̂ − αmf

0 0 α∇̂ + αmf
0























mn

, (5.48)

where (α�)mn, (αmb
)mn , and (αmf

)mn are symmetric and (α∇̂)mn antisymmetric circulant

matices.

5.4.2 Solutions for a quadratic action

It is instructive to start the discussion with possible symmetric blocking matrices, ac-

cording to equation (5.13). Since they are of the same form, one can similarly search for

quadratic actions invariant under the naive symmetry transformations. For simplicity I

will consider first only M and not M̄ . Note, however, that these solutions also apply to

the general case. For the kernel of a symmetric quadratic action KS is of the form (5.47).

In addition, it is invariant under the naive transformations, MTKS+(MTKS)
T = 0, which

leads to

� = ∇∇̂ , mb = mf , and ∇I = ∇̂ . (5.49)

Thus the symmetric kernel depends only on the matrices mb and I in the bosonic part

and the fermionic part follows from the symmetry conditions, (5.49).12 From this solution

the general form of a symmetric blocking matrix αS is deduced by a replacement of mb

with αmb
and I with αI.

The most obvious ansatz for a blocking matrix in a supersymmetric theory is a su-

persymmetric mass term: (αmb
)mn = (αmf

)mn ∝ δmn and all other entries of α are zero.

In this case the deformed symmetry is, however, reduced to the nonlocal naive symmetry

since the right hand side of equation (5.11) vanishes. The invariant action follows then

from (5.49). In this action the product of ∇ and I and ∇2 and I appears. The nonlo-

cality of ∇ is caused by a discontinuity at the boundary of the first BZ. This can only

be amended if I(p) vanishes with all its derivatives at this boundary or else I itself must

have a discontinuity at this point. Then I(p) can only be differentiable for all degrees of

differentiation, but it can not be analytic. It follows that in real space the entries of I0n
do not show a strict exponential decay with increasing n; but a stronger than polynomial

decay can be achieved. Thus with (αmb
)mn = (αmf

)mn ∝ δmn the symmetry transforma-

tions are nonlocal and the action can only be chosen according to that sightly relaxed

12Note that this condition also determines � in the bosonic part.
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version of locality.13

On the other hand, one can start instead of α with a specific form for K. In (5.18) α

is specified by the inverse of K,14

(K−1)ijmn =























I
−�I+m2

b

−mb

−�I+m2
b

0 0

−mb

−�I+m2
b

�

−�I+m2
b

0 0

0 0 0
−∇̂+mf

−∇̂2+m2
f

0 0
−∇̂−mf

−∇̂2+m2
f

0























mn

, (5.50)

up to a symmetric part. Thus for a given K one gets α(αS) = (K−1 + α−1
S )−1. The

addition of a nonzero symmetric part α−1
S is crucial since otherwise Mdef would be zero

(cf. (5.21)) and the lattice counterpart of the symmetry would not be well defined.

The main task is to find a nonzero αS that renders Mdef = −Mα−1
S K local for a given

local K (and the nonlocal M of (5.45)). In addition one has to investigate if the resulting

α(αS) is a suitable blocking kernel. Let us start with the inverse of the general symmetric

blocking kernel and make some redefinitions,15

(α−1
S )ijmn =

1

−(∇αI)2 + α2
mb























αI −αmb
0 0

−αmb
∇2αI 0 0

0 0 0 −∇αI + αmb

0 0 −∇αI − αmb
0























mn

=:























−1
2
∇−1(R +R′) 1

2
(R− R′) 0 0

1
2
(R −R′) −1

2
∇(R +R′) 0 0

0 0 0 R′

0 0 R 0























mn

. (5.51)

13The conditions for this locality and a specific example for Ican be found in appendix A.3.2.
14The appearing fractions are assumed to be performed in momentum space and Fourier transformed

back into real space.
15The factor ∇−1 should be seen as a division by p in Fourier Space.
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With such a symmetric blocking kernel the deformed lattice supersymmetries are

Mdef = −Mα−1
S K =























0 0 0 −(∇̂ −mf )R

0 0 0 ∇(∇̂ −mf )R

(� +∇mb)R
′ (∇I +mb)R

′ 0 0

0 0 0 0























(5.52)

M̄def = −M̄α−1
S K =























0 0 (mf + ∇̂)R′ 0

0 0 ∇(mf + ∇̂)R′ 0

0 0 0 0

−(�−∇mb)R (∇I −mb)R 0 0























. (5.53)

In these expressions a product of R and R′ with local and nonlocal operators appear.

Thus these matrices must be local and render at the same time the product ∇R (or ∇R′)

local (with ∇ nonlocal). This is similar to the problem concerning the locality of I and

∇I that is discussed above. Hence only the relaxed version of locality can be achieved

for ∇R and R. M and K can at the same time be local only in this relaxed sense.

A special solution with such a property is constructed as follows. A good starting point

is mf = mb, � = ∇2I with a ∇̂ = ∇I that fulfils the condition of the relaxed locality. For

the continuum limit it is clear the I must approach 1 at the centre of the BZ whereas the

function and all derivatives of it vanish at the boundary. Then one can use R = −I
∇I−mb

and R′ = −I
∇I+mb

to get the deformed lattice symmetry Mdef = IM (M̄def = IM̄) that is

also local in the relaxed sense. The corresponding α(αS) can be deduced from equation

(5.18) . The inverse of this matrix is simply α−1 = (1l − I)K−1. This matrix fulfils all

the conditions for a suitable blocking kernel since its inverse vanishes in the continuum

limit. A possible doubling problem in this solution is easily amended. It is enough to

add a Wilson mass to mb (= mf ) to remove it. A more serious problem appears when

the transformation to an on-shell theory is done before the continuum limit. Since I(p)
vanishes at the boundary of the BZ divergences appear in 1/I(p) and, consequently, in

the on-shell action.16

16Note that this solution is the same as the naive symmetry (5.49). This is because the additional
matrix I in Mdef drops out in the symmetry condition. Hence a possible nonsymmetric part of α−1 is
not needed to get the relaxed locality.
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5.5 Polynomial order of the solutions for a general symmetry

The main goal of the Ginsparg-Wilson approach to a supersymmetric theory is to find a

local lattice action compatible with the symmetries. Thus we have to consider also the

interacting, non-quadratic theory. The main advantage of the relation (5.11) is that it is

applicable to a general, and not only quadratic, theory.

In the interaction case we are, however, lead to an additional problem of the Ginsparg-

Wilson approach. The action as it emerges from the solution of the relation appears

generically in a non-polynomial way. This is not only the case in supersymmetric theories.

Hence the following general discussion is not restriced to supersymmetry. The example

of solution in the zero-mode sector of interacting supersymmetric quantum mechanics

(appendix F) may illustrate these findings.

To consider the general case, let us start with a lattice action consisting of polynomials

up to order R in the fields, represented as

Sw[φ] =
R
∑

r=1

s(r)[φ] , s(r)[φ] = Ki1...ir
n1...nr

φi1n1
. . . φirnr

, (5.54)

where s(r) contains the rth order in the fields (cf. (F.1)). The coefficients K are so far

not further specified, they can imply a simple multiplication of fields at the same lattice

point, but are also allowed to contain lattice derivatives or to smear the powers of the

fields over several lattice sites, as long as they obey the correct continuum limit. With

this ansatz relation (5.11) becomes a complicated nonlinear differential equation coupling

derivatives with respect to the fields at different lattice points. In the zero modes sector

it is represented as (F.3). An expansion in the order of the fields yields17

O(φ0) : 0 =Mα−1
(δs(1)

δφ

δs(1)

δφ
− δ2s(2)

δφδφ

)

+ (StrM − 〈StrM〉) (5.55)

O(φr=1...R−2) : Mφ
δs(r)

δφ
=Mα−1

∑

s+t=r+2

(δs(s)

δφ

δs(t)

δφ
− δ2s(r+2)

δφδφ

)

(5.56)

O(φr=R−1,R) : Mφ
δs(r)

δφ
=Mα−1

∑

s+t=r+2

δs(s)

δφ

δs(t)

δφ
(5.57)

O(φr=R+1...2R−2) : 0 =Mα−1
∑

s+t=r+2

δs(s)

δφ

δs(t)

δφ
. (5.58)

These coupled equations can be read as restrictions for the Ki1...ir
n1...nr

parametrising s(r)

imposed by the symmetry. In the case of R=2 only the conditions (5.55),(5.56) are

relevant resulting in (5.15).

17This is written in a short hand notation, and a summation of the indices is understood.
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A necessary condition for a truncation is that (5.58) is fulfilled for a certain order R.

Otherwise higher orders of the fields must be added to the action to get a closed set of

equations. Consider the highest order of these equations. It is

0 = (Mα−1)ijnm

(δs(R)

δφjm

δs(R)

δφin

)

, (5.59)

or equivalently

0 = vT (Mα−1) v with vin =
∂s(R)

∂φin
. (5.60)

This relation implies that

Mα−1 + (Mα−1)T = 0 (5.61)

within the subspace of lattice fields spanned by the vin. If the vin span the whole space of

φin and equation (5.61) holds, the relation is reduced to the naive symmetry.

On the other hand, if the vin do not span the whole space of the fields they must

be linearly dependent. Then some linear combinations of the vin vanish and from the

definition (5.60) it is clear that the highest part of the action s(R) does not depend on

some particular combinations of fields. On this subspace there is no constraint like (5.61).

After all, it is only possible to get a truncation of the action, if (5.61) is fulfilled on

that subspace of φ’s, on which the highest term of the action, s(R), depends. Keeping

translational invariance, it is impossible to have s(R) independent of fields at particular

lattice points n, but s(R) may be independent of a whole field component (φi) of the

multiplet. Such a case appears for constant fields (cf. (F.6)) when a1 is set to zero. Then

the highest term of the action, χ4, depends only on χ, and Mα−1+(Mα−1)T has no matrix

entries for this field component. In this way a polynomial solution can be achieved.

To get the full solution in the interacting case, also the relations for the action that

involve the terms of lower order in the fields must be solved. Note also that it is hard

to investigate the continuum limit of such a theory since in perturbation theory certain

vertices are introduced that vanish in the continuum limit.18

5.6 Conclusions for this approach

In the application of the Ginsparg-Wilson approach to supersymmetric theories there ap-

pear two kind of difficulties. The first is the nonlocal (SLAC) operator that emerges from

the additional constraint (5.7). Equation (2.51) shows us the origin of the additional con-

straint. A similar equation holds for a general Wilsonian effective action. More precisely,

a Wilsonian effective action is, like in (5.2), defined by

Sw[φ] = − log〈e−Sα[ϕ,φ]〉 . (5.62)

18This is, however, comparable to the case of lattice gauge theories.
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Sα is similar to the regulator Sk and in for the lattice theory Sα = 1
2
(φf −φ)α(φf −φ). In

an analogous way as in (2.47) for the Ward-identities one obtains (neglecting the anomaly

part)19

〈(εδS + εδSα)e
−Sα[ϕ,φ]〉 = 0 . (5.63)

The additional constraint requires that this can be reformulated as a “symmetry” of the

Sw provided δS = 0. Thus one needs

0 = 〈εδSαe−Sα[ϕ,φ]〉 !
= (εMdefφ)〈e−Sα[ϕ,φ]〉 = (εMdefφ)e−Sw[φ] . (5.64)

For a general continuum theory the additional condition must be fullfiled for this require-

ment. The locality of Mdef can be increased, but not fully established, in a quadratic

supersymmetric theory.

The other problem is the non-polynomial solution in the interacting case. It applies not

only for supersymmetric theories, but is a general feature of the solutions of generalised

Ginsparg-Wilson relations. The appearance of these non-polynomial solutions is, on the

other hand, not quite unexpected. The perfect action is comparable to the full quantum

effective action. For such an action one cannot expect to get polynomial solutions unless

one considers only a free theory. A solution of this problem can be the truncation according

to the conditions found in 5.5. A different possibility is to find out which operators are

relevant in the continuum limit and which one can safely be ignored for the symmetry.

Further investigations of this problem are still on the way.

19δSR means the part of SR[εδϕ, φ] linear in ε.



6 Different approaches to the one-loop approxi-

mation

The loop expansion, introduced in section 2.3.2, yields an approximation of the effective

action of a given theory. It can be compared with the lattice results, the weak coupling

expansion, and the FRG approximations. The aim of the following investigations is also to

examine different expansions of the effective action. An appropriate expansion is necessary

for the FRG calculations.

Furthermore, the simple model of supersymmetric quantum mechanics is well suited

for the examination of a certain “puzzle” that can be found in the literature in connection

with the loop expansions of a supersymmetric theory. In [63] and other works the loop

expansion was employed in the off-shell theory, as usual, to approximate the effective po-

tential u. u comes from the zeroth order term of a derivative expansion and contains all

orders of the auxiliary field, as detailed in section 2.2.1. To arrive at an approximation of

the on-shell effective potential uon, the nonlinear equations of motion for this field were

solved. In this way a phase transition to a phase with spontaneously broken supersym-

metry could be determined.1 Alvarez-Gaume, Freedman, and Grisaru found in [94] that

the result is different from the one-loop approximation in the on-shell theory u(1)
on .2 They

called this an unresolved “puzzle”. They also found that u(1)
on is negative for some values of

the field, which is incompatible with supersymmetry. Murphy and O’Raifeartaigh [95] at-

tributed this “puzzling feature” to the formal (unphysical) character of the auxiliary (there

called “dummy”) field. As found in their examination of u(1)
on the classical spontaneous bro-

ken or unbroken supersymmetry was stable under the quantum corrections. Furthermore,

they could successfully explain the negative values of u(1)
on with the breakdown of the loop

expansion for a nonconvex potential.

Here I present a more careful analysis. In fact, what was considered in the mentioned

literature as different calculations of the same one-loop on-shell potential are in fact two

different approximations of the effective potential. In supersymmetric quantum mechanics

one has the additional possibility to compare these potentials with the exact effective

potential obtained according to appendix D.

6.1 Definitions of different approximations for the effective po-

tential

As I have explained there are two different expansions for the off-shell theory. The first

one is done in terms of derivatives, the second one in terms of covariant derivatives.

1This was done for an N = 1; D = 2 Wess Zumino model.
2As explained the number denotes the level of the loop-expansion, u = u(0) + ~u(1) + ~

2u(2) + . . .. The
same applies for the loop expansion of uon and uS .
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The first term of the derivative expansion is U . The first term of the covariant derivative

expansion, obtained from the effective superpotential after the integration of the Grassman

coordinates, is US. In both potentials no derivative terms appear. In addition US contains,

in contrast to U , only terms of at most linear order in the auxiliary field. Thus US is

the linear term of an expansion of U in powers of the auxiliary field. U and US will be

obtained here in a loop expansion. Note that in the computation of US in superspace all

effects of the covariant derivatives can be neglected. Therefore the computation of US, or

equivalently the effective superpotential, in superspace is much easier than the one of U .

In the following only the part of the effective action with zero fermionic fields is

considered. This corresponds to a formal minimisation of the effective potential with

respect to these fields. U is not invariant under the full supersymmetry, but only under

its zero-mode part of them.3 This can be used to construct the full effective potential from

the one with zero fermionic fields. In supersymmetric quantum mechanics the relation

between the fermion part and the bosonic part by the zero-mode supersymmetry leads

to4

u(ϕ, ψ, ψ̄, F ) = u(ϕ, F )− ψ̄ψ 1

F

∂

∂ϕ
u(ϕ, F ) . (6.1)

Thus the relevant information is contained in u(ϕ, F ) = lim(ψ̄,ψ)→(0,0) u(ϕ, ψ, ψ̄, F ).

The final result should be compared to the on-shell effective potential uon. Therefore,

the auxiliary field must be eliminated. To do this in case of US, the terms with covariant

derivatives are added in their classical form SS,k
5 to US and the equation of motion

resulting from this combination is solved. These equations are linear in the auxiliary

field. The result US,on is for constant arguments (as the classical kinetic part contains

derivative operators) an approximation of the on-shell effective potential Uon.

The loop expansion of US follows from the loop expansion of U , as the projection onto

the linear order in the auxiliary field does not change the order of ~. U (n)
S is the same as

the term of U (n) linear in F . Similarly the linear equation of motion does not mix the

orders of ~. The expansion of the solution is hence (for a constant F and ϕ)

F = − ∂

∂F

∑

l=0

~
lu

(l)
S (ϕ, F ) = −i

∑

l=0

~
lW

(l)′
eff (ϕ) = −

∑

l=0

~
l ∂

∂F
u(l)(ϕ, F )

∣

∣

∣

F=0
. (6.2)

(The second term denotes the loop expansion of W ′
eff.) The auxiliary field is then inserted

into SS,k + US to obtain US,on. There the auxiliary field appears quadratically and the

3As explained the zero-mode supersymmetry is the part of the transformations without derivative
operators.

4Small letters indicate the division by a volume factor and constant fields as arguments, u =
lim(ϕ,F )→const U/Ω.

5Usually SS,k consists of the kinetic terms for fermions and bosons and the quadratic term, 1
2F

2, of
the auxiliary field.
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orders of ~ mixed. For supersymmetric quantum mechanics one obtains

uS,on =
1

2

(

∑

l

~
lW

(l)′
eff (ϕ)

)2

=
1

2
W ′2 + ~W

(1)′
eff W

(0)′
eff + ~

2

(

1

2
(W

(1)′
eff )2 +W

(2)′
eff W

(0)′
eff

)

+ ~
3
(

W
(0)′
eff W

(3)′
eff +W

(1)′
eff W

(2)′
eff

)

+O(~4) . (6.3)

This is the loop expansion of uS,on.

Thus we have obtained first the loop expansion of Weff and then of uSon from the

loop expansion of u. The result is an approximation of the on-shell effective potential,

uon, where contributions of higher orders of F are neglected in the corresponding off-

shell theory. At each order of ~ a comparison with the exact result for uon tells us how

important these contributions are.

A zero of the classical potential 1
2
W ′(ϕ0)

2 = 0 implies W ′(ϕ0) = 0. Equation (6.3)

shows that such a zero is not lifted by one-loop corrections; but can be changed by the

first contribution at the two-loop level. When all loop orders of Weff are set to zero, except

the zeroth and first, uS,on receives nonzero contributions only up to the second order in ~.

Now let us take also the higher orders of the auxiliary field into account. Instead of the

linear part US, we consider U with contributions of all orders of F . To arrive at Uon from

the off-shell effective potential U , nonlinear equations of motion for F must be solved.

With u given in a loop expansion, these equations of motion are (again constant fields)6

F = −iW ′ −
∑

l=1

~
l ∂

∂F
u(l)(ϕ, F ) = −

∑

l

~
lF (l)(ϕ) . (6.4)

In contrast to (6.2) F (l) is not only determined by u(l) with the same l. Instead one finds

the expansion

F (0)(ϕ) = −iW ′, F (1)(ϕ) = −
(

∂Fu
(1)
)

(ϕ, F (0)) = −
(

∂Fu
(1)
)

(ϕ,−iW ′),

F (2)(ϕ) = −
(

∂2
Fu

(1)
)

(ϕ, F (0)) F (1) −
(

∂Fu
(2)
)

(ϕ, F (0))

=
(

∂2
Fu

(1)
)

(ϕ,−iW ′)
(

∂Fu
(1)
)

(ϕ,−iW ′) −
(

∂Fu
(2)
)

(ϕ,−iW ′) ,

F (3)(ϕ) = −1

2

(

∂3
Fu

(1)
)

(ϕ, F (0))
(

F (1)
)2 −

(

∂2
Fu

(1)
)

(ϕ, F (0)) F (2)

−
(

∂2
Fu

(2)
)

(ϕ, F (0)) F (1) −
(

∂Fu
(3)
)

(ϕ, F (0)) , etc. (6.5)

This expansion has to be inserted in u to arrive at the on-shell effective action uon. In

6Note that u(0) = 1
2F

2 + iW ′F .
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this way one arrives at the loop expansion of the on-shell action

uon =
1

2
F 2 + iW ′F + ~ u(1)(ϕ, F ) + ~

2u(2)(ϕ, F ) +O(~3)

=
1

2
W ′2 + ~ u(1)(ϕ,−iW ′)− ~

2

2

((

∂Fu
(1)
)

(ϕ,−iW ′)
)2

+ ~
2u(2)(ϕ,−iW ′)

+O(~3) . (6.6)

Integrating out the auxiliary field in the beginning and a loop expansion of the on-shell

theory leads to the same result. This is what Murphy and O’Rafaertaigh did in [95]. Thus

their result can be obtained also from the off-shell loop expansion, consistently including

the auxiliary (“dummy”) field. To arrive at this result, it is important to take care of the

~-order in each step.

What was done in [94] is to start with the off-shell effective potential, calculated up

to the one-loop order (u ≈ u(0) + ~u(1)), forget the factor ~ of the expansion (as it is one

in natural units), and solve the nonlinear equation

F = −iW ′ + ∂Fu
(1) . (6.7)

Instead of an expansion (6.5) one obtains a set of solutions of this nonlinear equation.

The equations of motion should minimise the effective action. Hence, of these solutions

one chooses the one with the lowest real effective potential u. This solution is then

inserted into the approximation of u to obtain the on-shell counterpart ũon. From the

above detailed derivation with the careful consideration of the expansion parameter ~ it

is clear that the result cannot be the same as the on-shell loop expansion. The “puzzle”

is resolved in this way.

Nevertheless, the approach of [94] should not be completely disregarded with reference

to the unsystematic treatment of the expansion parameter ~. It should be understood

as an approximation method different from the loop expansion, or a (asymptotic) re-

summation of it. To explain this in further detail, let us return to (6.5) that solves the

equations of motion order by order in ~. At each order F (l) contributions appear that

solely depend on u(0) and u(1). In fact, when one sets all of the u(l) with l > 2 to zero

F =
∑

l ~
lF (l) represents nothing but a perturbative solution of (6.7). The perturbative

series does not always converge to the exact result, in some cases it represents only an

asymptotic expansion of it.

In a similar way the contributions of u(l) with l > 2 in (6.6) can be set to zero. Then

ũon represents a (asymptotic) re-summation of all loop contributions. Thus the result of

[94] is a re-summation of certain loop contributions and yields an approximation different

from the loop expansion, although one starts with a loop expansion of the off-shell theory.
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It hence carries non-perturbative information.

In the loop expansion of the on-shell theory (6.6) one can immediately find out which

contributions were neglected at each order ~ in this approximation. These are all contri-

butions containing u(l) with l > 2. The relevance of these neglected contributions can so

far not be estimated in such a conclusive way as for the loop expansion, which works well

whenever the classical configurations are dominant. To investigate this in further detail,

let us consider the simple case of supersymmetric quantum mechanics.

6.2 Supersymmetric quantum mechanics in the loop approxima-

tion

The supersymmetric model with the action (2.12) and the superpotential

W (Φ) =
m

2
Φ2 +

g

3
Φ3 (6.8)

is considered here in the context of the loop expansion. Further details of this calculation

and the weak coupling expansion of the model are given in appendix E.

The staring point is the derivative action (2.37) in superspace with a constant Φs

SΦs [Φ] =

∫

dz

[

1

2
Φ
(

K + i(m+ 3gΦ2
s)
)

Φ + igΦsΦ
3 + i

g

4
Φ4

]

. (6.9)

The loop expansion of Γ[Φ] is read from the corresponding 1PI vacuum graphs at Φs = Φ,

as explained in section 6. Here constant Φ are considered and an additional volume factor

is included to arrive at the effective potential u. The first contribution comes from the

superdeterminant and is given by

u(1)(ϕ, F ) =
1

2

(

(W ′′2 + iFW ′′′)1/2 − |W ′′|
)

=
i

4

FW ′′′

|W ′′| +O(F 2) . (6.10)

The first term of the expansion in F is u(1)
S .7 In superspace the calculation of uS is quite

simple because in the inversion of the field-dependent propagator, K + W ′′(Φs), all the

commutators of K and Φs are neglected. With this propagator at hand the superspace

Feynman rules can be used.

To arrive at the loop expansion of u, the contributions of K acting on Φs cannot be

neglected. The fermion fields are set to zero and all other fields to a constant value. Thus

7In superspace, neglecting all terms that arise from a commutator of K and the superfield Φ, one

arrives at the effective superpotential W
(1)
eff

= logW ′′. This is consistent with this solution.
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the Φs = ϕs + θθ̄Fs dependent propagator for the calculation of the vacuum diagrams is

[K(k) + iW ′′(Φs)]
−1(θ, θ′, θ̄, θ̄′)|Φs=ϕs+θ̄θFs

=

1− iW ′′(ϕs)(θ̄θ + θ̄′θ′) + (k2 + iFW ′′′(ϕs))θ̄θθ̄
′θ′

k2 +W ′′2(ϕs) + iFsW ′′′(ϕs)

+
k(θ̄′θ − θ̄θ′) + iW ′(ϕs)

′(θ̄′θ + θ̄θ′)

k2 +W ′′2(ϕs)
. (6.11)

For the effective potential the vacuum diagrams of the derivative action must be calculated

at Φs = Φ. The lines ( ) correspond to the Φs-dependent propagator (6.11) and the

vertices can be read from (6.9) ( denotes the field dependent vertex igΦs). With these

Feynman rules the two-loop contribution of u is obtained as

u(2)(F, ϕ) =
∣

∣

∣

Φs=ϕ+θ̄θF
+

∣

∣

∣

Φs=ϕ+θ̄θF

=

(

3g

4

(

W ′′

W ′′2 + iFW ′′′ − (W ′′2 + iFW ′′′)−1/2

)

+
Fg2(F − iϕ(6W ′′ − 9ϕW ′′′)

4(W ′′2 + iFW ′′′)2

)

(6.12)

= −3iFgW ′′′

8W ′′3 − i3g2

4
F

(

2ϕ

W ′′(ϕ)3
− 3ϕ2W ′′′(ϕ)

W ′′(ϕ)4

)

+O(F 2) .

The expansion of the result in terms of F and ϕ yields the mass (O(Fϕ)) and the wave

function renormalisation (O(F 2)) as obtained in the weak coupling expansion, cf. equation

(E.6), at p = 0. The two-loop contribution for the supersymmetric effective potential can

be derived, as detailed above, in a much simpler way. Again the result agrees with the

part of u(2) that is linear in the auxiliary field.

Since it starts with a linear term the whole effective potential vanishes when F ap-

proaches zero. This is expected since in the present case supersymmetry is unbroken and

hence 〈F 〉 = 0. This fact can also be read from the weak coupling expansion since there

is no tadpole contribution that leads to a nonvanishing 〈F 〉.
As explained in (6.6), the loop expansion of the on-shell effective potential uon is de-

rived from u. According to (6.3) the approximation without the nonlinear contributions of

the auxiliary field uS,on is obtained. These approximations are compared to ũ that results

from the solution of the nonlinear equations of motion (6.6). The numerical calculations,

cf. chapter D, show how well uon, uS,on at one and two-loop order or the re-summation ũ

approximate the exact uon.

Assuming an imaginary value of F , the one and two loop effective potential acquires

still a nonzero imaginary part if W ′′2 + iFW ′′′ < 0, even though the classical action is
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real. After the elimination of F with its linear classical equations of motion this expression

determines exactly the region where the on-shell potential is nonconvex, since then

∂2

∂ϕ2
(W ′)2 = W ′′2 +W ′W ′′′ < 0 . (6.13)

Consequently, uS,on and uon are in the one and two-loop approximation complex in the

nonconvex region of the classical potential. This agrees with the well-known breakdown

of the loop expansion in such a nonconvex region. As found in [95] this breakdown also

explains the negative values of the one and two-loop result.

It is interesting to note that the complex region does not appear if the nonlinear

equations of motion for the auxiliary field are solved. ũ stays real, even in this region.

For large fields all approximations approach the classical potential since also the dif-

ference between classical and effective potential decreases in this limit. As the whole

effective potential vanishes for F = 0 (〈F 〉 = 0) the one-loop approximation of uS,o and

uo vanishes always at the minima of the classical on-shell potential.8 This observation

agrees with the result of [95]. There it was found that a zero of the classical potential is

not changed by (one-loop) quantum corrections.

In figure 6.1(a) the weak (g/m2 ≪ 1) and strong (g/m2 ≈ 1) coupling case with a

convex potential is shown. For weak coupling all approximations agree very well with

the exact result. The situation changes for strong couplings. The best approximation of

the exact results is then the one-loop approximation u
(1)
on . Already in the weak coupling

expansion an artificial phase transition in the two-loop approximation for large g/m2 can

be observed, cf. figure 7.1(c), since the two-loop mass becomes negative. This fact is

reflected also in the loop expansion of the effective potential, where for large coupling

constants the two-loop potential develops a local maximum at ϕ = 0.

An example of a nonconvex classical potential is shown in figure 6.1(b). The classical

potential for W ′ = mϕ + gϕ3 has three minima for negative m. The only minimum of

the exact effective potential is still at ϕ = 0 because no spontaneous breaking of the

Z2 symmetry of the action appears in quantum mechanics. Thus the other two minima

must be lifted by the quantum corrections.9 The one-loop approximation of uon and uS,on
cannot show this effect. The two loop approximation of these potentials is much closer to

the exact value. Remarkably, the best approximation is obtained with the unconventional

approximation ũ. This approximation seems to incorporate the relevant contributions,

even in the vicinity of the lifted classical minima. In the region of nonconvex classical

on-shell potential the loop approximations of uo and uS,o are, as expected, complex. ũ is

8This is true only for unbroken classical supersymmetry, where these minima correspond to zeros of
W ′(ϕ).

9A similar effect appears for spontaneously broken supersymmetry.
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a real function, but also fails to reproduce the exact behaviour in the nonconvex region

and at the exact minimum.

Let us further investigate these findings. As explained, solving the nonlinear equations

of motion for the auxiliary field corresponds to a re-summation of loop contributions. In

the expansion (6.6) these are the contributions at each loop order that solely depend on

u(0), u(1), and their derivatives. I have calculated these contributions up to the twelfth

loop order. For a convex classical potential their sum converges rapidly towards ũ. On

the other hand, for the nonconvex case this sum forms an asymptotic expansion of the

potential. This is shown in figure 6.2(a), where the sum of these contributions up to the

order 1 to 12 is depicted in comparison to ũ. Especially at the lifted classical minimum

the sum fails to converge to ũ. This indicates that the contribution neglected in the re-

summation is dominated by the part contained in ũ. Hence ũ is a better approximation

than the loop expansion. A different way to estimate this fact is obtained from the two-

loop level of (6.6). There
((

∂Fu
(1)
)

(ϕ,−iW ′)
)2

is considered in ũ and u(2)
)

(ϕ,−iW ′) is

neglected. Assume now u(2) is smaller than u(1). Then a dominance of the part considered

in ũ is indicated by |
(

∂Fu
(1)
)

(ϕ,−iW ′)|2 ≫ |u(1)|2.
A different situation is shown in figure 6.2(b). Here (∂Fu

(1))2 is always much smaller

than u(1). As expected from this rough estimate the one and two-loop on-shell effective

potentials are better approximations of the exact result than ũ.

A comparison of one and two-loop approximation of uo and uS,o in the present example

shows only marginal difference in the one-loop case. This is in agreement with the weak

coupling expansion, equation (E.6), where a wave function renormalisation Z different

from one appears at first at the two-loop level. Hence the O(F 2) term of the effective

action does not differ from its classical form at one loop and possible corrections must be

of higher order in F or in ~. A considerable difference between uo and uS,o appears at

two-loop in particular in the strong coupling regime and in the nonconvex case. There

the inclusion of higher orders in F leads to a better result and cannot be neglected.

Further investigation of these approximations can, unfortunately, not be shown here.

They were also calculated in the N = 2 two-dimensional Wess-Zumino model with the

superpotential mentioned in 2.1.4. The result is less conclusive since the zeros of the

classical potential are not lifted by all of the approximations. This is in accordance with

the nonrenormalisation theorem. The result has also been compared with the constraint

effective potential, as obtained from the lattice simulations. Investigations of the case with

spontaneously broken supersymmetry (supersymmetric quantum mechanics and N = 1

D = 2 Wess-Zumino model) are still ongoing. Note, furthermore, that the fermionic fields

are zero in the approximation. Whether the introduction of a general “dummy” field in

bosonic theories can lead to a better approximation is hence a relevant question.
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Figure 6.1: The different approximations of the effective potential are compared with the
exact (high precision numerical) predictions for a convex (a) and nonconvex (b) potential.
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0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.02 0.04 0.06 0.08 0.1

V
(ϕ

)

ϕ

The effective potentials for a convex classical potential (m = 10, g = 20)

exact
classical 1

2(W ′(ϕ))2

one-loop uon(ϕ)
one-loop uS,on(ϕ)
two-loop uon(ϕ)

two-loop uS,on(ϕ)
one-loop ũ(ϕ)
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Figure 6.2: The different approximations of the effective potential are compared with the
exact (high precision numerical) predictions in the region of convex potential and weak
coupling (m = 10, g = 5). In this case all approximations lead to a good agreement with
the predictions.
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7 Functional renormalisation group flow and su-

persymmetry

As we have seen in the last chapter the general realisation of a supersymmetric lattice

theory according to the approach of Ginsparg and Wilson is so far not completely sat-

isfying. A prescription for the construction of a local lattice action as in the chiral case

can hence not be given. The lattice regulator beaks supersymmetry and the effect of the

breaking must be investigated for each theory separately. In most cases only the results

of numerical simulations can show if a supersymmetric theory can be approached in the

continuum limit. In view of these problems it is difficult to obtain completely reliable

results from the supersymmetric lattice simulations. To obtain reliable information about

the nonperturbative properties of supersymmetric theories, one should hence consider also

alternative methods. For these considerations a method without an explicit supersymme-

try breaking is preferable. Such a method can be provided by the (truncated) functional

renormalisation group flow (FRG) introduced in section 2.3.4.

The idea of the renormalisation group flow is related the lattice simulations. In a

lattice simulation the finiteness of the considered volume provides an infrared cutoff for

the theory. The finite lattice spacing, on the other hand, introduces also an ultraviolet

cutoff. Fluctuations on scales between these two cutoffs are integrated out in the lat-

tice path integral. So the lattice is a regulator that introduces a sharp cutoff for the

momentum of the modes. The result of a breaking of the continuum symmetry by the

regulator is exemplified by the investigations of the last chapter. It corresponds to the

modified Slavnov-Taylor identities (section 2.2.3). This leads to a rather complicated set

of equations and that demands for non-polynomial solutions.

In this chapter I consider the FRG for symmetric regulators. The approximation

method is a restriction to a certain truncation of the effective action. All operators that

will be generated beside this truncation during the flow are neglected. These results were

published in [96].

7.1 Supersymmetric quantum mechanics

The starting point of the flow is the classical supersymmetric action of equation (2.12).

The easiest way to construct possible quadratic regulators compatible with supersymmetry

is to define Rk as a function of covariant derivatives. This leads to the following expression

Sk =
1

2

∫

dp

2π
dθdθ̄ Φ(−p, θ, θ̄)Rk(D, D̄)Φ(p, θ, θ̄)

=
1

2

∫

dp

2π
dθdθ̄ Φ(−p, θ, θ̄)(ir1(p, k) + r2(p, k)K)Φ(p, θ, θ̄) . (7.1)
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The anticommutation relation of the covariant derivatives (2.11) is used to express higher

powers of the covariant derivatives in terms of spacetime derivatives and K. In addition,

a truncation of the effective action must be defined. I choose here the classical action

with a fixed kinetic part (F 2 inclusive) and an arbitrary function Wk as superpotential

that can be changed during the flow

Γk[φ, F, ψ̄, ψ] =

∫

dt

∫

dθdθ̄

[

1

2
ΦKΦ + iWk(Φ)

]

. (7.2)

Wk interpolates between an approximation of the effective superpotential (Weff) and the

classical superpotential. Thus at k = Λ the classical potential defines a starting point of

the equation,

lim
k→Λ

W ′
k(ϕ) = W ′(ϕ) . (7.3)

Strictly speaking the cutoff Λ should be infinite. However, in the model considered here

the result does not depend on the value of Λ as long as it is large enough compared to

the other scales of the potential. Thus, effectively, the starting point in terms of the

regularised effective action is

Γ[ϕ, k] ≈ SR[ϕ, k] := S[ϕ] + Sk[ϕ] . (7.4)

This corresponds to the first term in a saddle point approximation for large Sk in the path

integral of W [k, j], (2.39). It means that for large Λ a good approximation of the starting

point is Γk[ϕ] = S[ϕ]. The endpoint of the flow yields now a approximation of uS defined

in section 2.2.1, uS(ϕ, F ) ≈ limk→0 FW
′
k(ϕ).

It is clear that the inverse on the right hand side of the flow equation (2.43) gener-

ates not only the terms that appear in the current ansatz of the effective action. These

additional terms are not considered in the approximation. The derivation for the flow of

Wk can be done in superspace, details about the connection between the superspace and

real space expressions are reviewed in appendix H. The general flow equation reads in

superspace1

∂kΓk =
1

2

∫

dz dz′ ∂kRk(z, z
′)Gk(z

′, z) , Gk = (Γ
(2)
k +Rk)

−1 . (7.5)

In the present truncation, all terms generated on the right hand side by an application

of the covariant derivatives on a field are neglected. Thus all terms containing covariant

derivatives in the action maintain their classical form. In this way the full renormalisation

1The coordinate z denotes here (t, θ, θ̄).
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group flow is projected onto the part of the superpotential. One arrives at

∂kWk(φ) =
1

2

∫

dp

2π

h(p, k)∂kr1(p, k)− ∂kr2(p, k)W ′′(p, k, ϕ)

h2p2 +W ′′(p, k, ϕ)2
, (7.6)

with h = 1 + r2 and W ′′ = r1 + W ′′
k . For simplicity I specify the regulator to be of a

Callen-Symanzik type: r1(p, k) = k and r2(p, k) = 0. Then the differential equation for

the flow of the effective superpotential is

∂kWk(ϕ) =
1

4

1

k +W ′′
k (ϕ)

. (7.7)

Numerical results

Equation (7.7) is used for the numerical investigations of the flow equations. As an addi-

tional boundary condition, the effective potential should approach the classical potential

for large ϕ. (7.7) can hence be solved for a given starting point (7.3) using numerical meth-

ods.2 Apart from the effective superpotential (Weff = limk→0Wk(ϕ)) the solution yields

also a value for the effective mass in the on-shell theory. In the current approximation

m2
eff is the curvature of the effective on-shell potential at its minimum3

meff = lim
k→0

W ′′
k (ϕ)

∣

∣

∣

ϕ=ϕmin

. (7.8)

For the convex classical potential (with positive m) considered in section 6 (cf. (6.8))

the obtained effective potential (uS,on) agrees in the weak coupling sector with the loop

approximation (cf. figure 7.1(a)). Moreover, it also yields a very good approximation in

the strong coupling sector (cf. figure 7.1(b)). The approximation of the effective masses

is reasonable and close to the exact and lattice results, as shown in figure 7.1(c). In figure

7.1(d) one observes that for certain nonconvex potentials the approximation works also

quite well.

On the other hand, the truncation of the flow contains only the first term of a covariant

derivative expansion. The terms that are changed from their classical form are hence

only linear terms in the auxiliary field and carry no momentum dependence. Indeed,

the deviation from the exact result in figure 7.1(c), although the effective potential is

well approximated (7.1(b)), can be attributed to the truncated momentum dependence.

For a better result the pole of the effective propagator has to be determined with re-

normalised higher momentum contributions. As we have observed from the one and two

loop calculations, the higher order contributions of the auxiliary field can be important,

2In this case Mathematica routines were applied.
3This holds for unbroken supersymmetry. The classical kinetic part is added to the effective potential

and the pole of the effective on-shell propagator 1/Γ′′(ϕ)|ϕ=ϕmin
determines this result.
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especially for nonconvex potentials. Therefore the linear – and even the quadratic –

truncation in the auxiliary field may not be enough. This effect can be seen in figure

7.1(d). For the superpotential (6.8) with negative m it leads to an even larger deviation

from the exact result.

7.2 Some general statements about supersymmetric flow equa-

tions

For a supersymmetric theory the truncation can, however, be adjusted in such a way, that

the symmetry is not broken. Together with the supersymmetric regulator, this allows for a

nonperturbative treatment without the breaking of supersymmetry. As a supersymmetric

regulator, one can also in higher dimensions introduce R as a function of the covariant

derivative.

The limitation of the flow equations is the truncation of the considered effective action.

This error has to be compared with the discretisation error of the lattice simulations.

When an agreement of the flow equations with the lattice simulations can be achieved, it

is a strong indication that truncation and discretisation errors are under control.

What is now the real difference between the lattice calculations and the functional

renormalisation group flow? r1(p, k) represents a momentum dependent mass. If it is very

large for the high momentum modes with p2 > Λc(k)
2 these modes are effectively removed

from the theory. Thus only the modes below this Lorentz covariant cutoff contribute and

SR[ϕ, k] defines a theory regularised by Λc(k). SR is the counterpart of the lattice action in

this approach. When, instead of the Lorentz covariant cutoff, a lattice cutoff (Λc(k) = ΛL)

is introduced for the modes one arrives at the nonlocal lattice theory derived in section

3.1.1. A periodic continuation of the delta does not appear after the removal of the higher

modes. This regulator the result is similar to the nonlocal lattice realisation. The cutoff

leads, in terms of the Gibbs phenomenon, to a deviation from the continuum exponential

decay of the correlation functions. The starting point of the flow (SR[ϕ, k → Λ]) is

nonlocal when it contains such a sharp cutoff. The locality is reobtained for Λ → ∞
which is a safe procedure in the (finite) theories considered here.

The second interesting finding is the role of the nonlinearity in the on-shell supersym-

metry transformations. The regularised classical action that defines the starting point of

the flow is

SR =

∫

dt

(

−1

2
(ϕh∂2

t ϕ)− iψ̄h∂tψ +
1

2
FhF + iFW ′(ϕ)− iψ̄W ′′(ϕ)ψ

)

. (7.9)

The linear equations of motion for the auxiliary (F = −ih−1W ′) lead to the corresponding
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on-shell regularised action:

SR =

∫

dτ

(

−1

2
ϕh∂2

t ϕ− iψ̄h∂tψ − iψ̄W ′′(ϕ)ψ +
1

2
W ′(ϕ)h−1W ′(ϕ)

)

. (7.10)

The supersymmetric off-shell regulator Sk leads, due to the nonlinear supersymmetry

transformations, to a rather complicated form of the regularised on shell action. As for

the Wilson mass the introduction of a modified mass term leads to regulator dependent

modified vertices. The rather simple regulator in the off-shell theory corresponds thus

to a nontrivial choice in the on-shell theory. The flow equations would involve higher

loop terms and become much more complicated in the on shell theory. Furthermore h−1

introduces an additional nonlocality in the theory. With h = 1 the equations of motion for

the auxiliary field are F (p) + ir1(p)ϕ(p, k) = iW ′
k(ϕ). The sharp cutoff (divergent r1(p, k)

above the cutoff) prevents here the generation of momentum modes above the cutoff on

the right hand side.

After all the renormalisation group equation provide an attractive tool for the investi-

gation of the nonperturbative sector of a supersymmetric theory. For a sharp cutoff there

are many similarities to the nonlocal lattice realisation. There is, however, much more

freedom in the choice of the regulator than for a lattice theory. In addition, for simple

truncations, the result can be obtained with less numerical effort. The disadvantage of

this approach is the diffculty in controling of the truncation error. This must be carefully

investigated for each considered model and set of parameters.
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Figure 7.1: In (a) and (b) the results of the functional renormalisation group flow are
compared to the exact and one loop effective potential. This is done in the case of the
superpotential (6.8). In the weak coupling as well as the strong coupling regime the
functional renormalisation group approximation achieves a good approximation of the
exact effective potential. Figure (c) shows a comparison of the effective masses obtained in
such an approximation in terms of the curvature of the effective potential at its minimum.
This is compared to the weak coupling result, the exact mass gap (cf. section D), and
the effective lattice mass. The lattice mass was obtained with the improved SLAC model
on a N = 51 lattice without an extrapolation to the continuum (5× 105 indep. config.).
The error indicates the deviation of the g = 100 result at the same lattice size from the
extrapolated continuum value, cf. fig. 4.1. (d) shows an example of a nonconvex potential.
In this case a deviation between the functional renormalisation group approximation is
still close to the exact result but a larger deviation from it is observed.
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8 Summary and conclusions

In the present thesis I have investigated various basic consequences of the application of

quantum field-theoretical methods to supersymmetric theories.

The main focus was put on the well-established method of lattice simulations. In

this approach the discretisation of spacetime breaks supersymmetry. The main cause of

this breaking is the inevitable violation of the Leibniz rule by any discretised derivative

operator. I have shown that the symmetry can only be restored by means of a non-local

derivative operator, such as the SLAC derivative, and a non-local interaction term.

Another source for the breaking of supersymmetry arises in the application of stan-

dard methods to the construction of a local lattice action. These procedures involve the

introduction of an additional mass term (the Wilson mass) for the fermions in order to

avoid an effective doubling of the degrees of freedom. The corresponding contributions

to the action do not appear in the bosonic sector. Consequently, supersymmetry is not

restored in the continuum limit, as becomes clear already in the one-loop lattice pertur-

bation theory. This happens even though the classical contribution of the Wilson term

vanishes. For this reason the additional mass term must be consistently represented in

the bosonic sector. Only in this way may one still achieve a supersymmetric continuum

limit. Another advantage of the non-local formulations is that such a problem does not

occur. Altogether the non-local lattice formulations can guarantee supersymmetry. In the

context of lattice perturbation theory I have found that the locality in low-dimensional

models is restored in the continuum limit.

It must be stressed that the above considerations about the lattice formulations were

scrutinised and confirmed in this thesis by means of numerical simulations. Towards this

end, various different lattice formulations were compared and the relevant supersymme-

try operators were measured with high precision. I could successfully apply non-local

lattice operators in the simulations. This also allowed the application of realisations with

completely intact supersymmetry.

The simulation were done in the one-dimensional theory of supersymmetric quantum

mechanics and in the N = 2 twodimensional Wess-Zumino model.

To check for supersymmetry in the simulations, I measured the masses of fermions and

bosons as well as Ward identities. The implementation according to the standard methods

shows supersymmetric properties neither at a finite lattice spacing nor in the continuum

limit. However, a number of other discretisations could be found where supersymmetry

is restored in the continuum limit.

Discretisations that employ a “Nicolai improvement” realise a part of supersymmetry

on the lattice. This is reflected in the Ward identities I have measured. Nevertheless, for

the remaining part the symmetry breaking at a finite lattice spacing is amplified. More-

over, in applying this method to the two-dimensional Wess-Zumino model an unphysical
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phase can appear with amplified high-momentum modes. This does not mean in general

that the partial realisation of supersymmetry implies no improvement. It only raises the

question whether the benefits of partially preserved symmetry properties outweigh other

potential problems introduced in the lattice theory. This must be answered separately for

each considered model and measurement. In any case, all models with partially preserved

supersymmetry showed the complete restoration of the symmetry in the continuum limit.

This is, however, also achieved in similar formulations without partial realised lattice

supersymmetry.

In this thesis I have performed the first simulation with a non-local discretisation

that preserves the full supersymmetry even at finite lattice spacing. This proves that

supersymmetry can, in fact, be conserved as long as one is willing to accept a violation of

locality.

Thus, supersymmetry or locality must be violated in a controlled way, such that both

are present in the continuum limit. Similarly, chiral symmetry must be broken on the

lattice in a controlled way. This is required by the Nielsen-Ninmoya theorem. The

Ginsparg-Wilson relation guarantees such a controlled breaking of chiral symmetry. It

corresponds to the symmetry of a perfect lattice action. In the present thesis I have ex-

tended this symmetry relation to general global linear symmetries. However, when applied

to supersymmetry, two difficulties arise in this approach:

The first one is that as a translation of the derivative operator in the supersymme-

try transformations the non-local SLAC-derivative appears on the lattice. This follows

from the transition from continuum fields to averaged lattice fields. The locality can be

improved with the help of the blocking matrix.

The second problem occurs when the approach of Ginsparg and Wilson is applied

to a non-quadratic action. Then the solutions are in general non-polynomial. This is

not unexpected since the perfect action has a generically non-polynomial form. I could

identify possible solutions of this problem, and further investigations will follow.

A good alternative to the lattice simulations is the method of the functional renormali-

sation group flow. This approach can also provide information about the non-perturbative

sector of a supersymmetric theory. One can use regulators that do not break supersym-

metry. However, one challenge of this method is that an appropriate truncation of the

effective action must be found. In order to obtain a completely reliable result one should,

therefore, compare it with the one obtained in the lattice simulations. With such a com-

parison one can ensure that the errors of both methods are not relevant.

I have exemplified this in the case of supersymmetric quantum mechanics, where a

good approximation of the effective action could be achieved with this method. In fact,

the obtained masses are comparable to the lattice results.

As a third method the loop expansion in a supersymmetric theory was investigated.
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In this case there appear certain inconsistencies and discussions in the literature on the

subject about the correct treatment of the auxiliary field. As shown in this thesis, these

inconsistencies correspond to two different approximations. One of them is an effective

re-summation of certain loop contributions and allows a different insight into the exact

properties of the theory than the ordinary loop expansion. The other corresponds to

the ordinary loop expansion, where a lifting of the classical minima can not be found at

one-loop order.

All these investigations show that it is possible to get information about the non-

perturbative sector of a supersymmetric theory. This can be done without an additional

supersymmetry breaking by the applied approximation method. For the lattice simula-

tions one has to ensure that loality and supersymmetry are recovered in the continuum

limit. This has to be investigated for each considered model separately. Further investi-

gations towards a Ginsparg-Wilson relation for supersymmetry can help to find a solution

that does not depend on a specific model. In any case, it is instructive to compare the

obtained results with other approximation schemes, as they are indicated in this thesis.
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A Rules and conventions

A.1 Indices and summations

The Euclidian spacetime indices are always labeled by µ and ν whereas spinor indices are

denoted as α, β. A summation of the spacetime indices is only implied when they appear

in the upstairs downstairs combination ∂µ∂
µ =

∑

µ ∂µ∂µ. The summation over µ runs

always from zero to D− 1 where D is the dimension of the space-time.

The indices i and j label different field species. When no specific model is considered

the fields ϕ and φ stand for a general multiplet of fields. The components of such a general

multiplet are labelled by the index i and j (i1, i2, etc.). In that case these components

can also contain the spinor components of a spinor field or the vector components of a

field Aµ.

A.2 The lattice

The lattice is a hypercubic discretisation of the space time. The lattice points are xn . In

the µ direction there are Nµ lattice points separated by the spacing aµ. Here the number

of lattice points is assumed to be odd in each direction. If the index of N and a is not

specified the same number of points and lattice spacing is assumed for all directions. Each

lattice point is labelled by a vector n with D components. These components run from

0 to Nµ − 1. The lattice point is just defined as xn =
∑

µ nµaµ The vector eµ has zero

components except a 1 in its µ direction. So n + eµ labelled the next neighbouring lattic

point of xn in µ direction. ϕn is the field associated with the lattice points xn.

The size of the lattice in µ direction is, consequently, Lµ = Nµaµ and its volume

ΩL =
∏

µ Lµ. Periodic boundary conditions are assumed for this volume. These are

implemented by setting n + Nµeµ = n in every direction µ. If not further specified the

sum
∑

n of a lattice index runs over the whole lattice and contains an additional factor
∏

µ aµ:

∑

n

=
∏

µ



aµ

nµ=Nµ−1
∑

nµ=0



 (A.1)

The lattice index is labeled by n and m. ni or nj are treated as individual lattice

indices; only the nµ or nν stands for a component of an index. So (n1)µ is the component

of n1 in µ direction.

A.3 Fourier transformation on the lattice

The first step for the formulation of a lattice theory is to consider a finite volume with

periodic boundary conditions. This represents the lattice in the continuum (but not

thermodynamic) limit. The hypercubic volume has the length Lµ in µ direction and a
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volume ΩL. In this case a general continuum field has the Fourier series representation

ϕ(x) =
1

ΩL

∑

q ∈ZD

ϕ(pq)e
ipqx (A.2)

ϕ(pq) =

∫

ΩL

dDxϕ(x)e−ipqx , (A.3)

with dimensionless wave numbers q ∈ Z and (pq)µ = 2πqµ
Lµ

. (pqx here stands for a scalar

product of the two vectors.) This representation is applied to the averaging function

f(an − x) in section 5.3. In the thermodynamic limit (L → ∞) the Fourier modes pq
become continuous and the usual continuum Fourier representation is obtained.

Functions on the lattice can be parametrised by N independent waves,

φn =
∑

k

φ(pk)e
ipkxn (A.4)

φ(pk) =
∑

n

φne
−ipkxn . (A.5)

If not further specified the above sum over k represents

∑

k

=
1

ΩL

∏

µ

kµ=(N−1)/2
∑

kµ=−(N−1)/2

. (A.6)

(Here k ∈ ZD represents a vector with components kµ ∈ Z for each direction of the space

time µ.) From this relation it is clear that φ(pk) is periodic in pk, φ(pk) = φ(pk+eµl2π/aµ)

∀l ∈ Z and all directions µ. The same transformation is used for the φf(an) in section

5.3. The momentum of the modes is inside the Brillouin zone (BZ) defined by BZ =

{(pµ)| |pµ| ≤ (ΛL)µ = π
aµ
}.

This implies also a representation of the delta on the lattice

δ(xn − xm) = δnm :=
∑

k

eipk(xn−xm) =
∏

µ

(aµ)
−1δ̄nµmµ

δ(pk1 − pk2) :=
∑

n

e−i(pk1
−pk2

)xn =
∏

µ

(Nµaµ)δ̄(k1)µ(k2)µ
, (A.7)

where δ̄nµmµ is one for nµ = mµ mod Nµ and zero otherwise. These two delta functions

are periodic: δ(pk) = δ(pk + eµl2π/aµ); δ(xk) = δ(xk + eµlNµ) ∀l ∈ Z and µ.

For the lattice perturbation theory the thermodynamic of the lattice expressions is

performed. Then one gets the following Fourier representation with the now continuous
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momentum p:

φn =

∫

p

φ(p)eipxn :=

∫

BZ

dDp

(2π)D
φ(p)eipxn (A.8)

φ(p) =
∑

n

φne
−ipxn . (A.9)

(n now runs over an infinite number of lattice points.) One can easily change between the

Fourier representation on a finite lattice and in the thermodynamic limit. The expressions

in Fourierspace remain the same, only the discrete momentum pk has to be replaced by

the continuous p. This continuous momentum is, because of the finite lattice spacing still

restricted to the BZ. Consequently the delta in Fourier space is still periodic as on the

lattice.

In a similar way the Fourier representation of translational invariant operators with

two indices is derived on the lattice:

∇µ
nm =

∑

k

∇µ(pk) e
ipk(xn−xm) . (A.10)

(Translational invariant means in one dimension a circulant matrix.) This operator has the

same periodicity as the Fourier space representation of a field. On the lattice the matrix

entries of ∇ should be real. Therefore, the imaginary part of ∇(p) is antisymmetric

(ℑ∇(−p) = −ℑ∇(p)) and the real part is symmetric (ℜ∇(−p) = ℜ∇(p)).

An antisymmetric derivative operator can always be represented as

∇µ
nm =

N−1
∑

r=1

cr(∇(r))µmn , with (∇(r))µnm = δn+r,m − δn−r,m , (A.11)

and some constants cr.

For the operators defined in the main text the Fourier representation is thus

∇(s)
µ (p) =

i

aµ
sin(pµaµ)

(∇(+)
µ ∇(−)

µ )(p) =
4

a2
µ

sin2(pµaµ/2)

m(W )(p) =
∑

µ

2r

aµ
sin2(pµaµ/2)

∇SLAC
µ (p) = ipµ . (A.12)

Apart from the SLAC derivative these are all functions of the type adF (ap) where d is

determined by the dimension of the operator. Obviously the behaviour of F in the vicinity
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of p = 0 is the important part in the continuum limit unless there are other points with

F = 0.

Now consider a more complicated operator C̃m1,...mnf
. Translational invariance implies

that a shift of all lattice points by xm is irrelevant. One way for the representation in

Fourier space is

C̃m1,...,mn
f

=
∑

k1,...,kn
f

C̃(pk1 , . . . , pkn
f
)ei(pk1

xm1+...+pkn
f
xmn

f
)

C̃(pk1, . . . , pkn
f
) =

∑

m1,...,mn
f

C̃m1,...,mn
f
e−i(pk1

xm1+...+pkn
f
xmn

f
) . (A.13)

The translational invariance means for the Fourier space representation

C̃(pk1, . . . , pkn
f
)ei(pk1

+...+pkn
f
)xm = C̃(pk1 , . . . , pkn

f
) . (A.14)

This implies pµkn
f

= −pµk1 − . . .− p
µ
kn

f
−1

mod Λµ
L for all µ. A representation that explicitly

implies the translational invariance is obtained by going from C̃ with nf indices to a matrix

C with nf − 1 indices according to

C̃m1,...,mn
f
= C(mnf

−m1),...,(mnf
−mnf−1) . (A.15)

A representation in Fourier space of this matrix is

Cm1,...,mn
f
−1 =

∑

k1,...,knf−1

C(pk1 , . . . , pkn
f
−1)e

ipk1
xm1+...+ipknf−1

xmn
f
−1 . (A.16)

Thus the two representations are in Fourierspace related by

C̃(pk1, . . . , pkn
f
) = δ(pk1 + . . .+ pkn

f
)C(pk1, . . . , pknf−1) . (A.17)

A.3.1 The nonlocal interaction term

In this section the one dimensional formulation of the non local interaction term is con-

sidered. These investigations can be generalised to higher dimensions. The matrix F in
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section 3.1.1 follows from

Fnm =
1

aN

(N−1)/2
∑

k=−(N−1)/2

exp

(

i
2πk

aN

(

am− a

(nf − 1)
n

))

=
e
−i 2π(N−1)

2N
(m− n

nf−1
)

aN

1− ei2π(m−n/(nf−1))

1− ei2π/N(m−n/(nf−1))

=
sin(π(m− n/(nf − 1))

aN sin(π/N(m− n/(nf − 1))
. (A.18)

Note that the additional factor of 1/a cancels the factor a in front of the summation over

the lattice (
∑

n) according to our conventions. It is clear that for this kind of matrix the

following summation rule holds

a

(nf − 1)

nfN−1
∑

n=0

Fnm1Fnm2 = δ(xm1 − xm2) . (A.19)

F maps the fields ϕ(i) with a lattice size N on the fields ϕ̃(i)
n =

∑

nFnmϕ
(i)
n with a lattice

size (nf − 1)N . The fields on the larger lattice have, however, a momentum constraint

that is constraint below π
a

instead the larger lattice cutoff π(nf−1)

a
. So F generates a one

to one map of ϕ(i)(pk) onto the modes of the larger lattice below the cutoff π
a
.

A.3.2 A Fourier space representation of locality

It is a well-known fact that the smoothness of a function in Fourier space is related to the

locality or the “broadness” of a function in real space. All of the following one dimensional

considerations can be extended easily to higher dimensions. In [97] it is shown that the

exponential decay needs analyticity in Fourier space. In the discussion of section 5.2 this

could not be achieved, but a “modified” version of locality was possible. Let us therefore

find an explicit example of such a solution.The considered lattice operators O are, because

of translational invariance, circulant matrices,

Omn = On−m = F (a(n−m)) . (A.20)

The slightly modified condition for locality demands that F decays faster than any poly-

nomial. That means

|xrF (x)| <∞ ∀ r ∈ N, x, y ∈ aN . (A.21)
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If the Fourier transform of F (x), f(p), and its derivatives have no singularities and fulfil

periodic boundary conditions at edge of the BZ the following estimation can be made

|xrF (x)| = |
∫

BZ

(∂rpf(p))eipx|

≤
∫

BZ

|∂rpf(p)| ≤ Cr <∞ . (A.22)

Consider now a non-local operator similar to the SLAC derivative. This non-local oper-

ator should have no singularities within the BZ for all of its derivatives. The boundary

conditions are, however, not periodic. According to the discussion of the locality of K

and Mdef in section 5.2 it should support the modified locality after a multiplication with

a local operator. In view of the above argument the boundary conditions must hence be

enforced by this local operator without spoiling the differentiability of f . Its representa-

tion in Fourier space, I(p), must therefore be a function that vanishes together with all

its derivatives at the edge of the BZ. In addition no singularities should appear within the

BZ for any of its derivatives. One function that fulfils these requirements is

I(p) =







exp
(

− ǫ2

ǫ2−p2

)

|p| < ǫ

0 |p| ≥ ǫ
with ǫ ≤ π

a
. (A.23)

It is clear that I(p) cannot be analytic since any analytic function that vanishes with all

its derivatives at a specific point must be identical to zero. So the common definition of

locality in terms of analyticity in momentum space cannot be satisfied.

A.3.3 The Fourier representation of the additional constraint

Here only the one dimensional case (N lattice points separated by a) was considered and it

can easily be generalised to the higherdimensional case. In Fourier space the convolution

in the averaged field of eq. (5.1) becomes a product,

φf(pk) =
1

ΩL

∑

q∈Z∑n ei(pq−pk)xnf(pq)ϕ(pq)

=
∞
∑

l=−∞
f(pk + l

2π

a
)ϕ(pk + l

2π

a
) . (A.24)

The last line comes from the periodicity of the delta (A.7). This shows how the averaging

projects the Fourier components of ϕ onto the first Brillouin zone. In addition one easily

observes that the Fourier components of φf and the lattice fields are determined by f ,

which means that f introduces a cutoff for the lattice momentum if f(pq) vanishes for all

pq greater than the cutoff.
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The additional constraint (5.36) reads after partial integration

∑

m

∇nmf(am− x) + ∂xf(an− x) = 0 ∀n, x . (A.25)

With the Fourier representation of the derivative operator the constraint becomes

∞
∑

q=−∞
f(pq)

[

∇(pq)− ipq
]

eipq(an−x) = 0 , (A.26)

which for every individual component pq gives the constraint (5.37).

A.4 Supertraces and Determinants

In the present investigations the superdeterminant is defined by

(SdetM)−1/2 =

∫

Dϕ exp(−1

2
ϕiMijϕj) (A.27)

For real bosonic fields this means det−1/2, for Majorana fermions the Pfaffian.

The same expression SdetM−1 is consequently the Jacobi factor when a transformation

ϕ→Mϕ is applied. For the transformation ϕ→ eiεMϕ it can be reformulated as

exp
(

−STr log eiεM
)

:= Sdet
(

eiεM
)−1 ≈ 1− iεSTrM (A.28)

This is the definition of the supertrace applied here.



B Proof of renormalisability for the SLAC deriva-

tive is two dimensions

The purpose of this chapter is an explicit investigation of the one-loop diagrams of a

twodimensional theory with a Yukawa type interaction of fermions and bosons. Super-

symmetry is not needed in the derivation. Gauge theories are excluded in this discussion.

It is shown that the SLAC derivative leads to a correct continuum limit of perturbation

theory. The counterterms are local and Lorentz covariant. Furthermore they are all of

the same form as the continuum counterterms.

For the SLAC derivative, the momentum space representation of the propagators

1

P (k)2 +m2
and

−i /P (k) +m

P (k)2 +m2
(B.1)

for bosons and fermions contains the saw tooth function

Pµ(k) = kµ − 2lΛL where (2l − 1)ΛL ≤ kµ ≤ (2l + 1)ΛL. (B.2)

In addition arbitrary (local) vertices are allowed. The momentum integration is always

restricted to the first BZ. The internal lines in the one-loop diagrams carry either the

internal momentum k or a sum k + q of internal and external momenta where q denotes

a linear combination of the external momenta (using momentum conservation, there are

n− 1 such linear combinations qj in a diagram with n vertices).

Integrations over loop momenta kµ can be split into integrations over a square D =

{(kµ)| |kµ| ≤ πε
a
} for an arbitrary 0 < ε < 1

2
and the rest of the Brillouin zone, BZ\D. In

the following, an upper bound for the boson propagator in momentum space is determined

which will be used later on to argue that parts of the integrals in lattice perturbation

theory are going to vanish in the continuum limit. For a given set of external momenta

{qj}, one may choose η = maxµ,j{a0π |qjµ|} with a0 small enough such that 0 < η < ε < 1
2
.

For (kµ) ∈ D, one can then read off from

a|kµ ± qµ| ≤ a(|kµ|+ |qµ|) < π(ε+ η) for all a < a0 (B.3)

that |kµ ± qµ| ≤ ΛLε
′ with ε′ := ε+ η < 1, i. e. (kµ ± qµ) is also inside the first Brillouin

zone and P (kµ ± qµ) = (kµ ± qµ). On the other hand, if (kµ) ∈ BZ\D,

π(ε− η) ≤ a(|kµ| − |qµ|) ≤ a|kµ + qµ| ≤ a(|kµ|+ |qµ|) ≤ π(1 + η) (B.4)

for such lattice spacings a. The latter inequality may be used in order to find an upper
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bound for the propagator,

1

P (k ± q)2 +m2
<

1

P (k ± q)2
< Ca2 (B.5)

with C =
(

(ε− η)
√

2π
)−2

.

It can be easily seen that in the considered models, only two different types of integrals

contribute at one-loop level. The first type of integrals resembles a diagram with bosonic

lines and has the form

Iε + Iπ =

∫

BZ

d2k

(2π)2

1

(P (k)2 +m2)(P (k + q1)2 +m2) . . . (P (k + qn−1)2 +m2)
,(B.6)

Iε =

∫

D

d2k

(2π)2

1

(k2 +m2)((k + q1)2 +m2) . . . ((k + qn−1)2 +m2)
,

Iπ =

∫

BZ\D

d2k

(2π)2

1

(k2 +m2)(P (k + q1)2 +m2) . . . (P (k + qn−1)2 +m2)

≤ (Ca2)n−1

∫

|k|≤
√

2ΛL

d2k

(2π)2

1

(k2 +m2)
=

(Ca2)n−1

4π
log
(

1 +
2π2

a2m2

)

.

Here, we have applied (B.4) in order to find an upper bound for the integrand in Iπ

and then enlarged the integration domain to a full disk including the first Brillouin zone.

Thus, Iπ vanishes in the continuum limit if n > 1. Therefore, the integral Iε tends to

the continuum value of the integral as a goes to zero (and the corresponding continuum

integral is convergent by power counting), so as long as we are considering diagrams with

more than one vertex, this type of integrals does not spoil renormalisability.

An addition class of integrals arises from diagrams with fermionic lines. This class of

integrals is

I ′ε + I ′π =

∫

BZ

d2k

(2π)2

Pµ(k)Pν(k + q̃1) . . . P̺(k + q̃l)

(P (k)2 +m2)(P (k + q1)2 +m2) . . . (P (k + qn−1)2 +m2)
, (B.7)

I ′ε =

∫

D

d2k

(2π)2

kµ . . . (k + q̃l)̺
(k2 +m2)((k + q1)2 +m2) . . . ((k + qn−1)2 +m2)

,

I ′π =

∫

BZ\D

d2k

(2π)2

Pµ(k) . . . P̺(k + q̃l)

(k2 +m2)(P (k + q1)2 +m2) . . . (P (k + qn−1)2 +m2)

≤
∫

BZ\D

d2k

(2π)2

|Pµ(k)| . . . |P̺(k + q̃l)|
(k2 +m2)(P (k + q1)2 +m2) . . . (P (k + qn−1)2 +m2)

≤
(π

a

)l+1

(Ca2)n−1

∫

|k|≤
√

2π/a

d2k

(2π)2

1

(k2 +m2)
=
Cn−1a2n−l−3

4π
log
(

1 +
2π2

a2m2

)

.

The q̃i are taken from the qj , so l ≤ n − 1. The same arguments as above show that the

continuum limit is correct for any n > 2 (again, all continuum integrals are convergent by

power counting).
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Therefore, renormalisability only remains to be shown for two kinds of integrals. The

first consists of diagrams with n = 1, e. g., tadpole diagrams. In this case, the loop

momentum is independent of the (vanishing) exterior momentum so that the argument

of Pµ(k) is restricted to the first Brillouin zone (where Pµ(k) = kµ). In the continuum

the same diagram appears without this restriction. This continuum integral is divergent

and can be regularised with a covariant cutoff Λc. In the BPHZ renormalisation scheme

it is subtracted. This means that the counterterm is the same as the integral itself. For

Λc = ΛL the difference between the continuum integral and its lattice counterpart is

nonzero even in the continuum limit. However, the lattice integral does not need a new

type of counterterm. A lattice version of the BPHZ renormalisation scheme is hence to

subtract the lattice regularised integral.

The second kind of integrals, n = 2 and l = 1 in (B.7), requires a more careful

investigation. This kind of integral arises from a fermion loop with two internal lines such

as

q

k

∝
∫

BZ

d2k

(2π)2

Pµ(k)P
µ(k − q) +m2

(P 2(k) +m2)(P 2(k − q) +m2)
. (B.8)

Depending on the vertices of the theory more than two external lines may appear; in this

case q denotes the sum of all incoming external momenta. Such a diagram can be split

into a finite part of the class (B.6) and the considered n = 2 and l = 1 of (B.7). The

result does, obviously, not depend on whether or not the additional finite part is present.

As above we try to apply the same kind of renormalisation procedure as in the con-

tinuum BPHZ scheme. This means here to subtract the (as yet finite) value of the lattice

integral with vanishing exterior momenta. The counterterm is hence of the same form as

in the continuum. Thus, we arrive at

∫

BZ

d2k

(2π)2

Pµ(k)P
µ(k − q)

(P 2(k) +m2)(P 2(k − q) +m2)
+

∫

BZ

d2k

(2π)2

m2

(P 2(k) +m2)(P 2(k − q) +m2)

− (value at q = 0)

=

∫

BZ

d2k

(2π)2

P µ(k − q)
(

kµ − Pµ(k − q)
)

(P 2(k) +m2)(P 2(k − q) +m2)

=

∫

BZ

d2k

(2π)2

qµPµ(k − q)
(k2 +m2)(P (k − q)2 +m2)

− 2ΛL

∑

µ

∫ −ΛL+qµ

−ΛL

dkµ

∫ ΛL

−ΛL

dkν 6=µ
(2π)2

P µ(k − q)
(k2 +m2)(P (k − q)2 +m2)

.(B.9)

In the last step, a0 was chosen in such a way that for all a = π/ΛL < a0, shifting kµ ∈ BZ
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by −qµ, one winds up either in the same or in an adjacent Brillouin zone, i. e.,

Pµ(k − q) = kµ − qµ + 2ΛL

(

Θ(−ΛL − kµ + qµ)−Θ(kµ − qµ − ΛL)
)

. (B.10)

The first term on the right-hand side of B.9 can be easily seen to converge to the value of

its continuum counterpart by similar arguments as in (B.6) and (B.7). In order to prove

that the second term does not give rise to any corrections in the continuum limit, we make

use of (B.3) and B.5 and observe that an upper bound for its modulus is given by

2ΛL

∑

µ

∫ −ΛL+qµ

−ΛL

dkµ

∫ ΛL

−ΛL

dkν 6=µ
(2π)2

|P µ(k − q)|
(k2 +m2)(P (k − q)2 +m2)

≤ 2Cπ2

∫ −ΛL+q1

−ΛL

dk1

2π

∫ ΛL

−ΛL

dk2

2π

1

k2 +m2
+ (q1 ↔ q2, k1 ↔ k2)

=
C

2

∣

∣

∣

∣

∫ ΛL

−ΛL

dk2 arctan
( q1
ω(k2)− q1ΛLω(k2)−1 + Λ2

Lω(k2)−1

)

ω(k2)
−1

∣

∣

∣

∣

+ (q1 ↔ q2, k1 ↔ k2)

≤ C

2

∫ ΛL

−ΛL

dk2

∣

∣

∣

q1
m2 + k2

2 − ΛLq1 + Λ2
L

∣

∣

∣
+ (q1 ↔ q2, k1 ↔ k2) (B.11)

with ω(k) =
√
m2 + k2; here, we have also used that | arctan(x)| ≤ |x|. It is obvious that

this upper bound converges to zero in the limit where the lattice cutoff is removed.

So the for the discretisation of models like the N = 2 and N = 1 Wess-Zumino model

in two dimensions the renormalisation of lattice integrals in the continuum limit needs

no other type of counterterms than the continuum theory. There appear no counterterms

that are in contradiction with the space-time symmetries. After the renormalisation the

lattice perturbation theory reproduces its continuum counterpart in the continuum limit.



C Nicolai improvement

The Nicolai map can guide the construction of lattice action with partial realisation of

supersymmetry. This transfers the bosonic part of the action into a Gaussian measure

and the Jacobi determinant of this transformation is cancelled by the fermion determinant

(Matthews-Salam-Seiler determinant). In supersymmetric quantum mechanics it can be

found as

∫

Dϕ e−
R

dt ( 1
2
(∂tϕ)2+ 1

2
W ′(ϕ)2+ψ̄(∂t+W ′′(ϕ))ψ)

=

∫

Dϕ e−
R

dt ( 1
2
ξ(ϕ)2+ψ̄ δξ(ϕ)

δϕ
ψ) =

∫

Dξ e− 1
2

R

dt ξ2 , (C.1)

with the Nicolai variable ξ(ϕ) = ∂tϕ+W ′(ϕ) (or ξ̃(ϕ) = −∂tϕ+W ′(ϕ) with
(

δξ̃(ϕ)
δϕ

)T

as

fermion matrix). In the second step the periodic boundary conditions were used to cancel

the arising surface term. Thus an improved action was found

1

2

∫

dtξ(ϕ(t))2 +

∫

dtdt′ψ̄(t)
δξ(ϕ(t))

δϕ(t′)
ψ(t′) . (C.2)

A supersymmetry that is now fulfilled without the application of the Leibniz rule is

δϕ = ε̄ψ; δψ̄ = −ε̄ξ(ϕ) (δϕ = ψ̄ε; δψ = ε̄ξ̃(ϕ)) (C.3)

It is hence preserved for arbitrary boundary conditions. Thus one can discretise ξ(ϕ) →
ξ(ϕ)n = (∇ϕ)n +W ′

L(ϕ)n and construct the action

∑

n

1

2
ξ(ϕ)nξ(ϕ)n +

∑

nm

ψ̄n
δξ(ϕ)n
δϕm

ψm , (C.4)

out of it. It preserves the discretised supersymmetry on the lattice. In this way the

improved action, (4.8), is obtained.

Whenever a local Nicolai map one can apply this procedure. In fact, the result of a

Nicolai map has always a form similar to (C.1) with a quadratic part and a fermion part

the contains the Jacobian matrix.

For the two-dimensional N = 2 Wess-Zumino model a Nicolai map with complex

Nicolai variables is

ξ = 2(∂̄φ̄) +W (φ) and ξ = 2(∂φ) + W̄ (φ̄) . (C.5)
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The action in terms of these variables is after the discretisation

∑

n

(

1

2
ξ̄nξn + ψ̄n(Kf )nmψm

)

, (C.6)

with

(Kf)
αβ
nm =







∂ξn/∂φm ∂ξn/∂φ̄m

∂ξ̄n/∂φm ∂ξ̄n/∂φ̄m






=







∂W ′
L(φ)n/∂φm ∇nm

∇nm ∂W̄ ′
L(φ)n/∂φ̄m






(C.7)

in the complex formulation of the theory. This leads us to the improved formulation

(4.36).



D Hamiltonian formulation of supersymmetric

quantum mechanics

For of the model introduced in section 2.1.4 the Hamilton-operator of the quantised theory

is

Ĥ =
1

2
(p̂2 +W ′(x̂)2) +

1

2
W ′′(x̂)

[

ψ̂† , ψ̂
]

(D.1)

In the quantisation the fermionic creation and annihilation operators ψ̂† and ψ̂ are intro-

duced. The ordering in the last term is done in such a way that the zero point energy

vanishes. One can introduce two supercharges,

Q̂ = (p̂+ iW ′(x̂))ψ̂ and Q̂† = (p̂− iW ′(x̂))ψ̂† , (D.2)

commutating with Ĥ and leading to

{

Q̂ , Q̂†
}

= 2Ĥ . (D.3)

The states can be divided into those with fermion number one and zero. The corresponding

number operator is n̂f = ψ̂†ψ̂ = 1
2
(1−

[

ψ̂ , ψ̂†
]

), i.e. ψ̂† increases – ψ̂ decreases – nf by one.

According to the subspaces with nf = 0 and nf = 1 the above operators can represented

in a matrix form

Ĥ =
1

2







ÂÂ† 0

0 Â†Â






; Q̂ =







0 Â

0 0






; Q̂† =







0 0

Â† 0






, (D.4)

with Â = p̂+ iW ′(x̂).

The whole spectrum of the Hamiltonian is, appart from the ground states, doubly

degenerate. The rationale of this observation is that the supercharges Q̂ and Q̂† commute

with the Hamilton operator. Each bosonic state has a corresponding fermionic counterpart

with the same energy, and the supercharges generate the transition between these two

states. From equation (D.3) one can easily derive that the ground state of the model

must have a positive or zero energy.

Q̂|0〉 = 0⇒ |0〉(x) = C exp

(
∫ x

dyW ′(y)

)

(nf = 1) , (D.5)

Q̂†|0〉 = 0⇒ |0〉(x) = C exp

(

−
∫ x

dyW ′(y)

)

(nf = 0) . (D.6)

In case of an odd W ′ (even W ) none of these two states can be normalised. This means

supersymmetry is spontaneously broken, Q̂|0〉 6= 0 (Q̂†|0〉 6= 0) is a massless fermionic
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state, the goldstino, and the vacuum energy is different from zero.

Since the one-dimensional theory corresponds to a quantum mechanical system well-

known numerical techniques can be used to get reasonable results for the observables.

The methods rely on the numerical solution of the Schrödinger equation. The spectrum

of the Hamiltonian can be calculated numerically and the mass gap between the ground

state and the first exited state yields the effective mass (correlation length) of the theory.

In our case the diagonalisation of a discretised Hamilton operator was used to determine

the low lying energy eigenvalues to a high precision. This method was already employed

in [34], where a good applicability of this approach was found. For comparison also the

Numerov algorithm with the shooting method was used.

The result of these numerical calculations are the low lying eigenvalues of the Hamilton

operator. The difference between the two lowest eigenvalues (meff = E1 − E0) is the

mass gap of the theory and determines the correlation length in the twopoint functions,

〈x(t)x(t′)〉 ∼ e−|meff|(t−t′) for large positive t− t′.
The effective potential can also be calculated with these numerical methods to a high

precision starting with the Schwinger functional calculated from

eW [j] = lim
β→∞

Tr(e−β(Ĥ+jx̂)) = eE0[j] , (D.7)

where E0[j] is the lowest eigenvalue of the source dependent Hamiltonian Ĥ + jx̂. From

W [j] with constant j a numerical Legendre-transformation yields then the effective po-

tential u(x).



E Details about the perturbative calculations in

superspace

This chapter contains some futher details of the loop expansion in supersymmetric quan-

tum mechanics. It contains first the calculation of the Feynman diagrams of the weak

coupling expansion in superspace. These can then be compared with the on-loop result

presented later on.

E.1 The effective mass in the weak coupling expansion

The most efficient way to perform perturbative calculations in a supersymmetric theory

is the perturbation theory in superspace. The basics about this method can be found in

[29, 98]. This method will be applied here for a model considered later on in the lattice

simulations. Since I want to consider the restoration of supersymmetry in the continuum

limit, the even superpotential,

W (Φ) =
m

2
Φ2 +

g

4
Φ4 , (E.1)

is used first.

I give only a short summary of the Feynman rules (lines and vertices) here more details

can be found in the next section:

lines:
[K + im]−1 (z, z′) =

K − im
K2 +m2

δ(z − z′)

vertices: ig

4

∫

dθdθ̄ ,

where K2 = −∂2
t . Obviously no divergences can appear in the Feyman diagrams of this

theory, but one gets, nevertheless, a finite renormalisation of the parameters. For the

comparison with the numerical calculations the mass and wave function renormalisation

are the intresting quantities.

The only one loop contribution to the 1PI two point function, Σ(p, θ̄, θ̄′, θ, θ′), is

= −i 3g

2m
δ(θ̄ − θ̄′)δ(θ − θ′) , (E.2)

and gives a contribution to the mass renormalisation. From the two loop contribution I
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get also a wave function renormalisation. The corresponding Feynam graphs are

= − 9g2

2(9m4 +m2p2)
(K(p)− 3im)δ(θ̄ − θ̄′)δ(θ − θ′) , (E.3)

and

= iδ(θ̄ − θ̄′)δ(θ − θ′) 9g2

4m3
. (E.4)

The contributions to the mass and wave function renormalisation of these graphs are

obtained from

(Zr(p)K(p)+im)δ(θ̄− θ̄′)δ(θ−θ′) = (K(p)+im)δ(θ̄− θ̄′)δ(θ−θ′)−Σ(p, θ̄, θ̄′, θ, θ′) . (E.5)

Since the two renormalised quantities appear with different products of the fermionic

coordinates, one can easily separate the corresponding renormalisation. In this way one

gets

Zr(p) = 1 +
9g2

2(9m4 +m2p2)
= 1 + g2Z2(p)

mr(p) = 1 +
3g

2m
− 27g2m

2(9m4 +m2p2)
− 9g2

4m3
= m+ gm1 + g2m2(p) . (E.6)

For a comparison with the lattice results the on shell mass renormalisation must be calcu-

lated. In a generic supersymmetric field theory the modification of the nonlinear equations

of motions for the auxiliary field do not appear until the third order of the weak coupling

expansion since every derivative with respect to jF carries a factor of the coupling constant

in Sint[
δ
δj

]. That means this field is maximally quadratic in Γ as long as only the first and

second order of perturbation theory is considered1. So the on shell bosonic propagator

that follows from the solutions of the linear equation is the inverse of

Zr(p)p
2 +

mr(p)
2

Zr(p)
. (E.7)

The pole of this propagator that appears for imaginary p is the effective mass of the

theory. A solution can be found order by order in the coupling constant g:

ippole = m+ gm1 + g2(m2(p = im)−mZ2(p = im)) = m+ g
3

2m
− g2 9

2m3
. (E.8)

In this way an effective mass is derived that can be compared with the results of other

1In the present case this is also true for the fourth order of the expansion.
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calculation methods.

As expected a good agreement with the high precision numerical results is obtained for

small g. The pole of the propagator, equation (E.8), can be directly compared with the

mass gap, meff. A quadratic fit of the data meff(g) in the range g/m2 < 0.002 yields the

same coefficients as predicted from (E.8). Increasing the values of the coupling constant

to g > 0.1m2 the deviation between the one loop and the two loop result gets large and

both deviate from the exact result that stays in between them. For g/m2 → 1 the two

loop renormalised mass gets even negative whereas the exact result is positive. This is a

sign of an artificial phase transition in the loop expansion that has no coincidence with

the physical properties of the theory. So one can trust the weak coupling expansion only

in the region of very small couplings. A good estimate for its validity is the agreement

between the one and two

E.2 Calculation of the diagrams in superspace

A basic relation for the weak coupling expansion is

K2 =
1

4
(DD̄DD̄ + D̄DD̄D) =

1

4
(−2i∂t)(

{

D , D̄
}

= −∂2
t . (E.9)

It transforms a products of the K operator into ordinary derivatives. This relation leads

to the representation of the superspace propagator as shown in section E.1. As usual

for the momentum space the momentum of each line has a momentum integration and

each vertex a momentum conservation. For the additional θ, θ̄ components each vertex

carries an additional integration. The usual combinatorial prefactors are calculated as in

ordinary perturbation theory. So the one loop contribution to the 1PI two-point function

is

= −δ(θ̄ − θ̄′)δ(θ − θ′)4 · 3 ig
4

∫

dp

2π

K(p)− im
p2 +m2

δ(θ̄ − θ̄′)δ(θ − θ′)
∣

∣

∣

θ=θ′,θ̄=θ̄′

= −δ(θ̄ − θ̄′)δ(θ − θ′)3ig
∫

dp

2π

1

p2 +m2
= −i 3g

2m
δ(θ̄ − θ̄′)δ(θ − θ′) , (E.10)
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where z has to be set to z′ after the application of the differential operator K. Similarly

a first two-loop contribution to the 1PI two point function can be calculated:

= −2 · 4 · 4 · 3 · 2g2

2 · 16

∫

dk1

2π

∫

dk2

2π

(K(p− k1 − k2)− im)δ(θ̄ − θ̄′)δ(θ − θ′))
((p− k1 − k2)2 +m2)

× (K(k1)− im)δ(θ̄ − θ̄′)δ(θ − θ′)(K(k2)− im)δ(θ̄ − θ̄′)δ(θ − θ′)
(k2

1 +m2)(k2
2 +m2)

= −(1− 3imθ̄θ − 3imθ̄′θ′ + (p− 3im)θ̄′θ − (p+ 3im)θ̄θ′ + p2θ̄θθ̄′θ′)

× 6g2

∫

dk1

2π

∫

dk2

2π

1

((p− k1 − k2)2 +m2)(k2
2 +m2)(k2

2 +m2)

= −18g2(1− 3imθ̄θ − 3imθ̄′θ′ + (p− 3im)θ̄′θ − (p+ 3im)θ̄θ′ + p2θ̄θθ̄′θ′)

4(9m4 +m2p2)

= − 9g2

2(9m4 +m2p2)
(K(p)− 3im)δ(θ̄ − θ̄′)δ(θ − θ′) , (E.11)

A second contribution arises from

= −δ(θ̄ − θ̄′)δ(θ − θ′)2 · 4 · 3 · 4 · 3g
2

2 · 16

×
∫

dk1

2π

∫

dk2

2π

∫

dθ′′dθ̄′′
(K(k1)− im)δ(θ̄′′ − θ̄′′′)δ(θ′′ − θ′′′))

(k2
1 +m2)

∣

∣

∣

θ′′=θ′′′,θ̄′′=θ̄′′′

× (K(k2)− im)δ(θ̄ − θ̄′′)δ(θ − θ′′)
(k2

2 +m2)

(K(k2)− im)δ(θ̄′′ − θ̄)δ(θ′′ − θ)
(k2

2 +m2)

= −δ(θ̄ − θ̄′)δ(θ − θ′)2 · 4 · 3 · 4 · 3g
2

2 · 2 · 16m

∫

dk2

2π

∫

dθ′dθ̄′
(

(K(k2)− im)δ(θ̄ − θ̄′)δ(θ − θ′)
(k2

2 +m2)

)2

= −δ(θ̄ − θ̄′)δ(θ − θ′)9g
2

2m

∫

dk2

2π

−2im

(k2
2 +m2)2

= iδ(θ̄ − θ̄′)δ(θ − θ′) 9g2

4m3
. (E.12)

With these results the mass renormalisation can be computed up to two loop.

E.3 The loop expansion for supersymmetric quantum mechanics

The one loop effective potential is calculated for the logarithm of the superdeterminant.

This is just the quotient of the fermionic and the bosonic determinant, in the present
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case2

u(1)(ϕ, F ) =
1

2
log SdetS ′′[φ] =

1

2
Str log S ′′[φ] =

1

2

∫

dp

2π
log

(

p2 +W ′′(φ)2 + iFW ′′′(φ)

p2 +W ′′2(φ)

)

=
1

2

(

(W ′′2 + iFW ′′′)1/2 − |W ′′|
)

=
i

4

FW ′′′

W ′′ +O(F 2) . (E.13)

The first term of an expansion in terms of the auxilliary field is the one loop contribution

to the supersymmetric effective Potential, that can also be calculated from using the

Schwinger proper time representation:

1

2
Str log

K + iW ′′(Φ)

K + im
= −1

2

∫ ∞

0

dt

t
Str
(

eit(K+iW ′′) − eit(K+im)
)

δ(θ − θ′)δ(θ̄ − θ̄′)|θ=θ′; θ̄=θ̄′

= −1

2

∫

dθdθ̄

∫ ∞

0

dt

t

∫

dp

2π

(

e−tW
′′ − e−tm

) sinh(−itp)
p

=
i

4

∫

dθdθ̄ logW ′′(Φ) + const. =
i

4

FW ′′′(φ)

W ′′(φ)
+ const. . (E.14)

Here the trace has been replaced by a θ, θ̄, and p integration. The terms for the commu-

tation of K and W ′′ correspond to higher orders in the expansion in covariant derivatives

and are neglected. Only odd powers of K in eitK contribute since the Grassman delta

must be cancelled.

For the two-loop contributions the inverse of a field dependend propagator with a full

dependence on the auxiliary field

[K(k) + iW ′′(Φs)](θ, θ
′, θ̄, θ̄′)|Φs=ϕ+θ̄θF = [K(k) + iW ′′(Φs)]δ(θ̄ − θ̄′)δ(θ − θ′)|Φs=ϕ+θ̄θF

(E.15)

is needed. It is

[K(k)+iW ′′(Φs)]
−1(θ, θ′, θ̄, θ̄′)|Φs=ϕ+θ̄θF =

1− iW ′′(ϕ)(θ̄θ + θ̄′θ′) + (k2 + iFW ′′′(ϕ))θ̄θθ̄′θ′

k2 +W ′′2(ϕ) + iFW ′′′(ϕ)

+
k(θ̄′θ − θ̄θ′) + iW ′(ϕ)′(θ̄′θ + θ̄θ′)

k2 +W ′′2(ϕ)
, (E.16)

2A possible sign change of the determinant was neglected.
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which is proven by

∫

dθ′θ̄′[K(k) + iW ′′(Φs)]
−1(θ, θ′, θ̄, θ̄′)|Φs=ϕ+θ̄θF [K(k) + iW ′′(Φs)](θ

′, θ′′, θ̄′, θ̄′′)|Φs=ϕ+θ̄θF

=
iW ′′ + (p2 − iW ′′′F )θ̄′′θ′′ − iW ′′ +W ′′2(θ̄θ + θ̄′′θ′′) + (p2 − iW ′′′F )θ̄θ

p2 + iW ′′′F +W ′′2

+
iW ′′p(θ̄′′θ − θ̄θ′′) + p2(−θ̄′′θ − θ̄θ′′)−W ′′2(θ̄θ′′ + θ̄′′θ) + iW ′′p(θ̄θ′′ − θ̄′′θ)

p2 +W ′′2

= θ̄θ + θ̄′′θ′′ − θ̄′′θ − θ̄θ′′ = δ(θ̄′′ − θ̄)δ(θ′′ − θ) .

Two diagrams must be calculated to obtain the two loop effective potential. One of them

is

|Φs=ϕ+θ̄θF = −3 · 2g2

2

∫

dθdθ̄dθ′dθ̄′
∫

dk1

2π

dk2

2π
dk3δ(k1 + k2 + k3)Φs(θ, θ̄)

[K(k1) + iW ′′(Φs)]
−1(θ, θ′, θ̄, θ̄′)[K(k2) + iW ′′(Φs)]

−1(θ, θ′, θ̄, θ̄′)

[K(k3) + iW ′′(Φs)]
−1(θ, θ′, θ̄, θ̄′)Φs(θ

′, θ̄′)|Φs(θ,θ̄)=ϕ+θ̄θF ;Φs(θ′,θ̄′)=ϕ+θ̄′θ′F

= −3g2

∫

dk1

2π

dk2

2π
dk3δ(k1 + k2 + k3)

F 2 − 6iFW ′′ϕ+ (k2
1 + k2

2 + k2
3 + 3iFW ′′′ − 6W ′′2)ϕ2

(k2
1 +W ′′2 + iFW ′′′)(k2

2 +W ′′2 + iFW ′′′)(k2
3 +W ′′2 + iFW ′′′)

+

(

2(k2k3 +W ′′2)ϕ2

(k2
2 +W ′′2)(k2

3 +W ′′2)((k1 + k2)2 +W ′′2 + iFW ′′)
+ k3 ↔ k1 + k2 ↔ k1

)

.

(E.17)

The integration of the momentum yields the first contribution presented in equation (6.12).



E Details about the perturbative calculations in superspace 122

The second contribution is obtained from

|Φs=ϕ+θ̄θF =

− 3ig

4

∫

dθdθ̄

∫

dk1

2π

dk2

2π
[K(k1) + iW ′′]−1(θ, θ̄, θ, θ̄)[K(k2) + iW ′′]−1(θ, θ̄, θ, θ̄)|Φs=ϕ+θ̄θF

= −3ig

4

∫

dθdθ̄

∫

dk1

2π

dk2

2π

(

1− 2iW ′′θθ̄

k2
1 +W ′′2 + iFW ′′′ +

2iW ′′θ̄θ

k2
1 +W ′′2

)

×
(

1− 2iW ′′θθ̄

k2
2 +W ′′2 + iFW ′′′ +

2iW ′′θ̄θ

k2
2 +W ′′2

)

= −3ig

4

∫

dθdθ̄

∫

dk1

2π

dk2

2π

(

4iW ′′θ̄θ

(k2
1 +W ′′2 + iFW ′′′)(k2

2 +W ′′2)

− 4iW ′′θ̄θ

(k2
1 +W ′′2 + iFW ′′′)(k2

2 +W ′′2 + iFW ′′′)

)

= −3ig

4

∫

dθdθ̄

∫

dk1

2π

dk2

2π

(

4iW ′′(k2
1 +W ′′2 − k2

1 −W ′′2 + iFW ′′′)θ̄θ

(k2
1 +W ′′2 + iFW ′′′)(k2

1 +W ′′2)(k2
2 +W ′′2 + iFW ′′′)

)

= 3ig

∫

dk1

2π

dk2

2π

(

FW ′′W ′′′

(k2
1 +W ′′2 + iFW ′′′)(k2

1 +W ′′2)(k2
2 +W ′′2 + iFW ′′′)

)

. (E.18)

This is the calculation of the loop diagrams as they are represented in the main text of

the thesis.



F The solution in the zero momentum sector

The sero mode sector of the theory contains only the constant fields. The supersymmetry

transformations in this sector contain no derivative terms and the auxilliary field is itself

invariant under the transformations. If all fields are constant the lattice counterpart of

action (5.39) in supersymmetric quantum mechnics has the following form

S

aN
= ψ̄ψ g(χ)− h(χ, F ) . (F.1)

aN stands here for the onedimensional volume and a possible F dependence of the

fermionic part was neglected. The from of the the continuum action, equation (5.39),

implies that the undetermined functions h and g approach h(χ, F ) = FW ′(χ) and Fg =

∂/∂χ in the continuum limit. In the present example I choose

a(α−1)ijmn =























a2 0 0 0

0 a0 0 0

0 0 0 a1

0 0 −a1 0























mn

(F.2)

as the blocking matrix. In the continuum limit of the zero mode sector all entries of this

matrix vanish. In this case the relation (5.11) becomes a partial differential equation in g

and h:

Fg − ∂h

∂χ
= −Na1g

∂h

∂χ
−Na0g

∂h

∂F
− a1

a

∂g

∂χ
. (F.3)

To minic the continuum Yukawa interaction the following from of g is assumed:

g(χ) = λχ . (F.4)

The general solution of (F.3) is restricted by the requirement that for vanishing constants

ai the term h should resemble the continuum result F 2/2 + λFχ2/2. One obtains the

non-polynomial solution

h(χ, F ) =
1

2
F 2 − 1 + a0N

a1N
χF +

a0(1 + a0N)

2a2
1N

χ2

−
(

1

aN
+

1 + a0N

a2
1λN

2
F − a0(1 + a0N)

a3
1λN

2
χ

)

log(1− a1λNχ)

+
a0(1 + a0N)

2a4
1λ

2N3
(log(1− a1λNχ))2 . (F.5)
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Although this is a rather complicated expression it becomes polynomial in the limit of

a1 → 0

h(χ, F ) =
1

2
F 2 +

λ

2
(1 + a0N)Fχ2 +

a0

8
λ2N(1 + a0N)χ4 . (F.6)

A vanishing of elements of α is possible since a symmetric blocking matirx αS can be

added that does not change the relation.

So what we learn from this example is that generically the relation leads in the inter-

acting (nonquadratic) case to nonpolynomial solutions. Under certain circumstances that

involve the disappearace of certain nonsymmetric contributions in the blocking matrix a

truncation at a finite order of the fields can be achieved.



G The effective mass of the two-dimensional Wess-

Zumino modell in the weak coupling approx-

imation

The weak coupling analysis is in this model used for a comparison with the lattice results.

In the lattice calculations the effective masses will be of great interest. The 1PI two-point

function determines the renormalised mass in the on-shell theory. These calculations are

done in a one loop approximation. The Feynman-rules can be read from the complex

formulation of the theory,

S =

∫

d2x

(

1

2
(∂µφ̄∂

µφ+m2φ̄φ) + ψ̄(/∂ +m)ψ

+
mg

2
(φ̄φ2 + φφ̄2) +

g2

2
φ̄2φ2 + 2gψ̄(P+φ+ P−φ̄)ψ

)

. (G.1)

As propagators the usual propagator of a Euclidian bosonic theory, represented by a solid

line, and the corresponding fermionic counterpart, denoted by a dashed line, appears. For

convenience, I introduce an additional arrow on the lines indicating the direction of the

contraction from a φ̄ to φ (or from ψ̄ to ψ). The theory has three bosonic vertices with

coupling constants mg and g2. In addition, there are also two vertices of the Yukawa

interaction that come with a coupling constant g and the projectors P+ and P−.

Tadpole diagrams can be constructed from the three point vertex and the Yukawa

interaction. Both diagrams would be logarithmically divergent. These two contributions

cancel each other so the theory remains, nevertheless, finite. The 1PI bosonic two-point

function is obtained in terms of one loop diagrams:

g2Σ(1)(m, p2) = q

k

+ + +

= −g2 m2 − p2

π p
√

m2 + p2

4

log





√

m2 + p2

4
+ p

2
√

m2 + p2

4
− p

2



 , (G.2)

where p =
√

p2 stands for the modulus of the two-dimensional momentum vector ~p.1 The

effective mass is obtained from the imaginary pole of the propagator. It is in the one loop

approximation

(ippol)
2 = m2 − g2Σ(g,m, p2) +O(g4) . (G.3)

1Obviously the expression is invariant under p→ −p. So it is a function of p2.
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So up to the second order in g it is

meff = (ippol) ≈ m−g2 Σ(m, (−im)2)

m
= m−g

2

m

4 arctan(
√

3)√
3π

= m

(

1− 4g2

3
√

3m2

)

. (G.4)

This is the effective mass relevant for the decay of the two-point functions.



H The flow equations in superspace

In this appendix I derive the flow equation in superspace. The superspace-coordinates

(x, θ, θ̄) are denoted by z.

The supertrace that defines the flow of the effective action translates into a superspace

integral:

∂kΓk =
1

2

∫

dz dz′ ∂kRk(z, z
′)Gk(z

′, z) , Gk = (Γ
(2)
k +Rk)

−1 (H.1)

As in the component formulation the fields are taken to be constant to calculate the

Green’s functionGk(z
′, z). In addition the expression is expanded in terms of the covariant

derivatives D and D̄. To zeroth order in the covariant derivatives one finds

i

∫

dθdθ̄ ∂tW (Φ) =
1

2

∫

dp

2π
dθdθ̄ dθ′dθ̄′ (i∂tr1(p) + ∂tr2(p)K(p))×

× δ(θ̄′ − θ̄)δ(θ′ − θ)hK(p)− iW ′′(Φ)

hp2 + (W ′′(Φ))2
δ(θ̄′ − θ̄)δ(θ′ − θ) . (H.2)

Note that in momentum space the operator K = 1
2
(DD̄ − D̄D) still contains derivatives

with respect to the Grassmann-coordinates. These derivatives act on the first entry of

the adjacent delta-functions. The only two contributions that remain after an integration

over θ′ and θ̄′ are the ones where the highest Grassmann derivative acts on one and only

one of the delta functions inside the integral. Therefore one obtains

∫

dθdθ̄ ∂tW (Φ) =
1

2

∫

dp

2π
dθdθ̄

(

h∂tr1(p)−W ′′(Φ)∂tr2(p)

hp2 + (W ′′(Φ))2

)

. (H.3)

For the lowest component of the superfield this is exactly the flow equation (7.6).
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I German summary (Zusammenfassung)

In der vorliegenden Arbeit sind die grundlegenden Konsequenzen, die sich durch die An-

wendung verschiedener Methoden der Quantenfeldtheorie auf supersymmetrische Modelle

ergeben, untersucht worden.

Dabei ging es vor allem um die etablierte Methode der Gittersimulationen. Die dafür

nötige Diskretisierung bricht die Supersymmetrie. Die wichtigste Ursache dieser Brechung

ist die Versetzung der Leibnizregel durch einen beliebigen diskretisierten Ableitungs-

operator. Es konnte gezeigt werden, daß diese Brechung nur mit einem nicht-lokalen

Ableitungsoperator wie der SLAC-Ableitung und einen nicht-lokalen Wechselwirkungs-

term beseitigt werden kann.

Eine weitere Ursache für die Brechung der Supersymmetrie entsteht bei der Anwen-

dung von Standardmethoden zur Konstruktion einer lokalen Gitterwirkung. Im Rahmen

dieser Verfahren wird, um eine effektive Verdopplung der Freiheitsgrade zu verhindern, ein

zusätzlicher Massenterm (Wilson-Terms) für die Fermionen eingeführt. Die Beiträge dieses

Massenterms fehlen im bosonischen Bereich. Schon in der ein-loop Gitter-Störungstheorie

sieht man, daß diese Brechung der Supersymmetrie nicht wieder hergestellt werden kann.

Dies geschieht obwohl der klassische Beitrag des Wilson-Terms verschwindet. Deshalb

muß dieser zusätzliche Massenterm auch konsistent auf den bosonischen Sektor übertra-

gen werden. Nur so kann man einen supersymmetrischen Kontinuumslimes erreichen.

In nicht-lokalen Formulierungen tritt auch dieses Problem nicht auf. Insgesamt er-

möglichen die nicht-lokalen Gitterformulierungen eine Sicherstellung der Supersymmetrie.

Im Rahmen der Gitterstörungstheorie zeigt sich, daß die Lokalität in niedrigdimensionalen

Modellen im Kontinuumslimes wiederhergestellt wird.

Es ist wichtig, daß diese Überlegungen in der Arbeit durch numerische Simulatio-

nen bestätigt und vertieft werden. Dazu mußten viele verschiedene Gitterformulierungen

verglichen und für Supersymmetrie relevante Operatoren mit hoher Präzision gemessen

werden. In den behandelten Modellen sind sogar Simulationen mit nicht-lokalen Gitter-

Operatoren gelungen. Dies ermöglichte die Verwendung von Formulierungen, die die

Supersymmetrie vollständig erhalten. In den Gittersimulationen wurde die Supersym-

metrische Quantenmechanik und das zweidimensionale N = 2 Wess-Zumino-Modell un-

tersucht.

Zur Überprüfung der Supersymmetrie in den Simulationen wurden die Massen der

Fermionen und Bosonen, sowie die Ward-Identitäten gemessen. Die Realisierung nach

den Standardmethoden zeigte weder bei endlichem Gitterabstand noch im Kontinuums-

limes supersymmetrische Eigenschaften. Eine ganze Reihe anderer Diskretisierungen kon-

nte aber gefunden werden, bei denen die Supersymmetrie im Kontinuumslimes wieder-

hergestellt wird.

Mit der Methode des Nicolai-Improvements konstruierte Diskretisierungen erhalten
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einen Teil der Supersymmetrie auf dem Gitter. Dies zeigt sich auch in den gemessenen

Ward-Identitäten. Für den verbleibenden Anteil wird die Brechung der Symmetrie bei

endlichem Gitterabstand aber verstärkt. Außerdem trat bei diesem Verfahren im zweidi-

mensionalen Wess-Zumino-Modell eine unphysikalische Phase mit einer Verstärkung von

hohen Impulsmoden auf. Dies bedeutet nicht, daß diese Realisierung eines Teils der Su-

persymmetrie keine Verbesserung bedeutet. Es wirft aber die Frage auf, ob der Nutzen

der teilweise erhaltenen Symmetrie die möglichen problematischen Eigenschaften der Git-

tertheorie aufwiegt. Dies muß für das jeweilige Modell und die behandelten Fragestel-

lungen geklärt werden. Auf jeden Fall zeigt sich bei allen Modellen mit teilweise erhaltener

Supersymmetrie ein Kontinuumslimes mit vollständiger Supersymmetrie. Dieser konnte

aber auch in vergleichbaren Formulierungen ohne teilweise erhaltene Supersymmetrie er-

reicht werden.

Erstmals gelang in dieser Arbeit eine Simulation mit einer nicht-lokalen Diskretisierung,

die die vollständige Supersymmetrie auch bei endlichem Gitterabstand erhält.

Supersymmetrie oder Lokalität müssen in den Gittermodellen in kontrollierter Weise

verletzt werden, so daß beide Eigenschaften im Kontinuumslimes wieder hergestellt sind.

Auch die chirale Symmetrie muß in kontrollierter Weise gebrochen werden. Dies wird

durch das Nielsen-Ninmoya-Theorem verlangt. Die Ginsparg-Wilson-Relation stellt eine

kontrollierte Brechung der chiralen Symmetrie sicher. Sie entspricht der Symmetrie einer

perfekten Gitterwirkung. Eine Verallgemeinerung dieser Symmetrie-Relation auf allge-

meine globale lineare Symmetrien sind Bestandteil dieser Arbeit. Bei der Anwendung

auf Supersymmetrie treten allerdings zwei Schwierigkeiten auf. Zum einen ist die Über-

setzung der Ableitungen in den Supersymmetrietransformationen die nicht-lokale SLAC-

Ableitung. Dies folgt aus dem Übergang von Kontinuumsfeldern zu gemittelten Git-

terfeldern. Die Lokalität kann mit Hilfe der Blocking-Matrix verbessert werden. Das

zweite Problem tritt bei der Anwendung des Ansatzes von Ginsparg und Wilson auf

eine nicht-quadratische Wirkung auf. Die Lösungen sind dann im allgemeinen nicht-

polynomial. Dies ist verständlich, wenn man bedenkt, daß auch die perfekte Wirkung

nicht-polynomialen Charakter hat. Auswege konnten aufgezeigt werden, und weitere Un-

tersuchungen werden folgen.

Eine gute Alternative zu den Gittersimulationen ist die Methode des exakten Renorm-

ierungsgruppenflusses. Auch sie kann Einblick in den nicht-perturbativen Sektor einer

supersymmetrischen Theorie geben. Man kann Regulatoren verwenden, die zu keiner

Brechung der Supersymmetrie führen. Ein Problem dieser Methode ist aber, die passende

Trunkierung der effektiven Wirkung zu finden. Um ein verläßliches Resultat zu erhal-

ten, sollte man die Ergebnisse deshalb mit den Gitterrechnungen vergleichen. Mit einem

solchen Vergleich kann man sicherstellen, daß die Fehler, die in beiden Verfahren auftreten,

nicht relevant sind.
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Als drittes Verfahren wurde auch die Schleifenentwicklung in einer supersymmetrischen

Theorie untersucht. Dabei stößt man in der Literatur auf Unstimmigkeiten im Umgang

mit dem Hilfsfeld. Wie diese Arbeit zeigt, entsprechen diese Unstimmigkeiten zwei unter-

schiedliche Näherungsverfahren. Eines davon entspricht einer Resummation von Schleifen-

beiträgen. Es ermöglicht einen anderen Einblick in die exakten Eigenschaten der Theorie.

All diese Untersuchungen zeigen, daß eine Analyse einer supersymmetrischen Theorie

auch jenseits der Störungstheorie möglich ist. Man kann die Methoden der Quanten-

feldtheorie anwenden, ohne Supersymmetrie zu verletzen. Im Falle der Gittersimulatio-

nen muß man bei jedem gegebenen Modell überprüfen, daß Lokalität und Supersymmetrie

im Kontinuumslimes wiederhergestellt werden. Weiter Untersuchungen einer Ginsparg-

Wilson-Relation für Supersymmetrie können zu einer Lösung führen, die nicht von den

spezifischen Modellen abhängt. Ein Vergleich mit den Ergebnissen anderer Verfahren ist

in jedem Falle vorteilhaft. Möglichkeiten dafür konnten aufgezeigt werden.
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